summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/mxc_nand.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/raw/mxc_nand.c')
-rw-r--r--drivers/mtd/nand/raw/mxc_nand.c1941
1 files changed, 1941 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c
new file mode 100644
index 000000000..684c51e5e
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxc_nand.c
@@ -0,0 +1,1941 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
+ * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
+ */
+
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/interrupt.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/irq.h>
+#include <linux/completion.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_data/mtd-mxc_nand.h>
+
+#define DRIVER_NAME "mxc_nand"
+
+/* Addresses for NFC registers */
+#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
+#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
+#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
+#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
+#define NFC_V1_V2_CONFIG (host->regs + 0x0a)
+#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
+#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
+#define NFC_V21_RSLTSPARE_AREA (host->regs + 0x10)
+#define NFC_V1_V2_WRPROT (host->regs + 0x12)
+#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
+#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
+#define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
+#define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
+#define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
+#define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
+#define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
+#define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
+#define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
+#define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
+#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
+#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
+#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
+
+#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
+#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
+#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
+#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
+#define NFC_V1_V2_CONFIG1_BIG (1 << 5)
+#define NFC_V1_V2_CONFIG1_RST (1 << 6)
+#define NFC_V1_V2_CONFIG1_CE (1 << 7)
+#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
+#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
+#define NFC_V2_CONFIG1_FP_INT (1 << 11)
+
+#define NFC_V1_V2_CONFIG2_INT (1 << 15)
+
+/*
+ * Operation modes for the NFC. Valid for v1, v2 and v3
+ * type controllers.
+ */
+#define NFC_CMD (1 << 0)
+#define NFC_ADDR (1 << 1)
+#define NFC_INPUT (1 << 2)
+#define NFC_OUTPUT (1 << 3)
+#define NFC_ID (1 << 4)
+#define NFC_STATUS (1 << 5)
+
+#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
+#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
+
+#define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
+#define NFC_V3_CONFIG1_SP_EN (1 << 0)
+#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
+
+#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
+
+#define NFC_V3_LAUNCH (host->regs_axi + 0x40)
+
+#define NFC_V3_WRPROT (host->regs_ip + 0x0)
+#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
+#define NFC_V3_WRPROT_LOCK (1 << 1)
+#define NFC_V3_WRPROT_UNLOCK (1 << 2)
+#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
+
+#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
+
+#define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
+#define NFC_V3_CONFIG2_PS_512 (0 << 0)
+#define NFC_V3_CONFIG2_PS_2048 (1 << 0)
+#define NFC_V3_CONFIG2_PS_4096 (2 << 0)
+#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
+#define NFC_V3_CONFIG2_ECC_EN (1 << 3)
+#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
+#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
+#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
+#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
+#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
+#define NFC_V3_CONFIG2_INT_MSK (1 << 15)
+#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
+#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
+
+#define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
+#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
+#define NFC_V3_CONFIG3_FW8 (1 << 3)
+#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
+#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
+#define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
+#define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
+
+#define NFC_V3_IPC (host->regs_ip + 0x2C)
+#define NFC_V3_IPC_CREQ (1 << 0)
+#define NFC_V3_IPC_INT (1 << 31)
+
+#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
+
+struct mxc_nand_host;
+
+struct mxc_nand_devtype_data {
+ void (*preset)(struct mtd_info *);
+ int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
+ int page);
+ void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
+ void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
+ void (*send_page)(struct mtd_info *, unsigned int);
+ void (*send_read_id)(struct mxc_nand_host *);
+ uint16_t (*get_dev_status)(struct mxc_nand_host *);
+ int (*check_int)(struct mxc_nand_host *);
+ void (*irq_control)(struct mxc_nand_host *, int);
+ u32 (*get_ecc_status)(struct mxc_nand_host *);
+ const struct mtd_ooblayout_ops *ooblayout;
+ void (*select_chip)(struct nand_chip *chip, int cs);
+ int (*setup_interface)(struct nand_chip *chip, int csline,
+ const struct nand_interface_config *conf);
+ void (*enable_hwecc)(struct nand_chip *chip, bool enable);
+
+ /*
+ * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
+ * (CONFIG1:INT_MSK is set). To handle this the driver uses
+ * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
+ */
+ int irqpending_quirk;
+ int needs_ip;
+
+ size_t regs_offset;
+ size_t spare0_offset;
+ size_t axi_offset;
+
+ int spare_len;
+ int eccbytes;
+ int eccsize;
+ int ppb_shift;
+};
+
+struct mxc_nand_host {
+ struct nand_chip nand;
+ struct device *dev;
+
+ void __iomem *spare0;
+ void __iomem *main_area0;
+
+ void __iomem *base;
+ void __iomem *regs;
+ void __iomem *regs_axi;
+ void __iomem *regs_ip;
+ int status_request;
+ struct clk *clk;
+ int clk_act;
+ int irq;
+ int eccsize;
+ int used_oobsize;
+ int active_cs;
+
+ struct completion op_completion;
+
+ uint8_t *data_buf;
+ unsigned int buf_start;
+
+ const struct mxc_nand_devtype_data *devtype_data;
+ struct mxc_nand_platform_data pdata;
+};
+
+static const char * const part_probes[] = {
+ "cmdlinepart", "RedBoot", "ofpart", NULL };
+
+static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
+{
+ int i;
+ u32 *t = trg;
+ const __iomem u32 *s = src;
+
+ for (i = 0; i < (size >> 2); i++)
+ *t++ = __raw_readl(s++);
+}
+
+static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size)
+{
+ int i;
+ u16 *t = trg;
+ const __iomem u16 *s = src;
+
+ /* We assume that src (IO) is always 32bit aligned */
+ if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
+ memcpy32_fromio(trg, src, size);
+ return;
+ }
+
+ for (i = 0; i < (size >> 1); i++)
+ *t++ = __raw_readw(s++);
+}
+
+static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
+{
+ /* __iowrite32_copy use 32bit size values so divide by 4 */
+ __iowrite32_copy(trg, src, size / 4);
+}
+
+static void memcpy16_toio(void __iomem *trg, const void *src, int size)
+{
+ int i;
+ __iomem u16 *t = trg;
+ const u16 *s = src;
+
+ /* We assume that trg (IO) is always 32bit aligned */
+ if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
+ memcpy32_toio(trg, src, size);
+ return;
+ }
+
+ for (i = 0; i < (size >> 1); i++)
+ __raw_writew(*s++, t++);
+}
+
+/*
+ * The controller splits a page into data chunks of 512 bytes + partial oob.
+ * There are writesize / 512 such chunks, the size of the partial oob parts is
+ * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
+ * contains additionally the byte lost by rounding (if any).
+ * This function handles the needed shuffling between host->data_buf (which
+ * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
+ * spare) and the NFC buffer.
+ */
+static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
+{
+ struct nand_chip *this = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(this);
+ u16 i, oob_chunk_size;
+ u16 num_chunks = mtd->writesize / 512;
+
+ u8 *d = buf;
+ u8 __iomem *s = host->spare0;
+ u16 sparebuf_size = host->devtype_data->spare_len;
+
+ /* size of oob chunk for all but possibly the last one */
+ oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
+
+ if (bfrom) {
+ for (i = 0; i < num_chunks - 1; i++)
+ memcpy16_fromio(d + i * oob_chunk_size,
+ s + i * sparebuf_size,
+ oob_chunk_size);
+
+ /* the last chunk */
+ memcpy16_fromio(d + i * oob_chunk_size,
+ s + i * sparebuf_size,
+ host->used_oobsize - i * oob_chunk_size);
+ } else {
+ for (i = 0; i < num_chunks - 1; i++)
+ memcpy16_toio(&s[i * sparebuf_size],
+ &d[i * oob_chunk_size],
+ oob_chunk_size);
+
+ /* the last chunk */
+ memcpy16_toio(&s[i * sparebuf_size],
+ &d[i * oob_chunk_size],
+ host->used_oobsize - i * oob_chunk_size);
+ }
+}
+
+/*
+ * MXC NANDFC can only perform full page+spare or spare-only read/write. When
+ * the upper layers perform a read/write buf operation, the saved column address
+ * is used to index into the full page. So usually this function is called with
+ * column == 0 (unless no column cycle is needed indicated by column == -1)
+ */
+static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+ /* Write out column address, if necessary */
+ if (column != -1) {
+ host->devtype_data->send_addr(host, column & 0xff,
+ page_addr == -1);
+ if (mtd->writesize > 512)
+ /* another col addr cycle for 2k page */
+ host->devtype_data->send_addr(host,
+ (column >> 8) & 0xff,
+ false);
+ }
+
+ /* Write out page address, if necessary */
+ if (page_addr != -1) {
+ /* paddr_0 - p_addr_7 */
+ host->devtype_data->send_addr(host, (page_addr & 0xff), false);
+
+ if (mtd->writesize > 512) {
+ if (mtd->size >= 0x10000000) {
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff,
+ false);
+ host->devtype_data->send_addr(host,
+ (page_addr >> 16) & 0xff,
+ true);
+ } else
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff, true);
+ } else {
+ if (nand_chip->options & NAND_ROW_ADDR_3) {
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff,
+ false);
+ host->devtype_data->send_addr(host,
+ (page_addr >> 16) & 0xff,
+ true);
+ } else
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff, true);
+ }
+ }
+}
+
+static int check_int_v3(struct mxc_nand_host *host)
+{
+ uint32_t tmp;
+
+ tmp = readl(NFC_V3_IPC);
+ if (!(tmp & NFC_V3_IPC_INT))
+ return 0;
+
+ tmp &= ~NFC_V3_IPC_INT;
+ writel(tmp, NFC_V3_IPC);
+
+ return 1;
+}
+
+static int check_int_v1_v2(struct mxc_nand_host *host)
+{
+ uint32_t tmp;
+
+ tmp = readw(NFC_V1_V2_CONFIG2);
+ if (!(tmp & NFC_V1_V2_CONFIG2_INT))
+ return 0;
+
+ if (!host->devtype_data->irqpending_quirk)
+ writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
+
+ return 1;
+}
+
+static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
+{
+ uint16_t tmp;
+
+ tmp = readw(NFC_V1_V2_CONFIG1);
+
+ if (activate)
+ tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
+ else
+ tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
+
+ writew(tmp, NFC_V1_V2_CONFIG1);
+}
+
+static void irq_control_v3(struct mxc_nand_host *host, int activate)
+{
+ uint32_t tmp;
+
+ tmp = readl(NFC_V3_CONFIG2);
+
+ if (activate)
+ tmp &= ~NFC_V3_CONFIG2_INT_MSK;
+ else
+ tmp |= NFC_V3_CONFIG2_INT_MSK;
+
+ writel(tmp, NFC_V3_CONFIG2);
+}
+
+static void irq_control(struct mxc_nand_host *host, int activate)
+{
+ if (host->devtype_data->irqpending_quirk) {
+ if (activate)
+ enable_irq(host->irq);
+ else
+ disable_irq_nosync(host->irq);
+ } else {
+ host->devtype_data->irq_control(host, activate);
+ }
+}
+
+static u32 get_ecc_status_v1(struct mxc_nand_host *host)
+{
+ return readw(NFC_V1_V2_ECC_STATUS_RESULT);
+}
+
+static u32 get_ecc_status_v2(struct mxc_nand_host *host)
+{
+ return readl(NFC_V1_V2_ECC_STATUS_RESULT);
+}
+
+static u32 get_ecc_status_v3(struct mxc_nand_host *host)
+{
+ return readl(NFC_V3_ECC_STATUS_RESULT);
+}
+
+static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
+{
+ struct mxc_nand_host *host = dev_id;
+
+ if (!host->devtype_data->check_int(host))
+ return IRQ_NONE;
+
+ irq_control(host, 0);
+
+ complete(&host->op_completion);
+
+ return IRQ_HANDLED;
+}
+
+/* This function polls the NANDFC to wait for the basic operation to
+ * complete by checking the INT bit of config2 register.
+ */
+static int wait_op_done(struct mxc_nand_host *host, int useirq)
+{
+ int ret = 0;
+
+ /*
+ * If operation is already complete, don't bother to setup an irq or a
+ * loop.
+ */
+ if (host->devtype_data->check_int(host))
+ return 0;
+
+ if (useirq) {
+ unsigned long timeout;
+
+ reinit_completion(&host->op_completion);
+
+ irq_control(host, 1);
+
+ timeout = wait_for_completion_timeout(&host->op_completion, HZ);
+ if (!timeout && !host->devtype_data->check_int(host)) {
+ dev_dbg(host->dev, "timeout waiting for irq\n");
+ ret = -ETIMEDOUT;
+ }
+ } else {
+ int max_retries = 8000;
+ int done;
+
+ do {
+ udelay(1);
+
+ done = host->devtype_data->check_int(host);
+ if (done)
+ break;
+
+ } while (--max_retries);
+
+ if (!done) {
+ dev_dbg(host->dev, "timeout polling for completion\n");
+ ret = -ETIMEDOUT;
+ }
+ }
+
+ WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
+
+ return ret;
+}
+
+static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
+{
+ /* fill command */
+ writel(cmd, NFC_V3_FLASH_CMD);
+
+ /* send out command */
+ writel(NFC_CMD, NFC_V3_LAUNCH);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, useirq);
+}
+
+/* This function issues the specified command to the NAND device and
+ * waits for completion. */
+static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
+{
+ dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
+
+ writew(cmd, NFC_V1_V2_FLASH_CMD);
+ writew(NFC_CMD, NFC_V1_V2_CONFIG2);
+
+ if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
+ int max_retries = 100;
+ /* Reset completion is indicated by NFC_CONFIG2 */
+ /* being set to 0 */
+ while (max_retries-- > 0) {
+ if (readw(NFC_V1_V2_CONFIG2) == 0) {
+ break;
+ }
+ udelay(1);
+ }
+ if (max_retries < 0)
+ dev_dbg(host->dev, "%s: RESET failed\n", __func__);
+ } else {
+ /* Wait for operation to complete */
+ wait_op_done(host, useirq);
+ }
+}
+
+static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
+{
+ /* fill address */
+ writel(addr, NFC_V3_FLASH_ADDR0);
+
+ /* send out address */
+ writel(NFC_ADDR, NFC_V3_LAUNCH);
+
+ wait_op_done(host, 0);
+}
+
+/* This function sends an address (or partial address) to the
+ * NAND device. The address is used to select the source/destination for
+ * a NAND command. */
+static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
+{
+ dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
+
+ writew(addr, NFC_V1_V2_FLASH_ADDR);
+ writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, islast);
+}
+
+static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+ uint32_t tmp;
+
+ tmp = readl(NFC_V3_CONFIG1);
+ tmp &= ~(7 << 4);
+ writel(tmp, NFC_V3_CONFIG1);
+
+ /* transfer data from NFC ram to nand */
+ writel(ops, NFC_V3_LAUNCH);
+
+ wait_op_done(host, false);
+}
+
+static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+ /* NANDFC buffer 0 is used for page read/write */
+ writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
+
+ writew(ops, NFC_V1_V2_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, true);
+}
+
+static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+ int bufs, i;
+
+ if (mtd->writesize > 512)
+ bufs = 4;
+ else
+ bufs = 1;
+
+ for (i = 0; i < bufs; i++) {
+
+ /* NANDFC buffer 0 is used for page read/write */
+ writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
+
+ writew(ops, NFC_V1_V2_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, true);
+ }
+}
+
+static void send_read_id_v3(struct mxc_nand_host *host)
+{
+ /* Read ID into main buffer */
+ writel(NFC_ID, NFC_V3_LAUNCH);
+
+ wait_op_done(host, true);
+
+ memcpy32_fromio(host->data_buf, host->main_area0, 16);
+}
+
+/* Request the NANDFC to perform a read of the NAND device ID. */
+static void send_read_id_v1_v2(struct mxc_nand_host *host)
+{
+ /* NANDFC buffer 0 is used for device ID output */
+ writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
+
+ writew(NFC_ID, NFC_V1_V2_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, true);
+
+ memcpy32_fromio(host->data_buf, host->main_area0, 16);
+}
+
+static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
+{
+ writew(NFC_STATUS, NFC_V3_LAUNCH);
+ wait_op_done(host, true);
+
+ return readl(NFC_V3_CONFIG1) >> 16;
+}
+
+/* This function requests the NANDFC to perform a read of the
+ * NAND device status and returns the current status. */
+static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
+{
+ void __iomem *main_buf = host->main_area0;
+ uint32_t store;
+ uint16_t ret;
+
+ writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
+
+ /*
+ * The device status is stored in main_area0. To
+ * prevent corruption of the buffer save the value
+ * and restore it afterwards.
+ */
+ store = readl(main_buf);
+
+ writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
+ wait_op_done(host, true);
+
+ ret = readw(main_buf);
+
+ writel(store, main_buf);
+
+ return ret;
+}
+
+static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ uint16_t config1;
+
+ if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
+ return;
+
+ config1 = readw(NFC_V1_V2_CONFIG1);
+
+ if (enable)
+ config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
+ else
+ config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
+
+ writew(config1, NFC_V1_V2_CONFIG1);
+}
+
+static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ uint32_t config2;
+
+ if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
+ return;
+
+ config2 = readl(NFC_V3_CONFIG2);
+
+ if (enable)
+ config2 |= NFC_V3_CONFIG2_ECC_EN;
+ else
+ config2 &= ~NFC_V3_CONFIG2_ECC_EN;
+
+ writel(config2, NFC_V3_CONFIG2);
+}
+
+/* This functions is used by upper layer to checks if device is ready */
+static int mxc_nand_dev_ready(struct nand_chip *chip)
+{
+ /*
+ * NFC handles R/B internally. Therefore, this function
+ * always returns status as ready.
+ */
+ return 1;
+}
+
+static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
+ bool ecc, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ unsigned int bitflips_corrected = 0;
+ int no_subpages;
+ int i;
+
+ host->devtype_data->enable_hwecc(chip, ecc);
+
+ host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
+ mxc_do_addr_cycle(mtd, 0, page);
+
+ if (mtd->writesize > 512)
+ host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
+
+ no_subpages = mtd->writesize >> 9;
+
+ for (i = 0; i < no_subpages; i++) {
+ uint16_t ecc_stats;
+
+ /* NANDFC buffer 0 is used for page read/write */
+ writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
+
+ writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, true);
+
+ ecc_stats = get_ecc_status_v1(host);
+
+ ecc_stats >>= 2;
+
+ if (buf && ecc) {
+ switch (ecc_stats & 0x3) {
+ case 0:
+ default:
+ break;
+ case 1:
+ mtd->ecc_stats.corrected++;
+ bitflips_corrected = 1;
+ break;
+ case 2:
+ mtd->ecc_stats.failed++;
+ break;
+ }
+ }
+ }
+
+ if (buf)
+ memcpy32_fromio(buf, host->main_area0, mtd->writesize);
+ if (oob)
+ copy_spare(mtd, true, oob);
+
+ return bitflips_corrected;
+}
+
+static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
+ void *oob, bool ecc, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ unsigned int max_bitflips = 0;
+ u32 ecc_stat, err;
+ int no_subpages;
+ u8 ecc_bit_mask, err_limit;
+
+ host->devtype_data->enable_hwecc(chip, ecc);
+
+ host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
+ mxc_do_addr_cycle(mtd, 0, page);
+
+ if (mtd->writesize > 512)
+ host->devtype_data->send_cmd(host,
+ NAND_CMD_READSTART, true);
+
+ host->devtype_data->send_page(mtd, NFC_OUTPUT);
+
+ if (buf)
+ memcpy32_fromio(buf, host->main_area0, mtd->writesize);
+ if (oob)
+ copy_spare(mtd, true, oob);
+
+ ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
+ err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
+
+ no_subpages = mtd->writesize >> 9;
+
+ ecc_stat = host->devtype_data->get_ecc_status(host);
+
+ do {
+ err = ecc_stat & ecc_bit_mask;
+ if (err > err_limit) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += err;
+ max_bitflips = max_t(unsigned int, max_bitflips, err);
+ }
+
+ ecc_stat >>= 4;
+ } while (--no_subpages);
+
+ return max_bitflips;
+}
+
+static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ void *oob_buf;
+
+ if (oob_required)
+ oob_buf = chip->oob_poi;
+ else
+ oob_buf = NULL;
+
+ return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
+}
+
+static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ void *oob_buf;
+
+ if (oob_required)
+ oob_buf = chip->oob_poi;
+ else
+ oob_buf = NULL;
+
+ return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
+}
+
+static int mxc_nand_read_oob(struct nand_chip *chip, int page)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+ return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
+ page);
+}
+
+static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
+ bool ecc, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+ host->devtype_data->enable_hwecc(chip, ecc);
+
+ host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
+ mxc_do_addr_cycle(mtd, 0, page);
+
+ memcpy32_toio(host->main_area0, buf, mtd->writesize);
+ copy_spare(mtd, false, chip->oob_poi);
+
+ host->devtype_data->send_page(mtd, NFC_INPUT);
+ host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
+ mxc_do_addr_cycle(mtd, 0, page);
+
+ return 0;
+}
+
+static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
+ int oob_required, int page)
+{
+ return mxc_nand_write_page(chip, buf, true, page);
+}
+
+static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
+ int oob_required, int page)
+{
+ return mxc_nand_write_page(chip, buf, false, page);
+}
+
+static int mxc_nand_write_oob(struct nand_chip *chip, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+ memset(host->data_buf, 0xff, mtd->writesize);
+
+ return mxc_nand_write_page(chip, host->data_buf, false, page);
+}
+
+static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+ uint8_t ret;
+
+ /* Check for status request */
+ if (host->status_request)
+ return host->devtype_data->get_dev_status(host) & 0xFF;
+
+ if (nand_chip->options & NAND_BUSWIDTH_16) {
+ /* only take the lower byte of each word */
+ ret = *(uint16_t *)(host->data_buf + host->buf_start);
+
+ host->buf_start += 2;
+ } else {
+ ret = *(uint8_t *)(host->data_buf + host->buf_start);
+ host->buf_start++;
+ }
+
+ dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
+ return ret;
+}
+
+/* Write data of length len to buffer buf. The data to be
+ * written on NAND Flash is first copied to RAMbuffer. After the Data Input
+ * Operation by the NFC, the data is written to NAND Flash */
+static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
+ int len)
+{
+ struct mtd_info *mtd = nand_to_mtd(nand_chip);
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+ u16 col = host->buf_start;
+ int n = mtd->oobsize + mtd->writesize - col;
+
+ n = min(n, len);
+
+ memcpy(host->data_buf + col, buf, n);
+
+ host->buf_start += n;
+}
+
+/* Read the data buffer from the NAND Flash. To read the data from NAND
+ * Flash first the data output cycle is initiated by the NFC, which copies
+ * the data to RAMbuffer. This data of length len is then copied to buffer buf.
+ */
+static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
+ int len)
+{
+ struct mtd_info *mtd = nand_to_mtd(nand_chip);
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+ u16 col = host->buf_start;
+ int n = mtd->oobsize + mtd->writesize - col;
+
+ n = min(n, len);
+
+ memcpy(buf, host->data_buf + col, n);
+
+ host->buf_start += n;
+}
+
+/* This function is used by upper layer for select and
+ * deselect of the NAND chip */
+static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+ if (chip == -1) {
+ /* Disable the NFC clock */
+ if (host->clk_act) {
+ clk_disable_unprepare(host->clk);
+ host->clk_act = 0;
+ }
+ return;
+ }
+
+ if (!host->clk_act) {
+ /* Enable the NFC clock */
+ clk_prepare_enable(host->clk);
+ host->clk_act = 1;
+ }
+}
+
+static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+ if (chip == -1) {
+ /* Disable the NFC clock */
+ if (host->clk_act) {
+ clk_disable_unprepare(host->clk);
+ host->clk_act = 0;
+ }
+ return;
+ }
+
+ if (!host->clk_act) {
+ /* Enable the NFC clock */
+ clk_prepare_enable(host->clk);
+ host->clk_act = 1;
+ }
+
+ host->active_cs = chip;
+ writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
+}
+
+#define MXC_V1_ECCBYTES 5
+
+static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+
+ if (section >= nand_chip->ecc.steps)
+ return -ERANGE;
+
+ oobregion->offset = (section * 16) + 6;
+ oobregion->length = MXC_V1_ECCBYTES;
+
+ return 0;
+}
+
+static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+
+ if (section > nand_chip->ecc.steps)
+ return -ERANGE;
+
+ if (!section) {
+ if (mtd->writesize <= 512) {
+ oobregion->offset = 0;
+ oobregion->length = 5;
+ } else {
+ oobregion->offset = 2;
+ oobregion->length = 4;
+ }
+ } else {
+ oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
+ if (section < nand_chip->ecc.steps)
+ oobregion->length = (section * 16) + 6 -
+ oobregion->offset;
+ else
+ oobregion->length = mtd->oobsize - oobregion->offset;
+ }
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
+ .ecc = mxc_v1_ooblayout_ecc,
+ .free = mxc_v1_ooblayout_free,
+};
+
+static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
+
+ if (section >= nand_chip->ecc.steps)
+ return -ERANGE;
+
+ oobregion->offset = (section * stepsize) + 7;
+ oobregion->length = nand_chip->ecc.bytes;
+
+ return 0;
+}
+
+static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
+
+ if (section >= nand_chip->ecc.steps)
+ return -ERANGE;
+
+ if (!section) {
+ if (mtd->writesize <= 512) {
+ oobregion->offset = 0;
+ oobregion->length = 5;
+ } else {
+ oobregion->offset = 2;
+ oobregion->length = 4;
+ }
+ } else {
+ oobregion->offset = section * stepsize;
+ oobregion->length = 7;
+ }
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
+ .ecc = mxc_v2_ooblayout_ecc,
+ .free = mxc_v2_ooblayout_free,
+};
+
+/*
+ * v2 and v3 type controllers can do 4bit or 8bit ecc depending
+ * on how much oob the nand chip has. For 8bit ecc we need at least
+ * 26 bytes of oob data per 512 byte block.
+ */
+static int get_eccsize(struct mtd_info *mtd)
+{
+ int oobbytes_per_512 = 0;
+
+ oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
+
+ if (oobbytes_per_512 < 26)
+ return 4;
+ else
+ return 8;
+}
+
+static void preset_v1(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+ uint16_t config1 = 0;
+
+ if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
+ mtd->writesize)
+ config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
+
+ if (!host->devtype_data->irqpending_quirk)
+ config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
+
+ host->eccsize = 1;
+
+ writew(config1, NFC_V1_V2_CONFIG1);
+ /* preset operation */
+
+ /* Unlock the internal RAM Buffer */
+ writew(0x2, NFC_V1_V2_CONFIG);
+
+ /* Blocks to be unlocked */
+ writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
+ writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
+
+ /* Unlock Block Command for given address range */
+ writew(0x4, NFC_V1_V2_WRPROT);
+}
+
+static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline,
+ const struct nand_interface_config *conf)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ int tRC_min_ns, tRC_ps, ret;
+ unsigned long rate, rate_round;
+ const struct nand_sdr_timings *timings;
+ u16 config1;
+
+ timings = nand_get_sdr_timings(conf);
+ if (IS_ERR(timings))
+ return -ENOTSUPP;
+
+ config1 = readw(NFC_V1_V2_CONFIG1);
+
+ tRC_min_ns = timings->tRC_min / 1000;
+ rate = 1000000000 / tRC_min_ns;
+
+ /*
+ * For tRC < 30ns we have to use EDO mode. In this case the controller
+ * does one access per clock cycle. Otherwise the controller does one
+ * access in two clock cycles, thus we have to double the rate to the
+ * controller.
+ */
+ if (tRC_min_ns < 30) {
+ rate_round = clk_round_rate(host->clk, rate);
+ config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
+ tRC_ps = 1000000000 / (rate_round / 1000);
+ } else {
+ rate *= 2;
+ rate_round = clk_round_rate(host->clk, rate);
+ config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
+ tRC_ps = 1000000000 / (rate_round / 1000 / 2);
+ }
+
+ /*
+ * The timing values compared against are from the i.MX25 Automotive
+ * datasheet, Table 50. NFC Timing Parameters
+ */
+ if (timings->tCLS_min > tRC_ps - 1000 ||
+ timings->tCLH_min > tRC_ps - 2000 ||
+ timings->tCS_min > tRC_ps - 1000 ||
+ timings->tCH_min > tRC_ps - 2000 ||
+ timings->tWP_min > tRC_ps - 1500 ||
+ timings->tALS_min > tRC_ps ||
+ timings->tALH_min > tRC_ps - 3000 ||
+ timings->tDS_min > tRC_ps ||
+ timings->tDH_min > tRC_ps - 5000 ||
+ timings->tWC_min > 2 * tRC_ps ||
+ timings->tWH_min > tRC_ps - 2500 ||
+ timings->tRR_min > 6 * tRC_ps ||
+ timings->tRP_min > 3 * tRC_ps / 2 ||
+ timings->tRC_min > 2 * tRC_ps ||
+ timings->tREH_min > (tRC_ps / 2) - 2500) {
+ dev_dbg(host->dev, "Timing out of bounds\n");
+ return -EINVAL;
+ }
+
+ if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+ return 0;
+
+ ret = clk_set_rate(host->clk, rate);
+ if (ret)
+ return ret;
+
+ writew(config1, NFC_V1_V2_CONFIG1);
+
+ dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
+ config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
+ "normal");
+
+ return 0;
+}
+
+static void preset_v2(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+ uint16_t config1 = 0;
+
+ config1 |= NFC_V2_CONFIG1_FP_INT;
+
+ if (!host->devtype_data->irqpending_quirk)
+ config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
+
+ if (mtd->writesize) {
+ uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
+
+ if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
+ config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
+
+ host->eccsize = get_eccsize(mtd);
+ if (host->eccsize == 4)
+ config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
+
+ config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
+ } else {
+ host->eccsize = 1;
+ }
+
+ writew(config1, NFC_V1_V2_CONFIG1);
+ /* preset operation */
+
+ /* spare area size in 16-bit half-words */
+ writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
+
+ /* Unlock the internal RAM Buffer */
+ writew(0x2, NFC_V1_V2_CONFIG);
+
+ /* Blocks to be unlocked */
+ writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
+ writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
+ writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
+ writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
+ writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
+ writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
+ writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
+ writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
+
+ /* Unlock Block Command for given address range */
+ writew(0x4, NFC_V1_V2_WRPROT);
+}
+
+static void preset_v3(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ uint32_t config2, config3;
+ int i, addr_phases;
+
+ writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
+ writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
+
+ /* Unlock the internal RAM Buffer */
+ writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
+ NFC_V3_WRPROT);
+
+ /* Blocks to be unlocked */
+ for (i = 0; i < NAND_MAX_CHIPS; i++)
+ writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
+
+ writel(0, NFC_V3_IPC);
+
+ config2 = NFC_V3_CONFIG2_ONE_CYCLE |
+ NFC_V3_CONFIG2_2CMD_PHASES |
+ NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
+ NFC_V3_CONFIG2_ST_CMD(0x70) |
+ NFC_V3_CONFIG2_INT_MSK |
+ NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
+
+ addr_phases = fls(chip->pagemask) >> 3;
+
+ if (mtd->writesize == 2048) {
+ config2 |= NFC_V3_CONFIG2_PS_2048;
+ config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
+ } else if (mtd->writesize == 4096) {
+ config2 |= NFC_V3_CONFIG2_PS_4096;
+ config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
+ } else {
+ config2 |= NFC_V3_CONFIG2_PS_512;
+ config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
+ }
+
+ if (mtd->writesize) {
+ if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
+ config2 |= NFC_V3_CONFIG2_ECC_EN;
+
+ config2 |= NFC_V3_CONFIG2_PPB(
+ ffs(mtd->erasesize / mtd->writesize) - 6,
+ host->devtype_data->ppb_shift);
+ host->eccsize = get_eccsize(mtd);
+ if (host->eccsize == 8)
+ config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
+ }
+
+ writel(config2, NFC_V3_CONFIG2);
+
+ config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
+ NFC_V3_CONFIG3_NO_SDMA |
+ NFC_V3_CONFIG3_RBB_MODE |
+ NFC_V3_CONFIG3_SBB(6) | /* Reset default */
+ NFC_V3_CONFIG3_ADD_OP(0);
+
+ if (!(chip->options & NAND_BUSWIDTH_16))
+ config3 |= NFC_V3_CONFIG3_FW8;
+
+ writel(config3, NFC_V3_CONFIG3);
+
+ writel(0, NFC_V3_DELAY_LINE);
+}
+
+/* Used by the upper layer to write command to NAND Flash for
+ * different operations to be carried out on NAND Flash */
+static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
+ int column, int page_addr)
+{
+ struct mtd_info *mtd = nand_to_mtd(nand_chip);
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+ dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
+ command, column, page_addr);
+
+ /* Reset command state information */
+ host->status_request = false;
+
+ /* Command pre-processing step */
+ switch (command) {
+ case NAND_CMD_RESET:
+ host->devtype_data->preset(mtd);
+ host->devtype_data->send_cmd(host, command, false);
+ break;
+
+ case NAND_CMD_STATUS:
+ host->buf_start = 0;
+ host->status_request = true;
+
+ host->devtype_data->send_cmd(host, command, true);
+ WARN_ONCE(column != -1 || page_addr != -1,
+ "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
+ command, column, page_addr);
+ mxc_do_addr_cycle(mtd, column, page_addr);
+ break;
+
+ case NAND_CMD_READID:
+ host->devtype_data->send_cmd(host, command, true);
+ mxc_do_addr_cycle(mtd, column, page_addr);
+ host->devtype_data->send_read_id(host);
+ host->buf_start = 0;
+ break;
+
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ host->devtype_data->send_cmd(host, command, false);
+ WARN_ONCE(column != -1,
+ "Unexpected column value (cmd=%u, col=%d)\n",
+ command, column);
+ mxc_do_addr_cycle(mtd, column, page_addr);
+
+ break;
+ case NAND_CMD_PARAM:
+ host->devtype_data->send_cmd(host, command, false);
+ mxc_do_addr_cycle(mtd, column, page_addr);
+ host->devtype_data->send_page(mtd, NFC_OUTPUT);
+ memcpy32_fromio(host->data_buf, host->main_area0, 512);
+ host->buf_start = 0;
+ break;
+ default:
+ WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
+ command);
+ break;
+ }
+}
+
+static int mxc_nand_set_features(struct nand_chip *chip, int addr,
+ u8 *subfeature_param)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ int i;
+
+ host->buf_start = 0;
+
+ for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
+ chip->legacy.write_byte(chip, subfeature_param[i]);
+
+ memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
+ host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
+ mxc_do_addr_cycle(mtd, addr, -1);
+ host->devtype_data->send_page(mtd, NFC_INPUT);
+
+ return 0;
+}
+
+static int mxc_nand_get_features(struct nand_chip *chip, int addr,
+ u8 *subfeature_param)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ int i;
+
+ host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
+ mxc_do_addr_cycle(mtd, addr, -1);
+ host->devtype_data->send_page(mtd, NFC_OUTPUT);
+ memcpy32_fromio(host->data_buf, host->main_area0, 512);
+ host->buf_start = 0;
+
+ for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
+ *subfeature_param++ = chip->legacy.read_byte(chip);
+
+ return 0;
+}
+
+/*
+ * The generic flash bbt descriptors overlap with our ecc
+ * hardware, so define some i.MX specific ones.
+ */
+static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 0,
+ .len = 4,
+ .veroffs = 4,
+ .maxblocks = 4,
+ .pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 0,
+ .len = 4,
+ .veroffs = 4,
+ .maxblocks = 4,
+ .pattern = mirror_pattern,
+};
+
+/* v1 + irqpending_quirk: i.MX21 */
+static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
+ .preset = preset_v1,
+ .read_page = mxc_nand_read_page_v1,
+ .send_cmd = send_cmd_v1_v2,
+ .send_addr = send_addr_v1_v2,
+ .send_page = send_page_v1,
+ .send_read_id = send_read_id_v1_v2,
+ .get_dev_status = get_dev_status_v1_v2,
+ .check_int = check_int_v1_v2,
+ .irq_control = irq_control_v1_v2,
+ .get_ecc_status = get_ecc_status_v1,
+ .ooblayout = &mxc_v1_ooblayout_ops,
+ .select_chip = mxc_nand_select_chip_v1_v3,
+ .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
+ .irqpending_quirk = 1,
+ .needs_ip = 0,
+ .regs_offset = 0xe00,
+ .spare0_offset = 0x800,
+ .spare_len = 16,
+ .eccbytes = 3,
+ .eccsize = 1,
+};
+
+/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
+static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
+ .preset = preset_v1,
+ .read_page = mxc_nand_read_page_v1,
+ .send_cmd = send_cmd_v1_v2,
+ .send_addr = send_addr_v1_v2,
+ .send_page = send_page_v1,
+ .send_read_id = send_read_id_v1_v2,
+ .get_dev_status = get_dev_status_v1_v2,
+ .check_int = check_int_v1_v2,
+ .irq_control = irq_control_v1_v2,
+ .get_ecc_status = get_ecc_status_v1,
+ .ooblayout = &mxc_v1_ooblayout_ops,
+ .select_chip = mxc_nand_select_chip_v1_v3,
+ .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
+ .irqpending_quirk = 0,
+ .needs_ip = 0,
+ .regs_offset = 0xe00,
+ .spare0_offset = 0x800,
+ .axi_offset = 0,
+ .spare_len = 16,
+ .eccbytes = 3,
+ .eccsize = 1,
+};
+
+/* v21: i.MX25, i.MX35 */
+static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
+ .preset = preset_v2,
+ .read_page = mxc_nand_read_page_v2_v3,
+ .send_cmd = send_cmd_v1_v2,
+ .send_addr = send_addr_v1_v2,
+ .send_page = send_page_v2,
+ .send_read_id = send_read_id_v1_v2,
+ .get_dev_status = get_dev_status_v1_v2,
+ .check_int = check_int_v1_v2,
+ .irq_control = irq_control_v1_v2,
+ .get_ecc_status = get_ecc_status_v2,
+ .ooblayout = &mxc_v2_ooblayout_ops,
+ .select_chip = mxc_nand_select_chip_v2,
+ .setup_interface = mxc_nand_v2_setup_interface,
+ .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
+ .irqpending_quirk = 0,
+ .needs_ip = 0,
+ .regs_offset = 0x1e00,
+ .spare0_offset = 0x1000,
+ .axi_offset = 0,
+ .spare_len = 64,
+ .eccbytes = 9,
+ .eccsize = 0,
+};
+
+/* v3.2a: i.MX51 */
+static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
+ .preset = preset_v3,
+ .read_page = mxc_nand_read_page_v2_v3,
+ .send_cmd = send_cmd_v3,
+ .send_addr = send_addr_v3,
+ .send_page = send_page_v3,
+ .send_read_id = send_read_id_v3,
+ .get_dev_status = get_dev_status_v3,
+ .check_int = check_int_v3,
+ .irq_control = irq_control_v3,
+ .get_ecc_status = get_ecc_status_v3,
+ .ooblayout = &mxc_v2_ooblayout_ops,
+ .select_chip = mxc_nand_select_chip_v1_v3,
+ .enable_hwecc = mxc_nand_enable_hwecc_v3,
+ .irqpending_quirk = 0,
+ .needs_ip = 1,
+ .regs_offset = 0,
+ .spare0_offset = 0x1000,
+ .axi_offset = 0x1e00,
+ .spare_len = 64,
+ .eccbytes = 0,
+ .eccsize = 0,
+ .ppb_shift = 7,
+};
+
+/* v3.2b: i.MX53 */
+static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
+ .preset = preset_v3,
+ .read_page = mxc_nand_read_page_v2_v3,
+ .send_cmd = send_cmd_v3,
+ .send_addr = send_addr_v3,
+ .send_page = send_page_v3,
+ .send_read_id = send_read_id_v3,
+ .get_dev_status = get_dev_status_v3,
+ .check_int = check_int_v3,
+ .irq_control = irq_control_v3,
+ .get_ecc_status = get_ecc_status_v3,
+ .ooblayout = &mxc_v2_ooblayout_ops,
+ .select_chip = mxc_nand_select_chip_v1_v3,
+ .enable_hwecc = mxc_nand_enable_hwecc_v3,
+ .irqpending_quirk = 0,
+ .needs_ip = 1,
+ .regs_offset = 0,
+ .spare0_offset = 0x1000,
+ .axi_offset = 0x1e00,
+ .spare_len = 64,
+ .eccbytes = 0,
+ .eccsize = 0,
+ .ppb_shift = 8,
+};
+
+static inline int is_imx21_nfc(struct mxc_nand_host *host)
+{
+ return host->devtype_data == &imx21_nand_devtype_data;
+}
+
+static inline int is_imx27_nfc(struct mxc_nand_host *host)
+{
+ return host->devtype_data == &imx27_nand_devtype_data;
+}
+
+static inline int is_imx25_nfc(struct mxc_nand_host *host)
+{
+ return host->devtype_data == &imx25_nand_devtype_data;
+}
+
+static inline int is_imx51_nfc(struct mxc_nand_host *host)
+{
+ return host->devtype_data == &imx51_nand_devtype_data;
+}
+
+static inline int is_imx53_nfc(struct mxc_nand_host *host)
+{
+ return host->devtype_data == &imx53_nand_devtype_data;
+}
+
+static const struct platform_device_id mxcnd_devtype[] = {
+ {
+ .name = "imx21-nand",
+ .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
+ }, {
+ .name = "imx27-nand",
+ .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
+ }, {
+ .name = "imx25-nand",
+ .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
+ }, {
+ .name = "imx51-nand",
+ .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
+ }, {
+ .name = "imx53-nand",
+ .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
+ }, {
+ /* sentinel */
+ }
+};
+MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
+
+#ifdef CONFIG_OF
+static const struct of_device_id mxcnd_dt_ids[] = {
+ {
+ .compatible = "fsl,imx21-nand",
+ .data = &imx21_nand_devtype_data,
+ }, {
+ .compatible = "fsl,imx27-nand",
+ .data = &imx27_nand_devtype_data,
+ }, {
+ .compatible = "fsl,imx25-nand",
+ .data = &imx25_nand_devtype_data,
+ }, {
+ .compatible = "fsl,imx51-nand",
+ .data = &imx51_nand_devtype_data,
+ }, {
+ .compatible = "fsl,imx53-nand",
+ .data = &imx53_nand_devtype_data,
+ },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
+
+static int mxcnd_probe_dt(struct mxc_nand_host *host)
+{
+ struct device_node *np = host->dev->of_node;
+ const struct of_device_id *of_id =
+ of_match_device(mxcnd_dt_ids, host->dev);
+
+ if (!np)
+ return 1;
+
+ host->devtype_data = of_id->data;
+
+ return 0;
+}
+#else
+static int mxcnd_probe_dt(struct mxc_nand_host *host)
+{
+ return 1;
+}
+#endif
+
+static int mxcnd_attach_chip(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ struct device *dev = mtd->dev.parent;
+
+ chip->ecc.bytes = host->devtype_data->eccbytes;
+ host->eccsize = host->devtype_data->eccsize;
+ chip->ecc.size = 512;
+ mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
+
+ switch (chip->ecc.engine_type) {
+ case NAND_ECC_ENGINE_TYPE_ON_HOST:
+ chip->ecc.read_page = mxc_nand_read_page;
+ chip->ecc.read_page_raw = mxc_nand_read_page_raw;
+ chip->ecc.read_oob = mxc_nand_read_oob;
+ chip->ecc.write_page = mxc_nand_write_page_ecc;
+ chip->ecc.write_page_raw = mxc_nand_write_page_raw;
+ chip->ecc.write_oob = mxc_nand_write_oob;
+ break;
+
+ case NAND_ECC_ENGINE_TYPE_SOFT:
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ if (chip->bbt_options & NAND_BBT_USE_FLASH) {
+ chip->bbt_td = &bbt_main_descr;
+ chip->bbt_md = &bbt_mirror_descr;
+ }
+
+ /* Allocate the right size buffer now */
+ devm_kfree(dev, (void *)host->data_buf);
+ host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
+ GFP_KERNEL);
+ if (!host->data_buf)
+ return -ENOMEM;
+
+ /* Call preset again, with correct writesize chip time */
+ host->devtype_data->preset(mtd);
+
+ if (!chip->ecc.bytes) {
+ if (host->eccsize == 8)
+ chip->ecc.bytes = 18;
+ else if (host->eccsize == 4)
+ chip->ecc.bytes = 9;
+ }
+
+ /*
+ * Experimentation shows that i.MX NFC can only handle up to 218 oob
+ * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
+ * into copying invalid data to/from the spare IO buffer, as this
+ * might cause ECC data corruption when doing sub-page write to a
+ * partially written page.
+ */
+ host->used_oobsize = min(mtd->oobsize, 218U);
+
+ if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
+ if (is_imx21_nfc(host) || is_imx27_nfc(host))
+ chip->ecc.strength = 1;
+ else
+ chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
+ }
+
+ return 0;
+}
+
+static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr,
+ const struct nand_interface_config *conf)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+ return host->devtype_data->setup_interface(chip, chipnr, conf);
+}
+
+static const struct nand_controller_ops mxcnd_controller_ops = {
+ .attach_chip = mxcnd_attach_chip,
+ .setup_interface = mxcnd_setup_interface,
+};
+
+static int mxcnd_probe(struct platform_device *pdev)
+{
+ struct nand_chip *this;
+ struct mtd_info *mtd;
+ struct mxc_nand_host *host;
+ struct resource *res;
+ int err = 0;
+
+ /* Allocate memory for MTD device structure and private data */
+ host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
+ GFP_KERNEL);
+ if (!host)
+ return -ENOMEM;
+
+ /* allocate a temporary buffer for the nand_scan_ident() */
+ host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
+ if (!host->data_buf)
+ return -ENOMEM;
+
+ host->dev = &pdev->dev;
+ /* structures must be linked */
+ this = &host->nand;
+ mtd = nand_to_mtd(this);
+ mtd->dev.parent = &pdev->dev;
+ mtd->name = DRIVER_NAME;
+
+ /* 50 us command delay time */
+ this->legacy.chip_delay = 5;
+
+ nand_set_controller_data(this, host);
+ nand_set_flash_node(this, pdev->dev.of_node),
+ this->legacy.dev_ready = mxc_nand_dev_ready;
+ this->legacy.cmdfunc = mxc_nand_command;
+ this->legacy.read_byte = mxc_nand_read_byte;
+ this->legacy.write_buf = mxc_nand_write_buf;
+ this->legacy.read_buf = mxc_nand_read_buf;
+ this->legacy.set_features = mxc_nand_set_features;
+ this->legacy.get_features = mxc_nand_get_features;
+
+ host->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(host->clk))
+ return PTR_ERR(host->clk);
+
+ err = mxcnd_probe_dt(host);
+ if (err > 0) {
+ struct mxc_nand_platform_data *pdata =
+ dev_get_platdata(&pdev->dev);
+ if (pdata) {
+ host->pdata = *pdata;
+ host->devtype_data = (struct mxc_nand_devtype_data *)
+ pdev->id_entry->driver_data;
+ } else {
+ err = -ENODEV;
+ }
+ }
+ if (err < 0)
+ return err;
+
+ if (!host->devtype_data->setup_interface)
+ this->options |= NAND_KEEP_TIMINGS;
+
+ if (host->devtype_data->needs_ip) {
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(host->regs_ip))
+ return PTR_ERR(host->regs_ip);
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+ } else {
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ }
+
+ host->base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(host->base))
+ return PTR_ERR(host->base);
+
+ host->main_area0 = host->base;
+
+ if (host->devtype_data->regs_offset)
+ host->regs = host->base + host->devtype_data->regs_offset;
+ host->spare0 = host->base + host->devtype_data->spare0_offset;
+ if (host->devtype_data->axi_offset)
+ host->regs_axi = host->base + host->devtype_data->axi_offset;
+
+ this->legacy.select_chip = host->devtype_data->select_chip;
+
+ /* NAND bus width determines access functions used by upper layer */
+ if (host->pdata.width == 2)
+ this->options |= NAND_BUSWIDTH_16;
+
+ /* update flash based bbt */
+ if (host->pdata.flash_bbt)
+ this->bbt_options |= NAND_BBT_USE_FLASH;
+
+ init_completion(&host->op_completion);
+
+ host->irq = platform_get_irq(pdev, 0);
+ if (host->irq < 0)
+ return host->irq;
+
+ /*
+ * Use host->devtype_data->irq_control() here instead of irq_control()
+ * because we must not disable_irq_nosync without having requested the
+ * irq.
+ */
+ host->devtype_data->irq_control(host, 0);
+
+ err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
+ 0, DRIVER_NAME, host);
+ if (err)
+ return err;
+
+ err = clk_prepare_enable(host->clk);
+ if (err)
+ return err;
+ host->clk_act = 1;
+
+ /*
+ * Now that we "own" the interrupt make sure the interrupt mask bit is
+ * cleared on i.MX21. Otherwise we can't read the interrupt status bit
+ * on this machine.
+ */
+ if (host->devtype_data->irqpending_quirk) {
+ disable_irq_nosync(host->irq);
+ host->devtype_data->irq_control(host, 1);
+ }
+
+ /* Scan the NAND device */
+ this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
+ err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
+ if (err)
+ goto escan;
+
+ /* Register the partitions */
+ err = mtd_device_parse_register(mtd, part_probes, NULL,
+ host->pdata.parts,
+ host->pdata.nr_parts);
+ if (err)
+ goto cleanup_nand;
+
+ platform_set_drvdata(pdev, host);
+
+ return 0;
+
+cleanup_nand:
+ nand_cleanup(this);
+escan:
+ if (host->clk_act)
+ clk_disable_unprepare(host->clk);
+
+ return err;
+}
+
+static int mxcnd_remove(struct platform_device *pdev)
+{
+ struct mxc_nand_host *host = platform_get_drvdata(pdev);
+ struct nand_chip *chip = &host->nand;
+ int ret;
+
+ ret = mtd_device_unregister(nand_to_mtd(chip));
+ WARN_ON(ret);
+ nand_cleanup(chip);
+ if (host->clk_act)
+ clk_disable_unprepare(host->clk);
+
+ return 0;
+}
+
+static struct platform_driver mxcnd_driver = {
+ .driver = {
+ .name = DRIVER_NAME,
+ .of_match_table = of_match_ptr(mxcnd_dt_ids),
+ },
+ .id_table = mxcnd_devtype,
+ .probe = mxcnd_probe,
+ .remove = mxcnd_remove,
+};
+module_platform_driver(mxcnd_driver);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("MXC NAND MTD driver");
+MODULE_LICENSE("GPL");