summaryrefslogtreecommitdiffstats
path: root/fs/ntfs/super.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/ntfs/super.c')
-rw-r--r--fs/ntfs/super.c3196
1 files changed, 3196 insertions, 0 deletions
diff --git a/fs/ntfs/super.c b/fs/ntfs/super.c
new file mode 100644
index 000000000..7f69422d5
--- /dev/null
+++ b/fs/ntfs/super.c
@@ -0,0 +1,3196 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
+ *
+ * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
+ * Copyright (c) 2001,2002 Richard Russon
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/stddef.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/spinlock.h>
+#include <linux/blkdev.h> /* For bdev_logical_block_size(). */
+#include <linux/backing-dev.h>
+#include <linux/buffer_head.h>
+#include <linux/vfs.h>
+#include <linux/moduleparam.h>
+#include <linux/bitmap.h>
+
+#include "sysctl.h"
+#include "logfile.h"
+#include "quota.h"
+#include "usnjrnl.h"
+#include "dir.h"
+#include "debug.h"
+#include "index.h"
+#include "inode.h"
+#include "aops.h"
+#include "layout.h"
+#include "malloc.h"
+#include "ntfs.h"
+
+/* Number of mounted filesystems which have compression enabled. */
+static unsigned long ntfs_nr_compression_users;
+
+/* A global default upcase table and a corresponding reference count. */
+static ntfschar *default_upcase;
+static unsigned long ntfs_nr_upcase_users;
+
+/* Error constants/strings used in inode.c::ntfs_show_options(). */
+typedef enum {
+ /* One of these must be present, default is ON_ERRORS_CONTINUE. */
+ ON_ERRORS_PANIC = 0x01,
+ ON_ERRORS_REMOUNT_RO = 0x02,
+ ON_ERRORS_CONTINUE = 0x04,
+ /* Optional, can be combined with any of the above. */
+ ON_ERRORS_RECOVER = 0x10,
+} ON_ERRORS_ACTIONS;
+
+const option_t on_errors_arr[] = {
+ { ON_ERRORS_PANIC, "panic" },
+ { ON_ERRORS_REMOUNT_RO, "remount-ro", },
+ { ON_ERRORS_CONTINUE, "continue", },
+ { ON_ERRORS_RECOVER, "recover" },
+ { 0, NULL }
+};
+
+/**
+ * simple_getbool -
+ *
+ * Copied from old ntfs driver (which copied from vfat driver).
+ */
+static int simple_getbool(char *s, bool *setval)
+{
+ if (s) {
+ if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
+ *setval = true;
+ else if (!strcmp(s, "0") || !strcmp(s, "no") ||
+ !strcmp(s, "false"))
+ *setval = false;
+ else
+ return 0;
+ } else
+ *setval = true;
+ return 1;
+}
+
+/**
+ * parse_options - parse the (re)mount options
+ * @vol: ntfs volume
+ * @opt: string containing the (re)mount options
+ *
+ * Parse the recognized options in @opt for the ntfs volume described by @vol.
+ */
+static bool parse_options(ntfs_volume *vol, char *opt)
+{
+ char *p, *v, *ov;
+ static char *utf8 = "utf8";
+ int errors = 0, sloppy = 0;
+ kuid_t uid = INVALID_UID;
+ kgid_t gid = INVALID_GID;
+ umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
+ int mft_zone_multiplier = -1, on_errors = -1;
+ int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
+ struct nls_table *nls_map = NULL, *old_nls;
+
+ /* I am lazy... (-8 */
+#define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
+ if (!strcmp(p, option)) { \
+ if (!v || !*v) \
+ variable = default_value; \
+ else { \
+ variable = simple_strtoul(ov = v, &v, 0); \
+ if (*v) \
+ goto needs_val; \
+ } \
+ }
+#define NTFS_GETOPT(option, variable) \
+ if (!strcmp(p, option)) { \
+ if (!v || !*v) \
+ goto needs_arg; \
+ variable = simple_strtoul(ov = v, &v, 0); \
+ if (*v) \
+ goto needs_val; \
+ }
+#define NTFS_GETOPT_UID(option, variable) \
+ if (!strcmp(p, option)) { \
+ uid_t uid_value; \
+ if (!v || !*v) \
+ goto needs_arg; \
+ uid_value = simple_strtoul(ov = v, &v, 0); \
+ if (*v) \
+ goto needs_val; \
+ variable = make_kuid(current_user_ns(), uid_value); \
+ if (!uid_valid(variable)) \
+ goto needs_val; \
+ }
+#define NTFS_GETOPT_GID(option, variable) \
+ if (!strcmp(p, option)) { \
+ gid_t gid_value; \
+ if (!v || !*v) \
+ goto needs_arg; \
+ gid_value = simple_strtoul(ov = v, &v, 0); \
+ if (*v) \
+ goto needs_val; \
+ variable = make_kgid(current_user_ns(), gid_value); \
+ if (!gid_valid(variable)) \
+ goto needs_val; \
+ }
+#define NTFS_GETOPT_OCTAL(option, variable) \
+ if (!strcmp(p, option)) { \
+ if (!v || !*v) \
+ goto needs_arg; \
+ variable = simple_strtoul(ov = v, &v, 8); \
+ if (*v) \
+ goto needs_val; \
+ }
+#define NTFS_GETOPT_BOOL(option, variable) \
+ if (!strcmp(p, option)) { \
+ bool val; \
+ if (!simple_getbool(v, &val)) \
+ goto needs_bool; \
+ variable = val; \
+ }
+#define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
+ if (!strcmp(p, option)) { \
+ int _i; \
+ if (!v || !*v) \
+ goto needs_arg; \
+ ov = v; \
+ if (variable == -1) \
+ variable = 0; \
+ for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
+ if (!strcmp(opt_array[_i].str, v)) { \
+ variable |= opt_array[_i].val; \
+ break; \
+ } \
+ if (!opt_array[_i].str || !*opt_array[_i].str) \
+ goto needs_val; \
+ }
+ if (!opt || !*opt)
+ goto no_mount_options;
+ ntfs_debug("Entering with mount options string: %s", opt);
+ while ((p = strsep(&opt, ","))) {
+ if ((v = strchr(p, '=')))
+ *v++ = 0;
+ NTFS_GETOPT_UID("uid", uid)
+ else NTFS_GETOPT_GID("gid", gid)
+ else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
+ else NTFS_GETOPT_OCTAL("fmask", fmask)
+ else NTFS_GETOPT_OCTAL("dmask", dmask)
+ else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
+ else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
+ else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
+ else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
+ else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
+ else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
+ on_errors_arr)
+ else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
+ ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
+ p);
+ else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
+ if (!strcmp(p, "iocharset"))
+ ntfs_warning(vol->sb, "Option iocharset is "
+ "deprecated. Please use "
+ "option nls=<charsetname> in "
+ "the future.");
+ if (!v || !*v)
+ goto needs_arg;
+use_utf8:
+ old_nls = nls_map;
+ nls_map = load_nls(v);
+ if (!nls_map) {
+ if (!old_nls) {
+ ntfs_error(vol->sb, "NLS character set "
+ "%s not found.", v);
+ return false;
+ }
+ ntfs_error(vol->sb, "NLS character set %s not "
+ "found. Using previous one %s.",
+ v, old_nls->charset);
+ nls_map = old_nls;
+ } else /* nls_map */ {
+ unload_nls(old_nls);
+ }
+ } else if (!strcmp(p, "utf8")) {
+ bool val = false;
+ ntfs_warning(vol->sb, "Option utf8 is no longer "
+ "supported, using option nls=utf8. Please "
+ "use option nls=utf8 in the future and "
+ "make sure utf8 is compiled either as a "
+ "module or into the kernel.");
+ if (!v || !*v)
+ val = true;
+ else if (!simple_getbool(v, &val))
+ goto needs_bool;
+ if (val) {
+ v = utf8;
+ goto use_utf8;
+ }
+ } else {
+ ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
+ if (errors < INT_MAX)
+ errors++;
+ }
+#undef NTFS_GETOPT_OPTIONS_ARRAY
+#undef NTFS_GETOPT_BOOL
+#undef NTFS_GETOPT
+#undef NTFS_GETOPT_WITH_DEFAULT
+ }
+no_mount_options:
+ if (errors && !sloppy)
+ return false;
+ if (sloppy)
+ ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
+ "unrecognized mount option(s) and continuing.");
+ /* Keep this first! */
+ if (on_errors != -1) {
+ if (!on_errors) {
+ ntfs_error(vol->sb, "Invalid errors option argument "
+ "or bug in options parser.");
+ return false;
+ }
+ }
+ if (nls_map) {
+ if (vol->nls_map && vol->nls_map != nls_map) {
+ ntfs_error(vol->sb, "Cannot change NLS character set "
+ "on remount.");
+ return false;
+ } /* else (!vol->nls_map) */
+ ntfs_debug("Using NLS character set %s.", nls_map->charset);
+ vol->nls_map = nls_map;
+ } else /* (!nls_map) */ {
+ if (!vol->nls_map) {
+ vol->nls_map = load_nls_default();
+ if (!vol->nls_map) {
+ ntfs_error(vol->sb, "Failed to load default "
+ "NLS character set.");
+ return false;
+ }
+ ntfs_debug("Using default NLS character set (%s).",
+ vol->nls_map->charset);
+ }
+ }
+ if (mft_zone_multiplier != -1) {
+ if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
+ mft_zone_multiplier) {
+ ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
+ "on remount.");
+ return false;
+ }
+ if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
+ ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
+ "Using default value, i.e. 1.");
+ mft_zone_multiplier = 1;
+ }
+ vol->mft_zone_multiplier = mft_zone_multiplier;
+ }
+ if (!vol->mft_zone_multiplier)
+ vol->mft_zone_multiplier = 1;
+ if (on_errors != -1)
+ vol->on_errors = on_errors;
+ if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
+ vol->on_errors |= ON_ERRORS_CONTINUE;
+ if (uid_valid(uid))
+ vol->uid = uid;
+ if (gid_valid(gid))
+ vol->gid = gid;
+ if (fmask != (umode_t)-1)
+ vol->fmask = fmask;
+ if (dmask != (umode_t)-1)
+ vol->dmask = dmask;
+ if (show_sys_files != -1) {
+ if (show_sys_files)
+ NVolSetShowSystemFiles(vol);
+ else
+ NVolClearShowSystemFiles(vol);
+ }
+ if (case_sensitive != -1) {
+ if (case_sensitive)
+ NVolSetCaseSensitive(vol);
+ else
+ NVolClearCaseSensitive(vol);
+ }
+ if (disable_sparse != -1) {
+ if (disable_sparse)
+ NVolClearSparseEnabled(vol);
+ else {
+ if (!NVolSparseEnabled(vol) &&
+ vol->major_ver && vol->major_ver < 3)
+ ntfs_warning(vol->sb, "Not enabling sparse "
+ "support due to NTFS volume "
+ "version %i.%i (need at least "
+ "version 3.0).", vol->major_ver,
+ vol->minor_ver);
+ else
+ NVolSetSparseEnabled(vol);
+ }
+ }
+ return true;
+needs_arg:
+ ntfs_error(vol->sb, "The %s option requires an argument.", p);
+ return false;
+needs_bool:
+ ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
+ return false;
+needs_val:
+ ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
+ return false;
+}
+
+#ifdef NTFS_RW
+
+/**
+ * ntfs_write_volume_flags - write new flags to the volume information flags
+ * @vol: ntfs volume on which to modify the flags
+ * @flags: new flags value for the volume information flags
+ *
+ * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
+ * instead (see below).
+ *
+ * Replace the volume information flags on the volume @vol with the value
+ * supplied in @flags. Note, this overwrites the volume information flags, so
+ * make sure to combine the flags you want to modify with the old flags and use
+ * the result when calling ntfs_write_volume_flags().
+ *
+ * Return 0 on success and -errno on error.
+ */
+static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
+{
+ ntfs_inode *ni = NTFS_I(vol->vol_ino);
+ MFT_RECORD *m;
+ VOLUME_INFORMATION *vi;
+ ntfs_attr_search_ctx *ctx;
+ int err;
+
+ ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
+ le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
+ if (vol->vol_flags == flags)
+ goto done;
+ BUG_ON(!ni);
+ m = map_mft_record(ni);
+ if (IS_ERR(m)) {
+ err = PTR_ERR(m);
+ goto err_out;
+ }
+ ctx = ntfs_attr_get_search_ctx(ni, m);
+ if (!ctx) {
+ err = -ENOMEM;
+ goto put_unm_err_out;
+ }
+ err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
+ ctx);
+ if (err)
+ goto put_unm_err_out;
+ vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
+ le16_to_cpu(ctx->attr->data.resident.value_offset));
+ vol->vol_flags = vi->flags = flags;
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(ni);
+done:
+ ntfs_debug("Done.");
+ return 0;
+put_unm_err_out:
+ if (ctx)
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(ni);
+err_out:
+ ntfs_error(vol->sb, "Failed with error code %i.", -err);
+ return err;
+}
+
+/**
+ * ntfs_set_volume_flags - set bits in the volume information flags
+ * @vol: ntfs volume on which to modify the flags
+ * @flags: flags to set on the volume
+ *
+ * Set the bits in @flags in the volume information flags on the volume @vol.
+ *
+ * Return 0 on success and -errno on error.
+ */
+static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
+{
+ flags &= VOLUME_FLAGS_MASK;
+ return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
+}
+
+/**
+ * ntfs_clear_volume_flags - clear bits in the volume information flags
+ * @vol: ntfs volume on which to modify the flags
+ * @flags: flags to clear on the volume
+ *
+ * Clear the bits in @flags in the volume information flags on the volume @vol.
+ *
+ * Return 0 on success and -errno on error.
+ */
+static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
+{
+ flags &= VOLUME_FLAGS_MASK;
+ flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
+ return ntfs_write_volume_flags(vol, flags);
+}
+
+#endif /* NTFS_RW */
+
+/**
+ * ntfs_remount - change the mount options of a mounted ntfs filesystem
+ * @sb: superblock of mounted ntfs filesystem
+ * @flags: remount flags
+ * @opt: remount options string
+ *
+ * Change the mount options of an already mounted ntfs filesystem.
+ *
+ * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
+ * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
+ * @sb->s_flags are not changed.
+ */
+static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
+{
+ ntfs_volume *vol = NTFS_SB(sb);
+
+ ntfs_debug("Entering with remount options string: %s", opt);
+
+ sync_filesystem(sb);
+
+#ifndef NTFS_RW
+ /* For read-only compiled driver, enforce read-only flag. */
+ *flags |= SB_RDONLY;
+#else /* NTFS_RW */
+ /*
+ * For the read-write compiled driver, if we are remounting read-write,
+ * make sure there are no volume errors and that no unsupported volume
+ * flags are set. Also, empty the logfile journal as it would become
+ * stale as soon as something is written to the volume and mark the
+ * volume dirty so that chkdsk is run if the volume is not umounted
+ * cleanly. Finally, mark the quotas out of date so Windows rescans
+ * the volume on boot and updates them.
+ *
+ * When remounting read-only, mark the volume clean if no volume errors
+ * have occurred.
+ */
+ if (sb_rdonly(sb) && !(*flags & SB_RDONLY)) {
+ static const char *es = ". Cannot remount read-write.";
+
+ /* Remounting read-write. */
+ if (NVolErrors(vol)) {
+ ntfs_error(sb, "Volume has errors and is read-only%s",
+ es);
+ return -EROFS;
+ }
+ if (vol->vol_flags & VOLUME_IS_DIRTY) {
+ ntfs_error(sb, "Volume is dirty and read-only%s", es);
+ return -EROFS;
+ }
+ if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
+ ntfs_error(sb, "Volume has been modified by chkdsk "
+ "and is read-only%s", es);
+ return -EROFS;
+ }
+ if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
+ ntfs_error(sb, "Volume has unsupported flags set "
+ "(0x%x) and is read-only%s",
+ (unsigned)le16_to_cpu(vol->vol_flags),
+ es);
+ return -EROFS;
+ }
+ if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
+ ntfs_error(sb, "Failed to set dirty bit in volume "
+ "information flags%s", es);
+ return -EROFS;
+ }
+#if 0
+ // TODO: Enable this code once we start modifying anything that
+ // is different between NTFS 1.2 and 3.x...
+ /* Set NT4 compatibility flag on newer NTFS version volumes. */
+ if ((vol->major_ver > 1)) {
+ if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
+ ntfs_error(sb, "Failed to set NT4 "
+ "compatibility flag%s", es);
+ NVolSetErrors(vol);
+ return -EROFS;
+ }
+ }
+#endif
+ if (!ntfs_empty_logfile(vol->logfile_ino)) {
+ ntfs_error(sb, "Failed to empty journal $LogFile%s",
+ es);
+ NVolSetErrors(vol);
+ return -EROFS;
+ }
+ if (!ntfs_mark_quotas_out_of_date(vol)) {
+ ntfs_error(sb, "Failed to mark quotas out of date%s",
+ es);
+ NVolSetErrors(vol);
+ return -EROFS;
+ }
+ if (!ntfs_stamp_usnjrnl(vol)) {
+ ntfs_error(sb, "Failed to stamp transaction log "
+ "($UsnJrnl)%s", es);
+ NVolSetErrors(vol);
+ return -EROFS;
+ }
+ } else if (!sb_rdonly(sb) && (*flags & SB_RDONLY)) {
+ /* Remounting read-only. */
+ if (!NVolErrors(vol)) {
+ if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
+ ntfs_warning(sb, "Failed to clear dirty bit "
+ "in volume information "
+ "flags. Run chkdsk.");
+ }
+ }
+#endif /* NTFS_RW */
+
+ // TODO: Deal with *flags.
+
+ if (!parse_options(vol, opt))
+ return -EINVAL;
+
+ ntfs_debug("Done.");
+ return 0;
+}
+
+/**
+ * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
+ * @sb: Super block of the device to which @b belongs.
+ * @b: Boot sector of device @sb to check.
+ * @silent: If 'true', all output will be silenced.
+ *
+ * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
+ * sector. Returns 'true' if it is valid and 'false' if not.
+ *
+ * @sb is only needed for warning/error output, i.e. it can be NULL when silent
+ * is 'true'.
+ */
+static bool is_boot_sector_ntfs(const struct super_block *sb,
+ const NTFS_BOOT_SECTOR *b, const bool silent)
+{
+ /*
+ * Check that checksum == sum of u32 values from b to the checksum
+ * field. If checksum is zero, no checking is done. We will work when
+ * the checksum test fails, since some utilities update the boot sector
+ * ignoring the checksum which leaves the checksum out-of-date. We
+ * report a warning if this is the case.
+ */
+ if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
+ le32 *u;
+ u32 i;
+
+ for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
+ i += le32_to_cpup(u);
+ if (le32_to_cpu(b->checksum) != i)
+ ntfs_warning(sb, "Invalid boot sector checksum.");
+ }
+ /* Check OEMidentifier is "NTFS " */
+ if (b->oem_id != magicNTFS)
+ goto not_ntfs;
+ /* Check bytes per sector value is between 256 and 4096. */
+ if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
+ le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
+ goto not_ntfs;
+ /* Check sectors per cluster value is valid. */
+ switch (b->bpb.sectors_per_cluster) {
+ case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
+ break;
+ default:
+ goto not_ntfs;
+ }
+ /* Check the cluster size is not above the maximum (64kiB). */
+ if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
+ b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
+ goto not_ntfs;
+ /* Check reserved/unused fields are really zero. */
+ if (le16_to_cpu(b->bpb.reserved_sectors) ||
+ le16_to_cpu(b->bpb.root_entries) ||
+ le16_to_cpu(b->bpb.sectors) ||
+ le16_to_cpu(b->bpb.sectors_per_fat) ||
+ le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
+ goto not_ntfs;
+ /* Check clusters per file mft record value is valid. */
+ if ((u8)b->clusters_per_mft_record < 0xe1 ||
+ (u8)b->clusters_per_mft_record > 0xf7)
+ switch (b->clusters_per_mft_record) {
+ case 1: case 2: case 4: case 8: case 16: case 32: case 64:
+ break;
+ default:
+ goto not_ntfs;
+ }
+ /* Check clusters per index block value is valid. */
+ if ((u8)b->clusters_per_index_record < 0xe1 ||
+ (u8)b->clusters_per_index_record > 0xf7)
+ switch (b->clusters_per_index_record) {
+ case 1: case 2: case 4: case 8: case 16: case 32: case 64:
+ break;
+ default:
+ goto not_ntfs;
+ }
+ /*
+ * Check for valid end of sector marker. We will work without it, but
+ * many BIOSes will refuse to boot from a bootsector if the magic is
+ * incorrect, so we emit a warning.
+ */
+ if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
+ ntfs_warning(sb, "Invalid end of sector marker.");
+ return true;
+not_ntfs:
+ return false;
+}
+
+/**
+ * read_ntfs_boot_sector - read the NTFS boot sector of a device
+ * @sb: super block of device to read the boot sector from
+ * @silent: if true, suppress all output
+ *
+ * Reads the boot sector from the device and validates it. If that fails, tries
+ * to read the backup boot sector, first from the end of the device a-la NT4 and
+ * later and then from the middle of the device a-la NT3.51 and before.
+ *
+ * If a valid boot sector is found but it is not the primary boot sector, we
+ * repair the primary boot sector silently (unless the device is read-only or
+ * the primary boot sector is not accessible).
+ *
+ * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
+ * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
+ * to their respective values.
+ *
+ * Return the unlocked buffer head containing the boot sector or NULL on error.
+ */
+static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
+ const int silent)
+{
+ const char *read_err_str = "Unable to read %s boot sector.";
+ struct buffer_head *bh_primary, *bh_backup;
+ sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
+
+ /* Try to read primary boot sector. */
+ if ((bh_primary = sb_bread(sb, 0))) {
+ if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
+ bh_primary->b_data, silent))
+ return bh_primary;
+ if (!silent)
+ ntfs_error(sb, "Primary boot sector is invalid.");
+ } else if (!silent)
+ ntfs_error(sb, read_err_str, "primary");
+ if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
+ if (bh_primary)
+ brelse(bh_primary);
+ if (!silent)
+ ntfs_error(sb, "Mount option errors=recover not used. "
+ "Aborting without trying to recover.");
+ return NULL;
+ }
+ /* Try to read NT4+ backup boot sector. */
+ if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
+ if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
+ bh_backup->b_data, silent))
+ goto hotfix_primary_boot_sector;
+ brelse(bh_backup);
+ } else if (!silent)
+ ntfs_error(sb, read_err_str, "backup");
+ /* Try to read NT3.51- backup boot sector. */
+ if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
+ if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
+ bh_backup->b_data, silent))
+ goto hotfix_primary_boot_sector;
+ if (!silent)
+ ntfs_error(sb, "Could not find a valid backup boot "
+ "sector.");
+ brelse(bh_backup);
+ } else if (!silent)
+ ntfs_error(sb, read_err_str, "backup");
+ /* We failed. Cleanup and return. */
+ if (bh_primary)
+ brelse(bh_primary);
+ return NULL;
+hotfix_primary_boot_sector:
+ if (bh_primary) {
+ /*
+ * If we managed to read sector zero and the volume is not
+ * read-only, copy the found, valid backup boot sector to the
+ * primary boot sector. Note we only copy the actual boot
+ * sector structure, not the actual whole device sector as that
+ * may be bigger and would potentially damage the $Boot system
+ * file (FIXME: Would be nice to know if the backup boot sector
+ * on a large sector device contains the whole boot loader or
+ * just the first 512 bytes).
+ */
+ if (!sb_rdonly(sb)) {
+ ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
+ "boot sector from backup copy.");
+ memcpy(bh_primary->b_data, bh_backup->b_data,
+ NTFS_BLOCK_SIZE);
+ mark_buffer_dirty(bh_primary);
+ sync_dirty_buffer(bh_primary);
+ if (buffer_uptodate(bh_primary)) {
+ brelse(bh_backup);
+ return bh_primary;
+ }
+ ntfs_error(sb, "Hot-fix: Device write error while "
+ "recovering primary boot sector.");
+ } else {
+ ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
+ "sector failed: Read-only mount.");
+ }
+ brelse(bh_primary);
+ }
+ ntfs_warning(sb, "Using backup boot sector.");
+ return bh_backup;
+}
+
+/**
+ * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
+ * @vol: volume structure to initialise with data from boot sector
+ * @b: boot sector to parse
+ *
+ * Parse the ntfs boot sector @b and store all imporant information therein in
+ * the ntfs super block @vol. Return 'true' on success and 'false' on error.
+ */
+static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
+{
+ unsigned int sectors_per_cluster_bits, nr_hidden_sects;
+ int clusters_per_mft_record, clusters_per_index_record;
+ s64 ll;
+
+ vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
+ vol->sector_size_bits = ffs(vol->sector_size) - 1;
+ ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
+ vol->sector_size);
+ ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
+ vol->sector_size_bits);
+ if (vol->sector_size < vol->sb->s_blocksize) {
+ ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
+ "device block size (%lu). This is not "
+ "supported. Sorry.", vol->sector_size,
+ vol->sb->s_blocksize);
+ return false;
+ }
+ ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
+ sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
+ ntfs_debug("sectors_per_cluster_bits = 0x%x",
+ sectors_per_cluster_bits);
+ nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
+ ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
+ vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
+ vol->cluster_size_mask = vol->cluster_size - 1;
+ vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
+ ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
+ vol->cluster_size);
+ ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
+ ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
+ if (vol->cluster_size < vol->sector_size) {
+ ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
+ "sector size (%i). This is not supported. "
+ "Sorry.", vol->cluster_size, vol->sector_size);
+ return false;
+ }
+ clusters_per_mft_record = b->clusters_per_mft_record;
+ ntfs_debug("clusters_per_mft_record = %i (0x%x)",
+ clusters_per_mft_record, clusters_per_mft_record);
+ if (clusters_per_mft_record > 0)
+ vol->mft_record_size = vol->cluster_size <<
+ (ffs(clusters_per_mft_record) - 1);
+ else
+ /*
+ * When mft_record_size < cluster_size, clusters_per_mft_record
+ * = -log2(mft_record_size) bytes. mft_record_size normaly is
+ * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
+ */
+ vol->mft_record_size = 1 << -clusters_per_mft_record;
+ vol->mft_record_size_mask = vol->mft_record_size - 1;
+ vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
+ ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
+ vol->mft_record_size);
+ ntfs_debug("vol->mft_record_size_mask = 0x%x",
+ vol->mft_record_size_mask);
+ ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
+ vol->mft_record_size_bits, vol->mft_record_size_bits);
+ /*
+ * We cannot support mft record sizes above the PAGE_SIZE since
+ * we store $MFT/$DATA, the table of mft records in the page cache.
+ */
+ if (vol->mft_record_size > PAGE_SIZE) {
+ ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
+ "PAGE_SIZE on your system (%lu). "
+ "This is not supported. Sorry.",
+ vol->mft_record_size, PAGE_SIZE);
+ return false;
+ }
+ /* We cannot support mft record sizes below the sector size. */
+ if (vol->mft_record_size < vol->sector_size) {
+ ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
+ "sector size (%i). This is not supported. "
+ "Sorry.", vol->mft_record_size,
+ vol->sector_size);
+ return false;
+ }
+ clusters_per_index_record = b->clusters_per_index_record;
+ ntfs_debug("clusters_per_index_record = %i (0x%x)",
+ clusters_per_index_record, clusters_per_index_record);
+ if (clusters_per_index_record > 0)
+ vol->index_record_size = vol->cluster_size <<
+ (ffs(clusters_per_index_record) - 1);
+ else
+ /*
+ * When index_record_size < cluster_size,
+ * clusters_per_index_record = -log2(index_record_size) bytes.
+ * index_record_size normaly equals 4096 bytes, which is
+ * encoded as 0xF4 (-12 in decimal).
+ */
+ vol->index_record_size = 1 << -clusters_per_index_record;
+ vol->index_record_size_mask = vol->index_record_size - 1;
+ vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
+ ntfs_debug("vol->index_record_size = %i (0x%x)",
+ vol->index_record_size, vol->index_record_size);
+ ntfs_debug("vol->index_record_size_mask = 0x%x",
+ vol->index_record_size_mask);
+ ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
+ vol->index_record_size_bits,
+ vol->index_record_size_bits);
+ /* We cannot support index record sizes below the sector size. */
+ if (vol->index_record_size < vol->sector_size) {
+ ntfs_error(vol->sb, "Index record size (%i) is smaller than "
+ "the sector size (%i). This is not "
+ "supported. Sorry.", vol->index_record_size,
+ vol->sector_size);
+ return false;
+ }
+ /*
+ * Get the size of the volume in clusters and check for 64-bit-ness.
+ * Windows currently only uses 32 bits to save the clusters so we do
+ * the same as it is much faster on 32-bit CPUs.
+ */
+ ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
+ if ((u64)ll >= 1ULL << 32) {
+ ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry.");
+ return false;
+ }
+ vol->nr_clusters = ll;
+ ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
+ /*
+ * On an architecture where unsigned long is 32-bits, we restrict the
+ * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
+ * will hopefully optimize the whole check away.
+ */
+ if (sizeof(unsigned long) < 8) {
+ if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
+ ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
+ "large for this architecture. "
+ "Maximum supported is 2TiB. Sorry.",
+ (unsigned long long)ll >> (40 -
+ vol->cluster_size_bits));
+ return false;
+ }
+ }
+ ll = sle64_to_cpu(b->mft_lcn);
+ if (ll >= vol->nr_clusters) {
+ ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
+ "volume. Weird.", (unsigned long long)ll,
+ (unsigned long long)ll);
+ return false;
+ }
+ vol->mft_lcn = ll;
+ ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
+ ll = sle64_to_cpu(b->mftmirr_lcn);
+ if (ll >= vol->nr_clusters) {
+ ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
+ "of volume. Weird.", (unsigned long long)ll,
+ (unsigned long long)ll);
+ return false;
+ }
+ vol->mftmirr_lcn = ll;
+ ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
+#ifdef NTFS_RW
+ /*
+ * Work out the size of the mft mirror in number of mft records. If the
+ * cluster size is less than or equal to the size taken by four mft
+ * records, the mft mirror stores the first four mft records. If the
+ * cluster size is bigger than the size taken by four mft records, the
+ * mft mirror contains as many mft records as will fit into one
+ * cluster.
+ */
+ if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
+ vol->mftmirr_size = 4;
+ else
+ vol->mftmirr_size = vol->cluster_size >>
+ vol->mft_record_size_bits;
+ ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
+#endif /* NTFS_RW */
+ vol->serial_no = le64_to_cpu(b->volume_serial_number);
+ ntfs_debug("vol->serial_no = 0x%llx",
+ (unsigned long long)vol->serial_no);
+ return true;
+}
+
+/**
+ * ntfs_setup_allocators - initialize the cluster and mft allocators
+ * @vol: volume structure for which to setup the allocators
+ *
+ * Setup the cluster (lcn) and mft allocators to the starting values.
+ */
+static void ntfs_setup_allocators(ntfs_volume *vol)
+{
+#ifdef NTFS_RW
+ LCN mft_zone_size, mft_lcn;
+#endif /* NTFS_RW */
+
+ ntfs_debug("vol->mft_zone_multiplier = 0x%x",
+ vol->mft_zone_multiplier);
+#ifdef NTFS_RW
+ /* Determine the size of the MFT zone. */
+ mft_zone_size = vol->nr_clusters;
+ switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
+ case 4:
+ mft_zone_size >>= 1; /* 50% */
+ break;
+ case 3:
+ mft_zone_size = (mft_zone_size +
+ (mft_zone_size >> 1)) >> 2; /* 37.5% */
+ break;
+ case 2:
+ mft_zone_size >>= 2; /* 25% */
+ break;
+ /* case 1: */
+ default:
+ mft_zone_size >>= 3; /* 12.5% */
+ break;
+ }
+ /* Setup the mft zone. */
+ vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
+ ntfs_debug("vol->mft_zone_pos = 0x%llx",
+ (unsigned long long)vol->mft_zone_pos);
+ /*
+ * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
+ * source) and if the actual mft_lcn is in the expected place or even
+ * further to the front of the volume, extend the mft_zone to cover the
+ * beginning of the volume as well. This is in order to protect the
+ * area reserved for the mft bitmap as well within the mft_zone itself.
+ * On non-standard volumes we do not protect it as the overhead would
+ * be higher than the speed increase we would get by doing it.
+ */
+ mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
+ if (mft_lcn * vol->cluster_size < 16 * 1024)
+ mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
+ vol->cluster_size;
+ if (vol->mft_zone_start <= mft_lcn)
+ vol->mft_zone_start = 0;
+ ntfs_debug("vol->mft_zone_start = 0x%llx",
+ (unsigned long long)vol->mft_zone_start);
+ /*
+ * Need to cap the mft zone on non-standard volumes so that it does
+ * not point outside the boundaries of the volume. We do this by
+ * halving the zone size until we are inside the volume.
+ */
+ vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
+ while (vol->mft_zone_end >= vol->nr_clusters) {
+ mft_zone_size >>= 1;
+ vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
+ }
+ ntfs_debug("vol->mft_zone_end = 0x%llx",
+ (unsigned long long)vol->mft_zone_end);
+ /*
+ * Set the current position within each data zone to the start of the
+ * respective zone.
+ */
+ vol->data1_zone_pos = vol->mft_zone_end;
+ ntfs_debug("vol->data1_zone_pos = 0x%llx",
+ (unsigned long long)vol->data1_zone_pos);
+ vol->data2_zone_pos = 0;
+ ntfs_debug("vol->data2_zone_pos = 0x%llx",
+ (unsigned long long)vol->data2_zone_pos);
+
+ /* Set the mft data allocation position to mft record 24. */
+ vol->mft_data_pos = 24;
+ ntfs_debug("vol->mft_data_pos = 0x%llx",
+ (unsigned long long)vol->mft_data_pos);
+#endif /* NTFS_RW */
+}
+
+#ifdef NTFS_RW
+
+/**
+ * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
+ * @vol: ntfs super block describing device whose mft mirror to load
+ *
+ * Return 'true' on success or 'false' on error.
+ */
+static bool load_and_init_mft_mirror(ntfs_volume *vol)
+{
+ struct inode *tmp_ino;
+ ntfs_inode *tmp_ni;
+
+ ntfs_debug("Entering.");
+ /* Get mft mirror inode. */
+ tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
+ if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
+ if (!IS_ERR(tmp_ino))
+ iput(tmp_ino);
+ /* Caller will display error message. */
+ return false;
+ }
+ /*
+ * Re-initialize some specifics about $MFTMirr's inode as
+ * ntfs_read_inode() will have set up the default ones.
+ */
+ /* Set uid and gid to root. */
+ tmp_ino->i_uid = GLOBAL_ROOT_UID;
+ tmp_ino->i_gid = GLOBAL_ROOT_GID;
+ /* Regular file. No access for anyone. */
+ tmp_ino->i_mode = S_IFREG;
+ /* No VFS initiated operations allowed for $MFTMirr. */
+ tmp_ino->i_op = &ntfs_empty_inode_ops;
+ tmp_ino->i_fop = &ntfs_empty_file_ops;
+ /* Put in our special address space operations. */
+ tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
+ tmp_ni = NTFS_I(tmp_ino);
+ /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
+ NInoSetMstProtected(tmp_ni);
+ NInoSetSparseDisabled(tmp_ni);
+ /*
+ * Set up our little cheat allowing us to reuse the async read io
+ * completion handler for directories.
+ */
+ tmp_ni->itype.index.block_size = vol->mft_record_size;
+ tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
+ vol->mftmirr_ino = tmp_ino;
+ ntfs_debug("Done.");
+ return true;
+}
+
+/**
+ * check_mft_mirror - compare contents of the mft mirror with the mft
+ * @vol: ntfs super block describing device whose mft mirror to check
+ *
+ * Return 'true' on success or 'false' on error.
+ *
+ * Note, this function also results in the mft mirror runlist being completely
+ * mapped into memory. The mft mirror write code requires this and will BUG()
+ * should it find an unmapped runlist element.
+ */
+static bool check_mft_mirror(ntfs_volume *vol)
+{
+ struct super_block *sb = vol->sb;
+ ntfs_inode *mirr_ni;
+ struct page *mft_page, *mirr_page;
+ u8 *kmft, *kmirr;
+ runlist_element *rl, rl2[2];
+ pgoff_t index;
+ int mrecs_per_page, i;
+
+ ntfs_debug("Entering.");
+ /* Compare contents of $MFT and $MFTMirr. */
+ mrecs_per_page = PAGE_SIZE / vol->mft_record_size;
+ BUG_ON(!mrecs_per_page);
+ BUG_ON(!vol->mftmirr_size);
+ mft_page = mirr_page = NULL;
+ kmft = kmirr = NULL;
+ index = i = 0;
+ do {
+ u32 bytes;
+
+ /* Switch pages if necessary. */
+ if (!(i % mrecs_per_page)) {
+ if (index) {
+ ntfs_unmap_page(mft_page);
+ ntfs_unmap_page(mirr_page);
+ }
+ /* Get the $MFT page. */
+ mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
+ index);
+ if (IS_ERR(mft_page)) {
+ ntfs_error(sb, "Failed to read $MFT.");
+ return false;
+ }
+ kmft = page_address(mft_page);
+ /* Get the $MFTMirr page. */
+ mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
+ index);
+ if (IS_ERR(mirr_page)) {
+ ntfs_error(sb, "Failed to read $MFTMirr.");
+ goto mft_unmap_out;
+ }
+ kmirr = page_address(mirr_page);
+ ++index;
+ }
+ /* Do not check the record if it is not in use. */
+ if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
+ /* Make sure the record is ok. */
+ if (ntfs_is_baad_recordp((le32*)kmft)) {
+ ntfs_error(sb, "Incomplete multi sector "
+ "transfer detected in mft "
+ "record %i.", i);
+mm_unmap_out:
+ ntfs_unmap_page(mirr_page);
+mft_unmap_out:
+ ntfs_unmap_page(mft_page);
+ return false;
+ }
+ }
+ /* Do not check the mirror record if it is not in use. */
+ if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
+ if (ntfs_is_baad_recordp((le32*)kmirr)) {
+ ntfs_error(sb, "Incomplete multi sector "
+ "transfer detected in mft "
+ "mirror record %i.", i);
+ goto mm_unmap_out;
+ }
+ }
+ /* Get the amount of data in the current record. */
+ bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
+ if (bytes < sizeof(MFT_RECORD_OLD) ||
+ bytes > vol->mft_record_size ||
+ ntfs_is_baad_recordp((le32*)kmft)) {
+ bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
+ if (bytes < sizeof(MFT_RECORD_OLD) ||
+ bytes > vol->mft_record_size ||
+ ntfs_is_baad_recordp((le32*)kmirr))
+ bytes = vol->mft_record_size;
+ }
+ /* Compare the two records. */
+ if (memcmp(kmft, kmirr, bytes)) {
+ ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
+ "match. Run ntfsfix or chkdsk.", i);
+ goto mm_unmap_out;
+ }
+ kmft += vol->mft_record_size;
+ kmirr += vol->mft_record_size;
+ } while (++i < vol->mftmirr_size);
+ /* Release the last pages. */
+ ntfs_unmap_page(mft_page);
+ ntfs_unmap_page(mirr_page);
+
+ /* Construct the mft mirror runlist by hand. */
+ rl2[0].vcn = 0;
+ rl2[0].lcn = vol->mftmirr_lcn;
+ rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
+ vol->cluster_size - 1) / vol->cluster_size;
+ rl2[1].vcn = rl2[0].length;
+ rl2[1].lcn = LCN_ENOENT;
+ rl2[1].length = 0;
+ /*
+ * Because we have just read all of the mft mirror, we know we have
+ * mapped the full runlist for it.
+ */
+ mirr_ni = NTFS_I(vol->mftmirr_ino);
+ down_read(&mirr_ni->runlist.lock);
+ rl = mirr_ni->runlist.rl;
+ /* Compare the two runlists. They must be identical. */
+ i = 0;
+ do {
+ if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
+ rl2[i].length != rl[i].length) {
+ ntfs_error(sb, "$MFTMirr location mismatch. "
+ "Run chkdsk.");
+ up_read(&mirr_ni->runlist.lock);
+ return false;
+ }
+ } while (rl2[i++].length);
+ up_read(&mirr_ni->runlist.lock);
+ ntfs_debug("Done.");
+ return true;
+}
+
+/**
+ * load_and_check_logfile - load and check the logfile inode for a volume
+ * @vol: ntfs super block describing device whose logfile to load
+ *
+ * Return 'true' on success or 'false' on error.
+ */
+static bool load_and_check_logfile(ntfs_volume *vol,
+ RESTART_PAGE_HEADER **rp)
+{
+ struct inode *tmp_ino;
+
+ ntfs_debug("Entering.");
+ tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
+ if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
+ if (!IS_ERR(tmp_ino))
+ iput(tmp_ino);
+ /* Caller will display error message. */
+ return false;
+ }
+ if (!ntfs_check_logfile(tmp_ino, rp)) {
+ iput(tmp_ino);
+ /* ntfs_check_logfile() will have displayed error output. */
+ return false;
+ }
+ NInoSetSparseDisabled(NTFS_I(tmp_ino));
+ vol->logfile_ino = tmp_ino;
+ ntfs_debug("Done.");
+ return true;
+}
+
+#define NTFS_HIBERFIL_HEADER_SIZE 4096
+
+/**
+ * check_windows_hibernation_status - check if Windows is suspended on a volume
+ * @vol: ntfs super block of device to check
+ *
+ * Check if Windows is hibernated on the ntfs volume @vol. This is done by
+ * looking for the file hiberfil.sys in the root directory of the volume. If
+ * the file is not present Windows is definitely not suspended.
+ *
+ * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
+ * definitely suspended (this volume is not the system volume). Caveat: on a
+ * system with many volumes it is possible that the < 4kiB check is bogus but
+ * for now this should do fine.
+ *
+ * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
+ * hiberfil header (which is the first 4kiB). If this begins with "hibr",
+ * Windows is definitely suspended. If it is completely full of zeroes,
+ * Windows is definitely not hibernated. Any other case is treated as if
+ * Windows is suspended. This caters for the above mentioned caveat of a
+ * system with many volumes where no "hibr" magic would be present and there is
+ * no zero header.
+ *
+ * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
+ * hibernated on the volume, and -errno on error.
+ */
+static int check_windows_hibernation_status(ntfs_volume *vol)
+{
+ MFT_REF mref;
+ struct inode *vi;
+ struct page *page;
+ u32 *kaddr, *kend;
+ ntfs_name *name = NULL;
+ int ret = 1;
+ static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
+ cpu_to_le16('i'), cpu_to_le16('b'),
+ cpu_to_le16('e'), cpu_to_le16('r'),
+ cpu_to_le16('f'), cpu_to_le16('i'),
+ cpu_to_le16('l'), cpu_to_le16('.'),
+ cpu_to_le16('s'), cpu_to_le16('y'),
+ cpu_to_le16('s'), 0 };
+
+ ntfs_debug("Entering.");
+ /*
+ * Find the inode number for the hibernation file by looking up the
+ * filename hiberfil.sys in the root directory.
+ */
+ inode_lock(vol->root_ino);
+ mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
+ &name);
+ inode_unlock(vol->root_ino);
+ if (IS_ERR_MREF(mref)) {
+ ret = MREF_ERR(mref);
+ /* If the file does not exist, Windows is not hibernated. */
+ if (ret == -ENOENT) {
+ ntfs_debug("hiberfil.sys not present. Windows is not "
+ "hibernated on the volume.");
+ return 0;
+ }
+ /* A real error occurred. */
+ ntfs_error(vol->sb, "Failed to find inode number for "
+ "hiberfil.sys.");
+ return ret;
+ }
+ /* We do not care for the type of match that was found. */
+ kfree(name);
+ /* Get the inode. */
+ vi = ntfs_iget(vol->sb, MREF(mref));
+ if (IS_ERR(vi) || is_bad_inode(vi)) {
+ if (!IS_ERR(vi))
+ iput(vi);
+ ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
+ return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
+ }
+ if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
+ ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
+ "Windows is hibernated on the volume. This "
+ "is not the system volume.", i_size_read(vi));
+ goto iput_out;
+ }
+ page = ntfs_map_page(vi->i_mapping, 0);
+ if (IS_ERR(page)) {
+ ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
+ ret = PTR_ERR(page);
+ goto iput_out;
+ }
+ kaddr = (u32*)page_address(page);
+ if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
+ ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
+ "hibernated on the volume. This is the "
+ "system volume.");
+ goto unm_iput_out;
+ }
+ kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
+ do {
+ if (unlikely(*kaddr)) {
+ ntfs_debug("hiberfil.sys is larger than 4kiB "
+ "(0x%llx), does not contain the "
+ "\"hibr\" magic, and does not have a "
+ "zero header. Windows is hibernated "
+ "on the volume. This is not the "
+ "system volume.", i_size_read(vi));
+ goto unm_iput_out;
+ }
+ } while (++kaddr < kend);
+ ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
+ "hibernated on the volume. This is the system "
+ "volume.");
+ ret = 0;
+unm_iput_out:
+ ntfs_unmap_page(page);
+iput_out:
+ iput(vi);
+ return ret;
+}
+
+/**
+ * load_and_init_quota - load and setup the quota file for a volume if present
+ * @vol: ntfs super block describing device whose quota file to load
+ *
+ * Return 'true' on success or 'false' on error. If $Quota is not present, we
+ * leave vol->quota_ino as NULL and return success.
+ */
+static bool load_and_init_quota(ntfs_volume *vol)
+{
+ MFT_REF mref;
+ struct inode *tmp_ino;
+ ntfs_name *name = NULL;
+ static const ntfschar Quota[7] = { cpu_to_le16('$'),
+ cpu_to_le16('Q'), cpu_to_le16('u'),
+ cpu_to_le16('o'), cpu_to_le16('t'),
+ cpu_to_le16('a'), 0 };
+ static ntfschar Q[3] = { cpu_to_le16('$'),
+ cpu_to_le16('Q'), 0 };
+
+ ntfs_debug("Entering.");
+ /*
+ * Find the inode number for the quota file by looking up the filename
+ * $Quota in the extended system files directory $Extend.
+ */
+ inode_lock(vol->extend_ino);
+ mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
+ &name);
+ inode_unlock(vol->extend_ino);
+ if (IS_ERR_MREF(mref)) {
+ /*
+ * If the file does not exist, quotas are disabled and have
+ * never been enabled on this volume, just return success.
+ */
+ if (MREF_ERR(mref) == -ENOENT) {
+ ntfs_debug("$Quota not present. Volume does not have "
+ "quotas enabled.");
+ /*
+ * No need to try to set quotas out of date if they are
+ * not enabled.
+ */
+ NVolSetQuotaOutOfDate(vol);
+ return true;
+ }
+ /* A real error occurred. */
+ ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
+ return false;
+ }
+ /* We do not care for the type of match that was found. */
+ kfree(name);
+ /* Get the inode. */
+ tmp_ino = ntfs_iget(vol->sb, MREF(mref));
+ if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
+ if (!IS_ERR(tmp_ino))
+ iput(tmp_ino);
+ ntfs_error(vol->sb, "Failed to load $Quota.");
+ return false;
+ }
+ vol->quota_ino = tmp_ino;
+ /* Get the $Q index allocation attribute. */
+ tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
+ if (IS_ERR(tmp_ino)) {
+ ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
+ return false;
+ }
+ vol->quota_q_ino = tmp_ino;
+ ntfs_debug("Done.");
+ return true;
+}
+
+/**
+ * load_and_init_usnjrnl - load and setup the transaction log if present
+ * @vol: ntfs super block describing device whose usnjrnl file to load
+ *
+ * Return 'true' on success or 'false' on error.
+ *
+ * If $UsnJrnl is not present or in the process of being disabled, we set
+ * NVolUsnJrnlStamped() and return success.
+ *
+ * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
+ * i.e. transaction logging has only just been enabled or the journal has been
+ * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
+ * and return success.
+ */
+static bool load_and_init_usnjrnl(ntfs_volume *vol)
+{
+ MFT_REF mref;
+ struct inode *tmp_ino;
+ ntfs_inode *tmp_ni;
+ struct page *page;
+ ntfs_name *name = NULL;
+ USN_HEADER *uh;
+ static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
+ cpu_to_le16('U'), cpu_to_le16('s'),
+ cpu_to_le16('n'), cpu_to_le16('J'),
+ cpu_to_le16('r'), cpu_to_le16('n'),
+ cpu_to_le16('l'), 0 };
+ static ntfschar Max[5] = { cpu_to_le16('$'),
+ cpu_to_le16('M'), cpu_to_le16('a'),
+ cpu_to_le16('x'), 0 };
+ static ntfschar J[3] = { cpu_to_le16('$'),
+ cpu_to_le16('J'), 0 };
+
+ ntfs_debug("Entering.");
+ /*
+ * Find the inode number for the transaction log file by looking up the
+ * filename $UsnJrnl in the extended system files directory $Extend.
+ */
+ inode_lock(vol->extend_ino);
+ mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
+ &name);
+ inode_unlock(vol->extend_ino);
+ if (IS_ERR_MREF(mref)) {
+ /*
+ * If the file does not exist, transaction logging is disabled,
+ * just return success.
+ */
+ if (MREF_ERR(mref) == -ENOENT) {
+ ntfs_debug("$UsnJrnl not present. Volume does not "
+ "have transaction logging enabled.");
+not_enabled:
+ /*
+ * No need to try to stamp the transaction log if
+ * transaction logging is not enabled.
+ */
+ NVolSetUsnJrnlStamped(vol);
+ return true;
+ }
+ /* A real error occurred. */
+ ntfs_error(vol->sb, "Failed to find inode number for "
+ "$UsnJrnl.");
+ return false;
+ }
+ /* We do not care for the type of match that was found. */
+ kfree(name);
+ /* Get the inode. */
+ tmp_ino = ntfs_iget(vol->sb, MREF(mref));
+ if (IS_ERR(tmp_ino) || unlikely(is_bad_inode(tmp_ino))) {
+ if (!IS_ERR(tmp_ino))
+ iput(tmp_ino);
+ ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
+ return false;
+ }
+ vol->usnjrnl_ino = tmp_ino;
+ /*
+ * If the transaction log is in the process of being deleted, we can
+ * ignore it.
+ */
+ if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
+ ntfs_debug("$UsnJrnl in the process of being disabled. "
+ "Volume does not have transaction logging "
+ "enabled.");
+ goto not_enabled;
+ }
+ /* Get the $DATA/$Max attribute. */
+ tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
+ if (IS_ERR(tmp_ino)) {
+ ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
+ "attribute.");
+ return false;
+ }
+ vol->usnjrnl_max_ino = tmp_ino;
+ if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
+ ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
+ "attribute (size is 0x%llx but should be at "
+ "least 0x%zx bytes).", i_size_read(tmp_ino),
+ sizeof(USN_HEADER));
+ return false;
+ }
+ /* Get the $DATA/$J attribute. */
+ tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
+ if (IS_ERR(tmp_ino)) {
+ ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
+ "attribute.");
+ return false;
+ }
+ vol->usnjrnl_j_ino = tmp_ino;
+ /* Verify $J is non-resident and sparse. */
+ tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
+ if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
+ ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
+ "and/or not sparse.");
+ return false;
+ }
+ /* Read the USN_HEADER from $DATA/$Max. */
+ page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
+ if (IS_ERR(page)) {
+ ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
+ "attribute.");
+ return false;
+ }
+ uh = (USN_HEADER*)page_address(page);
+ /* Sanity check the $Max. */
+ if (unlikely(sle64_to_cpu(uh->allocation_delta) >
+ sle64_to_cpu(uh->maximum_size))) {
+ ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
+ "maximum size (0x%llx). $UsnJrnl is corrupt.",
+ (long long)sle64_to_cpu(uh->allocation_delta),
+ (long long)sle64_to_cpu(uh->maximum_size));
+ ntfs_unmap_page(page);
+ return false;
+ }
+ /*
+ * If the transaction log has been stamped and nothing has been written
+ * to it since, we do not need to stamp it.
+ */
+ if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
+ i_size_read(vol->usnjrnl_j_ino))) {
+ if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
+ i_size_read(vol->usnjrnl_j_ino))) {
+ ntfs_unmap_page(page);
+ ntfs_debug("$UsnJrnl is enabled but nothing has been "
+ "logged since it was last stamped. "
+ "Treating this as if the volume does "
+ "not have transaction logging "
+ "enabled.");
+ goto not_enabled;
+ }
+ ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
+ "which is out of bounds (0x%llx). $UsnJrnl "
+ "is corrupt.",
+ (long long)sle64_to_cpu(uh->lowest_valid_usn),
+ i_size_read(vol->usnjrnl_j_ino));
+ ntfs_unmap_page(page);
+ return false;
+ }
+ ntfs_unmap_page(page);
+ ntfs_debug("Done.");
+ return true;
+}
+
+/**
+ * load_and_init_attrdef - load the attribute definitions table for a volume
+ * @vol: ntfs super block describing device whose attrdef to load
+ *
+ * Return 'true' on success or 'false' on error.
+ */
+static bool load_and_init_attrdef(ntfs_volume *vol)
+{
+ loff_t i_size;
+ struct super_block *sb = vol->sb;
+ struct inode *ino;
+ struct page *page;
+ pgoff_t index, max_index;
+ unsigned int size;
+
+ ntfs_debug("Entering.");
+ /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
+ ino = ntfs_iget(sb, FILE_AttrDef);
+ if (IS_ERR(ino) || is_bad_inode(ino)) {
+ if (!IS_ERR(ino))
+ iput(ino);
+ goto failed;
+ }
+ NInoSetSparseDisabled(NTFS_I(ino));
+ /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
+ i_size = i_size_read(ino);
+ if (i_size <= 0 || i_size > 0x7fffffff)
+ goto iput_failed;
+ vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
+ if (!vol->attrdef)
+ goto iput_failed;
+ index = 0;
+ max_index = i_size >> PAGE_SHIFT;
+ size = PAGE_SIZE;
+ while (index < max_index) {
+ /* Read the attrdef table and copy it into the linear buffer. */
+read_partial_attrdef_page:
+ page = ntfs_map_page(ino->i_mapping, index);
+ if (IS_ERR(page))
+ goto free_iput_failed;
+ memcpy((u8*)vol->attrdef + (index++ << PAGE_SHIFT),
+ page_address(page), size);
+ ntfs_unmap_page(page);
+ };
+ if (size == PAGE_SIZE) {
+ size = i_size & ~PAGE_MASK;
+ if (size)
+ goto read_partial_attrdef_page;
+ }
+ vol->attrdef_size = i_size;
+ ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
+ iput(ino);
+ return true;
+free_iput_failed:
+ ntfs_free(vol->attrdef);
+ vol->attrdef = NULL;
+iput_failed:
+ iput(ino);
+failed:
+ ntfs_error(sb, "Failed to initialize attribute definition table.");
+ return false;
+}
+
+#endif /* NTFS_RW */
+
+/**
+ * load_and_init_upcase - load the upcase table for an ntfs volume
+ * @vol: ntfs super block describing device whose upcase to load
+ *
+ * Return 'true' on success or 'false' on error.
+ */
+static bool load_and_init_upcase(ntfs_volume *vol)
+{
+ loff_t i_size;
+ struct super_block *sb = vol->sb;
+ struct inode *ino;
+ struct page *page;
+ pgoff_t index, max_index;
+ unsigned int size;
+ int i, max;
+
+ ntfs_debug("Entering.");
+ /* Read upcase table and setup vol->upcase and vol->upcase_len. */
+ ino = ntfs_iget(sb, FILE_UpCase);
+ if (IS_ERR(ino) || is_bad_inode(ino)) {
+ if (!IS_ERR(ino))
+ iput(ino);
+ goto upcase_failed;
+ }
+ /*
+ * The upcase size must not be above 64k Unicode characters, must not
+ * be zero and must be a multiple of sizeof(ntfschar).
+ */
+ i_size = i_size_read(ino);
+ if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
+ i_size > 64ULL * 1024 * sizeof(ntfschar))
+ goto iput_upcase_failed;
+ vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
+ if (!vol->upcase)
+ goto iput_upcase_failed;
+ index = 0;
+ max_index = i_size >> PAGE_SHIFT;
+ size = PAGE_SIZE;
+ while (index < max_index) {
+ /* Read the upcase table and copy it into the linear buffer. */
+read_partial_upcase_page:
+ page = ntfs_map_page(ino->i_mapping, index);
+ if (IS_ERR(page))
+ goto iput_upcase_failed;
+ memcpy((char*)vol->upcase + (index++ << PAGE_SHIFT),
+ page_address(page), size);
+ ntfs_unmap_page(page);
+ };
+ if (size == PAGE_SIZE) {
+ size = i_size & ~PAGE_MASK;
+ if (size)
+ goto read_partial_upcase_page;
+ }
+ vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
+ ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
+ i_size, 64 * 1024 * sizeof(ntfschar));
+ iput(ino);
+ mutex_lock(&ntfs_lock);
+ if (!default_upcase) {
+ ntfs_debug("Using volume specified $UpCase since default is "
+ "not present.");
+ mutex_unlock(&ntfs_lock);
+ return true;
+ }
+ max = default_upcase_len;
+ if (max > vol->upcase_len)
+ max = vol->upcase_len;
+ for (i = 0; i < max; i++)
+ if (vol->upcase[i] != default_upcase[i])
+ break;
+ if (i == max) {
+ ntfs_free(vol->upcase);
+ vol->upcase = default_upcase;
+ vol->upcase_len = max;
+ ntfs_nr_upcase_users++;
+ mutex_unlock(&ntfs_lock);
+ ntfs_debug("Volume specified $UpCase matches default. Using "
+ "default.");
+ return true;
+ }
+ mutex_unlock(&ntfs_lock);
+ ntfs_debug("Using volume specified $UpCase since it does not match "
+ "the default.");
+ return true;
+iput_upcase_failed:
+ iput(ino);
+ ntfs_free(vol->upcase);
+ vol->upcase = NULL;
+upcase_failed:
+ mutex_lock(&ntfs_lock);
+ if (default_upcase) {
+ vol->upcase = default_upcase;
+ vol->upcase_len = default_upcase_len;
+ ntfs_nr_upcase_users++;
+ mutex_unlock(&ntfs_lock);
+ ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
+ "default.");
+ return true;
+ }
+ mutex_unlock(&ntfs_lock);
+ ntfs_error(sb, "Failed to initialize upcase table.");
+ return false;
+}
+
+/*
+ * The lcn and mft bitmap inodes are NTFS-internal inodes with
+ * their own special locking rules:
+ */
+static struct lock_class_key
+ lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
+ mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
+
+/**
+ * load_system_files - open the system files using normal functions
+ * @vol: ntfs super block describing device whose system files to load
+ *
+ * Open the system files with normal access functions and complete setting up
+ * the ntfs super block @vol.
+ *
+ * Return 'true' on success or 'false' on error.
+ */
+static bool load_system_files(ntfs_volume *vol)
+{
+ struct super_block *sb = vol->sb;
+ MFT_RECORD *m;
+ VOLUME_INFORMATION *vi;
+ ntfs_attr_search_ctx *ctx;
+#ifdef NTFS_RW
+ RESTART_PAGE_HEADER *rp;
+ int err;
+#endif /* NTFS_RW */
+
+ ntfs_debug("Entering.");
+#ifdef NTFS_RW
+ /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
+ if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
+ static const char *es1 = "Failed to load $MFTMirr";
+ static const char *es2 = "$MFTMirr does not match $MFT";
+ static const char *es3 = ". Run ntfsfix and/or chkdsk.";
+
+ /* If a read-write mount, convert it to a read-only mount. */
+ if (!sb_rdonly(sb)) {
+ if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
+ ON_ERRORS_CONTINUE))) {
+ ntfs_error(sb, "%s and neither on_errors="
+ "continue nor on_errors="
+ "remount-ro was specified%s",
+ !vol->mftmirr_ino ? es1 : es2,
+ es3);
+ goto iput_mirr_err_out;
+ }
+ sb->s_flags |= SB_RDONLY;
+ ntfs_error(sb, "%s. Mounting read-only%s",
+ !vol->mftmirr_ino ? es1 : es2, es3);
+ } else
+ ntfs_warning(sb, "%s. Will not be able to remount "
+ "read-write%s",
+ !vol->mftmirr_ino ? es1 : es2, es3);
+ /* This will prevent a read-write remount. */
+ NVolSetErrors(vol);
+ }
+#endif /* NTFS_RW */
+ /* Get mft bitmap attribute inode. */
+ vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
+ if (IS_ERR(vol->mftbmp_ino)) {
+ ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
+ goto iput_mirr_err_out;
+ }
+ lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
+ &mftbmp_runlist_lock_key);
+ lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
+ &mftbmp_mrec_lock_key);
+ /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
+ if (!load_and_init_upcase(vol))
+ goto iput_mftbmp_err_out;
+#ifdef NTFS_RW
+ /*
+ * Read attribute definitions table and setup @vol->attrdef and
+ * @vol->attrdef_size.
+ */
+ if (!load_and_init_attrdef(vol))
+ goto iput_upcase_err_out;
+#endif /* NTFS_RW */
+ /*
+ * Get the cluster allocation bitmap inode and verify the size, no
+ * need for any locking at this stage as we are already running
+ * exclusively as we are mount in progress task.
+ */
+ vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
+ if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
+ if (!IS_ERR(vol->lcnbmp_ino))
+ iput(vol->lcnbmp_ino);
+ goto bitmap_failed;
+ }
+ lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
+ &lcnbmp_runlist_lock_key);
+ lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
+ &lcnbmp_mrec_lock_key);
+
+ NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
+ if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
+ iput(vol->lcnbmp_ino);
+bitmap_failed:
+ ntfs_error(sb, "Failed to load $Bitmap.");
+ goto iput_attrdef_err_out;
+ }
+ /*
+ * Get the volume inode and setup our cache of the volume flags and
+ * version.
+ */
+ vol->vol_ino = ntfs_iget(sb, FILE_Volume);
+ if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
+ if (!IS_ERR(vol->vol_ino))
+ iput(vol->vol_ino);
+volume_failed:
+ ntfs_error(sb, "Failed to load $Volume.");
+ goto iput_lcnbmp_err_out;
+ }
+ m = map_mft_record(NTFS_I(vol->vol_ino));
+ if (IS_ERR(m)) {
+iput_volume_failed:
+ iput(vol->vol_ino);
+ goto volume_failed;
+ }
+ if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
+ ntfs_error(sb, "Failed to get attribute search context.");
+ goto get_ctx_vol_failed;
+ }
+ if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
+ ctx) || ctx->attr->non_resident || ctx->attr->flags) {
+err_put_vol:
+ ntfs_attr_put_search_ctx(ctx);
+get_ctx_vol_failed:
+ unmap_mft_record(NTFS_I(vol->vol_ino));
+ goto iput_volume_failed;
+ }
+ vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
+ le16_to_cpu(ctx->attr->data.resident.value_offset));
+ /* Some bounds checks. */
+ if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
+ le32_to_cpu(ctx->attr->data.resident.value_length) >
+ (u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
+ goto err_put_vol;
+ /* Copy the volume flags and version to the ntfs_volume structure. */
+ vol->vol_flags = vi->flags;
+ vol->major_ver = vi->major_ver;
+ vol->minor_ver = vi->minor_ver;
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(NTFS_I(vol->vol_ino));
+ pr_info("volume version %i.%i.\n", vol->major_ver,
+ vol->minor_ver);
+ if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
+ ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
+ "volume version %i.%i (need at least version "
+ "3.0).", vol->major_ver, vol->minor_ver);
+ NVolClearSparseEnabled(vol);
+ }
+#ifdef NTFS_RW
+ /* Make sure that no unsupported volume flags are set. */
+ if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
+ static const char *es1a = "Volume is dirty";
+ static const char *es1b = "Volume has been modified by chkdsk";
+ static const char *es1c = "Volume has unsupported flags set";
+ static const char *es2a = ". Run chkdsk and mount in Windows.";
+ static const char *es2b = ". Mount in Windows.";
+ const char *es1, *es2;
+
+ es2 = es2a;
+ if (vol->vol_flags & VOLUME_IS_DIRTY)
+ es1 = es1a;
+ else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
+ es1 = es1b;
+ es2 = es2b;
+ } else {
+ es1 = es1c;
+ ntfs_warning(sb, "Unsupported volume flags 0x%x "
+ "encountered.",
+ (unsigned)le16_to_cpu(vol->vol_flags));
+ }
+ /* If a read-write mount, convert it to a read-only mount. */
+ if (!sb_rdonly(sb)) {
+ if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
+ ON_ERRORS_CONTINUE))) {
+ ntfs_error(sb, "%s and neither on_errors="
+ "continue nor on_errors="
+ "remount-ro was specified%s",
+ es1, es2);
+ goto iput_vol_err_out;
+ }
+ sb->s_flags |= SB_RDONLY;
+ ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
+ } else
+ ntfs_warning(sb, "%s. Will not be able to remount "
+ "read-write%s", es1, es2);
+ /*
+ * Do not set NVolErrors() because ntfs_remount() re-checks the
+ * flags which we need to do in case any flags have changed.
+ */
+ }
+ /*
+ * Get the inode for the logfile, check it and determine if the volume
+ * was shutdown cleanly.
+ */
+ rp = NULL;
+ if (!load_and_check_logfile(vol, &rp) ||
+ !ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
+ static const char *es1a = "Failed to load $LogFile";
+ static const char *es1b = "$LogFile is not clean";
+ static const char *es2 = ". Mount in Windows.";
+ const char *es1;
+
+ es1 = !vol->logfile_ino ? es1a : es1b;
+ /* If a read-write mount, convert it to a read-only mount. */
+ if (!sb_rdonly(sb)) {
+ if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
+ ON_ERRORS_CONTINUE))) {
+ ntfs_error(sb, "%s and neither on_errors="
+ "continue nor on_errors="
+ "remount-ro was specified%s",
+ es1, es2);
+ if (vol->logfile_ino) {
+ BUG_ON(!rp);
+ ntfs_free(rp);
+ }
+ goto iput_logfile_err_out;
+ }
+ sb->s_flags |= SB_RDONLY;
+ ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
+ } else
+ ntfs_warning(sb, "%s. Will not be able to remount "
+ "read-write%s", es1, es2);
+ /* This will prevent a read-write remount. */
+ NVolSetErrors(vol);
+ }
+ ntfs_free(rp);
+#endif /* NTFS_RW */
+ /* Get the root directory inode so we can do path lookups. */
+ vol->root_ino = ntfs_iget(sb, FILE_root);
+ if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
+ if (!IS_ERR(vol->root_ino))
+ iput(vol->root_ino);
+ ntfs_error(sb, "Failed to load root directory.");
+ goto iput_logfile_err_out;
+ }
+#ifdef NTFS_RW
+ /*
+ * Check if Windows is suspended to disk on the target volume. If it
+ * is hibernated, we must not write *anything* to the disk so set
+ * NVolErrors() without setting the dirty volume flag and mount
+ * read-only. This will prevent read-write remounting and it will also
+ * prevent all writes.
+ */
+ err = check_windows_hibernation_status(vol);
+ if (unlikely(err)) {
+ static const char *es1a = "Failed to determine if Windows is "
+ "hibernated";
+ static const char *es1b = "Windows is hibernated";
+ static const char *es2 = ". Run chkdsk.";
+ const char *es1;
+
+ es1 = err < 0 ? es1a : es1b;
+ /* If a read-write mount, convert it to a read-only mount. */
+ if (!sb_rdonly(sb)) {
+ if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
+ ON_ERRORS_CONTINUE))) {
+ ntfs_error(sb, "%s and neither on_errors="
+ "continue nor on_errors="
+ "remount-ro was specified%s",
+ es1, es2);
+ goto iput_root_err_out;
+ }
+ sb->s_flags |= SB_RDONLY;
+ ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
+ } else
+ ntfs_warning(sb, "%s. Will not be able to remount "
+ "read-write%s", es1, es2);
+ /* This will prevent a read-write remount. */
+ NVolSetErrors(vol);
+ }
+ /* If (still) a read-write mount, mark the volume dirty. */
+ if (!sb_rdonly(sb) && ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
+ static const char *es1 = "Failed to set dirty bit in volume "
+ "information flags";
+ static const char *es2 = ". Run chkdsk.";
+
+ /* Convert to a read-only mount. */
+ if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
+ ON_ERRORS_CONTINUE))) {
+ ntfs_error(sb, "%s and neither on_errors=continue nor "
+ "on_errors=remount-ro was specified%s",
+ es1, es2);
+ goto iput_root_err_out;
+ }
+ ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
+ sb->s_flags |= SB_RDONLY;
+ /*
+ * Do not set NVolErrors() because ntfs_remount() might manage
+ * to set the dirty flag in which case all would be well.
+ */
+ }
+#if 0
+ // TODO: Enable this code once we start modifying anything that is
+ // different between NTFS 1.2 and 3.x...
+ /*
+ * If (still) a read-write mount, set the NT4 compatibility flag on
+ * newer NTFS version volumes.
+ */
+ if (!(sb->s_flags & SB_RDONLY) && (vol->major_ver > 1) &&
+ ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
+ static const char *es1 = "Failed to set NT4 compatibility flag";
+ static const char *es2 = ". Run chkdsk.";
+
+ /* Convert to a read-only mount. */
+ if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
+ ON_ERRORS_CONTINUE))) {
+ ntfs_error(sb, "%s and neither on_errors=continue nor "
+ "on_errors=remount-ro was specified%s",
+ es1, es2);
+ goto iput_root_err_out;
+ }
+ ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
+ sb->s_flags |= SB_RDONLY;
+ NVolSetErrors(vol);
+ }
+#endif
+ /* If (still) a read-write mount, empty the logfile. */
+ if (!sb_rdonly(sb) && !ntfs_empty_logfile(vol->logfile_ino)) {
+ static const char *es1 = "Failed to empty $LogFile";
+ static const char *es2 = ". Mount in Windows.";
+
+ /* Convert to a read-only mount. */
+ if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
+ ON_ERRORS_CONTINUE))) {
+ ntfs_error(sb, "%s and neither on_errors=continue nor "
+ "on_errors=remount-ro was specified%s",
+ es1, es2);
+ goto iput_root_err_out;
+ }
+ ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
+ sb->s_flags |= SB_RDONLY;
+ NVolSetErrors(vol);
+ }
+#endif /* NTFS_RW */
+ /* If on NTFS versions before 3.0, we are done. */
+ if (unlikely(vol->major_ver < 3))
+ return true;
+ /* NTFS 3.0+ specific initialization. */
+ /* Get the security descriptors inode. */
+ vol->secure_ino = ntfs_iget(sb, FILE_Secure);
+ if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
+ if (!IS_ERR(vol->secure_ino))
+ iput(vol->secure_ino);
+ ntfs_error(sb, "Failed to load $Secure.");
+ goto iput_root_err_out;
+ }
+ // TODO: Initialize security.
+ /* Get the extended system files' directory inode. */
+ vol->extend_ino = ntfs_iget(sb, FILE_Extend);
+ if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino) ||
+ !S_ISDIR(vol->extend_ino->i_mode)) {
+ if (!IS_ERR(vol->extend_ino))
+ iput(vol->extend_ino);
+ ntfs_error(sb, "Failed to load $Extend.");
+ goto iput_sec_err_out;
+ }
+#ifdef NTFS_RW
+ /* Find the quota file, load it if present, and set it up. */
+ if (!load_and_init_quota(vol)) {
+ static const char *es1 = "Failed to load $Quota";
+ static const char *es2 = ". Run chkdsk.";
+
+ /* If a read-write mount, convert it to a read-only mount. */
+ if (!sb_rdonly(sb)) {
+ if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
+ ON_ERRORS_CONTINUE))) {
+ ntfs_error(sb, "%s and neither on_errors="
+ "continue nor on_errors="
+ "remount-ro was specified%s",
+ es1, es2);
+ goto iput_quota_err_out;
+ }
+ sb->s_flags |= SB_RDONLY;
+ ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
+ } else
+ ntfs_warning(sb, "%s. Will not be able to remount "
+ "read-write%s", es1, es2);
+ /* This will prevent a read-write remount. */
+ NVolSetErrors(vol);
+ }
+ /* If (still) a read-write mount, mark the quotas out of date. */
+ if (!sb_rdonly(sb) && !ntfs_mark_quotas_out_of_date(vol)) {
+ static const char *es1 = "Failed to mark quotas out of date";
+ static const char *es2 = ". Run chkdsk.";
+
+ /* Convert to a read-only mount. */
+ if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
+ ON_ERRORS_CONTINUE))) {
+ ntfs_error(sb, "%s and neither on_errors=continue nor "
+ "on_errors=remount-ro was specified%s",
+ es1, es2);
+ goto iput_quota_err_out;
+ }
+ ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
+ sb->s_flags |= SB_RDONLY;
+ NVolSetErrors(vol);
+ }
+ /*
+ * Find the transaction log file ($UsnJrnl), load it if present, check
+ * it, and set it up.
+ */
+ if (!load_and_init_usnjrnl(vol)) {
+ static const char *es1 = "Failed to load $UsnJrnl";
+ static const char *es2 = ". Run chkdsk.";
+
+ /* If a read-write mount, convert it to a read-only mount. */
+ if (!sb_rdonly(sb)) {
+ if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
+ ON_ERRORS_CONTINUE))) {
+ ntfs_error(sb, "%s and neither on_errors="
+ "continue nor on_errors="
+ "remount-ro was specified%s",
+ es1, es2);
+ goto iput_usnjrnl_err_out;
+ }
+ sb->s_flags |= SB_RDONLY;
+ ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
+ } else
+ ntfs_warning(sb, "%s. Will not be able to remount "
+ "read-write%s", es1, es2);
+ /* This will prevent a read-write remount. */
+ NVolSetErrors(vol);
+ }
+ /* If (still) a read-write mount, stamp the transaction log. */
+ if (!sb_rdonly(sb) && !ntfs_stamp_usnjrnl(vol)) {
+ static const char *es1 = "Failed to stamp transaction log "
+ "($UsnJrnl)";
+ static const char *es2 = ". Run chkdsk.";
+
+ /* Convert to a read-only mount. */
+ if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
+ ON_ERRORS_CONTINUE))) {
+ ntfs_error(sb, "%s and neither on_errors=continue nor "
+ "on_errors=remount-ro was specified%s",
+ es1, es2);
+ goto iput_usnjrnl_err_out;
+ }
+ ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
+ sb->s_flags |= SB_RDONLY;
+ NVolSetErrors(vol);
+ }
+#endif /* NTFS_RW */
+ return true;
+#ifdef NTFS_RW
+iput_usnjrnl_err_out:
+ iput(vol->usnjrnl_j_ino);
+ iput(vol->usnjrnl_max_ino);
+ iput(vol->usnjrnl_ino);
+iput_quota_err_out:
+ iput(vol->quota_q_ino);
+ iput(vol->quota_ino);
+ iput(vol->extend_ino);
+#endif /* NTFS_RW */
+iput_sec_err_out:
+ iput(vol->secure_ino);
+iput_root_err_out:
+ iput(vol->root_ino);
+iput_logfile_err_out:
+#ifdef NTFS_RW
+ iput(vol->logfile_ino);
+iput_vol_err_out:
+#endif /* NTFS_RW */
+ iput(vol->vol_ino);
+iput_lcnbmp_err_out:
+ iput(vol->lcnbmp_ino);
+iput_attrdef_err_out:
+ vol->attrdef_size = 0;
+ if (vol->attrdef) {
+ ntfs_free(vol->attrdef);
+ vol->attrdef = NULL;
+ }
+#ifdef NTFS_RW
+iput_upcase_err_out:
+#endif /* NTFS_RW */
+ vol->upcase_len = 0;
+ mutex_lock(&ntfs_lock);
+ if (vol->upcase == default_upcase) {
+ ntfs_nr_upcase_users--;
+ vol->upcase = NULL;
+ }
+ mutex_unlock(&ntfs_lock);
+ if (vol->upcase) {
+ ntfs_free(vol->upcase);
+ vol->upcase = NULL;
+ }
+iput_mftbmp_err_out:
+ iput(vol->mftbmp_ino);
+iput_mirr_err_out:
+#ifdef NTFS_RW
+ iput(vol->mftmirr_ino);
+#endif /* NTFS_RW */
+ return false;
+}
+
+/**
+ * ntfs_put_super - called by the vfs to unmount a volume
+ * @sb: vfs superblock of volume to unmount
+ *
+ * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
+ * the volume is being unmounted (umount system call has been invoked) and it
+ * releases all inodes and memory belonging to the NTFS specific part of the
+ * super block.
+ */
+static void ntfs_put_super(struct super_block *sb)
+{
+ ntfs_volume *vol = NTFS_SB(sb);
+
+ ntfs_debug("Entering.");
+
+#ifdef NTFS_RW
+ /*
+ * Commit all inodes while they are still open in case some of them
+ * cause others to be dirtied.
+ */
+ ntfs_commit_inode(vol->vol_ino);
+
+ /* NTFS 3.0+ specific. */
+ if (vol->major_ver >= 3) {
+ if (vol->usnjrnl_j_ino)
+ ntfs_commit_inode(vol->usnjrnl_j_ino);
+ if (vol->usnjrnl_max_ino)
+ ntfs_commit_inode(vol->usnjrnl_max_ino);
+ if (vol->usnjrnl_ino)
+ ntfs_commit_inode(vol->usnjrnl_ino);
+ if (vol->quota_q_ino)
+ ntfs_commit_inode(vol->quota_q_ino);
+ if (vol->quota_ino)
+ ntfs_commit_inode(vol->quota_ino);
+ if (vol->extend_ino)
+ ntfs_commit_inode(vol->extend_ino);
+ if (vol->secure_ino)
+ ntfs_commit_inode(vol->secure_ino);
+ }
+
+ ntfs_commit_inode(vol->root_ino);
+
+ down_write(&vol->lcnbmp_lock);
+ ntfs_commit_inode(vol->lcnbmp_ino);
+ up_write(&vol->lcnbmp_lock);
+
+ down_write(&vol->mftbmp_lock);
+ ntfs_commit_inode(vol->mftbmp_ino);
+ up_write(&vol->mftbmp_lock);
+
+ if (vol->logfile_ino)
+ ntfs_commit_inode(vol->logfile_ino);
+
+ if (vol->mftmirr_ino)
+ ntfs_commit_inode(vol->mftmirr_ino);
+ ntfs_commit_inode(vol->mft_ino);
+
+ /*
+ * If a read-write mount and no volume errors have occurred, mark the
+ * volume clean. Also, re-commit all affected inodes.
+ */
+ if (!sb_rdonly(sb)) {
+ if (!NVolErrors(vol)) {
+ if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
+ ntfs_warning(sb, "Failed to clear dirty bit "
+ "in volume information "
+ "flags. Run chkdsk.");
+ ntfs_commit_inode(vol->vol_ino);
+ ntfs_commit_inode(vol->root_ino);
+ if (vol->mftmirr_ino)
+ ntfs_commit_inode(vol->mftmirr_ino);
+ ntfs_commit_inode(vol->mft_ino);
+ } else {
+ ntfs_warning(sb, "Volume has errors. Leaving volume "
+ "marked dirty. Run chkdsk.");
+ }
+ }
+#endif /* NTFS_RW */
+
+ iput(vol->vol_ino);
+ vol->vol_ino = NULL;
+
+ /* NTFS 3.0+ specific clean up. */
+ if (vol->major_ver >= 3) {
+#ifdef NTFS_RW
+ if (vol->usnjrnl_j_ino) {
+ iput(vol->usnjrnl_j_ino);
+ vol->usnjrnl_j_ino = NULL;
+ }
+ if (vol->usnjrnl_max_ino) {
+ iput(vol->usnjrnl_max_ino);
+ vol->usnjrnl_max_ino = NULL;
+ }
+ if (vol->usnjrnl_ino) {
+ iput(vol->usnjrnl_ino);
+ vol->usnjrnl_ino = NULL;
+ }
+ if (vol->quota_q_ino) {
+ iput(vol->quota_q_ino);
+ vol->quota_q_ino = NULL;
+ }
+ if (vol->quota_ino) {
+ iput(vol->quota_ino);
+ vol->quota_ino = NULL;
+ }
+#endif /* NTFS_RW */
+ if (vol->extend_ino) {
+ iput(vol->extend_ino);
+ vol->extend_ino = NULL;
+ }
+ if (vol->secure_ino) {
+ iput(vol->secure_ino);
+ vol->secure_ino = NULL;
+ }
+ }
+
+ iput(vol->root_ino);
+ vol->root_ino = NULL;
+
+ down_write(&vol->lcnbmp_lock);
+ iput(vol->lcnbmp_ino);
+ vol->lcnbmp_ino = NULL;
+ up_write(&vol->lcnbmp_lock);
+
+ down_write(&vol->mftbmp_lock);
+ iput(vol->mftbmp_ino);
+ vol->mftbmp_ino = NULL;
+ up_write(&vol->mftbmp_lock);
+
+#ifdef NTFS_RW
+ if (vol->logfile_ino) {
+ iput(vol->logfile_ino);
+ vol->logfile_ino = NULL;
+ }
+ if (vol->mftmirr_ino) {
+ /* Re-commit the mft mirror and mft just in case. */
+ ntfs_commit_inode(vol->mftmirr_ino);
+ ntfs_commit_inode(vol->mft_ino);
+ iput(vol->mftmirr_ino);
+ vol->mftmirr_ino = NULL;
+ }
+ /*
+ * We should have no dirty inodes left, due to
+ * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
+ * the underlying mft records are written out and cleaned.
+ */
+ ntfs_commit_inode(vol->mft_ino);
+ write_inode_now(vol->mft_ino, 1);
+#endif /* NTFS_RW */
+
+ iput(vol->mft_ino);
+ vol->mft_ino = NULL;
+
+ /* Throw away the table of attribute definitions. */
+ vol->attrdef_size = 0;
+ if (vol->attrdef) {
+ ntfs_free(vol->attrdef);
+ vol->attrdef = NULL;
+ }
+ vol->upcase_len = 0;
+ /*
+ * Destroy the global default upcase table if necessary. Also decrease
+ * the number of upcase users if we are a user.
+ */
+ mutex_lock(&ntfs_lock);
+ if (vol->upcase == default_upcase) {
+ ntfs_nr_upcase_users--;
+ vol->upcase = NULL;
+ }
+ if (!ntfs_nr_upcase_users && default_upcase) {
+ ntfs_free(default_upcase);
+ default_upcase = NULL;
+ }
+ if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
+ free_compression_buffers();
+ mutex_unlock(&ntfs_lock);
+ if (vol->upcase) {
+ ntfs_free(vol->upcase);
+ vol->upcase = NULL;
+ }
+
+ unload_nls(vol->nls_map);
+
+ sb->s_fs_info = NULL;
+ kfree(vol);
+}
+
+/**
+ * get_nr_free_clusters - return the number of free clusters on a volume
+ * @vol: ntfs volume for which to obtain free cluster count
+ *
+ * Calculate the number of free clusters on the mounted NTFS volume @vol. We
+ * actually calculate the number of clusters in use instead because this
+ * allows us to not care about partial pages as these will be just zero filled
+ * and hence not be counted as allocated clusters.
+ *
+ * The only particularity is that clusters beyond the end of the logical ntfs
+ * volume will be marked as allocated to prevent errors which means we have to
+ * discount those at the end. This is important as the cluster bitmap always
+ * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
+ * the logical volume and marked in use when they are not as they do not exist.
+ *
+ * If any pages cannot be read we assume all clusters in the erroring pages are
+ * in use. This means we return an underestimate on errors which is better than
+ * an overestimate.
+ */
+static s64 get_nr_free_clusters(ntfs_volume *vol)
+{
+ s64 nr_free = vol->nr_clusters;
+ struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
+ struct page *page;
+ pgoff_t index, max_index;
+
+ ntfs_debug("Entering.");
+ /* Serialize accesses to the cluster bitmap. */
+ down_read(&vol->lcnbmp_lock);
+ /*
+ * Convert the number of bits into bytes rounded up, then convert into
+ * multiples of PAGE_SIZE, rounding up so that if we have one
+ * full and one partial page max_index = 2.
+ */
+ max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_SIZE - 1) >>
+ PAGE_SHIFT;
+ /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
+ ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
+ max_index, PAGE_SIZE / 4);
+ for (index = 0; index < max_index; index++) {
+ unsigned long *kaddr;
+
+ /*
+ * Read the page from page cache, getting it from backing store
+ * if necessary, and increment the use count.
+ */
+ page = read_mapping_page(mapping, index, NULL);
+ /* Ignore pages which errored synchronously. */
+ if (IS_ERR(page)) {
+ ntfs_debug("read_mapping_page() error. Skipping "
+ "page (index 0x%lx).", index);
+ nr_free -= PAGE_SIZE * 8;
+ continue;
+ }
+ kaddr = kmap_atomic(page);
+ /*
+ * Subtract the number of set bits. If this
+ * is the last page and it is partial we don't really care as
+ * it just means we do a little extra work but it won't affect
+ * the result as all out of range bytes are set to zero by
+ * ntfs_readpage().
+ */
+ nr_free -= bitmap_weight(kaddr,
+ PAGE_SIZE * BITS_PER_BYTE);
+ kunmap_atomic(kaddr);
+ put_page(page);
+ }
+ ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
+ /*
+ * Fixup for eventual bits outside logical ntfs volume (see function
+ * description above).
+ */
+ if (vol->nr_clusters & 63)
+ nr_free += 64 - (vol->nr_clusters & 63);
+ up_read(&vol->lcnbmp_lock);
+ /* If errors occurred we may well have gone below zero, fix this. */
+ if (nr_free < 0)
+ nr_free = 0;
+ ntfs_debug("Exiting.");
+ return nr_free;
+}
+
+/**
+ * __get_nr_free_mft_records - return the number of free inodes on a volume
+ * @vol: ntfs volume for which to obtain free inode count
+ * @nr_free: number of mft records in filesystem
+ * @max_index: maximum number of pages containing set bits
+ *
+ * Calculate the number of free mft records (inodes) on the mounted NTFS
+ * volume @vol. We actually calculate the number of mft records in use instead
+ * because this allows us to not care about partial pages as these will be just
+ * zero filled and hence not be counted as allocated mft record.
+ *
+ * If any pages cannot be read we assume all mft records in the erroring pages
+ * are in use. This means we return an underestimate on errors which is better
+ * than an overestimate.
+ *
+ * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
+ */
+static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
+ s64 nr_free, const pgoff_t max_index)
+{
+ struct address_space *mapping = vol->mftbmp_ino->i_mapping;
+ struct page *page;
+ pgoff_t index;
+
+ ntfs_debug("Entering.");
+ /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
+ ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
+ "0x%lx.", max_index, PAGE_SIZE / 4);
+ for (index = 0; index < max_index; index++) {
+ unsigned long *kaddr;
+
+ /*
+ * Read the page from page cache, getting it from backing store
+ * if necessary, and increment the use count.
+ */
+ page = read_mapping_page(mapping, index, NULL);
+ /* Ignore pages which errored synchronously. */
+ if (IS_ERR(page)) {
+ ntfs_debug("read_mapping_page() error. Skipping "
+ "page (index 0x%lx).", index);
+ nr_free -= PAGE_SIZE * 8;
+ continue;
+ }
+ kaddr = kmap_atomic(page);
+ /*
+ * Subtract the number of set bits. If this
+ * is the last page and it is partial we don't really care as
+ * it just means we do a little extra work but it won't affect
+ * the result as all out of range bytes are set to zero by
+ * ntfs_readpage().
+ */
+ nr_free -= bitmap_weight(kaddr,
+ PAGE_SIZE * BITS_PER_BYTE);
+ kunmap_atomic(kaddr);
+ put_page(page);
+ }
+ ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
+ index - 1);
+ /* If errors occurred we may well have gone below zero, fix this. */
+ if (nr_free < 0)
+ nr_free = 0;
+ ntfs_debug("Exiting.");
+ return nr_free;
+}
+
+/**
+ * ntfs_statfs - return information about mounted NTFS volume
+ * @dentry: dentry from mounted volume
+ * @sfs: statfs structure in which to return the information
+ *
+ * Return information about the mounted NTFS volume @dentry in the statfs structure
+ * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
+ * called). We interpret the values to be correct of the moment in time at
+ * which we are called. Most values are variable otherwise and this isn't just
+ * the free values but the totals as well. For example we can increase the
+ * total number of file nodes if we run out and we can keep doing this until
+ * there is no more space on the volume left at all.
+ *
+ * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
+ * ustat system calls.
+ *
+ * Return 0 on success or -errno on error.
+ */
+static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
+{
+ struct super_block *sb = dentry->d_sb;
+ s64 size;
+ ntfs_volume *vol = NTFS_SB(sb);
+ ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
+ pgoff_t max_index;
+ unsigned long flags;
+
+ ntfs_debug("Entering.");
+ /* Type of filesystem. */
+ sfs->f_type = NTFS_SB_MAGIC;
+ /* Optimal transfer block size. */
+ sfs->f_bsize = PAGE_SIZE;
+ /*
+ * Total data blocks in filesystem in units of f_bsize and since
+ * inodes are also stored in data blocs ($MFT is a file) this is just
+ * the total clusters.
+ */
+ sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
+ PAGE_SHIFT;
+ /* Free data blocks in filesystem in units of f_bsize. */
+ size = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
+ PAGE_SHIFT;
+ if (size < 0LL)
+ size = 0LL;
+ /* Free blocks avail to non-superuser, same as above on NTFS. */
+ sfs->f_bavail = sfs->f_bfree = size;
+ /* Serialize accesses to the inode bitmap. */
+ down_read(&vol->mftbmp_lock);
+ read_lock_irqsave(&mft_ni->size_lock, flags);
+ size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
+ /*
+ * Convert the maximum number of set bits into bytes rounded up, then
+ * convert into multiples of PAGE_SIZE, rounding up so that if we
+ * have one full and one partial page max_index = 2.
+ */
+ max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
+ + 7) >> 3) + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ read_unlock_irqrestore(&mft_ni->size_lock, flags);
+ /* Number of inodes in filesystem (at this point in time). */
+ sfs->f_files = size;
+ /* Free inodes in fs (based on current total count). */
+ sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
+ up_read(&vol->mftbmp_lock);
+ /*
+ * File system id. This is extremely *nix flavour dependent and even
+ * within Linux itself all fs do their own thing. I interpret this to
+ * mean a unique id associated with the mounted fs and not the id
+ * associated with the filesystem driver, the latter is already given
+ * by the filesystem type in sfs->f_type. Thus we use the 64-bit
+ * volume serial number splitting it into two 32-bit parts. We enter
+ * the least significant 32-bits in f_fsid[0] and the most significant
+ * 32-bits in f_fsid[1].
+ */
+ sfs->f_fsid = u64_to_fsid(vol->serial_no);
+ /* Maximum length of filenames. */
+ sfs->f_namelen = NTFS_MAX_NAME_LEN;
+ return 0;
+}
+
+#ifdef NTFS_RW
+static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
+{
+ return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
+}
+#endif
+
+/**
+ * The complete super operations.
+ */
+static const struct super_operations ntfs_sops = {
+ .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */
+ .free_inode = ntfs_free_big_inode, /* VFS: Deallocate inode. */
+#ifdef NTFS_RW
+ .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to
+ disk. */
+#endif /* NTFS_RW */
+ .put_super = ntfs_put_super, /* Syscall: umount. */
+ .statfs = ntfs_statfs, /* Syscall: statfs */
+ .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */
+ .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is
+ removed from memory. */
+ .show_options = ntfs_show_options, /* Show mount options in
+ proc. */
+};
+
+/**
+ * ntfs_fill_super - mount an ntfs filesystem
+ * @sb: super block of ntfs filesystem to mount
+ * @opt: string containing the mount options
+ * @silent: silence error output
+ *
+ * ntfs_fill_super() is called by the VFS to mount the device described by @sb
+ * with the mount otions in @data with the NTFS filesystem.
+ *
+ * If @silent is true, remain silent even if errors are detected. This is used
+ * during bootup, when the kernel tries to mount the root filesystem with all
+ * registered filesystems one after the other until one succeeds. This implies
+ * that all filesystems except the correct one will quite correctly and
+ * expectedly return an error, but nobody wants to see error messages when in
+ * fact this is what is supposed to happen.
+ *
+ * NOTE: @sb->s_flags contains the mount options flags.
+ */
+static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
+{
+ ntfs_volume *vol;
+ struct buffer_head *bh;
+ struct inode *tmp_ino;
+ int blocksize, result;
+
+ /*
+ * We do a pretty difficult piece of bootstrap by reading the
+ * MFT (and other metadata) from disk into memory. We'll only
+ * release this metadata during umount, so the locking patterns
+ * observed during bootstrap do not count. So turn off the
+ * observation of locking patterns (strictly for this context
+ * only) while mounting NTFS. [The validator is still active
+ * otherwise, even for this context: it will for example record
+ * lock class registrations.]
+ */
+ lockdep_off();
+ ntfs_debug("Entering.");
+#ifndef NTFS_RW
+ sb->s_flags |= SB_RDONLY;
+#endif /* ! NTFS_RW */
+ /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
+ sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
+ vol = NTFS_SB(sb);
+ if (!vol) {
+ if (!silent)
+ ntfs_error(sb, "Allocation of NTFS volume structure "
+ "failed. Aborting mount...");
+ lockdep_on();
+ return -ENOMEM;
+ }
+ /* Initialize ntfs_volume structure. */
+ *vol = (ntfs_volume) {
+ .sb = sb,
+ /*
+ * Default is group and other don't have any access to files or
+ * directories while owner has full access. Further, files by
+ * default are not executable but directories are of course
+ * browseable.
+ */
+ .fmask = 0177,
+ .dmask = 0077,
+ };
+ init_rwsem(&vol->mftbmp_lock);
+ init_rwsem(&vol->lcnbmp_lock);
+
+ /* By default, enable sparse support. */
+ NVolSetSparseEnabled(vol);
+
+ /* Important to get the mount options dealt with now. */
+ if (!parse_options(vol, (char*)opt))
+ goto err_out_now;
+
+ /* We support sector sizes up to the PAGE_SIZE. */
+ if (bdev_logical_block_size(sb->s_bdev) > PAGE_SIZE) {
+ if (!silent)
+ ntfs_error(sb, "Device has unsupported sector size "
+ "(%i). The maximum supported sector "
+ "size on this architecture is %lu "
+ "bytes.",
+ bdev_logical_block_size(sb->s_bdev),
+ PAGE_SIZE);
+ goto err_out_now;
+ }
+ /*
+ * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
+ * sector size, whichever is bigger.
+ */
+ blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
+ if (blocksize < NTFS_BLOCK_SIZE) {
+ if (!silent)
+ ntfs_error(sb, "Unable to set device block size.");
+ goto err_out_now;
+ }
+ BUG_ON(blocksize != sb->s_blocksize);
+ ntfs_debug("Set device block size to %i bytes (block size bits %i).",
+ blocksize, sb->s_blocksize_bits);
+ /* Determine the size of the device in units of block_size bytes. */
+ if (!i_size_read(sb->s_bdev->bd_inode)) {
+ if (!silent)
+ ntfs_error(sb, "Unable to determine device size.");
+ goto err_out_now;
+ }
+ vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
+ sb->s_blocksize_bits;
+ /* Read the boot sector and return unlocked buffer head to it. */
+ if (!(bh = read_ntfs_boot_sector(sb, silent))) {
+ if (!silent)
+ ntfs_error(sb, "Not an NTFS volume.");
+ goto err_out_now;
+ }
+ /*
+ * Extract the data from the boot sector and setup the ntfs volume
+ * using it.
+ */
+ result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
+ brelse(bh);
+ if (!result) {
+ if (!silent)
+ ntfs_error(sb, "Unsupported NTFS filesystem.");
+ goto err_out_now;
+ }
+ /*
+ * If the boot sector indicates a sector size bigger than the current
+ * device block size, switch the device block size to the sector size.
+ * TODO: It may be possible to support this case even when the set
+ * below fails, we would just be breaking up the i/o for each sector
+ * into multiple blocks for i/o purposes but otherwise it should just
+ * work. However it is safer to leave disabled until someone hits this
+ * error message and then we can get them to try it without the setting
+ * so we know for sure that it works.
+ */
+ if (vol->sector_size > blocksize) {
+ blocksize = sb_set_blocksize(sb, vol->sector_size);
+ if (blocksize != vol->sector_size) {
+ if (!silent)
+ ntfs_error(sb, "Unable to set device block "
+ "size to sector size (%i).",
+ vol->sector_size);
+ goto err_out_now;
+ }
+ BUG_ON(blocksize != sb->s_blocksize);
+ vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
+ sb->s_blocksize_bits;
+ ntfs_debug("Changed device block size to %i bytes (block size "
+ "bits %i) to match volume sector size.",
+ blocksize, sb->s_blocksize_bits);
+ }
+ /* Initialize the cluster and mft allocators. */
+ ntfs_setup_allocators(vol);
+ /* Setup remaining fields in the super block. */
+ sb->s_magic = NTFS_SB_MAGIC;
+ /*
+ * Ntfs allows 63 bits for the file size, i.e. correct would be:
+ * sb->s_maxbytes = ~0ULL >> 1;
+ * But the kernel uses a long as the page cache page index which on
+ * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
+ * defined to the maximum the page cache page index can cope with
+ * without overflowing the index or to 2^63 - 1, whichever is smaller.
+ */
+ sb->s_maxbytes = MAX_LFS_FILESIZE;
+ /* Ntfs measures time in 100ns intervals. */
+ sb->s_time_gran = 100;
+ /*
+ * Now load the metadata required for the page cache and our address
+ * space operations to function. We do this by setting up a specialised
+ * read_inode method and then just calling the normal iget() to obtain
+ * the inode for $MFT which is sufficient to allow our normal inode
+ * operations and associated address space operations to function.
+ */
+ sb->s_op = &ntfs_sops;
+ tmp_ino = new_inode(sb);
+ if (!tmp_ino) {
+ if (!silent)
+ ntfs_error(sb, "Failed to load essential metadata.");
+ goto err_out_now;
+ }
+ tmp_ino->i_ino = FILE_MFT;
+ insert_inode_hash(tmp_ino);
+ if (ntfs_read_inode_mount(tmp_ino) < 0) {
+ if (!silent)
+ ntfs_error(sb, "Failed to load essential metadata.");
+ goto iput_tmp_ino_err_out_now;
+ }
+ mutex_lock(&ntfs_lock);
+ /*
+ * The current mount is a compression user if the cluster size is
+ * less than or equal 4kiB.
+ */
+ if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
+ result = allocate_compression_buffers();
+ if (result) {
+ ntfs_error(NULL, "Failed to allocate buffers "
+ "for compression engine.");
+ ntfs_nr_compression_users--;
+ mutex_unlock(&ntfs_lock);
+ goto iput_tmp_ino_err_out_now;
+ }
+ }
+ /*
+ * Generate the global default upcase table if necessary. Also
+ * temporarily increment the number of upcase users to avoid race
+ * conditions with concurrent (u)mounts.
+ */
+ if (!default_upcase)
+ default_upcase = generate_default_upcase();
+ ntfs_nr_upcase_users++;
+ mutex_unlock(&ntfs_lock);
+ /*
+ * From now on, ignore @silent parameter. If we fail below this line,
+ * it will be due to a corrupt fs or a system error, so we report it.
+ */
+ /*
+ * Open the system files with normal access functions and complete
+ * setting up the ntfs super block.
+ */
+ if (!load_system_files(vol)) {
+ ntfs_error(sb, "Failed to load system files.");
+ goto unl_upcase_iput_tmp_ino_err_out_now;
+ }
+
+ /* We grab a reference, simulating an ntfs_iget(). */
+ ihold(vol->root_ino);
+ if ((sb->s_root = d_make_root(vol->root_ino))) {
+ ntfs_debug("Exiting, status successful.");
+ /* Release the default upcase if it has no users. */
+ mutex_lock(&ntfs_lock);
+ if (!--ntfs_nr_upcase_users && default_upcase) {
+ ntfs_free(default_upcase);
+ default_upcase = NULL;
+ }
+ mutex_unlock(&ntfs_lock);
+ sb->s_export_op = &ntfs_export_ops;
+ lockdep_on();
+ return 0;
+ }
+ ntfs_error(sb, "Failed to allocate root directory.");
+ /* Clean up after the successful load_system_files() call from above. */
+ // TODO: Use ntfs_put_super() instead of repeating all this code...
+ // FIXME: Should mark the volume clean as the error is most likely
+ // -ENOMEM.
+ iput(vol->vol_ino);
+ vol->vol_ino = NULL;
+ /* NTFS 3.0+ specific clean up. */
+ if (vol->major_ver >= 3) {
+#ifdef NTFS_RW
+ if (vol->usnjrnl_j_ino) {
+ iput(vol->usnjrnl_j_ino);
+ vol->usnjrnl_j_ino = NULL;
+ }
+ if (vol->usnjrnl_max_ino) {
+ iput(vol->usnjrnl_max_ino);
+ vol->usnjrnl_max_ino = NULL;
+ }
+ if (vol->usnjrnl_ino) {
+ iput(vol->usnjrnl_ino);
+ vol->usnjrnl_ino = NULL;
+ }
+ if (vol->quota_q_ino) {
+ iput(vol->quota_q_ino);
+ vol->quota_q_ino = NULL;
+ }
+ if (vol->quota_ino) {
+ iput(vol->quota_ino);
+ vol->quota_ino = NULL;
+ }
+#endif /* NTFS_RW */
+ if (vol->extend_ino) {
+ iput(vol->extend_ino);
+ vol->extend_ino = NULL;
+ }
+ if (vol->secure_ino) {
+ iput(vol->secure_ino);
+ vol->secure_ino = NULL;
+ }
+ }
+ iput(vol->root_ino);
+ vol->root_ino = NULL;
+ iput(vol->lcnbmp_ino);
+ vol->lcnbmp_ino = NULL;
+ iput(vol->mftbmp_ino);
+ vol->mftbmp_ino = NULL;
+#ifdef NTFS_RW
+ if (vol->logfile_ino) {
+ iput(vol->logfile_ino);
+ vol->logfile_ino = NULL;
+ }
+ if (vol->mftmirr_ino) {
+ iput(vol->mftmirr_ino);
+ vol->mftmirr_ino = NULL;
+ }
+#endif /* NTFS_RW */
+ /* Throw away the table of attribute definitions. */
+ vol->attrdef_size = 0;
+ if (vol->attrdef) {
+ ntfs_free(vol->attrdef);
+ vol->attrdef = NULL;
+ }
+ vol->upcase_len = 0;
+ mutex_lock(&ntfs_lock);
+ if (vol->upcase == default_upcase) {
+ ntfs_nr_upcase_users--;
+ vol->upcase = NULL;
+ }
+ mutex_unlock(&ntfs_lock);
+ if (vol->upcase) {
+ ntfs_free(vol->upcase);
+ vol->upcase = NULL;
+ }
+ if (vol->nls_map) {
+ unload_nls(vol->nls_map);
+ vol->nls_map = NULL;
+ }
+ /* Error exit code path. */
+unl_upcase_iput_tmp_ino_err_out_now:
+ /*
+ * Decrease the number of upcase users and destroy the global default
+ * upcase table if necessary.
+ */
+ mutex_lock(&ntfs_lock);
+ if (!--ntfs_nr_upcase_users && default_upcase) {
+ ntfs_free(default_upcase);
+ default_upcase = NULL;
+ }
+ if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
+ free_compression_buffers();
+ mutex_unlock(&ntfs_lock);
+iput_tmp_ino_err_out_now:
+ iput(tmp_ino);
+ if (vol->mft_ino && vol->mft_ino != tmp_ino)
+ iput(vol->mft_ino);
+ vol->mft_ino = NULL;
+ /* Errors at this stage are irrelevant. */
+err_out_now:
+ sb->s_fs_info = NULL;
+ kfree(vol);
+ ntfs_debug("Failed, returning -EINVAL.");
+ lockdep_on();
+ return -EINVAL;
+}
+
+/*
+ * This is a slab cache to optimize allocations and deallocations of Unicode
+ * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
+ * (255) Unicode characters + a terminating NULL Unicode character.
+ */
+struct kmem_cache *ntfs_name_cache;
+
+/* Slab caches for efficient allocation/deallocation of inodes. */
+struct kmem_cache *ntfs_inode_cache;
+struct kmem_cache *ntfs_big_inode_cache;
+
+/* Init once constructor for the inode slab cache. */
+static void ntfs_big_inode_init_once(void *foo)
+{
+ ntfs_inode *ni = (ntfs_inode *)foo;
+
+ inode_init_once(VFS_I(ni));
+}
+
+/*
+ * Slab caches to optimize allocations and deallocations of attribute search
+ * contexts and index contexts, respectively.
+ */
+struct kmem_cache *ntfs_attr_ctx_cache;
+struct kmem_cache *ntfs_index_ctx_cache;
+
+/* Driver wide mutex. */
+DEFINE_MUTEX(ntfs_lock);
+
+static struct dentry *ntfs_mount(struct file_system_type *fs_type,
+ int flags, const char *dev_name, void *data)
+{
+ return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
+}
+
+static struct file_system_type ntfs_fs_type = {
+ .owner = THIS_MODULE,
+ .name = "ntfs",
+ .mount = ntfs_mount,
+ .kill_sb = kill_block_super,
+ .fs_flags = FS_REQUIRES_DEV,
+};
+MODULE_ALIAS_FS("ntfs");
+
+/* Stable names for the slab caches. */
+static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
+static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
+static const char ntfs_name_cache_name[] = "ntfs_name_cache";
+static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
+static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
+
+static int __init init_ntfs_fs(void)
+{
+ int err = 0;
+
+ /* This may be ugly but it results in pretty output so who cares. (-8 */
+ pr_info("driver " NTFS_VERSION " [Flags: R/"
+#ifdef NTFS_RW
+ "W"
+#else
+ "O"
+#endif
+#ifdef DEBUG
+ " DEBUG"
+#endif
+#ifdef MODULE
+ " MODULE"
+#endif
+ "].\n");
+
+ ntfs_debug("Debug messages are enabled.");
+
+ ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
+ sizeof(ntfs_index_context), 0 /* offset */,
+ SLAB_HWCACHE_ALIGN, NULL /* ctor */);
+ if (!ntfs_index_ctx_cache) {
+ pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name);
+ goto ictx_err_out;
+ }
+ ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
+ sizeof(ntfs_attr_search_ctx), 0 /* offset */,
+ SLAB_HWCACHE_ALIGN, NULL /* ctor */);
+ if (!ntfs_attr_ctx_cache) {
+ pr_crit("NTFS: Failed to create %s!\n",
+ ntfs_attr_ctx_cache_name);
+ goto actx_err_out;
+ }
+
+ ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
+ (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
+ SLAB_HWCACHE_ALIGN, NULL);
+ if (!ntfs_name_cache) {
+ pr_crit("Failed to create %s!\n", ntfs_name_cache_name);
+ goto name_err_out;
+ }
+
+ ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
+ sizeof(ntfs_inode), 0,
+ SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
+ if (!ntfs_inode_cache) {
+ pr_crit("Failed to create %s!\n", ntfs_inode_cache_name);
+ goto inode_err_out;
+ }
+
+ ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
+ sizeof(big_ntfs_inode), 0,
+ SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
+ SLAB_ACCOUNT, ntfs_big_inode_init_once);
+ if (!ntfs_big_inode_cache) {
+ pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name);
+ goto big_inode_err_out;
+ }
+
+ /* Register the ntfs sysctls. */
+ err = ntfs_sysctl(1);
+ if (err) {
+ pr_crit("Failed to register NTFS sysctls!\n");
+ goto sysctl_err_out;
+ }
+
+ err = register_filesystem(&ntfs_fs_type);
+ if (!err) {
+ ntfs_debug("NTFS driver registered successfully.");
+ return 0; /* Success! */
+ }
+ pr_crit("Failed to register NTFS filesystem driver!\n");
+
+ /* Unregister the ntfs sysctls. */
+ ntfs_sysctl(0);
+sysctl_err_out:
+ kmem_cache_destroy(ntfs_big_inode_cache);
+big_inode_err_out:
+ kmem_cache_destroy(ntfs_inode_cache);
+inode_err_out:
+ kmem_cache_destroy(ntfs_name_cache);
+name_err_out:
+ kmem_cache_destroy(ntfs_attr_ctx_cache);
+actx_err_out:
+ kmem_cache_destroy(ntfs_index_ctx_cache);
+ictx_err_out:
+ if (!err) {
+ pr_crit("Aborting NTFS filesystem driver registration...\n");
+ err = -ENOMEM;
+ }
+ return err;
+}
+
+static void __exit exit_ntfs_fs(void)
+{
+ ntfs_debug("Unregistering NTFS driver.");
+
+ unregister_filesystem(&ntfs_fs_type);
+
+ /*
+ * Make sure all delayed rcu free inodes are flushed before we
+ * destroy cache.
+ */
+ rcu_barrier();
+ kmem_cache_destroy(ntfs_big_inode_cache);
+ kmem_cache_destroy(ntfs_inode_cache);
+ kmem_cache_destroy(ntfs_name_cache);
+ kmem_cache_destroy(ntfs_attr_ctx_cache);
+ kmem_cache_destroy(ntfs_index_ctx_cache);
+ /* Unregister the ntfs sysctls. */
+ ntfs_sysctl(0);
+}
+
+MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
+MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.");
+MODULE_VERSION(NTFS_VERSION);
+MODULE_LICENSE("GPL");
+#ifdef DEBUG
+module_param(debug_msgs, bint, 0);
+MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
+#endif
+
+module_init(init_ntfs_fs)
+module_exit(exit_ntfs_fs)