diff options
Diffstat (limited to 'drivers/mtd/nand/raw/mxc_nand.c')
-rw-r--r-- | drivers/mtd/nand/raw/mxc_nand.c | 1941 |
1 files changed, 1941 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c new file mode 100644 index 000000000..684c51e5e --- /dev/null +++ b/drivers/mtd/nand/raw/mxc_nand.c @@ -0,0 +1,1941 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. + * Copyright 2008 Sascha Hauer, kernel@pengutronix.de + */ + +#include <linux/delay.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/interrupt.h> +#include <linux/device.h> +#include <linux/platform_device.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/io.h> +#include <linux/irq.h> +#include <linux/completion.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/platform_data/mtd-mxc_nand.h> + +#define DRIVER_NAME "mxc_nand" + +/* Addresses for NFC registers */ +#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) +#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04) +#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06) +#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08) +#define NFC_V1_V2_CONFIG (host->regs + 0x0a) +#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c) +#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e) +#define NFC_V21_RSLTSPARE_AREA (host->regs + 0x10) +#define NFC_V1_V2_WRPROT (host->regs + 0x12) +#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14) +#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16) +#define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20) +#define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24) +#define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28) +#define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c) +#define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22) +#define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26) +#define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a) +#define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e) +#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18) +#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a) +#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c) + +#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0) +#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2) +#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3) +#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4) +#define NFC_V1_V2_CONFIG1_BIG (1 << 5) +#define NFC_V1_V2_CONFIG1_RST (1 << 6) +#define NFC_V1_V2_CONFIG1_CE (1 << 7) +#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8) +#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9) +#define NFC_V2_CONFIG1_FP_INT (1 << 11) + +#define NFC_V1_V2_CONFIG2_INT (1 << 15) + +/* + * Operation modes for the NFC. Valid for v1, v2 and v3 + * type controllers. + */ +#define NFC_CMD (1 << 0) +#define NFC_ADDR (1 << 1) +#define NFC_INPUT (1 << 2) +#define NFC_OUTPUT (1 << 3) +#define NFC_ID (1 << 4) +#define NFC_STATUS (1 << 5) + +#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00) +#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04) + +#define NFC_V3_CONFIG1 (host->regs_axi + 0x34) +#define NFC_V3_CONFIG1_SP_EN (1 << 0) +#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4) + +#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38) + +#define NFC_V3_LAUNCH (host->regs_axi + 0x40) + +#define NFC_V3_WRPROT (host->regs_ip + 0x0) +#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0) +#define NFC_V3_WRPROT_LOCK (1 << 1) +#define NFC_V3_WRPROT_UNLOCK (1 << 2) +#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6) + +#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04) + +#define NFC_V3_CONFIG2 (host->regs_ip + 0x24) +#define NFC_V3_CONFIG2_PS_512 (0 << 0) +#define NFC_V3_CONFIG2_PS_2048 (1 << 0) +#define NFC_V3_CONFIG2_PS_4096 (2 << 0) +#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2) +#define NFC_V3_CONFIG2_ECC_EN (1 << 3) +#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) +#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) +#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) +#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift) +#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) +#define NFC_V3_CONFIG2_INT_MSK (1 << 15) +#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) +#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16) + +#define NFC_V3_CONFIG3 (host->regs_ip + 0x28) +#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0) +#define NFC_V3_CONFIG3_FW8 (1 << 3) +#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8) +#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12) +#define NFC_V3_CONFIG3_RBB_MODE (1 << 15) +#define NFC_V3_CONFIG3_NO_SDMA (1 << 20) + +#define NFC_V3_IPC (host->regs_ip + 0x2C) +#define NFC_V3_IPC_CREQ (1 << 0) +#define NFC_V3_IPC_INT (1 << 31) + +#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34) + +struct mxc_nand_host; + +struct mxc_nand_devtype_data { + void (*preset)(struct mtd_info *); + int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc, + int page); + void (*send_cmd)(struct mxc_nand_host *, uint16_t, int); + void (*send_addr)(struct mxc_nand_host *, uint16_t, int); + void (*send_page)(struct mtd_info *, unsigned int); + void (*send_read_id)(struct mxc_nand_host *); + uint16_t (*get_dev_status)(struct mxc_nand_host *); + int (*check_int)(struct mxc_nand_host *); + void (*irq_control)(struct mxc_nand_host *, int); + u32 (*get_ecc_status)(struct mxc_nand_host *); + const struct mtd_ooblayout_ops *ooblayout; + void (*select_chip)(struct nand_chip *chip, int cs); + int (*setup_interface)(struct nand_chip *chip, int csline, + const struct nand_interface_config *conf); + void (*enable_hwecc)(struct nand_chip *chip, bool enable); + + /* + * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked + * (CONFIG1:INT_MSK is set). To handle this the driver uses + * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK + */ + int irqpending_quirk; + int needs_ip; + + size_t regs_offset; + size_t spare0_offset; + size_t axi_offset; + + int spare_len; + int eccbytes; + int eccsize; + int ppb_shift; +}; + +struct mxc_nand_host { + struct nand_chip nand; + struct device *dev; + + void __iomem *spare0; + void __iomem *main_area0; + + void __iomem *base; + void __iomem *regs; + void __iomem *regs_axi; + void __iomem *regs_ip; + int status_request; + struct clk *clk; + int clk_act; + int irq; + int eccsize; + int used_oobsize; + int active_cs; + + struct completion op_completion; + + uint8_t *data_buf; + unsigned int buf_start; + + const struct mxc_nand_devtype_data *devtype_data; + struct mxc_nand_platform_data pdata; +}; + +static const char * const part_probes[] = { + "cmdlinepart", "RedBoot", "ofpart", NULL }; + +static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) +{ + int i; + u32 *t = trg; + const __iomem u32 *s = src; + + for (i = 0; i < (size >> 2); i++) + *t++ = __raw_readl(s++); +} + +static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size) +{ + int i; + u16 *t = trg; + const __iomem u16 *s = src; + + /* We assume that src (IO) is always 32bit aligned */ + if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) { + memcpy32_fromio(trg, src, size); + return; + } + + for (i = 0; i < (size >> 1); i++) + *t++ = __raw_readw(s++); +} + +static inline void memcpy32_toio(void __iomem *trg, const void *src, int size) +{ + /* __iowrite32_copy use 32bit size values so divide by 4 */ + __iowrite32_copy(trg, src, size / 4); +} + +static void memcpy16_toio(void __iomem *trg, const void *src, int size) +{ + int i; + __iomem u16 *t = trg; + const u16 *s = src; + + /* We assume that trg (IO) is always 32bit aligned */ + if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) { + memcpy32_toio(trg, src, size); + return; + } + + for (i = 0; i < (size >> 1); i++) + __raw_writew(*s++, t++); +} + +/* + * The controller splits a page into data chunks of 512 bytes + partial oob. + * There are writesize / 512 such chunks, the size of the partial oob parts is + * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then + * contains additionally the byte lost by rounding (if any). + * This function handles the needed shuffling between host->data_buf (which + * holds a page in natural order, i.e. writesize bytes data + oobsize bytes + * spare) and the NFC buffer. + */ +static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(this); + u16 i, oob_chunk_size; + u16 num_chunks = mtd->writesize / 512; + + u8 *d = buf; + u8 __iomem *s = host->spare0; + u16 sparebuf_size = host->devtype_data->spare_len; + + /* size of oob chunk for all but possibly the last one */ + oob_chunk_size = (host->used_oobsize / num_chunks) & ~1; + + if (bfrom) { + for (i = 0; i < num_chunks - 1; i++) + memcpy16_fromio(d + i * oob_chunk_size, + s + i * sparebuf_size, + oob_chunk_size); + + /* the last chunk */ + memcpy16_fromio(d + i * oob_chunk_size, + s + i * sparebuf_size, + host->used_oobsize - i * oob_chunk_size); + } else { + for (i = 0; i < num_chunks - 1; i++) + memcpy16_toio(&s[i * sparebuf_size], + &d[i * oob_chunk_size], + oob_chunk_size); + + /* the last chunk */ + memcpy16_toio(&s[i * sparebuf_size], + &d[i * oob_chunk_size], + host->used_oobsize - i * oob_chunk_size); + } +} + +/* + * MXC NANDFC can only perform full page+spare or spare-only read/write. When + * the upper layers perform a read/write buf operation, the saved column address + * is used to index into the full page. So usually this function is called with + * column == 0 (unless no column cycle is needed indicated by column == -1) + */ +static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + /* Write out column address, if necessary */ + if (column != -1) { + host->devtype_data->send_addr(host, column & 0xff, + page_addr == -1); + if (mtd->writesize > 512) + /* another col addr cycle for 2k page */ + host->devtype_data->send_addr(host, + (column >> 8) & 0xff, + false); + } + + /* Write out page address, if necessary */ + if (page_addr != -1) { + /* paddr_0 - p_addr_7 */ + host->devtype_data->send_addr(host, (page_addr & 0xff), false); + + if (mtd->writesize > 512) { + if (mtd->size >= 0x10000000) { + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, + false); + host->devtype_data->send_addr(host, + (page_addr >> 16) & 0xff, + true); + } else + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, true); + } else { + if (nand_chip->options & NAND_ROW_ADDR_3) { + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, + false); + host->devtype_data->send_addr(host, + (page_addr >> 16) & 0xff, + true); + } else + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, true); + } + } +} + +static int check_int_v3(struct mxc_nand_host *host) +{ + uint32_t tmp; + + tmp = readl(NFC_V3_IPC); + if (!(tmp & NFC_V3_IPC_INT)) + return 0; + + tmp &= ~NFC_V3_IPC_INT; + writel(tmp, NFC_V3_IPC); + + return 1; +} + +static int check_int_v1_v2(struct mxc_nand_host *host) +{ + uint32_t tmp; + + tmp = readw(NFC_V1_V2_CONFIG2); + if (!(tmp & NFC_V1_V2_CONFIG2_INT)) + return 0; + + if (!host->devtype_data->irqpending_quirk) + writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2); + + return 1; +} + +static void irq_control_v1_v2(struct mxc_nand_host *host, int activate) +{ + uint16_t tmp; + + tmp = readw(NFC_V1_V2_CONFIG1); + + if (activate) + tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK; + else + tmp |= NFC_V1_V2_CONFIG1_INT_MSK; + + writew(tmp, NFC_V1_V2_CONFIG1); +} + +static void irq_control_v3(struct mxc_nand_host *host, int activate) +{ + uint32_t tmp; + + tmp = readl(NFC_V3_CONFIG2); + + if (activate) + tmp &= ~NFC_V3_CONFIG2_INT_MSK; + else + tmp |= NFC_V3_CONFIG2_INT_MSK; + + writel(tmp, NFC_V3_CONFIG2); +} + +static void irq_control(struct mxc_nand_host *host, int activate) +{ + if (host->devtype_data->irqpending_quirk) { + if (activate) + enable_irq(host->irq); + else + disable_irq_nosync(host->irq); + } else { + host->devtype_data->irq_control(host, activate); + } +} + +static u32 get_ecc_status_v1(struct mxc_nand_host *host) +{ + return readw(NFC_V1_V2_ECC_STATUS_RESULT); +} + +static u32 get_ecc_status_v2(struct mxc_nand_host *host) +{ + return readl(NFC_V1_V2_ECC_STATUS_RESULT); +} + +static u32 get_ecc_status_v3(struct mxc_nand_host *host) +{ + return readl(NFC_V3_ECC_STATUS_RESULT); +} + +static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) +{ + struct mxc_nand_host *host = dev_id; + + if (!host->devtype_data->check_int(host)) + return IRQ_NONE; + + irq_control(host, 0); + + complete(&host->op_completion); + + return IRQ_HANDLED; +} + +/* This function polls the NANDFC to wait for the basic operation to + * complete by checking the INT bit of config2 register. + */ +static int wait_op_done(struct mxc_nand_host *host, int useirq) +{ + int ret = 0; + + /* + * If operation is already complete, don't bother to setup an irq or a + * loop. + */ + if (host->devtype_data->check_int(host)) + return 0; + + if (useirq) { + unsigned long timeout; + + reinit_completion(&host->op_completion); + + irq_control(host, 1); + + timeout = wait_for_completion_timeout(&host->op_completion, HZ); + if (!timeout && !host->devtype_data->check_int(host)) { + dev_dbg(host->dev, "timeout waiting for irq\n"); + ret = -ETIMEDOUT; + } + } else { + int max_retries = 8000; + int done; + + do { + udelay(1); + + done = host->devtype_data->check_int(host); + if (done) + break; + + } while (--max_retries); + + if (!done) { + dev_dbg(host->dev, "timeout polling for completion\n"); + ret = -ETIMEDOUT; + } + } + + WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq); + + return ret; +} + +static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq) +{ + /* fill command */ + writel(cmd, NFC_V3_FLASH_CMD); + + /* send out command */ + writel(NFC_CMD, NFC_V3_LAUNCH); + + /* Wait for operation to complete */ + wait_op_done(host, useirq); +} + +/* This function issues the specified command to the NAND device and + * waits for completion. */ +static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) +{ + dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); + + writew(cmd, NFC_V1_V2_FLASH_CMD); + writew(NFC_CMD, NFC_V1_V2_CONFIG2); + + if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) { + int max_retries = 100; + /* Reset completion is indicated by NFC_CONFIG2 */ + /* being set to 0 */ + while (max_retries-- > 0) { + if (readw(NFC_V1_V2_CONFIG2) == 0) { + break; + } + udelay(1); + } + if (max_retries < 0) + dev_dbg(host->dev, "%s: RESET failed\n", __func__); + } else { + /* Wait for operation to complete */ + wait_op_done(host, useirq); + } +} + +static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast) +{ + /* fill address */ + writel(addr, NFC_V3_FLASH_ADDR0); + + /* send out address */ + writel(NFC_ADDR, NFC_V3_LAUNCH); + + wait_op_done(host, 0); +} + +/* This function sends an address (or partial address) to the + * NAND device. The address is used to select the source/destination for + * a NAND command. */ +static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast) +{ + dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast); + + writew(addr, NFC_V1_V2_FLASH_ADDR); + writew(NFC_ADDR, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, islast); +} + +static void send_page_v3(struct mtd_info *mtd, unsigned int ops) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint32_t tmp; + + tmp = readl(NFC_V3_CONFIG1); + tmp &= ~(7 << 4); + writel(tmp, NFC_V3_CONFIG1); + + /* transfer data from NFC ram to nand */ + writel(ops, NFC_V3_LAUNCH); + + wait_op_done(host, false); +} + +static void send_page_v2(struct mtd_info *mtd, unsigned int ops) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + /* NANDFC buffer 0 is used for page read/write */ + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); + + writew(ops, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); +} + +static void send_page_v1(struct mtd_info *mtd, unsigned int ops) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + int bufs, i; + + if (mtd->writesize > 512) + bufs = 4; + else + bufs = 1; + + for (i = 0; i < bufs; i++) { + + /* NANDFC buffer 0 is used for page read/write */ + writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); + + writew(ops, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); + } +} + +static void send_read_id_v3(struct mxc_nand_host *host) +{ + /* Read ID into main buffer */ + writel(NFC_ID, NFC_V3_LAUNCH); + + wait_op_done(host, true); + + memcpy32_fromio(host->data_buf, host->main_area0, 16); +} + +/* Request the NANDFC to perform a read of the NAND device ID. */ +static void send_read_id_v1_v2(struct mxc_nand_host *host) +{ + /* NANDFC buffer 0 is used for device ID output */ + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); + + writew(NFC_ID, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); + + memcpy32_fromio(host->data_buf, host->main_area0, 16); +} + +static uint16_t get_dev_status_v3(struct mxc_nand_host *host) +{ + writew(NFC_STATUS, NFC_V3_LAUNCH); + wait_op_done(host, true); + + return readl(NFC_V3_CONFIG1) >> 16; +} + +/* This function requests the NANDFC to perform a read of the + * NAND device status and returns the current status. */ +static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host) +{ + void __iomem *main_buf = host->main_area0; + uint32_t store; + uint16_t ret; + + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); + + /* + * The device status is stored in main_area0. To + * prevent corruption of the buffer save the value + * and restore it afterwards. + */ + store = readl(main_buf); + + writew(NFC_STATUS, NFC_V1_V2_CONFIG2); + wait_op_done(host, true); + + ret = readw(main_buf); + + writel(store, main_buf); + + return ret; +} + +static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + uint16_t config1; + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return; + + config1 = readw(NFC_V1_V2_CONFIG1); + + if (enable) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; + else + config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN; + + writew(config1, NFC_V1_V2_CONFIG1); +} + +static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + uint32_t config2; + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return; + + config2 = readl(NFC_V3_CONFIG2); + + if (enable) + config2 |= NFC_V3_CONFIG2_ECC_EN; + else + config2 &= ~NFC_V3_CONFIG2_ECC_EN; + + writel(config2, NFC_V3_CONFIG2); +} + +/* This functions is used by upper layer to checks if device is ready */ +static int mxc_nand_dev_ready(struct nand_chip *chip) +{ + /* + * NFC handles R/B internally. Therefore, this function + * always returns status as ready. + */ + return 1; +} + +static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob, + bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + unsigned int bitflips_corrected = 0; + int no_subpages; + int i; + + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); + mxc_do_addr_cycle(mtd, 0, page); + + if (mtd->writesize > 512) + host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true); + + no_subpages = mtd->writesize >> 9; + + for (i = 0; i < no_subpages; i++) { + uint16_t ecc_stats; + + /* NANDFC buffer 0 is used for page read/write */ + writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); + + writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); + + ecc_stats = get_ecc_status_v1(host); + + ecc_stats >>= 2; + + if (buf && ecc) { + switch (ecc_stats & 0x3) { + case 0: + default: + break; + case 1: + mtd->ecc_stats.corrected++; + bitflips_corrected = 1; + break; + case 2: + mtd->ecc_stats.failed++; + break; + } + } + } + + if (buf) + memcpy32_fromio(buf, host->main_area0, mtd->writesize); + if (oob) + copy_spare(mtd, true, oob); + + return bitflips_corrected; +} + +static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf, + void *oob, bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + unsigned int max_bitflips = 0; + u32 ecc_stat, err; + int no_subpages; + u8 ecc_bit_mask, err_limit; + + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); + mxc_do_addr_cycle(mtd, 0, page); + + if (mtd->writesize > 512) + host->devtype_data->send_cmd(host, + NAND_CMD_READSTART, true); + + host->devtype_data->send_page(mtd, NFC_OUTPUT); + + if (buf) + memcpy32_fromio(buf, host->main_area0, mtd->writesize); + if (oob) + copy_spare(mtd, true, oob); + + ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf; + err_limit = (host->eccsize == 4) ? 0x4 : 0x8; + + no_subpages = mtd->writesize >> 9; + + ecc_stat = host->devtype_data->get_ecc_status(host); + + do { + err = ecc_stat & ecc_bit_mask; + if (err > err_limit) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += err; + max_bitflips = max_t(unsigned int, max_bitflips, err); + } + + ecc_stat >>= 4; + } while (--no_subpages); + + return max_bitflips; +} + +static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + void *oob_buf; + + if (oob_required) + oob_buf = chip->oob_poi; + else + oob_buf = NULL; + + return host->devtype_data->read_page(chip, buf, oob_buf, 1, page); +} + +static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + void *oob_buf; + + if (oob_required) + oob_buf = chip->oob_poi; + else + oob_buf = NULL; + + return host->devtype_data->read_page(chip, buf, oob_buf, 0, page); +} + +static int mxc_nand_read_oob(struct nand_chip *chip, int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + + return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0, + page); +} + +static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf, + bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false); + mxc_do_addr_cycle(mtd, 0, page); + + memcpy32_toio(host->main_area0, buf, mtd->writesize); + copy_spare(mtd, false, chip->oob_poi); + + host->devtype_data->send_page(mtd, NFC_INPUT); + host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true); + mxc_do_addr_cycle(mtd, 0, page); + + return 0; +} + +static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + return mxc_nand_write_page(chip, buf, true, page); +} + +static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + return mxc_nand_write_page(chip, buf, false, page); +} + +static int mxc_nand_write_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + + memset(host->data_buf, 0xff, mtd->writesize); + + return mxc_nand_write_page(chip, host->data_buf, false, page); +} + +static u_char mxc_nand_read_byte(struct nand_chip *nand_chip) +{ + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint8_t ret; + + /* Check for status request */ + if (host->status_request) + return host->devtype_data->get_dev_status(host) & 0xFF; + + if (nand_chip->options & NAND_BUSWIDTH_16) { + /* only take the lower byte of each word */ + ret = *(uint16_t *)(host->data_buf + host->buf_start); + + host->buf_start += 2; + } else { + ret = *(uint8_t *)(host->data_buf + host->buf_start); + host->buf_start++; + } + + dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start); + return ret; +} + +/* Write data of length len to buffer buf. The data to be + * written on NAND Flash is first copied to RAMbuffer. After the Data Input + * Operation by the NFC, the data is written to NAND Flash */ +static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf, + int len) +{ + struct mtd_info *mtd = nand_to_mtd(nand_chip); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + u16 col = host->buf_start; + int n = mtd->oobsize + mtd->writesize - col; + + n = min(n, len); + + memcpy(host->data_buf + col, buf, n); + + host->buf_start += n; +} + +/* Read the data buffer from the NAND Flash. To read the data from NAND + * Flash first the data output cycle is initiated by the NFC, which copies + * the data to RAMbuffer. This data of length len is then copied to buffer buf. + */ +static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf, + int len) +{ + struct mtd_info *mtd = nand_to_mtd(nand_chip); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + u16 col = host->buf_start; + int n = mtd->oobsize + mtd->writesize - col; + + n = min(n, len); + + memcpy(buf, host->data_buf + col, n); + + host->buf_start += n; +} + +/* This function is used by upper layer for select and + * deselect of the NAND chip */ +static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip) +{ + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + if (chip == -1) { + /* Disable the NFC clock */ + if (host->clk_act) { + clk_disable_unprepare(host->clk); + host->clk_act = 0; + } + return; + } + + if (!host->clk_act) { + /* Enable the NFC clock */ + clk_prepare_enable(host->clk); + host->clk_act = 1; + } +} + +static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip) +{ + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + if (chip == -1) { + /* Disable the NFC clock */ + if (host->clk_act) { + clk_disable_unprepare(host->clk); + host->clk_act = 0; + } + return; + } + + if (!host->clk_act) { + /* Enable the NFC clock */ + clk_prepare_enable(host->clk); + host->clk_act = 1; + } + + host->active_cs = chip; + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); +} + +#define MXC_V1_ECCBYTES 5 + +static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 6; + oobregion->length = MXC_V1_ECCBYTES; + + return 0; +} + +static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + + if (section > nand_chip->ecc.steps) + return -ERANGE; + + if (!section) { + if (mtd->writesize <= 512) { + oobregion->offset = 0; + oobregion->length = 5; + } else { + oobregion->offset = 2; + oobregion->length = 4; + } + } else { + oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6; + if (section < nand_chip->ecc.steps) + oobregion->length = (section * 16) + 6 - + oobregion->offset; + else + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = { + .ecc = mxc_v1_ooblayout_ecc, + .free = mxc_v1_ooblayout_free, +}; + +static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * stepsize) + 7; + oobregion->length = nand_chip->ecc.bytes; + + return 0; +} + +static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + if (!section) { + if (mtd->writesize <= 512) { + oobregion->offset = 0; + oobregion->length = 5; + } else { + oobregion->offset = 2; + oobregion->length = 4; + } + } else { + oobregion->offset = section * stepsize; + oobregion->length = 7; + } + + return 0; +} + +static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = { + .ecc = mxc_v2_ooblayout_ecc, + .free = mxc_v2_ooblayout_free, +}; + +/* + * v2 and v3 type controllers can do 4bit or 8bit ecc depending + * on how much oob the nand chip has. For 8bit ecc we need at least + * 26 bytes of oob data per 512 byte block. + */ +static int get_eccsize(struct mtd_info *mtd) +{ + int oobbytes_per_512 = 0; + + oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize; + + if (oobbytes_per_512 < 26) + return 4; + else + return 8; +} + +static void preset_v1(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint16_t config1 = 0; + + if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST && + mtd->writesize) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; + + if (!host->devtype_data->irqpending_quirk) + config1 |= NFC_V1_V2_CONFIG1_INT_MSK; + + host->eccsize = 1; + + writew(config1, NFC_V1_V2_CONFIG1); + /* preset operation */ + + /* Unlock the internal RAM Buffer */ + writew(0x2, NFC_V1_V2_CONFIG); + + /* Blocks to be unlocked */ + writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR); + writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR); + + /* Unlock Block Command for given address range */ + writew(0x4, NFC_V1_V2_WRPROT); +} + +static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline, + const struct nand_interface_config *conf) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + int tRC_min_ns, tRC_ps, ret; + unsigned long rate, rate_round; + const struct nand_sdr_timings *timings; + u16 config1; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + config1 = readw(NFC_V1_V2_CONFIG1); + + tRC_min_ns = timings->tRC_min / 1000; + rate = 1000000000 / tRC_min_ns; + + /* + * For tRC < 30ns we have to use EDO mode. In this case the controller + * does one access per clock cycle. Otherwise the controller does one + * access in two clock cycles, thus we have to double the rate to the + * controller. + */ + if (tRC_min_ns < 30) { + rate_round = clk_round_rate(host->clk, rate); + config1 |= NFC_V2_CONFIG1_ONE_CYCLE; + tRC_ps = 1000000000 / (rate_round / 1000); + } else { + rate *= 2; + rate_round = clk_round_rate(host->clk, rate); + config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE; + tRC_ps = 1000000000 / (rate_round / 1000 / 2); + } + + /* + * The timing values compared against are from the i.MX25 Automotive + * datasheet, Table 50. NFC Timing Parameters + */ + if (timings->tCLS_min > tRC_ps - 1000 || + timings->tCLH_min > tRC_ps - 2000 || + timings->tCS_min > tRC_ps - 1000 || + timings->tCH_min > tRC_ps - 2000 || + timings->tWP_min > tRC_ps - 1500 || + timings->tALS_min > tRC_ps || + timings->tALH_min > tRC_ps - 3000 || + timings->tDS_min > tRC_ps || + timings->tDH_min > tRC_ps - 5000 || + timings->tWC_min > 2 * tRC_ps || + timings->tWH_min > tRC_ps - 2500 || + timings->tRR_min > 6 * tRC_ps || + timings->tRP_min > 3 * tRC_ps / 2 || + timings->tRC_min > 2 * tRC_ps || + timings->tREH_min > (tRC_ps / 2) - 2500) { + dev_dbg(host->dev, "Timing out of bounds\n"); + return -EINVAL; + } + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + ret = clk_set_rate(host->clk, rate); + if (ret) + return ret; + + writew(config1, NFC_V1_V2_CONFIG1); + + dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round, + config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" : + "normal"); + + return 0; +} + +static void preset_v2(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint16_t config1 = 0; + + config1 |= NFC_V2_CONFIG1_FP_INT; + + if (!host->devtype_data->irqpending_quirk) + config1 |= NFC_V1_V2_CONFIG1_INT_MSK; + + if (mtd->writesize) { + uint16_t pages_per_block = mtd->erasesize / mtd->writesize; + + if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; + + host->eccsize = get_eccsize(mtd); + if (host->eccsize == 4) + config1 |= NFC_V2_CONFIG1_ECC_MODE_4; + + config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6); + } else { + host->eccsize = 1; + } + + writew(config1, NFC_V1_V2_CONFIG1); + /* preset operation */ + + /* spare area size in 16-bit half-words */ + writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA); + + /* Unlock the internal RAM Buffer */ + writew(0x2, NFC_V1_V2_CONFIG); + + /* Blocks to be unlocked */ + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3); + + /* Unlock Block Command for given address range */ + writew(0x4, NFC_V1_V2_WRPROT); +} + +static void preset_v3(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(chip); + uint32_t config2, config3; + int i, addr_phases; + + writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1); + writel(NFC_V3_IPC_CREQ, NFC_V3_IPC); + + /* Unlock the internal RAM Buffer */ + writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, + NFC_V3_WRPROT); + + /* Blocks to be unlocked */ + for (i = 0; i < NAND_MAX_CHIPS; i++) + writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2)); + + writel(0, NFC_V3_IPC); + + config2 = NFC_V3_CONFIG2_ONE_CYCLE | + NFC_V3_CONFIG2_2CMD_PHASES | + NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) | + NFC_V3_CONFIG2_ST_CMD(0x70) | + NFC_V3_CONFIG2_INT_MSK | + NFC_V3_CONFIG2_NUM_ADDR_PHASE0; + + addr_phases = fls(chip->pagemask) >> 3; + + if (mtd->writesize == 2048) { + config2 |= NFC_V3_CONFIG2_PS_2048; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); + } else if (mtd->writesize == 4096) { + config2 |= NFC_V3_CONFIG2_PS_4096; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); + } else { + config2 |= NFC_V3_CONFIG2_PS_512; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1); + } + + if (mtd->writesize) { + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) + config2 |= NFC_V3_CONFIG2_ECC_EN; + + config2 |= NFC_V3_CONFIG2_PPB( + ffs(mtd->erasesize / mtd->writesize) - 6, + host->devtype_data->ppb_shift); + host->eccsize = get_eccsize(mtd); + if (host->eccsize == 8) + config2 |= NFC_V3_CONFIG2_ECC_MODE_8; + } + + writel(config2, NFC_V3_CONFIG2); + + config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) | + NFC_V3_CONFIG3_NO_SDMA | + NFC_V3_CONFIG3_RBB_MODE | + NFC_V3_CONFIG3_SBB(6) | /* Reset default */ + NFC_V3_CONFIG3_ADD_OP(0); + + if (!(chip->options & NAND_BUSWIDTH_16)) + config3 |= NFC_V3_CONFIG3_FW8; + + writel(config3, NFC_V3_CONFIG3); + + writel(0, NFC_V3_DELAY_LINE); +} + +/* Used by the upper layer to write command to NAND Flash for + * different operations to be carried out on NAND Flash */ +static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command, + int column, int page_addr) +{ + struct mtd_info *mtd = nand_to_mtd(nand_chip); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", + command, column, page_addr); + + /* Reset command state information */ + host->status_request = false; + + /* Command pre-processing step */ + switch (command) { + case NAND_CMD_RESET: + host->devtype_data->preset(mtd); + host->devtype_data->send_cmd(host, command, false); + break; + + case NAND_CMD_STATUS: + host->buf_start = 0; + host->status_request = true; + + host->devtype_data->send_cmd(host, command, true); + WARN_ONCE(column != -1 || page_addr != -1, + "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n", + command, column, page_addr); + mxc_do_addr_cycle(mtd, column, page_addr); + break; + + case NAND_CMD_READID: + host->devtype_data->send_cmd(host, command, true); + mxc_do_addr_cycle(mtd, column, page_addr); + host->devtype_data->send_read_id(host); + host->buf_start = 0; + break; + + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + host->devtype_data->send_cmd(host, command, false); + WARN_ONCE(column != -1, + "Unexpected column value (cmd=%u, col=%d)\n", + command, column); + mxc_do_addr_cycle(mtd, column, page_addr); + + break; + case NAND_CMD_PARAM: + host->devtype_data->send_cmd(host, command, false); + mxc_do_addr_cycle(mtd, column, page_addr); + host->devtype_data->send_page(mtd, NFC_OUTPUT); + memcpy32_fromio(host->data_buf, host->main_area0, 512); + host->buf_start = 0; + break; + default: + WARN_ONCE(1, "Unimplemented command (cmd=%u)\n", + command); + break; + } +} + +static int mxc_nand_set_features(struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + int i; + + host->buf_start = 0; + + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + chip->legacy.write_byte(chip, subfeature_param[i]); + + memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize); + host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false); + mxc_do_addr_cycle(mtd, addr, -1); + host->devtype_data->send_page(mtd, NFC_INPUT); + + return 0; +} + +static int mxc_nand_get_features(struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + int i; + + host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false); + mxc_do_addr_cycle(mtd, addr, -1); + host->devtype_data->send_page(mtd, NFC_OUTPUT); + memcpy32_fromio(host->data_buf, host->main_area0, 512); + host->buf_start = 0; + + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + *subfeature_param++ = chip->legacy.read_byte(chip); + + return 0; +} + +/* + * The generic flash bbt descriptors overlap with our ecc + * hardware, so define some i.MX specific ones. + */ +static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 4, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 4, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +/* v1 + irqpending_quirk: i.MX21 */ +static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { + .preset = preset_v1, + .read_page = mxc_nand_read_page_v1, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v1, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v1, + .ooblayout = &mxc_v1_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, + .irqpending_quirk = 1, + .needs_ip = 0, + .regs_offset = 0xe00, + .spare0_offset = 0x800, + .spare_len = 16, + .eccbytes = 3, + .eccsize = 1, +}; + +/* v1 + !irqpending_quirk: i.MX27, i.MX31 */ +static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { + .preset = preset_v1, + .read_page = mxc_nand_read_page_v1, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v1, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v1, + .ooblayout = &mxc_v1_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, + .irqpending_quirk = 0, + .needs_ip = 0, + .regs_offset = 0xe00, + .spare0_offset = 0x800, + .axi_offset = 0, + .spare_len = 16, + .eccbytes = 3, + .eccsize = 1, +}; + +/* v21: i.MX25, i.MX35 */ +static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { + .preset = preset_v2, + .read_page = mxc_nand_read_page_v2_v3, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v2, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v2, + .ooblayout = &mxc_v2_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v2, + .setup_interface = mxc_nand_v2_setup_interface, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, + .irqpending_quirk = 0, + .needs_ip = 0, + .regs_offset = 0x1e00, + .spare0_offset = 0x1000, + .axi_offset = 0, + .spare_len = 64, + .eccbytes = 9, + .eccsize = 0, +}; + +/* v3.2a: i.MX51 */ +static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { + .preset = preset_v3, + .read_page = mxc_nand_read_page_v2_v3, + .send_cmd = send_cmd_v3, + .send_addr = send_addr_v3, + .send_page = send_page_v3, + .send_read_id = send_read_id_v3, + .get_dev_status = get_dev_status_v3, + .check_int = check_int_v3, + .irq_control = irq_control_v3, + .get_ecc_status = get_ecc_status_v3, + .ooblayout = &mxc_v2_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v3, + .irqpending_quirk = 0, + .needs_ip = 1, + .regs_offset = 0, + .spare0_offset = 0x1000, + .axi_offset = 0x1e00, + .spare_len = 64, + .eccbytes = 0, + .eccsize = 0, + .ppb_shift = 7, +}; + +/* v3.2b: i.MX53 */ +static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { + .preset = preset_v3, + .read_page = mxc_nand_read_page_v2_v3, + .send_cmd = send_cmd_v3, + .send_addr = send_addr_v3, + .send_page = send_page_v3, + .send_read_id = send_read_id_v3, + .get_dev_status = get_dev_status_v3, + .check_int = check_int_v3, + .irq_control = irq_control_v3, + .get_ecc_status = get_ecc_status_v3, + .ooblayout = &mxc_v2_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v3, + .irqpending_quirk = 0, + .needs_ip = 1, + .regs_offset = 0, + .spare0_offset = 0x1000, + .axi_offset = 0x1e00, + .spare_len = 64, + .eccbytes = 0, + .eccsize = 0, + .ppb_shift = 8, +}; + +static inline int is_imx21_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx21_nand_devtype_data; +} + +static inline int is_imx27_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx27_nand_devtype_data; +} + +static inline int is_imx25_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx25_nand_devtype_data; +} + +static inline int is_imx51_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx51_nand_devtype_data; +} + +static inline int is_imx53_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx53_nand_devtype_data; +} + +static const struct platform_device_id mxcnd_devtype[] = { + { + .name = "imx21-nand", + .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data, + }, { + .name = "imx27-nand", + .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data, + }, { + .name = "imx25-nand", + .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data, + }, { + .name = "imx51-nand", + .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data, + }, { + .name = "imx53-nand", + .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data, + }, { + /* sentinel */ + } +}; +MODULE_DEVICE_TABLE(platform, mxcnd_devtype); + +#ifdef CONFIG_OF +static const struct of_device_id mxcnd_dt_ids[] = { + { + .compatible = "fsl,imx21-nand", + .data = &imx21_nand_devtype_data, + }, { + .compatible = "fsl,imx27-nand", + .data = &imx27_nand_devtype_data, + }, { + .compatible = "fsl,imx25-nand", + .data = &imx25_nand_devtype_data, + }, { + .compatible = "fsl,imx51-nand", + .data = &imx51_nand_devtype_data, + }, { + .compatible = "fsl,imx53-nand", + .data = &imx53_nand_devtype_data, + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, mxcnd_dt_ids); + +static int mxcnd_probe_dt(struct mxc_nand_host *host) +{ + struct device_node *np = host->dev->of_node; + const struct of_device_id *of_id = + of_match_device(mxcnd_dt_ids, host->dev); + + if (!np) + return 1; + + host->devtype_data = of_id->data; + + return 0; +} +#else +static int mxcnd_probe_dt(struct mxc_nand_host *host) +{ + return 1; +} +#endif + +static int mxcnd_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + struct device *dev = mtd->dev.parent; + + chip->ecc.bytes = host->devtype_data->eccbytes; + host->eccsize = host->devtype_data->eccsize; + chip->ecc.size = 512; + mtd_set_ooblayout(mtd, host->devtype_data->ooblayout); + + switch (chip->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + chip->ecc.read_page = mxc_nand_read_page; + chip->ecc.read_page_raw = mxc_nand_read_page_raw; + chip->ecc.read_oob = mxc_nand_read_oob; + chip->ecc.write_page = mxc_nand_write_page_ecc; + chip->ecc.write_page_raw = mxc_nand_write_page_raw; + chip->ecc.write_oob = mxc_nand_write_oob; + break; + + case NAND_ECC_ENGINE_TYPE_SOFT: + break; + + default: + return -EINVAL; + } + + if (chip->bbt_options & NAND_BBT_USE_FLASH) { + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + } + + /* Allocate the right size buffer now */ + devm_kfree(dev, (void *)host->data_buf); + host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize, + GFP_KERNEL); + if (!host->data_buf) + return -ENOMEM; + + /* Call preset again, with correct writesize chip time */ + host->devtype_data->preset(mtd); + + if (!chip->ecc.bytes) { + if (host->eccsize == 8) + chip->ecc.bytes = 18; + else if (host->eccsize == 4) + chip->ecc.bytes = 9; + } + + /* + * Experimentation shows that i.MX NFC can only handle up to 218 oob + * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare() + * into copying invalid data to/from the spare IO buffer, as this + * might cause ECC data corruption when doing sub-page write to a + * partially written page. + */ + host->used_oobsize = min(mtd->oobsize, 218U); + + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { + if (is_imx21_nfc(host) || is_imx27_nfc(host)) + chip->ecc.strength = 1; + else + chip->ecc.strength = (host->eccsize == 4) ? 4 : 8; + } + + return 0; +} + +static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + + return host->devtype_data->setup_interface(chip, chipnr, conf); +} + +static const struct nand_controller_ops mxcnd_controller_ops = { + .attach_chip = mxcnd_attach_chip, + .setup_interface = mxcnd_setup_interface, +}; + +static int mxcnd_probe(struct platform_device *pdev) +{ + struct nand_chip *this; + struct mtd_info *mtd; + struct mxc_nand_host *host; + struct resource *res; + int err = 0; + + /* Allocate memory for MTD device structure and private data */ + host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host), + GFP_KERNEL); + if (!host) + return -ENOMEM; + + /* allocate a temporary buffer for the nand_scan_ident() */ + host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL); + if (!host->data_buf) + return -ENOMEM; + + host->dev = &pdev->dev; + /* structures must be linked */ + this = &host->nand; + mtd = nand_to_mtd(this); + mtd->dev.parent = &pdev->dev; + mtd->name = DRIVER_NAME; + + /* 50 us command delay time */ + this->legacy.chip_delay = 5; + + nand_set_controller_data(this, host); + nand_set_flash_node(this, pdev->dev.of_node), + this->legacy.dev_ready = mxc_nand_dev_ready; + this->legacy.cmdfunc = mxc_nand_command; + this->legacy.read_byte = mxc_nand_read_byte; + this->legacy.write_buf = mxc_nand_write_buf; + this->legacy.read_buf = mxc_nand_read_buf; + this->legacy.set_features = mxc_nand_set_features; + this->legacy.get_features = mxc_nand_get_features; + + host->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) + return PTR_ERR(host->clk); + + err = mxcnd_probe_dt(host); + if (err > 0) { + struct mxc_nand_platform_data *pdata = + dev_get_platdata(&pdev->dev); + if (pdata) { + host->pdata = *pdata; + host->devtype_data = (struct mxc_nand_devtype_data *) + pdev->id_entry->driver_data; + } else { + err = -ENODEV; + } + } + if (err < 0) + return err; + + if (!host->devtype_data->setup_interface) + this->options |= NAND_KEEP_TIMINGS; + + if (host->devtype_data->needs_ip) { + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->regs_ip = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->regs_ip)) + return PTR_ERR(host->regs_ip); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 1); + } else { + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + } + + host->base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->base)) + return PTR_ERR(host->base); + + host->main_area0 = host->base; + + if (host->devtype_data->regs_offset) + host->regs = host->base + host->devtype_data->regs_offset; + host->spare0 = host->base + host->devtype_data->spare0_offset; + if (host->devtype_data->axi_offset) + host->regs_axi = host->base + host->devtype_data->axi_offset; + + this->legacy.select_chip = host->devtype_data->select_chip; + + /* NAND bus width determines access functions used by upper layer */ + if (host->pdata.width == 2) + this->options |= NAND_BUSWIDTH_16; + + /* update flash based bbt */ + if (host->pdata.flash_bbt) + this->bbt_options |= NAND_BBT_USE_FLASH; + + init_completion(&host->op_completion); + + host->irq = platform_get_irq(pdev, 0); + if (host->irq < 0) + return host->irq; + + /* + * Use host->devtype_data->irq_control() here instead of irq_control() + * because we must not disable_irq_nosync without having requested the + * irq. + */ + host->devtype_data->irq_control(host, 0); + + err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq, + 0, DRIVER_NAME, host); + if (err) + return err; + + err = clk_prepare_enable(host->clk); + if (err) + return err; + host->clk_act = 1; + + /* + * Now that we "own" the interrupt make sure the interrupt mask bit is + * cleared on i.MX21. Otherwise we can't read the interrupt status bit + * on this machine. + */ + if (host->devtype_data->irqpending_quirk) { + disable_irq_nosync(host->irq); + host->devtype_data->irq_control(host, 1); + } + + /* Scan the NAND device */ + this->legacy.dummy_controller.ops = &mxcnd_controller_ops; + err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1); + if (err) + goto escan; + + /* Register the partitions */ + err = mtd_device_parse_register(mtd, part_probes, NULL, + host->pdata.parts, + host->pdata.nr_parts); + if (err) + goto cleanup_nand; + + platform_set_drvdata(pdev, host); + + return 0; + +cleanup_nand: + nand_cleanup(this); +escan: + if (host->clk_act) + clk_disable_unprepare(host->clk); + + return err; +} + +static int mxcnd_remove(struct platform_device *pdev) +{ + struct mxc_nand_host *host = platform_get_drvdata(pdev); + struct nand_chip *chip = &host->nand; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + if (host->clk_act) + clk_disable_unprepare(host->clk); + + return 0; +} + +static struct platform_driver mxcnd_driver = { + .driver = { + .name = DRIVER_NAME, + .of_match_table = of_match_ptr(mxcnd_dt_ids), + }, + .id_table = mxcnd_devtype, + .probe = mxcnd_probe, + .remove = mxcnd_remove, +}; +module_platform_driver(mxcnd_driver); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("MXC NAND MTD driver"); +MODULE_LICENSE("GPL"); |