summaryrefslogtreecommitdiffstats
path: root/src/core/bpf-firewall.c
blob: 99783aca22a015d1343e4e39b31ff16db1b7ad73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
/* SPDX-License-Identifier: LGPL-2.1-or-later */

#include <arpa/inet.h>
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/bpf_insn.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include "alloc-util.h"
#include "bpf-firewall.h"
#include "bpf-program.h"
#include "fd-util.h"
#include "ip-address-access.h"
#include "memory-util.h"
#include "missing_syscall.h"
#include "unit.h"
#include "strv.h"
#include "virt.h"

enum {
        MAP_KEY_PACKETS,
        MAP_KEY_BYTES,
};

enum {
        ACCESS_ALLOWED = 1,
        ACCESS_DENIED  = 2,
};

/* Compile instructions for one list of addresses, one direction and one specific verdict on matches. */

static int add_lookup_instructions(
                BPFProgram *p,
                int map_fd,
                int protocol,
                bool is_ingress,
                int verdict) {

        int r, addr_offset, addr_size;

        assert(p);
        assert(map_fd >= 0);

        switch (protocol) {

        case ETH_P_IP:
                addr_size = sizeof(uint32_t);
                addr_offset = is_ingress ?
                        offsetof(struct iphdr, saddr) :
                        offsetof(struct iphdr, daddr);
                break;

        case ETH_P_IPV6:
                addr_size = 4 * sizeof(uint32_t);
                addr_offset = is_ingress ?
                        offsetof(struct ip6_hdr, ip6_src.s6_addr) :
                        offsetof(struct ip6_hdr, ip6_dst.s6_addr);
                break;

        default:
                return -EAFNOSUPPORT;
        }

        do {
                /* Compare IPv4 with one word instruction (32bit) */
                struct bpf_insn insn[] = {
                        /* If skb->protocol != ETH_P_IP, skip this whole block. The offset will be set later. */
                        BPF_JMP_IMM(BPF_JNE, BPF_REG_7, htobe16(protocol), 0),

                        /*
                         * Call into BPF_FUNC_skb_load_bytes to load the dst/src IP address
                         *
                         * R1: Pointer to the skb
                         * R2: Data offset
                         * R3: Destination buffer on the stack (r10 - 4)
                         * R4: Number of bytes to read (4)
                         */

                        BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
                        BPF_MOV32_IMM(BPF_REG_2, addr_offset),

                        BPF_MOV64_REG(BPF_REG_3, BPF_REG_10),
                        BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, -addr_size),

                        BPF_MOV32_IMM(BPF_REG_4, addr_size),
                        BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes),

                        /*
                         * Call into BPF_FUNC_map_lookup_elem to see if the address matches any entry in the
                         * LPM trie map. For this to work, the prefixlen field of 'struct bpf_lpm_trie_key'
                         * has to be set to the maximum possible value.
                         *
                         * On success, the looked up value is stored in R0. For this application, the actual
                         * value doesn't matter, however; we just set the bit in @verdict in R8 if we found any
                         * matching value.
                         */

                        BPF_LD_MAP_FD(BPF_REG_1, map_fd),
                        BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
                        BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -addr_size - sizeof(uint32_t)),
                        BPF_ST_MEM(BPF_W, BPF_REG_2, 0, addr_size * 8),

                        BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
                        BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
                        BPF_ALU32_IMM(BPF_OR, BPF_REG_8, verdict),
                };

                /* Jump label fixup */
                insn[0].off = ELEMENTSOF(insn) - 1;

                r = bpf_program_add_instructions(p, insn, ELEMENTSOF(insn));
                if (r < 0)
                        return r;

        } while (false);

        return 0;
}

static int add_instructions_for_ip_any(
                BPFProgram *p,
                int verdict) {
        int r;

        assert(p);

        const struct bpf_insn insn[] = {
                BPF_ALU32_IMM(BPF_OR, BPF_REG_8, verdict),
        };

        r = bpf_program_add_instructions(p, insn, 1);
        if (r < 0)
                return r;

        return 0;
}

static int bpf_firewall_compile_bpf(
                Unit *u,
                bool is_ingress,
                BPFProgram **ret,
                bool ip_allow_any,
                bool ip_deny_any) {

        const struct bpf_insn pre_insn[] = {
                /*
                 * When the eBPF program is entered, R1 contains the address of the skb.
                 * However, R1-R5 are scratch registers that are not preserved when calling
                 * into kernel functions, so we need to save anything that's supposed to
                 * stay around to R6-R9. Save the skb to R6.
                 */
                BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),

                /*
                 * Although we cannot access the skb data directly from eBPF programs used in this
                 * scenario, the kernel has prepared some fields for us to access through struct __sk_buff.
                 * Load the protocol (IPv4, IPv6) used by the packet in flight once and cache it in R7
                 * for later use.
                 */
                BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_6, offsetof(struct __sk_buff, protocol)),

                /*
                 * R8 is used to keep track of whether any address check has explicitly allowed or denied the packet
                 * through ACCESS_DENIED or ACCESS_ALLOWED bits. Reset them both to 0 in the beginning.
                 */
                BPF_MOV32_IMM(BPF_REG_8, 0),
        };

        /*
         * The access checkers compiled for the configured allowance and denial lists
         * write to R8 at runtime. The following code prepares for an early exit that
         * skip the accounting if the packet is denied.
         *
         * R0 = 1
         * if (R8 == ACCESS_DENIED)
         *     R0 = 0
         *
         * This means that if both ACCESS_DENIED and ACCESS_ALLOWED are set, the packet
         * is allowed to pass.
         */
        const struct bpf_insn post_insn[] = {
                BPF_MOV64_IMM(BPF_REG_0, 1),
                BPF_JMP_IMM(BPF_JNE, BPF_REG_8, ACCESS_DENIED, 1),
                BPF_MOV64_IMM(BPF_REG_0, 0),
        };

        _cleanup_(bpf_program_unrefp) BPFProgram *p = NULL;
        int accounting_map_fd, r;
        bool access_enabled;

        assert(u);
        assert(ret);

        accounting_map_fd = is_ingress ?
                u->ip_accounting_ingress_map_fd :
                u->ip_accounting_egress_map_fd;

        access_enabled =
                u->ipv4_allow_map_fd >= 0 ||
                u->ipv6_allow_map_fd >= 0 ||
                u->ipv4_deny_map_fd >= 0 ||
                u->ipv6_deny_map_fd >= 0 ||
                ip_allow_any ||
                ip_deny_any;

        if (accounting_map_fd < 0 && !access_enabled) {
                *ret = NULL;
                return 0;
        }

        r = bpf_program_new(BPF_PROG_TYPE_CGROUP_SKB, &p);
        if (r < 0)
                return r;

        r = bpf_program_add_instructions(p, pre_insn, ELEMENTSOF(pre_insn));
        if (r < 0)
                return r;

        if (access_enabled) {
                /*
                 * The simple rule this function translates into eBPF instructions is:
                 *
                 * - Access will be granted when an address matches an entry in @list_allow
                 * - Otherwise, access will be denied when an address matches an entry in @list_deny
                 * - Otherwise, access will be granted
                 */

                if (u->ipv4_deny_map_fd >= 0) {
                        r = add_lookup_instructions(p, u->ipv4_deny_map_fd, ETH_P_IP, is_ingress, ACCESS_DENIED);
                        if (r < 0)
                                return r;
                }

                if (u->ipv6_deny_map_fd >= 0) {
                        r = add_lookup_instructions(p, u->ipv6_deny_map_fd, ETH_P_IPV6, is_ingress, ACCESS_DENIED);
                        if (r < 0)
                                return r;
                }

                if (u->ipv4_allow_map_fd >= 0) {
                        r = add_lookup_instructions(p, u->ipv4_allow_map_fd, ETH_P_IP, is_ingress, ACCESS_ALLOWED);
                        if (r < 0)
                                return r;
                }

                if (u->ipv6_allow_map_fd >= 0) {
                        r = add_lookup_instructions(p, u->ipv6_allow_map_fd, ETH_P_IPV6, is_ingress, ACCESS_ALLOWED);
                        if (r < 0)
                                return r;
                }

                if (ip_allow_any) {
                        r = add_instructions_for_ip_any(p, ACCESS_ALLOWED);
                        if (r < 0)
                                return r;
                }

                if (ip_deny_any) {
                        r = add_instructions_for_ip_any(p, ACCESS_DENIED);
                        if (r < 0)
                                return r;
                }
        }

        r = bpf_program_add_instructions(p, post_insn, ELEMENTSOF(post_insn));
        if (r < 0)
                return r;

        if (accounting_map_fd >= 0) {
                struct bpf_insn insn[] = {
                        /*
                         * If R0 == 0, the packet will be denied; skip the accounting instructions in this case.
                         * The jump label will be fixed up later.
                         */
                        BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 0),

                        /* Count packets */
                        BPF_MOV64_IMM(BPF_REG_0, MAP_KEY_PACKETS), /* r0 = 0 */
                        BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4), /* *(u32 *)(fp - 4) = r0 */
                        BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
                        BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), /* r2 = fp - 4 */
                        BPF_LD_MAP_FD(BPF_REG_1, accounting_map_fd), /* load map fd to r1 */
                        BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
                        BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
                        BPF_MOV64_IMM(BPF_REG_1, 1), /* r1 = 1 */
                        BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_0, BPF_REG_1, 0, 0), /* xadd r0 += r1 */

                        /* Count bytes */
                        BPF_MOV64_IMM(BPF_REG_0, MAP_KEY_BYTES), /* r0 = 1 */
                        BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4), /* *(u32 *)(fp - 4) = r0 */
                        BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
                        BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), /* r2 = fp - 4 */
                        BPF_LD_MAP_FD(BPF_REG_1, accounting_map_fd),
                        BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
                        BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
                        BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_6, offsetof(struct __sk_buff, len)), /* r1 = skb->len */
                        BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_0, BPF_REG_1, 0, 0), /* xadd r0 += r1 */

                        /* Allow the packet to pass */
                        BPF_MOV64_IMM(BPF_REG_0, 1),
                };

                /* Jump label fixup */
                insn[0].off = ELEMENTSOF(insn) - 1;

                r = bpf_program_add_instructions(p, insn, ELEMENTSOF(insn));
                if (r < 0)
                        return r;
        }

        do {
                /*
                 * Exit from the eBPF program, R0 contains the verdict.
                 * 0 means the packet is denied, 1 means the packet may pass.
                 */
                const struct bpf_insn insn[] = {
                        BPF_EXIT_INSN()
                };

                r = bpf_program_add_instructions(p, insn, ELEMENTSOF(insn));
                if (r < 0)
                        return r;
        } while (false);

        *ret = TAKE_PTR(p);

        return 0;
}

static int bpf_firewall_count_access_items(IPAddressAccessItem *list, size_t *n_ipv4, size_t *n_ipv6) {
        IPAddressAccessItem *a;

        assert(n_ipv4);
        assert(n_ipv6);

        LIST_FOREACH(items, a, list) {
                switch (a->family) {

                case AF_INET:
                        (*n_ipv4)++;
                        break;

                case AF_INET6:
                        (*n_ipv6)++;
                        break;

                default:
                        return -EAFNOSUPPORT;
                }
        }

        return 0;
}

static int bpf_firewall_add_access_items(
                IPAddressAccessItem *list,
                int ipv4_map_fd,
                int ipv6_map_fd,
                int verdict) {

        struct bpf_lpm_trie_key *key_ipv4, *key_ipv6;
        uint64_t value = verdict;
        IPAddressAccessItem *a;
        int r;

        key_ipv4 = alloca0(offsetof(struct bpf_lpm_trie_key, data) + sizeof(uint32_t));
        key_ipv6 = alloca0(offsetof(struct bpf_lpm_trie_key, data) + sizeof(uint32_t) * 4);

        LIST_FOREACH(items, a, list) {
                switch (a->family) {

                case AF_INET:
                        key_ipv4->prefixlen = a->prefixlen;
                        memcpy(key_ipv4->data, &a->address, sizeof(uint32_t));

                        r = bpf_map_update_element(ipv4_map_fd, key_ipv4, &value);
                        if (r < 0)
                                return r;

                        break;

                case AF_INET6:
                        key_ipv6->prefixlen = a->prefixlen;
                        memcpy(key_ipv6->data, &a->address, 4 * sizeof(uint32_t));

                        r = bpf_map_update_element(ipv6_map_fd, key_ipv6, &value);
                        if (r < 0)
                                return r;

                        break;

                default:
                        return -EAFNOSUPPORT;
                }
        }

        return 0;
}

static int bpf_firewall_prepare_access_maps(
                Unit *u,
                int verdict,
                int *ret_ipv4_map_fd,
                int *ret_ipv6_map_fd,
                bool *ret_has_any) {

        _cleanup_close_ int ipv4_map_fd = -1, ipv6_map_fd = -1;
        size_t n_ipv4 = 0, n_ipv6 = 0;
        IPAddressAccessItem *list;
        Unit *p;
        int r;

        assert(ret_ipv4_map_fd);
        assert(ret_ipv6_map_fd);
        assert(ret_has_any);

        for (p = u; p; p = UNIT_DEREF(p->slice)) {
                CGroupContext *cc;

                cc = unit_get_cgroup_context(p);
                if (!cc)
                        continue;

                list = verdict == ACCESS_ALLOWED ? cc->ip_address_allow : cc->ip_address_deny;

                bpf_firewall_count_access_items(list, &n_ipv4, &n_ipv6);

                /* Skip making the LPM trie map in cases where we are using "any" in order to hack around
                 * needing CAP_SYS_ADMIN for allocating LPM trie map. */
                if (ip_address_access_item_is_any(list)) {
                        *ret_has_any = true;
                        return 0;
                }
        }

        if (n_ipv4 > 0) {
                ipv4_map_fd = bpf_map_new(
                                BPF_MAP_TYPE_LPM_TRIE,
                                offsetof(struct bpf_lpm_trie_key, data) + sizeof(uint32_t),
                                sizeof(uint64_t),
                                n_ipv4,
                                BPF_F_NO_PREALLOC);
                if (ipv4_map_fd < 0)
                        return ipv4_map_fd;
        }

        if (n_ipv6 > 0) {
                ipv6_map_fd = bpf_map_new(
                                BPF_MAP_TYPE_LPM_TRIE,
                                offsetof(struct bpf_lpm_trie_key, data) + sizeof(uint32_t)*4,
                                sizeof(uint64_t),
                                n_ipv6,
                                BPF_F_NO_PREALLOC);
                if (ipv6_map_fd < 0)
                        return ipv6_map_fd;
        }

        for (p = u; p; p = UNIT_DEREF(p->slice)) {
                CGroupContext *cc;

                cc = unit_get_cgroup_context(p);
                if (!cc)
                        continue;

                r = bpf_firewall_add_access_items(verdict == ACCESS_ALLOWED ? cc->ip_address_allow : cc->ip_address_deny,
                                                  ipv4_map_fd, ipv6_map_fd, verdict);
                if (r < 0)
                        return r;
        }

        *ret_ipv4_map_fd = TAKE_FD(ipv4_map_fd);
        *ret_ipv6_map_fd = TAKE_FD(ipv6_map_fd);
        *ret_has_any = false;
        return 0;
}

static int bpf_firewall_prepare_accounting_maps(Unit *u, bool enabled, int *fd_ingress, int *fd_egress) {
        int r;

        assert(u);
        assert(fd_ingress);
        assert(fd_egress);

        if (enabled) {
                if (*fd_ingress < 0) {
                        r = bpf_map_new(BPF_MAP_TYPE_ARRAY, sizeof(int), sizeof(uint64_t), 2, 0);
                        if (r < 0)
                                return r;

                        *fd_ingress = r;
                }

                if (*fd_egress < 0) {

                        r = bpf_map_new(BPF_MAP_TYPE_ARRAY, sizeof(int), sizeof(uint64_t), 2, 0);
                        if (r < 0)
                                return r;

                        *fd_egress = r;
                }

        } else {
                *fd_ingress = safe_close(*fd_ingress);
                *fd_egress = safe_close(*fd_egress);

                zero(u->ip_accounting_extra);
        }

        return 0;
}

int bpf_firewall_compile(Unit *u) {
        CGroupContext *cc;
        int r, supported;
        bool ip_allow_any = false, ip_deny_any = false;

        assert(u);

        cc = unit_get_cgroup_context(u);
        if (!cc)
                return -EINVAL;

        supported = bpf_firewall_supported();
        if (supported < 0)
                return supported;
        if (supported == BPF_FIREWALL_UNSUPPORTED)
                return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EOPNOTSUPP),
                                            "BPF firewalling not supported on this manager, proceeding without.");
        if (supported != BPF_FIREWALL_SUPPORTED_WITH_MULTI && u->type == UNIT_SLICE)
                /* If BPF_F_ALLOW_MULTI is not supported we don't support any BPF magic on inner nodes (i.e. on slice
                 * units), since that would mean leaf nodes couldn't do any BPF anymore at all. Under the assumption
                 * that BPF is more interesting on leaf nodes we hence avoid it on inner nodes in that case. This is
                 * consistent with old systemd behaviour from before v238, where BPF wasn't supported in inner nodes at
                 * all, either. */
                return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EOPNOTSUPP),
                                            "BPF_F_ALLOW_MULTI is not supported on this manager, not doing BPF firewall on slice units.");

        /* Note that when we compile a new firewall we first flush out the access maps and the BPF programs themselves,
         * but we reuse the accounting maps. That way the firewall in effect always maps to the actual
         * configuration, but we don't flush out the accounting unnecessarily */

        u->ip_bpf_ingress = bpf_program_unref(u->ip_bpf_ingress);
        u->ip_bpf_egress = bpf_program_unref(u->ip_bpf_egress);

        u->ipv4_allow_map_fd = safe_close(u->ipv4_allow_map_fd);
        u->ipv4_deny_map_fd = safe_close(u->ipv4_deny_map_fd);

        u->ipv6_allow_map_fd = safe_close(u->ipv6_allow_map_fd);
        u->ipv6_deny_map_fd = safe_close(u->ipv6_deny_map_fd);

        if (u->type != UNIT_SLICE) {
                /* In inner nodes we only do accounting, we do not actually bother with access control. However, leaf
                 * nodes will incorporate all IP access rules set on all their parent nodes. This has the benefit that
                 * they can optionally cancel out system-wide rules. Since inner nodes can't contain processes this
                 * means that all configure IP access rules *will* take effect on processes, even though we never
                 * compile them for inner nodes. */

                r = bpf_firewall_prepare_access_maps(u, ACCESS_ALLOWED, &u->ipv4_allow_map_fd, &u->ipv6_allow_map_fd, &ip_allow_any);
                if (r < 0)
                        return log_unit_error_errno(u, r, "Preparation of eBPF allow maps failed: %m");

                r = bpf_firewall_prepare_access_maps(u, ACCESS_DENIED, &u->ipv4_deny_map_fd, &u->ipv6_deny_map_fd, &ip_deny_any);
                if (r < 0)
                        return log_unit_error_errno(u, r, "Preparation of eBPF deny maps failed: %m");
        }

        r = bpf_firewall_prepare_accounting_maps(u, cc->ip_accounting, &u->ip_accounting_ingress_map_fd, &u->ip_accounting_egress_map_fd);
        if (r < 0)
                return log_unit_error_errno(u, r, "Preparation of eBPF accounting maps failed: %m");

        r = bpf_firewall_compile_bpf(u, true, &u->ip_bpf_ingress, ip_allow_any, ip_deny_any);
        if (r < 0)
                return log_unit_error_errno(u, r, "Compilation for ingress BPF program failed: %m");

        r = bpf_firewall_compile_bpf(u, false, &u->ip_bpf_egress, ip_allow_any, ip_deny_any);
        if (r < 0)
                return log_unit_error_errno(u, r, "Compilation for egress BPF program failed: %m");

        return 0;
}

DEFINE_PRIVATE_HASH_OPS_WITH_VALUE_DESTRUCTOR(filter_prog_hash_ops, void, trivial_hash_func, trivial_compare_func, BPFProgram, bpf_program_unref);

static int load_bpf_progs_from_fs_to_set(Unit *u, char **filter_paths, Set **set) {
        char **bpf_fs_path;

        set_clear(*set);

        STRV_FOREACH(bpf_fs_path, filter_paths) {
                _cleanup_(bpf_program_unrefp) BPFProgram *prog = NULL;
                int r;

                r = bpf_program_new(BPF_PROG_TYPE_CGROUP_SKB, &prog);
                if (r < 0)
                        return log_unit_error_errno(u, r, "Can't allocate CGROUP SKB BPF program: %m");

                r = bpf_program_load_from_bpf_fs(prog, *bpf_fs_path);
                if (r < 0)
                        return log_unit_error_errno(u, r, "Loading of ingress BPF program %s failed: %m", *bpf_fs_path);

                r = set_ensure_consume(set, &filter_prog_hash_ops, TAKE_PTR(prog));
                if (r < 0)
                        return log_unit_error_errno(u, r, "Can't add program to BPF program set: %m");
        }

        return 0;
}

int bpf_firewall_load_custom(Unit *u) {
        CGroupContext *cc;
        int r, supported;

        assert(u);

        cc = unit_get_cgroup_context(u);
        if (!cc)
                return 0;

        if (!(cc->ip_filters_ingress || cc->ip_filters_egress))
                return 0;

        supported = bpf_firewall_supported();
        if (supported < 0)
                return supported;

        if (supported != BPF_FIREWALL_SUPPORTED_WITH_MULTI)
                return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EOPNOTSUPP), "BPF_F_ALLOW_MULTI not supported on this manager, cannot attach custom BPF programs.");

        r = load_bpf_progs_from_fs_to_set(u, cc->ip_filters_ingress, &u->ip_bpf_custom_ingress);
        if (r < 0)
                return r;
        r = load_bpf_progs_from_fs_to_set(u, cc->ip_filters_egress, &u->ip_bpf_custom_egress);
        if (r < 0)
                return r;

        return 0;
}

static int attach_custom_bpf_progs(Unit *u, const char *path, int attach_type, Set **set, Set **set_installed) {
        BPFProgram *prog;
        int r;

        assert(u);

        set_clear(*set_installed);

        SET_FOREACH(prog, *set) {
                r = bpf_program_cgroup_attach(prog, attach_type, path, BPF_F_ALLOW_MULTI);
                if (r < 0)
                        return log_unit_error_errno(u, r, "Attaching custom egress BPF program to cgroup %s failed: %m", path);

                /* Remember that these BPF programs are installed now. */
                r = set_ensure_put(set_installed, &filter_prog_hash_ops, prog);
                if (r < 0)
                        return log_unit_error_errno(u, r, "Can't add program to BPF program set: %m");
                bpf_program_ref(prog);
        }

        return 0;
}

int bpf_firewall_install(Unit *u) {
        _cleanup_free_ char *path = NULL;
        CGroupContext *cc;
        int r, supported;
        uint32_t flags;

        assert(u);

        cc = unit_get_cgroup_context(u);
        if (!cc)
                return -EINVAL;
        if (!u->cgroup_path)
                return -EINVAL;
        if (!u->cgroup_realized)
                return -EINVAL;

        supported = bpf_firewall_supported();
        if (supported < 0)
                return supported;
        if (supported == BPF_FIREWALL_UNSUPPORTED) {
                log_unit_debug(u, "BPF firewalling not supported on this manager, proceeding without.");
                return -EOPNOTSUPP;
        }
        if (supported != BPF_FIREWALL_SUPPORTED_WITH_MULTI && u->type == UNIT_SLICE) {
                log_unit_debug(u, "BPF_F_ALLOW_MULTI is not supported on this manager, not doing BPF firewall on slice units.");
                return -EOPNOTSUPP;
        }
        if (supported != BPF_FIREWALL_SUPPORTED_WITH_MULTI &&
            (!set_isempty(u->ip_bpf_custom_ingress) || !set_isempty(u->ip_bpf_custom_egress)))
                return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EOPNOTSUPP), "BPF_F_ALLOW_MULTI not supported on this manager, cannot attach custom BPF programs.");

        r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, NULL, &path);
        if (r < 0)
                return log_unit_error_errno(u, r, "Failed to determine cgroup path: %m");

        flags = (supported == BPF_FIREWALL_SUPPORTED_WITH_MULTI &&
                 (u->type == UNIT_SLICE || unit_cgroup_delegate(u))) ? BPF_F_ALLOW_MULTI : 0;

        /* Unref the old BPF program (which will implicitly detach it) right before attaching the new program, to
         * minimize the time window when we don't account for IP traffic. */
        u->ip_bpf_egress_installed = bpf_program_unref(u->ip_bpf_egress_installed);
        u->ip_bpf_ingress_installed = bpf_program_unref(u->ip_bpf_ingress_installed);

        if (u->ip_bpf_egress) {
                r = bpf_program_cgroup_attach(u->ip_bpf_egress, BPF_CGROUP_INET_EGRESS, path,
                                              flags | (set_isempty(u->ip_bpf_custom_egress) ? 0 : BPF_F_ALLOW_MULTI));
                if (r < 0)
                        return log_unit_error_errno(u, r, "Attaching egress BPF program to cgroup %s failed: %m", path);

                /* Remember that this BPF program is installed now. */
                u->ip_bpf_egress_installed = bpf_program_ref(u->ip_bpf_egress);
        }

        if (u->ip_bpf_ingress) {
                r = bpf_program_cgroup_attach(u->ip_bpf_ingress, BPF_CGROUP_INET_INGRESS, path,
                                              flags | (set_isempty(u->ip_bpf_custom_ingress) ? 0 : BPF_F_ALLOW_MULTI));
                if (r < 0)
                        return log_unit_error_errno(u, r, "Attaching ingress BPF program to cgroup %s failed: %m", path);

                u->ip_bpf_ingress_installed = bpf_program_ref(u->ip_bpf_ingress);
        }

        r = attach_custom_bpf_progs(u, path, BPF_CGROUP_INET_EGRESS, &u->ip_bpf_custom_egress, &u->ip_bpf_custom_egress_installed);
        if (r < 0)
                return r;

        r = attach_custom_bpf_progs(u, path, BPF_CGROUP_INET_INGRESS, &u->ip_bpf_custom_ingress, &u->ip_bpf_custom_ingress_installed);
        if (r < 0)
                return r;

        return 0;
}

int bpf_firewall_read_accounting(int map_fd, uint64_t *ret_bytes, uint64_t *ret_packets) {
        uint64_t key, packets;
        int r;

        if (map_fd < 0)
                return -EBADF;

        if (ret_packets) {
                key = MAP_KEY_PACKETS;
                r = bpf_map_lookup_element(map_fd, &key, &packets);
                if (r < 0)
                        return r;
        }

        if (ret_bytes) {
                key = MAP_KEY_BYTES;
                r = bpf_map_lookup_element(map_fd, &key, ret_bytes);
                if (r < 0)
                        return r;
        }

        if (ret_packets)
                *ret_packets = packets;

        return 0;
}

int bpf_firewall_reset_accounting(int map_fd) {
        uint64_t key, value = 0;
        int r;

        if (map_fd < 0)
                return -EBADF;

        key = MAP_KEY_PACKETS;
        r = bpf_map_update_element(map_fd, &key, &value);
        if (r < 0)
                return r;

        key = MAP_KEY_BYTES;
        return bpf_map_update_element(map_fd, &key, &value);
}

static int bpf_firewall_unsupported_reason = 0;

int bpf_firewall_supported(void) {
        const struct bpf_insn trivial[] = {
                BPF_MOV64_IMM(BPF_REG_0, 1),
                BPF_EXIT_INSN()
        };

        _cleanup_(bpf_program_unrefp) BPFProgram *program = NULL;
        static int supported = -1;
        union bpf_attr attr;
        int r;

        /* Checks whether BPF firewalling is supported. For this, we check the following things:
         *
         * - whether the unified hierarchy is being used
         * - the BPF implementation in the kernel supports BPF_PROG_TYPE_CGROUP_SKB programs, which we require
         * - the BPF implementation in the kernel supports the BPF_PROG_DETACH call, which we require
         */
        if (supported >= 0)
                return supported;

        r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
        if (r < 0)
                return log_error_errno(r, "Can't determine whether the unified hierarchy is used: %m");
        if (r == 0) {
                bpf_firewall_unsupported_reason =
                        log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN),
                                        "Not running with unified cgroups, BPF firewalling is not supported.");
                return supported = BPF_FIREWALL_UNSUPPORTED;
        }

        r = bpf_program_new(BPF_PROG_TYPE_CGROUP_SKB, &program);
        if (r < 0) {
                bpf_firewall_unsupported_reason =
                        log_debug_errno(r, "Can't allocate CGROUP SKB BPF program, BPF firewalling is not supported: %m");
                return supported = BPF_FIREWALL_UNSUPPORTED;
        }

        r = bpf_program_add_instructions(program, trivial, ELEMENTSOF(trivial));
        if (r < 0) {
                bpf_firewall_unsupported_reason =
                        log_debug_errno(r, "Can't add trivial instructions to CGROUP SKB BPF program, BPF firewalling is not supported: %m");
                return supported = BPF_FIREWALL_UNSUPPORTED;
        }

        r = bpf_program_load_kernel(program, NULL, 0);
        if (r < 0) {
                bpf_firewall_unsupported_reason =
                        log_debug_errno(r, "Can't load kernel CGROUP SKB BPF program, BPF firewalling is not supported: %m");
                return supported = BPF_FIREWALL_UNSUPPORTED;
        }

        /* Unfortunately the kernel allows us to create BPF_PROG_TYPE_CGROUP_SKB programs even when CONFIG_CGROUP_BPF
         * is turned off at kernel compilation time. This sucks of course: why does it allow us to create a cgroup BPF
         * program if we can't do a thing with it later?
         *
         * We detect this case by issuing the BPF_PROG_DETACH bpf() call with invalid file descriptors: if
         * CONFIG_CGROUP_BPF is turned off, then the call will fail early with EINVAL. If it is turned on the
         * parameters are validated however, and that'll fail with EBADF then. */

        // FIXME: Clang doesn't 0-pad with structured initialization, causing
        // the kernel to reject the bpf_attr as invalid. See:
        // https://github.com/torvalds/linux/blob/v5.9/kernel/bpf/syscall.c#L65
        // Ideally it should behave like GCC, so that we can remove these workarounds.
        zero(attr);
        attr.attach_type = BPF_CGROUP_INET_EGRESS;
        attr.target_fd = -1;
        attr.attach_bpf_fd = -1;

        if (bpf(BPF_PROG_DETACH, &attr, sizeof(attr)) < 0) {
                if (errno != EBADF) {
                        bpf_firewall_unsupported_reason =
                                log_debug_errno(errno, "Didn't get EBADF from BPF_PROG_DETACH, BPF firewalling is not supported: %m");
                        return supported = BPF_FIREWALL_UNSUPPORTED;
                }

                /* YAY! */
        } else {
                log_debug("Wut? Kernel accepted our invalid BPF_PROG_DETACH call? Something is weird, assuming BPF firewalling is broken and hence not supported.");
                return supported = BPF_FIREWALL_UNSUPPORTED;
        }

        /* So now we know that the BPF program is generally available, let's see if BPF_F_ALLOW_MULTI is also supported
         * (which was added in kernel 4.15). We use a similar logic as before, but this time we use the BPF_PROG_ATTACH
         * bpf() call and the BPF_F_ALLOW_MULTI flags value. Since the flags are checked early in the system call we'll
         * get EINVAL if it's not supported, and EBADF as before if it is available. */

        zero(attr);
        attr.attach_type = BPF_CGROUP_INET_EGRESS;
        attr.target_fd = -1;
        attr.attach_bpf_fd = -1;
        attr.attach_flags = BPF_F_ALLOW_MULTI;

        if (bpf(BPF_PROG_ATTACH, &attr, sizeof(attr)) < 0) {
                if (errno == EBADF) {
                        log_debug_errno(errno, "Got EBADF when using BPF_F_ALLOW_MULTI, which indicates it is supported. Yay!");
                        return supported = BPF_FIREWALL_SUPPORTED_WITH_MULTI;
                }

                if (errno == EINVAL)
                        log_debug_errno(errno, "Got EINVAL error when using BPF_F_ALLOW_MULTI, which indicates it's not supported.");
                else
                        log_debug_errno(errno, "Got unexpected error when using BPF_F_ALLOW_MULTI, assuming it's not supported: %m");

                return supported = BPF_FIREWALL_SUPPORTED;
        } else {
                log_debug("Wut? Kernel accepted our invalid BPF_PROG_ATTACH+BPF_F_ALLOW_MULTI call? Something is weird, assuming BPF firewalling is broken and hence not supported.");
                return supported = BPF_FIREWALL_UNSUPPORTED;
        }
}

void emit_bpf_firewall_warning(Unit *u) {
        static bool warned = false;

        if (!warned) {
                bool quiet = bpf_firewall_unsupported_reason == -EPERM && detect_container() > 0;

                log_unit_full_errno(u, quiet ? LOG_DEBUG : LOG_WARNING, bpf_firewall_unsupported_reason,
                                    "unit configures an IP firewall, but %s.\n"
                                    "(This warning is only shown for the first unit using IP firewalling.)",
                                    getuid() != 0 ? "not running as root" :
                                                    "the local system does not support BPF/cgroup firewalling");
                warned = true;
        }
}