summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/sfc/falcon/net_driver.h
blob: a529ff395eadd79ad11ed853c57743bd60cc090a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
/* SPDX-License-Identifier: GPL-2.0-only */
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2005-2013 Solarflare Communications Inc.
 */

/* Common definitions for all Efx net driver code */

#ifndef EF4_NET_DRIVER_H
#define EF4_NET_DRIVER_H

#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/timer.h>
#include <linux/mdio.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/highmem.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/vmalloc.h>
#include <linux/i2c.h>
#include <linux/mtd/mtd.h>
#include <net/busy_poll.h>

#include "enum.h"
#include "bitfield.h"
#include "filter.h"

/**************************************************************************
 *
 * Build definitions
 *
 **************************************************************************/

#define EF4_DRIVER_VERSION	"4.1"

#ifdef DEBUG
#define EF4_BUG_ON_PARANOID(x) BUG_ON(x)
#define EF4_WARN_ON_PARANOID(x) WARN_ON(x)
#else
#define EF4_BUG_ON_PARANOID(x) do {} while (0)
#define EF4_WARN_ON_PARANOID(x) do {} while (0)
#endif

/**************************************************************************
 *
 * Efx data structures
 *
 **************************************************************************/

#define EF4_MAX_CHANNELS 32U
#define EF4_MAX_RX_QUEUES EF4_MAX_CHANNELS
#define EF4_EXTRA_CHANNEL_IOV	0
#define EF4_EXTRA_CHANNEL_PTP	1
#define EF4_MAX_EXTRA_CHANNELS	2U

/* Checksum generation is a per-queue option in hardware, so each
 * queue visible to the networking core is backed by two hardware TX
 * queues. */
#define EF4_MAX_TX_TC		2
#define EF4_MAX_CORE_TX_QUEUES	(EF4_MAX_TX_TC * EF4_MAX_CHANNELS)
#define EF4_TXQ_TYPE_OFFLOAD	1	/* flag */
#define EF4_TXQ_TYPE_HIGHPRI	2	/* flag */
#define EF4_TXQ_TYPES		4
#define EF4_MAX_TX_QUEUES	(EF4_TXQ_TYPES * EF4_MAX_CHANNELS)

/* Maximum possible MTU the driver supports */
#define EF4_MAX_MTU (9 * 1024)

/* Minimum MTU, from RFC791 (IP) */
#define EF4_MIN_MTU 68

/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
 * and should be a multiple of the cache line size.
 */
#define EF4_RX_USR_BUF_SIZE	(2048 - 256)

/* If possible, we should ensure cache line alignment at start and end
 * of every buffer.  Otherwise, we just need to ensure 4-byte
 * alignment of the network header.
 */
#if NET_IP_ALIGN == 0
#define EF4_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
#else
#define EF4_RX_BUF_ALIGNMENT	4
#endif

struct ef4_self_tests;

/**
 * struct ef4_buffer - A general-purpose DMA buffer
 * @addr: host base address of the buffer
 * @dma_addr: DMA base address of the buffer
 * @len: Buffer length, in bytes
 *
 * The NIC uses these buffers for its interrupt status registers and
 * MAC stats dumps.
 */
struct ef4_buffer {
	void *addr;
	dma_addr_t dma_addr;
	unsigned int len;
};

/**
 * struct ef4_special_buffer - DMA buffer entered into buffer table
 * @buf: Standard &struct ef4_buffer
 * @index: Buffer index within controller;s buffer table
 * @entries: Number of buffer table entries
 *
 * The NIC has a buffer table that maps buffers of size %EF4_BUF_SIZE.
 * Event and descriptor rings are addressed via one or more buffer
 * table entries (and so can be physically non-contiguous, although we
 * currently do not take advantage of that).  On Falcon and Siena we
 * have to take care of allocating and initialising the entries
 * ourselves.  On later hardware this is managed by the firmware and
 * @index and @entries are left as 0.
 */
struct ef4_special_buffer {
	struct ef4_buffer buf;
	unsigned int index;
	unsigned int entries;
};

/**
 * struct ef4_tx_buffer - buffer state for a TX descriptor
 * @skb: When @flags & %EF4_TX_BUF_SKB, the associated socket buffer to be
 *	freed when descriptor completes
 * @option: When @flags & %EF4_TX_BUF_OPTION, a NIC-specific option descriptor.
 * @dma_addr: DMA address of the fragment.
 * @flags: Flags for allocation and DMA mapping type
 * @len: Length of this fragment.
 *	This field is zero when the queue slot is empty.
 * @unmap_len: Length of this fragment to unmap
 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 * Only valid if @unmap_len != 0.
 */
struct ef4_tx_buffer {
	const struct sk_buff *skb;
	union {
		ef4_qword_t option;
		dma_addr_t dma_addr;
	};
	unsigned short flags;
	unsigned short len;
	unsigned short unmap_len;
	unsigned short dma_offset;
};
#define EF4_TX_BUF_CONT		1	/* not last descriptor of packet */
#define EF4_TX_BUF_SKB		2	/* buffer is last part of skb */
#define EF4_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
#define EF4_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */

/**
 * struct ef4_tx_queue - An Efx TX queue
 *
 * This is a ring buffer of TX fragments.
 * Since the TX completion path always executes on the same
 * CPU and the xmit path can operate on different CPUs,
 * performance is increased by ensuring that the completion
 * path and the xmit path operate on different cache lines.
 * This is particularly important if the xmit path is always
 * executing on one CPU which is different from the completion
 * path.  There is also a cache line for members which are
 * read but not written on the fast path.
 *
 * @efx: The associated Efx NIC
 * @queue: DMA queue number
 * @channel: The associated channel
 * @core_txq: The networking core TX queue structure
 * @buffer: The software buffer ring
 * @cb_page: Array of pages of copy buffers.  Carved up according to
 *	%EF4_TX_CB_ORDER into %EF4_TX_CB_SIZE-sized chunks.
 * @txd: The hardware descriptor ring
 * @ptr_mask: The size of the ring minus 1.
 * @initialised: Has hardware queue been initialised?
 * @tx_min_size: Minimum transmit size for this queue. Depends on HW.
 * @read_count: Current read pointer.
 *	This is the number of buffers that have been removed from both rings.
 * @old_write_count: The value of @write_count when last checked.
 *	This is here for performance reasons.  The xmit path will
 *	only get the up-to-date value of @write_count if this
 *	variable indicates that the queue is empty.  This is to
 *	avoid cache-line ping-pong between the xmit path and the
 *	completion path.
 * @merge_events: Number of TX merged completion events
 * @insert_count: Current insert pointer
 *	This is the number of buffers that have been added to the
 *	software ring.
 * @write_count: Current write pointer
 *	This is the number of buffers that have been added to the
 *	hardware ring.
 * @old_read_count: The value of read_count when last checked.
 *	This is here for performance reasons.  The xmit path will
 *	only get the up-to-date value of read_count if this
 *	variable indicates that the queue is full.  This is to
 *	avoid cache-line ping-pong between the xmit path and the
 *	completion path.
 * @pushes: Number of times the TX push feature has been used
 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
 * @cb_packets: Number of times the TX copybreak feature has been used
 * @empty_read_count: If the completion path has seen the queue as empty
 *	and the transmission path has not yet checked this, the value of
 *	@read_count bitwise-added to %EF4_EMPTY_COUNT_VALID; otherwise 0.
 */
struct ef4_tx_queue {
	/* Members which don't change on the fast path */
	struct ef4_nic *efx ____cacheline_aligned_in_smp;
	unsigned queue;
	struct ef4_channel *channel;
	struct netdev_queue *core_txq;
	struct ef4_tx_buffer *buffer;
	struct ef4_buffer *cb_page;
	struct ef4_special_buffer txd;
	unsigned int ptr_mask;
	bool initialised;
	unsigned int tx_min_size;

	/* Function pointers used in the fast path. */
	int (*handle_tso)(struct ef4_tx_queue*, struct sk_buff*, bool *);

	/* Members used mainly on the completion path */
	unsigned int read_count ____cacheline_aligned_in_smp;
	unsigned int old_write_count;
	unsigned int merge_events;
	unsigned int bytes_compl;
	unsigned int pkts_compl;

	/* Members used only on the xmit path */
	unsigned int insert_count ____cacheline_aligned_in_smp;
	unsigned int write_count;
	unsigned int old_read_count;
	unsigned int pushes;
	bool xmit_more_available;
	unsigned int cb_packets;
	/* Statistics to supplement MAC stats */
	unsigned long tx_packets;

	/* Members shared between paths and sometimes updated */
	unsigned int empty_read_count ____cacheline_aligned_in_smp;
#define EF4_EMPTY_COUNT_VALID 0x80000000
	atomic_t flush_outstanding;
};

#define EF4_TX_CB_ORDER	7
#define EF4_TX_CB_SIZE	(1 << EF4_TX_CB_ORDER) - NET_IP_ALIGN

/**
 * struct ef4_rx_buffer - An Efx RX data buffer
 * @dma_addr: DMA base address of the buffer
 * @page: The associated page buffer.
 *	Will be %NULL if the buffer slot is currently free.
 * @page_offset: If pending: offset in @page of DMA base address.
 *	If completed: offset in @page of Ethernet header.
 * @len: If pending: length for DMA descriptor.
 *	If completed: received length, excluding hash prefix.
 * @flags: Flags for buffer and packet state.  These are only set on the
 *	first buffer of a scattered packet.
 */
struct ef4_rx_buffer {
	dma_addr_t dma_addr;
	struct page *page;
	u16 page_offset;
	u16 len;
	u16 flags;
};
#define EF4_RX_BUF_LAST_IN_PAGE	0x0001
#define EF4_RX_PKT_CSUMMED	0x0002
#define EF4_RX_PKT_DISCARD	0x0004
#define EF4_RX_PKT_TCP		0x0040
#define EF4_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */

/**
 * struct ef4_rx_page_state - Page-based rx buffer state
 *
 * Inserted at the start of every page allocated for receive buffers.
 * Used to facilitate sharing dma mappings between recycled rx buffers
 * and those passed up to the kernel.
 *
 * @dma_addr: The dma address of this page.
 */
struct ef4_rx_page_state {
	dma_addr_t dma_addr;

	unsigned int __pad[] ____cacheline_aligned;
};

/**
 * struct ef4_rx_queue - An Efx RX queue
 * @efx: The associated Efx NIC
 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 *	is associated with a real RX queue.
 * @buffer: The software buffer ring
 * @rxd: The hardware descriptor ring
 * @ptr_mask: The size of the ring minus 1.
 * @refill_enabled: Enable refill whenever fill level is low
 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 *	@rxq_flush_pending.
 * @added_count: Number of buffers added to the receive queue.
 * @notified_count: Number of buffers given to NIC (<= @added_count).
 * @removed_count: Number of buffers removed from the receive queue.
 * @scatter_n: Used by NIC specific receive code.
 * @scatter_len: Used by NIC specific receive code.
 * @page_ring: The ring to store DMA mapped pages for reuse.
 * @page_add: Counter to calculate the write pointer for the recycle ring.
 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 * @page_recycle_count: The number of pages that have been recycled.
 * @page_recycle_failed: The number of pages that couldn't be recycled because
 *      the kernel still held a reference to them.
 * @page_recycle_full: The number of pages that were released because the
 *      recycle ring was full.
 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 * @max_fill: RX descriptor maximum fill level (<= ring size)
 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 *	(<= @max_fill)
 * @min_fill: RX descriptor minimum non-zero fill level.
 *	This records the minimum fill level observed when a ring
 *	refill was triggered.
 * @recycle_count: RX buffer recycle counter.
 * @slow_fill: Timer used to defer ef4_nic_generate_fill_event().
 */
struct ef4_rx_queue {
	struct ef4_nic *efx;
	int core_index;
	struct ef4_rx_buffer *buffer;
	struct ef4_special_buffer rxd;
	unsigned int ptr_mask;
	bool refill_enabled;
	bool flush_pending;

	unsigned int added_count;
	unsigned int notified_count;
	unsigned int removed_count;
	unsigned int scatter_n;
	unsigned int scatter_len;
	struct page **page_ring;
	unsigned int page_add;
	unsigned int page_remove;
	unsigned int page_recycle_count;
	unsigned int page_recycle_failed;
	unsigned int page_recycle_full;
	unsigned int page_ptr_mask;
	unsigned int max_fill;
	unsigned int fast_fill_trigger;
	unsigned int min_fill;
	unsigned int min_overfill;
	unsigned int recycle_count;
	struct timer_list slow_fill;
	unsigned int slow_fill_count;
	/* Statistics to supplement MAC stats */
	unsigned long rx_packets;
};

/**
 * struct ef4_channel - An Efx channel
 *
 * A channel comprises an event queue, at least one TX queue, at least
 * one RX queue, and an associated tasklet for processing the event
 * queue.
 *
 * @efx: Associated Efx NIC
 * @channel: Channel instance number
 * @type: Channel type definition
 * @eventq_init: Event queue initialised flag
 * @enabled: Channel enabled indicator
 * @irq: IRQ number (MSI and MSI-X only)
 * @irq_moderation_us: IRQ moderation value (in microseconds)
 * @napi_dev: Net device used with NAPI
 * @napi_str: NAPI control structure
 * @state: state for NAPI vs busy polling
 * @state_lock: lock protecting @state
 * @eventq: Event queue buffer
 * @eventq_mask: Event queue pointer mask
 * @eventq_read_ptr: Event queue read pointer
 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 * @irq_count: Number of IRQs since last adaptive moderation decision
 * @irq_mod_score: IRQ moderation score
 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 *      indexed by filter ID
 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 *	lack of descriptors
 * @n_rx_merge_events: Number of RX merged completion events
 * @n_rx_merge_packets: Number of RX packets completed by merged events
 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 *	__ef4_rx_packet(), or zero if there is none
 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 *	by __ef4_rx_packet(), if @rx_pkt_n_frags != 0
 * @rx_queue: RX queue for this channel
 * @tx_queue: TX queues for this channel
 */
struct ef4_channel {
	struct ef4_nic *efx;
	int channel;
	const struct ef4_channel_type *type;
	bool eventq_init;
	bool enabled;
	int irq;
	unsigned int irq_moderation_us;
	struct net_device *napi_dev;
	struct napi_struct napi_str;
#ifdef CONFIG_NET_RX_BUSY_POLL
	unsigned long busy_poll_state;
#endif
	struct ef4_special_buffer eventq;
	unsigned int eventq_mask;
	unsigned int eventq_read_ptr;
	int event_test_cpu;

	unsigned int irq_count;
	unsigned int irq_mod_score;
#ifdef CONFIG_RFS_ACCEL
	unsigned int rfs_filters_added;
#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
	u32 *rps_flow_id;
#endif

	unsigned n_rx_tobe_disc;
	unsigned n_rx_ip_hdr_chksum_err;
	unsigned n_rx_tcp_udp_chksum_err;
	unsigned n_rx_mcast_mismatch;
	unsigned n_rx_frm_trunc;
	unsigned n_rx_overlength;
	unsigned n_skbuff_leaks;
	unsigned int n_rx_nodesc_trunc;
	unsigned int n_rx_merge_events;
	unsigned int n_rx_merge_packets;

	unsigned int rx_pkt_n_frags;
	unsigned int rx_pkt_index;

	struct ef4_rx_queue rx_queue;
	struct ef4_tx_queue tx_queue[EF4_TXQ_TYPES];
};

/**
 * struct ef4_msi_context - Context for each MSI
 * @efx: The associated NIC
 * @index: Index of the channel/IRQ
 * @name: Name of the channel/IRQ
 *
 * Unlike &struct ef4_channel, this is never reallocated and is always
 * safe for the IRQ handler to access.
 */
struct ef4_msi_context {
	struct ef4_nic *efx;
	unsigned int index;
	char name[IFNAMSIZ + 6];
};

/**
 * struct ef4_channel_type - distinguishes traffic and extra channels
 * @handle_no_channel: Handle failure to allocate an extra channel
 * @pre_probe: Set up extra state prior to initialisation
 * @post_remove: Tear down extra state after finalisation, if allocated.
 *	May be called on channels that have not been probed.
 * @get_name: Generate the channel's name (used for its IRQ handler)
 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 *	reallocation is not supported.
 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 * @keep_eventq: Flag for whether event queue should be kept initialised
 *	while the device is stopped
 */
struct ef4_channel_type {
	void (*handle_no_channel)(struct ef4_nic *);
	int (*pre_probe)(struct ef4_channel *);
	void (*post_remove)(struct ef4_channel *);
	void (*get_name)(struct ef4_channel *, char *buf, size_t len);
	struct ef4_channel *(*copy)(const struct ef4_channel *);
	bool (*receive_skb)(struct ef4_channel *, struct sk_buff *);
	bool keep_eventq;
};

enum ef4_led_mode {
	EF4_LED_OFF	= 0,
	EF4_LED_ON	= 1,
	EF4_LED_DEFAULT	= 2
};

#define STRING_TABLE_LOOKUP(val, member) \
	((val) < member ## _max) ? member ## _names[val] : "(invalid)"

extern const char *const ef4_loopback_mode_names[];
extern const unsigned int ef4_loopback_mode_max;
#define LOOPBACK_MODE(efx) \
	STRING_TABLE_LOOKUP((efx)->loopback_mode, ef4_loopback_mode)

extern const char *const ef4_reset_type_names[];
extern const unsigned int ef4_reset_type_max;
#define RESET_TYPE(type) \
	STRING_TABLE_LOOKUP(type, ef4_reset_type)

enum ef4_int_mode {
	/* Be careful if altering to correct macro below */
	EF4_INT_MODE_MSIX = 0,
	EF4_INT_MODE_MSI = 1,
	EF4_INT_MODE_LEGACY = 2,
	EF4_INT_MODE_MAX	/* Insert any new items before this */
};
#define EF4_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EF4_INT_MODE_MSI)

enum nic_state {
	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
	STATE_READY = 1,	/* hardware ready and netdev registered */
	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
	STATE_RECOVERY = 3,	/* device recovering from PCI error */
};

/* Forward declaration */
struct ef4_nic;

/* Pseudo bit-mask flow control field */
#define EF4_FC_RX	FLOW_CTRL_RX
#define EF4_FC_TX	FLOW_CTRL_TX
#define EF4_FC_AUTO	4

/**
 * struct ef4_link_state - Current state of the link
 * @up: Link is up
 * @fd: Link is full-duplex
 * @fc: Actual flow control flags
 * @speed: Link speed (Mbps)
 */
struct ef4_link_state {
	bool up;
	bool fd;
	u8 fc;
	unsigned int speed;
};

static inline bool ef4_link_state_equal(const struct ef4_link_state *left,
					const struct ef4_link_state *right)
{
	return left->up == right->up && left->fd == right->fd &&
		left->fc == right->fc && left->speed == right->speed;
}

/**
 * struct ef4_phy_operations - Efx PHY operations table
 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
 *	efx->loopback_modes.
 * @init: Initialise PHY
 * @fini: Shut down PHY
 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
 * @poll: Update @link_state and report whether it changed.
 *	Serialised by the mac_lock.
 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
 *	(only needed where AN bit is set in mmds)
 * @test_alive: Test that PHY is 'alive' (online)
 * @test_name: Get the name of a PHY-specific test/result
 * @run_tests: Run tests and record results as appropriate (offline).
 *	Flags are the ethtool tests flags.
 */
struct ef4_phy_operations {
	int (*probe) (struct ef4_nic *efx);
	int (*init) (struct ef4_nic *efx);
	void (*fini) (struct ef4_nic *efx);
	void (*remove) (struct ef4_nic *efx);
	int (*reconfigure) (struct ef4_nic *efx);
	bool (*poll) (struct ef4_nic *efx);
	void (*get_link_ksettings)(struct ef4_nic *efx,
				   struct ethtool_link_ksettings *cmd);
	int (*set_link_ksettings)(struct ef4_nic *efx,
				  const struct ethtool_link_ksettings *cmd);
	void (*set_npage_adv) (struct ef4_nic *efx, u32);
	int (*test_alive) (struct ef4_nic *efx);
	const char *(*test_name) (struct ef4_nic *efx, unsigned int index);
	int (*run_tests) (struct ef4_nic *efx, int *results, unsigned flags);
	int (*get_module_eeprom) (struct ef4_nic *efx,
			       struct ethtool_eeprom *ee,
			       u8 *data);
	int (*get_module_info) (struct ef4_nic *efx,
				struct ethtool_modinfo *modinfo);
};

/**
 * enum ef4_phy_mode - PHY operating mode flags
 * @PHY_MODE_NORMAL: on and should pass traffic
 * @PHY_MODE_TX_DISABLED: on with TX disabled
 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 * @PHY_MODE_OFF: switched off through external control
 * @PHY_MODE_SPECIAL: on but will not pass traffic
 */
enum ef4_phy_mode {
	PHY_MODE_NORMAL		= 0,
	PHY_MODE_TX_DISABLED	= 1,
	PHY_MODE_LOW_POWER	= 2,
	PHY_MODE_OFF		= 4,
	PHY_MODE_SPECIAL	= 8,
};

static inline bool ef4_phy_mode_disabled(enum ef4_phy_mode mode)
{
	return !!(mode & ~PHY_MODE_TX_DISABLED);
}

/**
 * struct ef4_hw_stat_desc - Description of a hardware statistic
 * @name: Name of the statistic as visible through ethtool, or %NULL if
 *	it should not be exposed
 * @dma_width: Width in bits (0 for non-DMA statistics)
 * @offset: Offset within stats (ignored for non-DMA statistics)
 */
struct ef4_hw_stat_desc {
	const char *name;
	u16 dma_width;
	u16 offset;
};

/* Number of bits used in a multicast filter hash address */
#define EF4_MCAST_HASH_BITS 8

/* Number of (single-bit) entries in a multicast filter hash */
#define EF4_MCAST_HASH_ENTRIES (1 << EF4_MCAST_HASH_BITS)

/* An Efx multicast filter hash */
union ef4_multicast_hash {
	u8 byte[EF4_MCAST_HASH_ENTRIES / 8];
	ef4_oword_t oword[EF4_MCAST_HASH_ENTRIES / sizeof(ef4_oword_t) / 8];
};

/**
 * struct ef4_nic - an Efx NIC
 * @name: Device name (net device name or bus id before net device registered)
 * @pci_dev: The PCI device
 * @node: List node for maintaning primary/secondary function lists
 * @primary: &struct ef4_nic instance for the primary function of this
 *	controller.  May be the same structure, and may be %NULL if no
 *	primary function is bound.  Serialised by rtnl_lock.
 * @secondary_list: List of &struct ef4_nic instances for the secondary PCI
 *	functions of the controller, if this is for the primary function.
 *	Serialised by rtnl_lock.
 * @type: Controller type attributes
 * @legacy_irq: IRQ number
 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 *	Work items do not hold and must not acquire RTNL.
 * @workqueue_name: Name of workqueue
 * @reset_work: Scheduled reset workitem
 * @membase_phys: Memory BAR value as physical address
 * @membase: Memory BAR value
 * @interrupt_mode: Interrupt mode
 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
 * @msg_enable: Log message enable flags
 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 * @reset_pending: Bitmask for pending resets
 * @tx_queue: TX DMA queues
 * @rx_queue: RX DMA queues
 * @channel: Channels
 * @msi_context: Context for each MSI
 * @extra_channel_types: Types of extra (non-traffic) channels that
 *	should be allocated for this NIC
 * @rxq_entries: Size of receive queues requested by user.
 * @txq_entries: Size of transmit queues requested by user.
 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 * @sram_lim_qw: Qword address limit of SRAM
 * @next_buffer_table: First available buffer table id
 * @n_channels: Number of channels in use
 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 * @n_tx_channels: Number of channels used for TX
 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 *	in accordance with NET_IP_ALIGN
 * @rx_dma_len: Current maximum RX DMA length
 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 *	for use in sk_buff::truesize
 * @rx_prefix_size: Size of RX prefix before packet data
 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 *	(valid only if @rx_prefix_size != 0; always negative)
 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 *	(valid only for NICs that set %EF4_RX_PKT_PREFIX_LEN; always negative)
 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 *	(valid only if channel->sync_timestamps_enabled; always negative)
 * @rx_hash_key: Toeplitz hash key for RSS
 * @rx_indir_table: Indirection table for RSS
 * @rx_scatter: Scatter mode enabled for receives
 * @int_error_count: Number of internal errors seen recently
 * @int_error_expire: Time at which error count will be expired
 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 *	acknowledge but do nothing else.
 * @irq_status: Interrupt status buffer
 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 * @selftest_work: Work item for asynchronous self-test
 * @mtd_list: List of MTDs attached to the NIC
 * @nic_data: Hardware dependent state
 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 *	ef4_monitor() and ef4_reconfigure_port()
 * @port_enabled: Port enabled indicator.
 *	Serialises ef4_stop_all(), ef4_start_all(), ef4_monitor() and
 *	ef4_mac_work() with kernel interfaces. Safe to read under any
 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 *	be held to modify it.
 * @port_initialized: Port initialized?
 * @net_dev: Operating system network device. Consider holding the rtnl lock
 * @fixed_features: Features which cannot be turned off
 * @stats_buffer: DMA buffer for statistics
 * @phy_type: PHY type
 * @phy_op: PHY interface
 * @phy_data: PHY private data (including PHY-specific stats)
 * @mdio: PHY MDIO interface
 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 * @link_advertising: Autonegotiation advertising flags
 * @link_state: Current state of the link
 * @n_link_state_changes: Number of times the link has changed state
 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
 *	Protected by @mac_lock.
 * @multicast_hash: Multicast hash table for Falcon-arch.
 *	Protected by @mac_lock.
 * @wanted_fc: Wanted flow control flags
 * @fc_disable: When non-zero flow control is disabled. Typically used to
 *	ensure that network back pressure doesn't delay dma queue flushes.
 *	Serialised by the rtnl lock.
 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 * @loopback_mode: Loopback status
 * @loopback_modes: Supported loopback mode bitmask
 * @loopback_selftest: Offline self-test private state
 * @filter_sem: Filter table rw_semaphore, for freeing the table
 * @filter_lock: Filter table lock, for mere content changes
 * @filter_state: Architecture-dependent filter table state
 * @rps_expire_channel: Next channel to check for expiry
 * @rps_expire_index: Next index to check for expiry in
 *	@rps_expire_channel's @rps_flow_id
 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 *	Decremented when the ef4_flush_rx_queue() is called.
 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 *	completed (either success or failure). Not used when MCDI is used to
 *	flush receive queues.
 * @flush_wq: wait queue used by ef4_nic_flush_queues() to wait for flush completions.
 * @vpd_sn: Serial number read from VPD
 * @monitor_work: Hardware monitor workitem
 * @biu_lock: BIU (bus interface unit) lock
 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 *	field is used by ef4_test_interrupts() to verify that an
 *	interrupt has occurred.
 * @stats_lock: Statistics update lock. Must be held when calling
 *	ef4_nic_type::{update,start,stop}_stats.
 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 *
 * This is stored in the private area of the &struct net_device.
 */
struct ef4_nic {
	/* The following fields should be written very rarely */

	char name[IFNAMSIZ];
	struct list_head node;
	struct ef4_nic *primary;
	struct list_head secondary_list;
	struct pci_dev *pci_dev;
	unsigned int port_num;
	const struct ef4_nic_type *type;
	int legacy_irq;
	bool eeh_disabled_legacy_irq;
	struct workqueue_struct *workqueue;
	char workqueue_name[16];
	struct work_struct reset_work;
	resource_size_t membase_phys;
	void __iomem *membase;

	enum ef4_int_mode interrupt_mode;
	unsigned int timer_quantum_ns;
	unsigned int timer_max_ns;
	bool irq_rx_adaptive;
	unsigned int irq_mod_step_us;
	unsigned int irq_rx_moderation_us;
	u32 msg_enable;

	enum nic_state state;
	unsigned long reset_pending;

	struct ef4_channel *channel[EF4_MAX_CHANNELS];
	struct ef4_msi_context msi_context[EF4_MAX_CHANNELS];
	const struct ef4_channel_type *
	extra_channel_type[EF4_MAX_EXTRA_CHANNELS];

	unsigned rxq_entries;
	unsigned txq_entries;
	unsigned int txq_stop_thresh;
	unsigned int txq_wake_thresh;

	unsigned tx_dc_base;
	unsigned rx_dc_base;
	unsigned sram_lim_qw;
	unsigned next_buffer_table;

	unsigned int max_channels;
	unsigned int max_tx_channels;
	unsigned n_channels;
	unsigned n_rx_channels;
	unsigned rss_spread;
	unsigned tx_channel_offset;
	unsigned n_tx_channels;
	unsigned int rx_ip_align;
	unsigned int rx_dma_len;
	unsigned int rx_buffer_order;
	unsigned int rx_buffer_truesize;
	unsigned int rx_page_buf_step;
	unsigned int rx_bufs_per_page;
	unsigned int rx_pages_per_batch;
	unsigned int rx_prefix_size;
	int rx_packet_hash_offset;
	int rx_packet_len_offset;
	int rx_packet_ts_offset;
	u8 rx_hash_key[40];
	u32 rx_indir_table[128];
	bool rx_scatter;

	unsigned int_error_count;
	unsigned long int_error_expire;

	bool irq_soft_enabled;
	struct ef4_buffer irq_status;
	unsigned irq_zero_count;
	unsigned irq_level;
	struct delayed_work selftest_work;

#ifdef CONFIG_SFC_FALCON_MTD
	struct list_head mtd_list;
#endif

	void *nic_data;

	struct mutex mac_lock;
	struct work_struct mac_work;
	bool port_enabled;

	bool mc_bist_for_other_fn;
	bool port_initialized;
	struct net_device *net_dev;

	netdev_features_t fixed_features;

	struct ef4_buffer stats_buffer;
	u64 rx_nodesc_drops_total;
	u64 rx_nodesc_drops_while_down;
	bool rx_nodesc_drops_prev_state;

	unsigned int phy_type;
	const struct ef4_phy_operations *phy_op;
	void *phy_data;
	struct mdio_if_info mdio;
	enum ef4_phy_mode phy_mode;

	u32 link_advertising;
	struct ef4_link_state link_state;
	unsigned int n_link_state_changes;

	bool unicast_filter;
	union ef4_multicast_hash multicast_hash;
	u8 wanted_fc;
	unsigned fc_disable;

	atomic_t rx_reset;
	enum ef4_loopback_mode loopback_mode;
	u64 loopback_modes;

	void *loopback_selftest;

	struct rw_semaphore filter_sem;
	spinlock_t filter_lock;
	void *filter_state;
#ifdef CONFIG_RFS_ACCEL
	unsigned int rps_expire_channel;
	unsigned int rps_expire_index;
#endif

	atomic_t active_queues;
	atomic_t rxq_flush_pending;
	atomic_t rxq_flush_outstanding;
	wait_queue_head_t flush_wq;

	char *vpd_sn;

	/* The following fields may be written more often */

	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
	spinlock_t biu_lock;
	int last_irq_cpu;
	spinlock_t stats_lock;
	atomic_t n_rx_noskb_drops;
};

static inline int ef4_dev_registered(struct ef4_nic *efx)
{
	return efx->net_dev->reg_state == NETREG_REGISTERED;
}

static inline unsigned int ef4_port_num(struct ef4_nic *efx)
{
	return efx->port_num;
}

struct ef4_mtd_partition {
	struct list_head node;
	struct mtd_info mtd;
	const char *dev_type_name;
	const char *type_name;
	char name[IFNAMSIZ + 20];
};

/**
 * struct ef4_nic_type - Efx device type definition
 * @mem_bar: Get the memory BAR
 * @mem_map_size: Get memory BAR mapped size
 * @probe: Probe the controller
 * @remove: Free resources allocated by probe()
 * @init: Initialise the controller
 * @dimension_resources: Dimension controller resources (buffer table,
 *	and VIs once the available interrupt resources are clear)
 * @fini: Shut down the controller
 * @monitor: Periodic function for polling link state and hardware monitor
 * @map_reset_reason: Map ethtool reset reason to a reset method
 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
 * @reset: Reset the controller hardware and possibly the PHY.  This will
 *	be called while the controller is uninitialised.
 * @probe_port: Probe the MAC and PHY
 * @remove_port: Free resources allocated by probe_port()
 * @handle_global_event: Handle a "global" event (may be %NULL)
 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
 * @prepare_flush: Prepare the hardware for flushing the DMA queues
 *	(for Falcon architecture)
 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
 *	architecture)
 * @prepare_flr: Prepare for an FLR
 * @finish_flr: Clean up after an FLR
 * @describe_stats: Describe statistics for ethtool
 * @update_stats: Update statistics not provided by event handling.
 *	Either argument may be %NULL.
 * @start_stats: Start the regular fetching of statistics
 * @pull_stats: Pull stats from the NIC and wait until they arrive.
 * @stop_stats: Stop the regular fetching of statistics
 * @set_id_led: Set state of identifying LED or revert to automatic function
 * @push_irq_moderation: Apply interrupt moderation value
 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
 *	to the hardware.  Serialised by the mac_lock.
 * @check_mac_fault: Check MAC fault state. True if fault present.
 * @get_wol: Get WoL configuration from driver state
 * @set_wol: Push WoL configuration to the NIC
 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
 * @test_chip: Test registers.  May use ef4_farch_test_registers(), and is
 *	expected to reset the NIC.
 * @test_nvram: Test validity of NVRAM contents
 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
 *	be separately enabled after this.
 * @irq_test_generate: Generate a test IRQ
 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
 *	queue must be separately disabled before this.
 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
 *	a pointer to the &struct ef4_msi_context for the channel.
 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
 *	is a pointer to the &struct ef4_nic.
 * @tx_probe: Allocate resources for TX queue
 * @tx_init: Initialise TX queue on the NIC
 * @tx_remove: Free resources for TX queue
 * @tx_write: Write TX descriptors and doorbell
 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
 * @rx_probe: Allocate resources for RX queue
 * @rx_init: Initialise RX queue on the NIC
 * @rx_remove: Free resources for RX queue
 * @rx_write: Write RX descriptors and doorbell
 * @rx_defer_refill: Generate a refill reminder event
 * @ev_probe: Allocate resources for event queue
 * @ev_init: Initialise event queue on the NIC
 * @ev_fini: Deinitialise event queue on the NIC
 * @ev_remove: Free resources for event queue
 * @ev_process: Process events for a queue, up to the given NAPI quota
 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
 * @ev_test_generate: Generate a test event
 * @filter_table_probe: Probe filter capabilities and set up filter software state
 * @filter_table_restore: Restore filters removed from hardware
 * @filter_table_remove: Remove filters from hardware and tear down software state
 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
 * @filter_insert: add or replace a filter
 * @filter_remove_safe: remove a filter by ID, carefully
 * @filter_get_safe: retrieve a filter by ID, carefully
 * @filter_clear_rx: Remove all RX filters whose priority is less than or
 *	equal to the given priority and is not %EF4_FILTER_PRI_AUTO
 * @filter_count_rx_used: Get the number of filters in use at a given priority
 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
 * @filter_get_rx_ids: Get list of RX filters at a given priority
 * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
 *	atomic.  The hardware change may be asynchronous but should
 *	not be delayed for long.  It may fail if this can't be done
 *	atomically.
 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
 *	This must check whether the specified table entry is used by RFS
 *	and that rps_may_expire_flow() returns true for it.
 * @mtd_probe: Probe and add MTD partitions associated with this net device,
 *	 using ef4_mtd_add()
 * @mtd_rename: Set an MTD partition name using the net device name
 * @mtd_read: Read from an MTD partition
 * @mtd_erase: Erase part of an MTD partition
 * @mtd_write: Write to an MTD partition
 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
 *	also notifies the driver that a writer has finished using this
 *	partition.
 * @set_mac_address: Set the MAC address of the device
 * @revision: Hardware architecture revision
 * @txd_ptr_tbl_base: TX descriptor ring base address
 * @rxd_ptr_tbl_base: RX descriptor ring base address
 * @buf_tbl_base: Buffer table base address
 * @evq_ptr_tbl_base: Event queue pointer table base address
 * @evq_rptr_tbl_base: Event queue read-pointer table base address
 * @max_dma_mask: Maximum possible DMA mask
 * @rx_prefix_size: Size of RX prefix before packet data
 * @rx_hash_offset: Offset of RX flow hash within prefix
 * @rx_ts_offset: Offset of timestamp within prefix
 * @rx_buffer_padding: Size of padding at end of RX packet
 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
 * @max_interrupt_mode: Highest capability interrupt mode supported
 *	from &enum ef4_init_mode.
 * @timer_period_max: Maximum period of interrupt timer (in ticks)
 * @offload_features: net_device feature flags for protocol offload
 *	features implemented in hardware
 */
struct ef4_nic_type {
	unsigned int mem_bar;
	unsigned int (*mem_map_size)(struct ef4_nic *efx);
	int (*probe)(struct ef4_nic *efx);
	void (*remove)(struct ef4_nic *efx);
	int (*init)(struct ef4_nic *efx);
	int (*dimension_resources)(struct ef4_nic *efx);
	void (*fini)(struct ef4_nic *efx);
	void (*monitor)(struct ef4_nic *efx);
	enum reset_type (*map_reset_reason)(enum reset_type reason);
	int (*map_reset_flags)(u32 *flags);
	int (*reset)(struct ef4_nic *efx, enum reset_type method);
	int (*probe_port)(struct ef4_nic *efx);
	void (*remove_port)(struct ef4_nic *efx);
	bool (*handle_global_event)(struct ef4_channel *channel, ef4_qword_t *);
	int (*fini_dmaq)(struct ef4_nic *efx);
	void (*prepare_flush)(struct ef4_nic *efx);
	void (*finish_flush)(struct ef4_nic *efx);
	void (*prepare_flr)(struct ef4_nic *efx);
	void (*finish_flr)(struct ef4_nic *efx);
	size_t (*describe_stats)(struct ef4_nic *efx, u8 *names);
	size_t (*update_stats)(struct ef4_nic *efx, u64 *full_stats,
			       struct rtnl_link_stats64 *core_stats);
	void (*start_stats)(struct ef4_nic *efx);
	void (*pull_stats)(struct ef4_nic *efx);
	void (*stop_stats)(struct ef4_nic *efx);
	void (*set_id_led)(struct ef4_nic *efx, enum ef4_led_mode mode);
	void (*push_irq_moderation)(struct ef4_channel *channel);
	int (*reconfigure_port)(struct ef4_nic *efx);
	void (*prepare_enable_fc_tx)(struct ef4_nic *efx);
	int (*reconfigure_mac)(struct ef4_nic *efx);
	bool (*check_mac_fault)(struct ef4_nic *efx);
	void (*get_wol)(struct ef4_nic *efx, struct ethtool_wolinfo *wol);
	int (*set_wol)(struct ef4_nic *efx, u32 type);
	void (*resume_wol)(struct ef4_nic *efx);
	int (*test_chip)(struct ef4_nic *efx, struct ef4_self_tests *tests);
	int (*test_nvram)(struct ef4_nic *efx);
	void (*irq_enable_master)(struct ef4_nic *efx);
	int (*irq_test_generate)(struct ef4_nic *efx);
	void (*irq_disable_non_ev)(struct ef4_nic *efx);
	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
	int (*tx_probe)(struct ef4_tx_queue *tx_queue);
	void (*tx_init)(struct ef4_tx_queue *tx_queue);
	void (*tx_remove)(struct ef4_tx_queue *tx_queue);
	void (*tx_write)(struct ef4_tx_queue *tx_queue);
	unsigned int (*tx_limit_len)(struct ef4_tx_queue *tx_queue,
				     dma_addr_t dma_addr, unsigned int len);
	int (*rx_push_rss_config)(struct ef4_nic *efx, bool user,
				  const u32 *rx_indir_table);
	int (*rx_probe)(struct ef4_rx_queue *rx_queue);
	void (*rx_init)(struct ef4_rx_queue *rx_queue);
	void (*rx_remove)(struct ef4_rx_queue *rx_queue);
	void (*rx_write)(struct ef4_rx_queue *rx_queue);
	void (*rx_defer_refill)(struct ef4_rx_queue *rx_queue);
	int (*ev_probe)(struct ef4_channel *channel);
	int (*ev_init)(struct ef4_channel *channel);
	void (*ev_fini)(struct ef4_channel *channel);
	void (*ev_remove)(struct ef4_channel *channel);
	int (*ev_process)(struct ef4_channel *channel, int quota);
	void (*ev_read_ack)(struct ef4_channel *channel);
	void (*ev_test_generate)(struct ef4_channel *channel);
	int (*filter_table_probe)(struct ef4_nic *efx);
	void (*filter_table_restore)(struct ef4_nic *efx);
	void (*filter_table_remove)(struct ef4_nic *efx);
	void (*filter_update_rx_scatter)(struct ef4_nic *efx);
	s32 (*filter_insert)(struct ef4_nic *efx,
			     struct ef4_filter_spec *spec, bool replace);
	int (*filter_remove_safe)(struct ef4_nic *efx,
				  enum ef4_filter_priority priority,
				  u32 filter_id);
	int (*filter_get_safe)(struct ef4_nic *efx,
			       enum ef4_filter_priority priority,
			       u32 filter_id, struct ef4_filter_spec *);
	int (*filter_clear_rx)(struct ef4_nic *efx,
			       enum ef4_filter_priority priority);
	u32 (*filter_count_rx_used)(struct ef4_nic *efx,
				    enum ef4_filter_priority priority);
	u32 (*filter_get_rx_id_limit)(struct ef4_nic *efx);
	s32 (*filter_get_rx_ids)(struct ef4_nic *efx,
				 enum ef4_filter_priority priority,
				 u32 *buf, u32 size);
#ifdef CONFIG_RFS_ACCEL
	s32 (*filter_rfs_insert)(struct ef4_nic *efx,
				 struct ef4_filter_spec *spec);
	bool (*filter_rfs_expire_one)(struct ef4_nic *efx, u32 flow_id,
				      unsigned int index);
#endif
#ifdef CONFIG_SFC_FALCON_MTD
	int (*mtd_probe)(struct ef4_nic *efx);
	void (*mtd_rename)(struct ef4_mtd_partition *part);
	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
			size_t *retlen, u8 *buffer);
	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
			 size_t *retlen, const u8 *buffer);
	int (*mtd_sync)(struct mtd_info *mtd);
#endif
	int (*get_mac_address)(struct ef4_nic *efx, unsigned char *perm_addr);
	int (*set_mac_address)(struct ef4_nic *efx);

	int revision;
	unsigned int txd_ptr_tbl_base;
	unsigned int rxd_ptr_tbl_base;
	unsigned int buf_tbl_base;
	unsigned int evq_ptr_tbl_base;
	unsigned int evq_rptr_tbl_base;
	u64 max_dma_mask;
	unsigned int rx_prefix_size;
	unsigned int rx_hash_offset;
	unsigned int rx_ts_offset;
	unsigned int rx_buffer_padding;
	bool can_rx_scatter;
	bool always_rx_scatter;
	unsigned int max_interrupt_mode;
	unsigned int timer_period_max;
	netdev_features_t offload_features;
	unsigned int max_rx_ip_filters;
};

/**************************************************************************
 *
 * Prototypes and inline functions
 *
 *************************************************************************/

static inline struct ef4_channel *
ef4_get_channel(struct ef4_nic *efx, unsigned index)
{
	EF4_BUG_ON_PARANOID(index >= efx->n_channels);
	return efx->channel[index];
}

/* Iterate over all used channels */
#define ef4_for_each_channel(_channel, _efx)				\
	for (_channel = (_efx)->channel[0];				\
	     _channel;							\
	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
		     (_efx)->channel[_channel->channel + 1] : NULL)

/* Iterate over all used channels in reverse */
#define ef4_for_each_channel_rev(_channel, _efx)			\
	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
	     _channel;							\
	     _channel = _channel->channel ?				\
		     (_efx)->channel[_channel->channel - 1] : NULL)

static inline struct ef4_tx_queue *
ef4_get_tx_queue(struct ef4_nic *efx, unsigned index, unsigned type)
{
	EF4_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
			    type >= EF4_TXQ_TYPES);
	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
}

static inline bool ef4_channel_has_tx_queues(struct ef4_channel *channel)
{
	return channel->channel - channel->efx->tx_channel_offset <
		channel->efx->n_tx_channels;
}

static inline struct ef4_tx_queue *
ef4_channel_get_tx_queue(struct ef4_channel *channel, unsigned type)
{
	EF4_BUG_ON_PARANOID(!ef4_channel_has_tx_queues(channel) ||
			    type >= EF4_TXQ_TYPES);
	return &channel->tx_queue[type];
}

static inline bool ef4_tx_queue_used(struct ef4_tx_queue *tx_queue)
{
	return !(tx_queue->efx->net_dev->num_tc < 2 &&
		 tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI);
}

/* Iterate over all TX queues belonging to a channel */
#define ef4_for_each_channel_tx_queue(_tx_queue, _channel)		\
	if (!ef4_channel_has_tx_queues(_channel))			\
		;							\
	else								\
		for (_tx_queue = (_channel)->tx_queue;			\
		     _tx_queue < (_channel)->tx_queue + EF4_TXQ_TYPES && \
			     ef4_tx_queue_used(_tx_queue);		\
		     _tx_queue++)

/* Iterate over all possible TX queues belonging to a channel */
#define ef4_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
	if (!ef4_channel_has_tx_queues(_channel))			\
		;							\
	else								\
		for (_tx_queue = (_channel)->tx_queue;			\
		     _tx_queue < (_channel)->tx_queue + EF4_TXQ_TYPES;	\
		     _tx_queue++)

static inline bool ef4_channel_has_rx_queue(struct ef4_channel *channel)
{
	return channel->rx_queue.core_index >= 0;
}

static inline struct ef4_rx_queue *
ef4_channel_get_rx_queue(struct ef4_channel *channel)
{
	EF4_BUG_ON_PARANOID(!ef4_channel_has_rx_queue(channel));
	return &channel->rx_queue;
}

/* Iterate over all RX queues belonging to a channel */
#define ef4_for_each_channel_rx_queue(_rx_queue, _channel)		\
	if (!ef4_channel_has_rx_queue(_channel))			\
		;							\
	else								\
		for (_rx_queue = &(_channel)->rx_queue;			\
		     _rx_queue;						\
		     _rx_queue = NULL)

static inline struct ef4_channel *
ef4_rx_queue_channel(struct ef4_rx_queue *rx_queue)
{
	return container_of(rx_queue, struct ef4_channel, rx_queue);
}

static inline int ef4_rx_queue_index(struct ef4_rx_queue *rx_queue)
{
	return ef4_rx_queue_channel(rx_queue)->channel;
}

/* Returns a pointer to the specified receive buffer in the RX
 * descriptor queue.
 */
static inline struct ef4_rx_buffer *ef4_rx_buffer(struct ef4_rx_queue *rx_queue,
						  unsigned int index)
{
	return &rx_queue->buffer[index];
}

/**
 * EF4_MAX_FRAME_LEN - calculate maximum frame length
 *
 * This calculates the maximum frame length that will be used for a
 * given MTU.  The frame length will be equal to the MTU plus a
 * constant amount of header space and padding.  This is the quantity
 * that the net driver will program into the MAC as the maximum frame
 * length.
 *
 * The 10G MAC requires 8-byte alignment on the frame
 * length, so we round up to the nearest 8.
 *
 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
 * XGMII cycle).  If the frame length reaches the maximum value in the
 * same cycle, the XMAC can miss the IPG altogether.  We work around
 * this by adding a further 16 bytes.
 */
#define EF4_FRAME_PAD	16
#define EF4_MAX_FRAME_LEN(mtu) \
	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EF4_FRAME_PAD), 8))

/* Get all supported features.
 * If a feature is not fixed, it is present in hw_features.
 * If a feature is fixed, it does not present in hw_features, but
 * always in features.
 */
static inline netdev_features_t ef4_supported_features(const struct ef4_nic *efx)
{
	const struct net_device *net_dev = efx->net_dev;

	return net_dev->features | net_dev->hw_features;
}

/* Get the current TX queue insert index. */
static inline unsigned int
ef4_tx_queue_get_insert_index(const struct ef4_tx_queue *tx_queue)
{
	return tx_queue->insert_count & tx_queue->ptr_mask;
}

/* Get a TX buffer. */
static inline struct ef4_tx_buffer *
__ef4_tx_queue_get_insert_buffer(const struct ef4_tx_queue *tx_queue)
{
	return &tx_queue->buffer[ef4_tx_queue_get_insert_index(tx_queue)];
}

/* Get a TX buffer, checking it's not currently in use. */
static inline struct ef4_tx_buffer *
ef4_tx_queue_get_insert_buffer(const struct ef4_tx_queue *tx_queue)
{
	struct ef4_tx_buffer *buffer =
		__ef4_tx_queue_get_insert_buffer(tx_queue);

	EF4_BUG_ON_PARANOID(buffer->len);
	EF4_BUG_ON_PARANOID(buffer->flags);
	EF4_BUG_ON_PARANOID(buffer->unmap_len);

	return buffer;
}

#endif /* EF4_NET_DRIVER_H */