1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
|
/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* SPDX-License-Identifier: MPL-2.0
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
/*! \file */
#include <inttypes.h>
#include <stdbool.h>
#include <stddef.h>
#if defined(sun) && (defined(__sparc) || defined(__sparc__))
#include <synch.h> /* for smt_pause(3c) */
#endif /* if defined(sun) && (defined(__sparc) || defined(__sparc__)) */
#include <isc/atomic.h>
#include <isc/magic.h>
#include <isc/platform.h>
#include <isc/print.h>
#include <isc/rwlock.h>
#include <isc/util.h>
#if USE_PTHREAD_RWLOCK
#include <errno.h>
#include <pthread.h>
void
isc_rwlock_init(isc_rwlock_t *rwl, unsigned int read_quota,
unsigned int write_quota) {
UNUSED(read_quota);
UNUSED(write_quota);
REQUIRE(pthread_rwlock_init(&rwl->rwlock, NULL) == 0);
atomic_init(&rwl->downgrade, false);
}
isc_result_t
isc_rwlock_lock(isc_rwlock_t *rwl, isc_rwlocktype_t type) {
switch (type) {
case isc_rwlocktype_read:
REQUIRE(pthread_rwlock_rdlock(&rwl->rwlock) == 0);
break;
case isc_rwlocktype_write:
while (true) {
REQUIRE(pthread_rwlock_wrlock(&rwl->rwlock) == 0);
/* Unlock if in middle of downgrade operation */
if (atomic_load_acquire(&rwl->downgrade)) {
REQUIRE(pthread_rwlock_unlock(&rwl->rwlock) ==
0);
while (atomic_load_acquire(&rwl->downgrade)) {
}
continue;
}
break;
}
break;
default:
UNREACHABLE();
}
return (ISC_R_SUCCESS);
}
isc_result_t
isc_rwlock_trylock(isc_rwlock_t *rwl, isc_rwlocktype_t type) {
int ret = 0;
switch (type) {
case isc_rwlocktype_read:
ret = pthread_rwlock_tryrdlock(&rwl->rwlock);
break;
case isc_rwlocktype_write:
ret = pthread_rwlock_trywrlock(&rwl->rwlock);
if ((ret == 0) && atomic_load_acquire(&rwl->downgrade)) {
isc_rwlock_unlock(rwl, type);
return (ISC_R_LOCKBUSY);
}
break;
default:
UNREACHABLE();
}
switch (ret) {
case 0:
return (ISC_R_SUCCESS);
case EBUSY:
return (ISC_R_LOCKBUSY);
case EAGAIN:
return (ISC_R_LOCKBUSY);
default:
UNREACHABLE();
}
}
isc_result_t
isc_rwlock_unlock(isc_rwlock_t *rwl, isc_rwlocktype_t type) {
UNUSED(type);
REQUIRE(pthread_rwlock_unlock(&rwl->rwlock) == 0);
return (ISC_R_SUCCESS);
}
isc_result_t
isc_rwlock_tryupgrade(isc_rwlock_t *rwl) {
UNUSED(rwl);
return (ISC_R_LOCKBUSY);
}
void
isc_rwlock_downgrade(isc_rwlock_t *rwl) {
isc_result_t result;
atomic_store_release(&rwl->downgrade, true);
result = isc_rwlock_unlock(rwl, isc_rwlocktype_write);
RUNTIME_CHECK(result == ISC_R_SUCCESS);
result = isc_rwlock_lock(rwl, isc_rwlocktype_read);
RUNTIME_CHECK(result == ISC_R_SUCCESS);
atomic_store_release(&rwl->downgrade, false);
}
void
isc_rwlock_destroy(isc_rwlock_t *rwl) {
pthread_rwlock_destroy(&rwl->rwlock);
}
#else /* if USE_PTHREAD_RWLOCK */
#define RWLOCK_MAGIC ISC_MAGIC('R', 'W', 'L', 'k')
#define VALID_RWLOCK(rwl) ISC_MAGIC_VALID(rwl, RWLOCK_MAGIC)
#ifndef RWLOCK_DEFAULT_READ_QUOTA
#define RWLOCK_DEFAULT_READ_QUOTA 4
#endif /* ifndef RWLOCK_DEFAULT_READ_QUOTA */
#ifndef RWLOCK_DEFAULT_WRITE_QUOTA
#define RWLOCK_DEFAULT_WRITE_QUOTA 4
#endif /* ifndef RWLOCK_DEFAULT_WRITE_QUOTA */
#ifndef RWLOCK_MAX_ADAPTIVE_COUNT
#define RWLOCK_MAX_ADAPTIVE_COUNT 100
#endif /* ifndef RWLOCK_MAX_ADAPTIVE_COUNT */
#if defined(_MSC_VER)
#include <intrin.h>
#define isc_rwlock_pause() YieldProcessor()
#elif defined(__x86_64__)
#include <immintrin.h>
#define isc_rwlock_pause() _mm_pause()
#elif defined(__i386__)
#define isc_rwlock_pause() __asm__ __volatile__("rep; nop")
#elif defined(__ia64__)
#define isc_rwlock_pause() __asm__ __volatile__("hint @pause")
#elif defined(__arm__) && HAVE_ARM_YIELD
#define isc_rwlock_pause() __asm__ __volatile__("yield")
#elif defined(sun) && (defined(__sparc) || defined(__sparc__))
#define isc_rwlock_pause() smt_pause()
#elif (defined(__sparc) || defined(__sparc__)) && HAVE_SPARC_PAUSE
#define isc_rwlock_pause() __asm__ __volatile__("pause")
#elif defined(__ppc__) || defined(_ARCH_PPC) || defined(_ARCH_PWR) || \
defined(_ARCH_PWR2) || defined(_POWER)
#define isc_rwlock_pause() __asm__ volatile("or 27,27,27")
#else /* if defined(_MSC_VER) */
#define isc_rwlock_pause()
#endif /* if defined(_MSC_VER) */
static isc_result_t
isc__rwlock_lock(isc_rwlock_t *rwl, isc_rwlocktype_t type);
#ifdef ISC_RWLOCK_TRACE
#include <stdio.h> /* Required for fprintf/stderr. */
#include <isc/thread.h> /* Required for isc_thread_self(). */
static void
print_lock(const char *operation, isc_rwlock_t *rwl, isc_rwlocktype_t type) {
fprintf(stderr,
"rwlock %p thread %" PRIuPTR " %s(%s): "
"write_requests=%u, write_completions=%u, "
"cnt_and_flag=0x%x, readers_waiting=%u, "
"write_granted=%u, write_quota=%u\n",
rwl, isc_thread_self(), operation,
(type == isc_rwlocktype_read ? "read" : "write"),
atomic_load_acquire(&rwl->write_requests),
atomic_load_acquire(&rwl->write_completions),
atomic_load_acquire(&rwl->cnt_and_flag), rwl->readers_waiting,
atomic_load_acquire(&rwl->write_granted), rwl->write_quota);
}
#endif /* ISC_RWLOCK_TRACE */
void
isc_rwlock_init(isc_rwlock_t *rwl, unsigned int read_quota,
unsigned int write_quota) {
REQUIRE(rwl != NULL);
/*
* In case there's trouble initializing, we zero magic now. If all
* goes well, we'll set it to RWLOCK_MAGIC.
*/
rwl->magic = 0;
atomic_init(&rwl->spins, 0);
atomic_init(&rwl->write_requests, 0);
atomic_init(&rwl->write_completions, 0);
atomic_init(&rwl->cnt_and_flag, 0);
rwl->readers_waiting = 0;
atomic_init(&rwl->write_granted, 0);
if (read_quota != 0) {
UNEXPECTED_ERROR(__FILE__, __LINE__,
"read quota is not supported");
}
if (write_quota == 0) {
write_quota = RWLOCK_DEFAULT_WRITE_QUOTA;
}
rwl->write_quota = write_quota;
isc_mutex_init(&rwl->lock);
isc_condition_init(&rwl->readable);
isc_condition_init(&rwl->writeable);
rwl->magic = RWLOCK_MAGIC;
}
void
isc_rwlock_destroy(isc_rwlock_t *rwl) {
REQUIRE(VALID_RWLOCK(rwl));
REQUIRE(atomic_load_acquire(&rwl->write_requests) ==
atomic_load_acquire(&rwl->write_completions) &&
atomic_load_acquire(&rwl->cnt_and_flag) == 0 &&
rwl->readers_waiting == 0);
rwl->magic = 0;
(void)isc_condition_destroy(&rwl->readable);
(void)isc_condition_destroy(&rwl->writeable);
isc_mutex_destroy(&rwl->lock);
}
/*
* When some architecture-dependent atomic operations are available,
* rwlock can be more efficient than the generic algorithm defined below.
* The basic algorithm is described in the following URL:
* http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/rw.html
*
* The key is to use the following integer variables modified atomically:
* write_requests, write_completions, and cnt_and_flag.
*
* write_requests and write_completions act as a waiting queue for writers
* in order to ensure the FIFO order. Both variables begin with the initial
* value of 0. When a new writer tries to get a write lock, it increments
* write_requests and gets the previous value of the variable as a "ticket".
* When write_completions reaches the ticket number, the new writer can start
* writing. When the writer completes its work, it increments
* write_completions so that another new writer can start working. If the
* write_requests is not equal to write_completions, it means a writer is now
* working or waiting. In this case, a new readers cannot start reading, or
* in other words, this algorithm basically prefers writers.
*
* cnt_and_flag is a "lock" shared by all readers and writers. This integer
* variable is a kind of structure with two members: writer_flag (1 bit) and
* reader_count (31 bits). The writer_flag shows whether a writer is working,
* and the reader_count shows the number of readers currently working or almost
* ready for working. A writer who has the current "ticket" tries to get the
* lock by exclusively setting the writer_flag to 1, provided that the whole
* 32-bit is 0 (meaning no readers or writers working). On the other hand,
* a new reader tries to increment the "reader_count" field provided that
* the writer_flag is 0 (meaning there is no writer working).
*
* If some of the above operations fail, the reader or the writer sleeps
* until the related condition changes. When a working reader or writer
* completes its work, some readers or writers are sleeping, and the condition
* that suspended the reader or writer has changed, it wakes up the sleeping
* readers or writers.
*
* As already noted, this algorithm basically prefers writers. In order to
* prevent readers from starving, however, the algorithm also introduces the
* "writer quota" (Q). When Q consecutive writers have completed their work,
* suspending readers, the last writer will wake up the readers, even if a new
* writer is waiting.
*
* Implementation specific note: due to the combination of atomic operations
* and a mutex lock, ordering between the atomic operation and locks can be
* very sensitive in some cases. In particular, it is generally very important
* to check the atomic variable that requires a reader or writer to sleep after
* locking the mutex and before actually sleeping; otherwise, it could be very
* likely to cause a deadlock. For example, assume "var" is a variable
* atomically modified, then the corresponding code would be:
* if (var == need_sleep) {
* LOCK(lock);
* if (var == need_sleep)
* WAIT(cond, lock);
* UNLOCK(lock);
* }
* The second check is important, since "var" is protected by the atomic
* operation, not by the mutex, and can be changed just before sleeping.
* (The first "if" could be omitted, but this is also important in order to
* make the code efficient by avoiding the use of the mutex unless it is
* really necessary.)
*/
#define WRITER_ACTIVE 0x1
#define READER_INCR 0x2
static isc_result_t
isc__rwlock_lock(isc_rwlock_t *rwl, isc_rwlocktype_t type) {
int32_t cntflag;
REQUIRE(VALID_RWLOCK(rwl));
#ifdef ISC_RWLOCK_TRACE
print_lock("prelock", rwl, type);
#endif /* ifdef ISC_RWLOCK_TRACE */
if (type == isc_rwlocktype_read) {
if (atomic_load_acquire(&rwl->write_requests) !=
atomic_load_acquire(&rwl->write_completions))
{
/* there is a waiting or active writer */
LOCK(&rwl->lock);
if (atomic_load_acquire(&rwl->write_requests) !=
atomic_load_acquire(&rwl->write_completions))
{
rwl->readers_waiting++;
WAIT(&rwl->readable, &rwl->lock);
rwl->readers_waiting--;
}
UNLOCK(&rwl->lock);
}
cntflag = atomic_fetch_add_release(&rwl->cnt_and_flag,
READER_INCR);
POST(cntflag);
while (1) {
if ((atomic_load_acquire(&rwl->cnt_and_flag) &
WRITER_ACTIVE) == 0)
{
break;
}
/* A writer is still working */
LOCK(&rwl->lock);
rwl->readers_waiting++;
if ((atomic_load_acquire(&rwl->cnt_and_flag) &
WRITER_ACTIVE) != 0)
{
WAIT(&rwl->readable, &rwl->lock);
}
rwl->readers_waiting--;
UNLOCK(&rwl->lock);
/*
* Typically, the reader should be able to get a lock
* at this stage:
* (1) there should have been no pending writer when
* the reader was trying to increment the
* counter; otherwise, the writer should be in
* the waiting queue, preventing the reader from
* proceeding to this point.
* (2) once the reader increments the counter, no
* more writer can get a lock.
* Still, it is possible another writer can work at
* this point, e.g. in the following scenario:
* A previous writer unlocks the writer lock.
* This reader proceeds to point (1).
* A new writer appears, and gets a new lock before
* the reader increments the counter.
* The reader then increments the counter.
* The previous writer notices there is a waiting
* reader who is almost ready, and wakes it up.
* So, the reader needs to confirm whether it can now
* read explicitly (thus we loop). Note that this is
* not an infinite process, since the reader has
* incremented the counter at this point.
*/
}
/*
* If we are temporarily preferred to writers due to the writer
* quota, reset the condition (race among readers doesn't
* matter).
*/
atomic_store_release(&rwl->write_granted, 0);
} else {
int32_t prev_writer;
/* enter the waiting queue, and wait for our turn */
prev_writer = atomic_fetch_add_release(&rwl->write_requests, 1);
while (atomic_load_acquire(&rwl->write_completions) !=
prev_writer)
{
LOCK(&rwl->lock);
if (atomic_load_acquire(&rwl->write_completions) !=
prev_writer)
{
WAIT(&rwl->writeable, &rwl->lock);
UNLOCK(&rwl->lock);
continue;
}
UNLOCK(&rwl->lock);
break;
}
while (!atomic_compare_exchange_weak_acq_rel(
&rwl->cnt_and_flag, &(int_fast32_t){ 0 },
WRITER_ACTIVE))
{
/* Another active reader or writer is working. */
LOCK(&rwl->lock);
if (atomic_load_acquire(&rwl->cnt_and_flag) != 0) {
WAIT(&rwl->writeable, &rwl->lock);
}
UNLOCK(&rwl->lock);
}
INSIST((atomic_load_acquire(&rwl->cnt_and_flag) &
WRITER_ACTIVE));
atomic_fetch_add_release(&rwl->write_granted, 1);
}
#ifdef ISC_RWLOCK_TRACE
print_lock("postlock", rwl, type);
#endif /* ifdef ISC_RWLOCK_TRACE */
return (ISC_R_SUCCESS);
}
isc_result_t
isc_rwlock_lock(isc_rwlock_t *rwl, isc_rwlocktype_t type) {
int32_t cnt = 0;
int32_t spins = atomic_load_acquire(&rwl->spins) * 2 + 10;
int32_t max_cnt = ISC_MAX(spins, RWLOCK_MAX_ADAPTIVE_COUNT);
isc_result_t result = ISC_R_SUCCESS;
do {
if (cnt++ >= max_cnt) {
result = isc__rwlock_lock(rwl, type);
break;
}
isc_rwlock_pause();
} while (isc_rwlock_trylock(rwl, type) != ISC_R_SUCCESS);
atomic_fetch_add_release(&rwl->spins, (cnt - spins) / 8);
return (result);
}
isc_result_t
isc_rwlock_trylock(isc_rwlock_t *rwl, isc_rwlocktype_t type) {
int32_t cntflag;
REQUIRE(VALID_RWLOCK(rwl));
#ifdef ISC_RWLOCK_TRACE
print_lock("prelock", rwl, type);
#endif /* ifdef ISC_RWLOCK_TRACE */
if (type == isc_rwlocktype_read) {
/* If a writer is waiting or working, we fail. */
if (atomic_load_acquire(&rwl->write_requests) !=
atomic_load_acquire(&rwl->write_completions))
{
return (ISC_R_LOCKBUSY);
}
/* Otherwise, be ready for reading. */
cntflag = atomic_fetch_add_release(&rwl->cnt_and_flag,
READER_INCR);
if ((cntflag & WRITER_ACTIVE) != 0) {
/*
* A writer is working. We lose, and cancel the read
* request.
*/
cntflag = atomic_fetch_sub_release(&rwl->cnt_and_flag,
READER_INCR);
/*
* If no other readers are waiting and we've suspended
* new writers in this short period, wake them up.
*/
if (cntflag == READER_INCR &&
atomic_load_acquire(&rwl->write_completions) !=
atomic_load_acquire(&rwl->write_requests))
{
LOCK(&rwl->lock);
BROADCAST(&rwl->writeable);
UNLOCK(&rwl->lock);
}
return (ISC_R_LOCKBUSY);
}
} else {
/* Try locking without entering the waiting queue. */
int_fast32_t zero = 0;
if (!atomic_compare_exchange_strong_acq_rel(
&rwl->cnt_and_flag, &zero, WRITER_ACTIVE))
{
return (ISC_R_LOCKBUSY);
}
/*
* XXXJT: jump into the queue, possibly breaking the writer
* order.
*/
atomic_fetch_sub_release(&rwl->write_completions, 1);
atomic_fetch_add_release(&rwl->write_granted, 1);
}
#ifdef ISC_RWLOCK_TRACE
print_lock("postlock", rwl, type);
#endif /* ifdef ISC_RWLOCK_TRACE */
return (ISC_R_SUCCESS);
}
isc_result_t
isc_rwlock_tryupgrade(isc_rwlock_t *rwl) {
REQUIRE(VALID_RWLOCK(rwl));
int_fast32_t reader_incr = READER_INCR;
/* Try to acquire write access. */
atomic_compare_exchange_strong_acq_rel(&rwl->cnt_and_flag, &reader_incr,
WRITER_ACTIVE);
/*
* There must have been no writer, and there must have
* been at least one reader.
*/
INSIST((reader_incr & WRITER_ACTIVE) == 0 &&
(reader_incr & ~WRITER_ACTIVE) != 0);
if (reader_incr == READER_INCR) {
/*
* We are the only reader and have been upgraded.
* Now jump into the head of the writer waiting queue.
*/
atomic_fetch_sub_release(&rwl->write_completions, 1);
} else {
return (ISC_R_LOCKBUSY);
}
return (ISC_R_SUCCESS);
}
void
isc_rwlock_downgrade(isc_rwlock_t *rwl) {
int32_t prev_readers;
REQUIRE(VALID_RWLOCK(rwl));
/* Become an active reader. */
prev_readers = atomic_fetch_add_release(&rwl->cnt_and_flag,
READER_INCR);
/* We must have been a writer. */
INSIST((prev_readers & WRITER_ACTIVE) != 0);
/* Complete write */
atomic_fetch_sub_release(&rwl->cnt_and_flag, WRITER_ACTIVE);
atomic_fetch_add_release(&rwl->write_completions, 1);
/* Resume other readers */
LOCK(&rwl->lock);
if (rwl->readers_waiting > 0) {
BROADCAST(&rwl->readable);
}
UNLOCK(&rwl->lock);
}
isc_result_t
isc_rwlock_unlock(isc_rwlock_t *rwl, isc_rwlocktype_t type) {
int32_t prev_cnt;
REQUIRE(VALID_RWLOCK(rwl));
#ifdef ISC_RWLOCK_TRACE
print_lock("preunlock", rwl, type);
#endif /* ifdef ISC_RWLOCK_TRACE */
if (type == isc_rwlocktype_read) {
prev_cnt = atomic_fetch_sub_release(&rwl->cnt_and_flag,
READER_INCR);
/*
* If we're the last reader and any writers are waiting, wake
* them up. We need to wake up all of them to ensure the
* FIFO order.
*/
if (prev_cnt == READER_INCR &&
atomic_load_acquire(&rwl->write_completions) !=
atomic_load_acquire(&rwl->write_requests))
{
LOCK(&rwl->lock);
BROADCAST(&rwl->writeable);
UNLOCK(&rwl->lock);
}
} else {
bool wakeup_writers = true;
/*
* Reset the flag, and (implicitly) tell other writers
* we are done.
*/
atomic_fetch_sub_release(&rwl->cnt_and_flag, WRITER_ACTIVE);
atomic_fetch_add_release(&rwl->write_completions, 1);
if ((atomic_load_acquire(&rwl->write_granted) >=
rwl->write_quota) ||
(atomic_load_acquire(&rwl->write_requests) ==
atomic_load_acquire(&rwl->write_completions)) ||
(atomic_load_acquire(&rwl->cnt_and_flag) & ~WRITER_ACTIVE))
{
/*
* We have passed the write quota, no writer is
* waiting, or some readers are almost ready, pending
* possible writers. Note that the last case can
* happen even if write_requests != write_completions
* (which means a new writer in the queue), so we need
* to catch the case explicitly.
*/
LOCK(&rwl->lock);
if (rwl->readers_waiting > 0) {
wakeup_writers = false;
BROADCAST(&rwl->readable);
}
UNLOCK(&rwl->lock);
}
if ((atomic_load_acquire(&rwl->write_requests) !=
atomic_load_acquire(&rwl->write_completions)) &&
wakeup_writers)
{
LOCK(&rwl->lock);
BROADCAST(&rwl->writeable);
UNLOCK(&rwl->lock);
}
}
#ifdef ISC_RWLOCK_TRACE
print_lock("postunlock", rwl, type);
#endif /* ifdef ISC_RWLOCK_TRACE */
return (ISC_R_SUCCESS);
}
#endif /* USE_PTHREAD_RWLOCK */
|