1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* fireworks_pcm.c - a part of driver for Fireworks based devices
*
* Copyright (c) 2009-2010 Clemens Ladisch
* Copyright (c) 2013-2014 Takashi Sakamoto
*/
#include "./fireworks.h"
/*
* NOTE:
* Fireworks changes its AMDTP channels for PCM data according to its sampling
* rate. There are three modes. Here _XX is either _rx or _tx.
* 0: 32.0- 48.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels applied
* 1: 88.2- 96.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_2x applied
* 2: 176.4-192.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_4x applied
*
* The number of PCM channels for analog input and output are always fixed but
* the number of PCM channels for digital input and output are differed.
*
* Additionally, according to "AudioFire Owner's Manual Version 2.2", in some
* model, the number of PCM channels for digital input has more restriction
* depending on which digital interface is selected.
* - S/PDIF coaxial and optical : use input 1-2
* - ADAT optical at 32.0-48.0 kHz : use input 1-8
* - ADAT optical at 88.2-96.0 kHz : use input 1-4 (S/MUX format)
*
* The data in AMDTP channels for blank PCM channels are zero.
*/
static const unsigned int freq_table[] = {
/* multiplier mode 0 */
[0] = 32000,
[1] = 44100,
[2] = 48000,
/* multiplier mode 1 */
[3] = 88200,
[4] = 96000,
/* multiplier mode 2 */
[5] = 176400,
[6] = 192000,
};
static inline unsigned int
get_multiplier_mode_with_index(unsigned int index)
{
return ((int)index - 1) / 2;
}
int snd_efw_get_multiplier_mode(unsigned int sampling_rate, unsigned int *mode)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
if (freq_table[i] == sampling_rate) {
*mode = get_multiplier_mode_with_index(i);
return 0;
}
}
return -EINVAL;
}
static int
hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
{
unsigned int *pcm_channels = rule->private;
struct snd_interval *r =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
const struct snd_interval *c =
hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_interval t = {
.min = UINT_MAX, .max = 0, .integer = 1
};
unsigned int i, mode;
for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
mode = get_multiplier_mode_with_index(i);
if (!snd_interval_test(c, pcm_channels[mode]))
continue;
t.min = min(t.min, freq_table[i]);
t.max = max(t.max, freq_table[i]);
}
return snd_interval_refine(r, &t);
}
static int
hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
{
unsigned int *pcm_channels = rule->private;
struct snd_interval *c =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
const struct snd_interval *r =
hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval t = {
.min = UINT_MAX, .max = 0, .integer = 1
};
unsigned int i, mode;
for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
mode = get_multiplier_mode_with_index(i);
if (!snd_interval_test(r, freq_table[i]))
continue;
t.min = min(t.min, pcm_channels[mode]);
t.max = max(t.max, pcm_channels[mode]);
}
return snd_interval_refine(c, &t);
}
static void
limit_channels(struct snd_pcm_hardware *hw, unsigned int *pcm_channels)
{
unsigned int i, mode;
hw->channels_min = UINT_MAX;
hw->channels_max = 0;
for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
mode = get_multiplier_mode_with_index(i);
if (pcm_channels[mode] == 0)
continue;
hw->channels_min = min(hw->channels_min, pcm_channels[mode]);
hw->channels_max = max(hw->channels_max, pcm_channels[mode]);
}
}
static int
pcm_init_hw_params(struct snd_efw *efw,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct amdtp_stream *s;
unsigned int *pcm_channels;
int err;
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS;
s = &efw->tx_stream;
pcm_channels = efw->pcm_capture_channels;
} else {
runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS;
s = &efw->rx_stream;
pcm_channels = efw->pcm_playback_channels;
}
/* limit rates */
runtime->hw.rates = efw->supported_sampling_rate;
snd_pcm_limit_hw_rates(runtime);
limit_channels(&runtime->hw, pcm_channels);
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
hw_rule_channels, pcm_channels,
SNDRV_PCM_HW_PARAM_RATE, -1);
if (err < 0)
goto end;
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
hw_rule_rate, pcm_channels,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
if (err < 0)
goto end;
err = amdtp_am824_add_pcm_hw_constraints(s, runtime);
end:
return err;
}
static int pcm_open(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
struct amdtp_domain *d = &efw->domain;
enum snd_efw_clock_source clock_source;
int err;
err = snd_efw_stream_lock_try(efw);
if (err < 0)
return err;
err = pcm_init_hw_params(efw, substream);
if (err < 0)
goto err_locked;
err = snd_efw_command_get_clock_source(efw, &clock_source);
if (err < 0)
goto err_locked;
mutex_lock(&efw->mutex);
// When source of clock is not internal or any stream is reserved for
// transmission of PCM frames, the available sampling rate is limited
// at current one.
if ((clock_source != SND_EFW_CLOCK_SOURCE_INTERNAL) ||
(efw->substreams_counter > 0 && d->events_per_period > 0)) {
unsigned int frames_per_period = d->events_per_period;
unsigned int frames_per_buffer = d->events_per_buffer;
unsigned int sampling_rate;
err = snd_efw_command_get_sampling_rate(efw, &sampling_rate);
if (err < 0) {
mutex_unlock(&efw->mutex);
goto err_locked;
}
substream->runtime->hw.rate_min = sampling_rate;
substream->runtime->hw.rate_max = sampling_rate;
if (frames_per_period > 0) {
err = snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
frames_per_period, frames_per_period);
if (err < 0) {
mutex_unlock(&efw->mutex);
goto err_locked;
}
err = snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
frames_per_buffer, frames_per_buffer);
if (err < 0) {
mutex_unlock(&efw->mutex);
goto err_locked;
}
}
}
mutex_unlock(&efw->mutex);
snd_pcm_set_sync(substream);
return 0;
err_locked:
snd_efw_stream_lock_release(efw);
return err;
}
static int pcm_close(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
snd_efw_stream_lock_release(efw);
return 0;
}
static int pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_efw *efw = substream->private_data;
int err = 0;
if (substream->runtime->status->state == SNDRV_PCM_STATE_OPEN) {
unsigned int rate = params_rate(hw_params);
unsigned int frames_per_period = params_period_size(hw_params);
unsigned int frames_per_buffer = params_buffer_size(hw_params);
mutex_lock(&efw->mutex);
err = snd_efw_stream_reserve_duplex(efw, rate,
frames_per_period, frames_per_buffer);
if (err >= 0)
++efw->substreams_counter;
mutex_unlock(&efw->mutex);
}
return err;
}
static int pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
mutex_lock(&efw->mutex);
if (substream->runtime->status->state != SNDRV_PCM_STATE_OPEN)
--efw->substreams_counter;
snd_efw_stream_stop_duplex(efw);
mutex_unlock(&efw->mutex);
return 0;
}
static int pcm_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
int err;
err = snd_efw_stream_start_duplex(efw);
if (err >= 0)
amdtp_stream_pcm_prepare(&efw->tx_stream);
return err;
}
static int pcm_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
int err;
err = snd_efw_stream_start_duplex(efw);
if (err >= 0)
amdtp_stream_pcm_prepare(&efw->rx_stream);
return err;
}
static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_efw *efw = substream->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
amdtp_stream_pcm_trigger(&efw->tx_stream, substream);
break;
case SNDRV_PCM_TRIGGER_STOP:
amdtp_stream_pcm_trigger(&efw->tx_stream, NULL);
break;
default:
return -EINVAL;
}
return 0;
}
static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_efw *efw = substream->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
amdtp_stream_pcm_trigger(&efw->rx_stream, substream);
break;
case SNDRV_PCM_TRIGGER_STOP:
amdtp_stream_pcm_trigger(&efw->rx_stream, NULL);
break;
default:
return -EINVAL;
}
return 0;
}
static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm)
{
struct snd_efw *efw = sbstrm->private_data;
return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->tx_stream);
}
static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm)
{
struct snd_efw *efw = sbstrm->private_data;
return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->rx_stream);
}
static int pcm_capture_ack(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->tx_stream);
}
static int pcm_playback_ack(struct snd_pcm_substream *substream)
{
struct snd_efw *efw = substream->private_data;
return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->rx_stream);
}
int snd_efw_create_pcm_devices(struct snd_efw *efw)
{
static const struct snd_pcm_ops capture_ops = {
.open = pcm_open,
.close = pcm_close,
.hw_params = pcm_hw_params,
.hw_free = pcm_hw_free,
.prepare = pcm_capture_prepare,
.trigger = pcm_capture_trigger,
.pointer = pcm_capture_pointer,
.ack = pcm_capture_ack,
};
static const struct snd_pcm_ops playback_ops = {
.open = pcm_open,
.close = pcm_close,
.hw_params = pcm_hw_params,
.hw_free = pcm_hw_free,
.prepare = pcm_playback_prepare,
.trigger = pcm_playback_trigger,
.pointer = pcm_playback_pointer,
.ack = pcm_playback_ack,
};
struct snd_pcm *pcm;
int err;
err = snd_pcm_new(efw->card, efw->card->driver, 0, 1, 1, &pcm);
if (err < 0)
goto end;
pcm->private_data = efw;
snprintf(pcm->name, sizeof(pcm->name), "%s PCM", efw->card->shortname);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops);
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0);
end:
return err;
}
|