diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/example/daubechies_coefficients.cpp | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/example/daubechies_coefficients.cpp')
-rw-r--r-- | src/boost/libs/math/example/daubechies_coefficients.cpp | 221 |
1 files changed, 221 insertions, 0 deletions
diff --git a/src/boost/libs/math/example/daubechies_coefficients.cpp b/src/boost/libs/math/example/daubechies_coefficients.cpp new file mode 100644 index 00000000..4a8c4110 --- /dev/null +++ b/src/boost/libs/math/example/daubechies_coefficients.cpp @@ -0,0 +1,221 @@ +/* + * Copyright Nick Thompson, 2018 + * Use, modification and distribution are subject to the + * Boost Software License, Version 1.0. (See accompanying file + * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + */ +#include <iostream> +#include <vector> +#include <string> +#include <complex> +#include <bitset> +#include <boost/assert.hpp> +#include <boost/multiprecision/cpp_bin_float.hpp> +#include <boost/math/constants/constants.hpp> +#include <boost/math/tools/polynomial.hpp> +#include <boost/math/tools/roots.hpp> +#include <boost/math/special_functions/binomial.hpp> +#include <boost/multiprecision/cpp_complex.hpp> +#include <boost/multiprecision/complex128.hpp> +#include <boost/math/quadrature/gauss_kronrod.hpp> + +using std::string; +using boost::math::tools::polynomial; +using boost::math::binomial_coefficient; +using boost::math::tools::schroder_iterate; +using boost::math::tools::halley_iterate; +using boost::math::tools::newton_raphson_iterate; +using boost::math::tools::complex_newton; +using boost::math::constants::half; +using boost::math::constants::root_two; +using boost::math::constants::pi; +using boost::math::quadrature::gauss_kronrod; +using boost::multiprecision::cpp_bin_float_100; +using boost::multiprecision::cpp_complex_100; + +template<class Complex> +std::vector<std::pair<Complex, Complex>> find_roots(size_t p) +{ + // Initialize the polynomial; see Mallat, A Wavelet Tour of Signal Processing, equation 7.96 + BOOST_ASSERT(p>0); + typedef typename Complex::value_type Real; + std::vector<Complex> coeffs(p); + for (size_t k = 0; k < coeffs.size(); ++k) + { + coeffs[k] = Complex(binomial_coefficient<Real>(p-1+k, k), 0); + } + + polynomial<Complex> P(std::move(coeffs)); + polynomial<Complex> Pcopy = P; + polynomial<Complex> Pcopy_prime = P.prime(); + auto orig = [&](Complex z) { return std::make_pair<Complex, Complex>(Pcopy(z), Pcopy_prime(z)); }; + + polynomial<Complex> P_prime = P.prime(); + + // Polynomial is of degree p-1. + + std::vector<Complex> roots(p-1, {std::numeric_limits<Real>::quiet_NaN(),std::numeric_limits<Real>::quiet_NaN()}); + size_t i = 0; + while(P.size() > 1) + { + Complex guess = {0.0, 1.0}; + std::cout << std::setprecision(std::numeric_limits<Real>::digits10+3); + + auto f = [&](Complex x)->std::pair<Complex, Complex> + { + return std::make_pair<Complex, Complex>(P(x), P_prime(x)); + }; + + Complex r = complex_newton(f, guess); + using std::isnan; + if(isnan(r.real())) + { + int i = 50; + do { + // Try a different guess + guess *= Complex(1.0,-1.0); + r = complex_newton(f, guess); + std::cout << "New guess: " << guess << ", result? " << r << std::endl; + + } while (isnan(r.real()) && i-- > 0); + + if (isnan(r.real())) + { + std::cout << "Polynomial that killed the process: " << P << std::endl; + throw std::logic_error("Newton iteration did not converge"); + } + } + // Refine r with the original function. + // We only use the polynomial division to ensure we don't get the same root over and over. + // However, the division induces error which can grow quickly-or slowly! See Numerical Recipes, section 9.5.1. + r = complex_newton(orig, r); + if (isnan(r.real())) + { + throw std::logic_error("Found a root for the deflated polynomial which is not a root for the original. Indicative of catastrophic numerical error."); + } + // Test the root: + using std::sqrt; + Real tol = sqrt(sqrt(std::numeric_limits<Real>::epsilon())); + if (norm(Pcopy(r)) > tol) + { + std::cout << "This is a bad root: P" << r << " = " << Pcopy(r) << std::endl; + std::cout << "Reduced polynomial leading to bad root: " << P << std::endl; + throw std::logic_error("Donezo."); + } + + BOOST_ASSERT(i < roots.size()); + roots[i] = r; + ++i; + polynomial<Complex> q{-r, {1,0}}; + // This optimization breaks at p = 11. I have no clue why. + // Unfortunate, because I expect it to be considerably more stable than + // repeatedly dividing by the complex root. + /*polynomial<Complex> q; + if (r.imag() > sqrt(std::numeric_limits<Real>::epsilon())) + { + // Then the complex conjugate is also a root: + using std::conj; + using std::norm; + BOOST_ASSERT(i < roots.size()); + roots[i] = conj(r); + ++i; + q = polynomial<Complex>({{norm(r), 0}, {-2*r.real(),0}, {1,0}}); + } + else + { + // The imaginary part is numerical noise: + r.imag() = 0; + q = polynomial<Complex>({-r, {1,0}}); + }*/ + + + auto PR = quotient_remainder(P, q); + // I should validate that the remainder is small, but . . . + //std::cout << "Remainder = " << PR.second<< std::endl; + + P = PR.first; + P_prime = P.prime(); + } + + std::vector<std::pair<Complex, Complex>> Qroots(p-1); + for (size_t i = 0; i < Qroots.size(); ++i) + { + Complex y = roots[i]; + Complex z1 = static_cast<Complex>(1) - static_cast<Complex>(2)*y + static_cast<Complex>(2)*sqrt(y*(y-static_cast<Complex>(1))); + Complex z2 = static_cast<Complex>(1) - static_cast<Complex>(2)*y - static_cast<Complex>(2)*sqrt(y*(y-static_cast<Complex>(1))); + Qroots[i] = {z1, z2}; + } + + return Qroots; +} + +template<class Complex> +std::vector<typename Complex::value_type> daubechies_coefficients(std::vector<std::pair<Complex, Complex>> const & Qroots) +{ + typedef typename Complex::value_type Real; + size_t p = Qroots.size() + 1; + // Choose the minimum abs root; see Mallat, discussion just after equation 7.98 + std::vector<Complex> chosen_roots(p-1); + for (size_t i = 0; i < p - 1; ++i) + { + if(norm(Qroots[i].first) <= 1) + { + chosen_roots[i] = Qroots[i].first; + } + else + { + BOOST_ASSERT(norm(Qroots[i].second) <= 1); + chosen_roots[i] = Qroots[i].second; + } + } + + polynomial<Complex> R{1}; + for (size_t i = 0; i < p-1; ++i) + { + Complex ak = chosen_roots[i]; + R *= polynomial<Complex>({-ak/(static_cast<Complex>(1)-ak), static_cast<Complex>(1)/(static_cast<Complex>(1)-ak)}); + } + polynomial<Complex> a{{half<Real>(), 0}, {half<Real>(),0}}; + polynomial<Complex> poly = root_two<Real>()*pow(a, p)*R; + std::vector<Complex> result = poly.data(); + // If we reverse, we get the Numerical Recipes and Daubechies convention. + // If we don't reverse, we get the Pywavelets and Mallat convention. + // I believe this is because of the sign convention on the DFT, which differs between Daubechies and Mallat. + // You implement a dot product in Daubechies/NR convention, and a convolution in PyWavelets/Mallat convention. + // I won't reverse so I can spot check against Pywavelets: http://wavelets.pybytes.com/wavelet/ + //std::reverse(result.begin(), result.end()); + std::vector<Real> h(result.size()); + for (size_t i = 0; i < result.size(); ++i) + { + Complex r = result[i]; + BOOST_ASSERT(r.imag() < sqrt(std::numeric_limits<Real>::epsilon())); + h[i] = r.real(); + } + + // Quick sanity check: We could check all vanishing moments, but that sum is horribly ill-conditioned too! + Real sum = 0; + Real scale = 0; + for (size_t i = 0; i < h.size(); ++i) + { + sum += h[i]; + scale += h[i]*h[i]; + } + BOOST_ASSERT(abs(scale -1) < sqrt(std::numeric_limits<Real>::epsilon())); + BOOST_ASSERT(abs(sum - root_two<Real>()) < sqrt(std::numeric_limits<Real>::epsilon())); + return h; +} + +int main() +{ + typedef boost::multiprecision::cpp_complex<100> Complex; + for(size_t p = 1; p < 200; ++p) + { + auto roots = find_roots<Complex>(p); + auto h = daubechies_coefficients(roots); + std::cout << "h_" << p << "[] = {"; + for (auto& x : h) { + std::cout << x << ", "; + } + std::cout << "} // = h_" << p << "\n\n\n\n"; + } +} |