diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/example/distribution_construction.cpp | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/example/distribution_construction.cpp')
-rw-r--r-- | src/boost/libs/math/example/distribution_construction.cpp | 295 |
1 files changed, 295 insertions, 0 deletions
diff --git a/src/boost/libs/math/example/distribution_construction.cpp b/src/boost/libs/math/example/distribution_construction.cpp new file mode 100644 index 00000000..a3d1a635 --- /dev/null +++ b/src/boost/libs/math/example/distribution_construction.cpp @@ -0,0 +1,295 @@ +// distribution_construction.cpp + +// Copyright Paul A. Bristow 2007, 2010, 2012. + +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt +// or copy at http://www.boost.org/LICENSE_1_0.txt) + +// Caution: this file contains Quickbook markup as well as code +// and comments, don't change any of the special comment markups! + +#ifdef _MSC_VER +# pragma warning (disable : 4996) // disable -D_SCL_SECURE_NO_WARNINGS C++ 'Checked Iterators' +#endif + +#include <iostream> +#include <exception> + +//[distribution_construction_1 + +/*` +The structure of distributions is rather different from some other statistical libraries, +for example, those written in less object-oriented language like FORTRAN and C that +provide a few arguments to each free function. + +Boost.Math library instead provides each distribution as a template C++ class. +A distribution is constructed with a few arguments, and then +member and non-member functions are used to find values of the +distribution, often a function of a random variate. + +For this demonstration, first we need some includes to access the +negative binomial distribution (and the binomial, beta and gamma distributions too). + +To demonstrate the use with a high precision User-defined floating-point type +`cpp_bin_float`, we also need an include from Boost.Multiprecision. +(We could equally well have used a `cpp_dec_float` multiprecision type). + +We choose a typedef `cpp_bin_float_50` to provide a 50 decimal digit type, +but we could equally have chosen at 128-bit type `cpp_bin_float_quad`, +or on some platforms `__float128`, providing about 35 decimal digits. +*/ + +#include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution + using boost::math::negative_binomial_distribution; // default type is double. + using boost::math::negative_binomial; // typedef provides default type is double. +#include <boost/math/distributions/binomial.hpp> // for binomial_distribution. +#include <boost/math/distributions/beta.hpp> // for beta_distribution. +#include <boost/math/distributions/gamma.hpp> // for gamma_distribution. +#include <boost/math/distributions/normal.hpp> // for normal_distribution. + +#include <boost/multiprecision/cpp_bin_float.hpp> // for cpp_bin_float_50 +/*` +Several examples of constructing distributions follow: +*/ +//] [/distribution_construction_1 end of Quickbook in C++ markup] + +int main() +{ + try + { +//[distribution_construction_2 +/*` +First, a negative binomial distribution with 8 successes +and a success fraction 0.25, 25% or 1 in 4, is constructed like this: +*/ + boost::math::negative_binomial_distribution<double> mydist0(8., 0.25); + /*` + But this is inconveniently long, so we might be tempted to write + */ + using namespace boost::math; + /*` + but this might risk ambiguity with names in `std random` so + [*much] better is explicit `using boost::math::` statements, for example: + */ + using boost::math::negative_binomial_distribution; + /*` + and we can still reduce typing. + + Since the vast majority of applications use will be using `double` precision, + the template argument to the distribution (`RealType`) defaults + to type `double`, so we can also write: + */ + + negative_binomial_distribution<> mydist9(8., 0.25); // Uses default `RealType = double`. + + /*` + But the name `negative_binomial_distribution` is still inconveniently long, + so, for most distributions, a convenience `typedef` is provided, for example: + + typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double. + + [caution + This convenience typedef is [*not provided] if a clash would occur + with the name of a function; currently only `beta` and `gamma` + fall into this category. + ] + + So, after a using statement, + */ + + using boost::math::negative_binomial; + + /*` + we have a convenient typedef to `negative_binomial_distribution<double>`: + */ + negative_binomial mydist(8., 0.25); + + /*` + Some more examples using the convenience typedef: + */ + negative_binomial mydist10(5., 0.4); // Both arguments double. + /*` + And automatic conversion of arguments takes place, so you can use integers and floats: + */ + negative_binomial mydist11(5, 0.4); // Using provided typedef of type double, and int and double arguments. + /*` + This is probably the most common usage. + Other combination are possible too: + */ + negative_binomial mydist12(5., 0.4F); // Double and float arguments. + negative_binomial mydist13(5, 1); // Both arguments integer. + + /*` + Similarly for most other distributions like the binomial. + */ + binomial mybinomial(1, 0.5); // is more concise than + binomial_distribution<> mybinomd1(1, 0.5); + + /*` + For cases when the typdef distribution name would clash with a math special function + (currently only beta and gamma) + the typedef is deliberately not provided, and the longer version of the name + must be used, so for example, do not use: + + using boost::math::beta; + beta mybetad0(1, 0.5); // Error beta is a math FUNCTION! + + Which produces the error messages: + + [pre + error C2146: syntax error : missing ';' before identifier 'mybetad0' + warning C4551: function call missing argument list + error C3861: 'mybetad0': identifier not found + ] + + Instead you should use: + */ + using boost::math::beta_distribution; + beta_distribution<> mybetad1(1, 0.5); + /*` + or for the gamma distribution: + */ + gamma_distribution<> mygammad1(1, 0.5); + + /*` + We can, of course, still provide the type explicitly thus: + */ + + // Explicit double precision: both arguments are double: + negative_binomial_distribution<double> mydist1(8., 0.25); + + // Explicit float precision, double arguments are truncated to float: + negative_binomial_distribution<float> mydist2(8., 0.25); + + // Explicit float precision, integer & double arguments converted to float: + negative_binomial_distribution<float> mydist3(8, 0.25); + + // Explicit float precision, float arguments, so no conversion: + negative_binomial_distribution<float> mydist4(8.F, 0.25F); + + // Explicit float precision, integer arguments promoted to float. + negative_binomial_distribution<float> mydist5(8, 1); + + // Explicit double precision: + negative_binomial_distribution<double> mydist6(5., 0.4); + + // Explicit long double precision: + negative_binomial_distribution<long double> mydist7(8., 0.25); + + /*` + And you can use your own template RealType, + for example, `boost::math::cpp_bin_float_50` (an arbitrary 50 decimal digits precision type), + then we can write: + */ + using namespace boost::multiprecision; + negative_binomial_distribution<cpp_bin_float_50> mydist8(8, 0.25); + + // `integer` arguments are promoted to your RealType exactly, but + // `double` argument are converted to RealType, + // most likely losing precision! + + // So DON'T be tempted to write the 'obvious': + negative_binomial_distribution<cpp_bin_float_50> mydist20(8, 0.23456789012345678901234567890); + // to avoid truncation of second parameter to `0.2345678901234567` and loss of precision. + + // Instead pass a quoted decimal digit string: + negative_binomial_distribution<cpp_bin_float_50> mydist21(8, cpp_bin_float_50("0.23456789012345678901234567890") ); + + // Ensure that all potentially significant digits are shown. + std::cout.precision(std::numeric_limits<cpp_bin_float_50>::digits10); + // + cpp_bin_float_50 x("1.23456789012345678901234567890"); + std::cout << pdf(mydist8, x) << std::endl; +/*` showing 0.00012630010495970320103876754721976419438231705359935 + 0.00012630010495970320103876754721976419438231528547467 + +[warning When using multiprecision, it is all too easy to get accidental truncation!] + +For example, if you write +*/ + std::cout << pdf(mydist8, 1.23456789012345678901234567890) << std::endl; +/*` +showing 0.00012630010495970318465064569310967179576805651692929, +which is wrong at about the 17th decimal digit! + +This is because the value provided is truncated to a `double`, effectively + `double x = 1.23456789012345678901234567890;` + +Then the now `double x` is passed to function `pdf`, +and this truncated `double` value is finally promoted to `cpp_bin_float_50`. + +Another way of quietly getting the wrong answer is to write: +*/ + std::cout << pdf(mydist8, cpp_bin_float_50(1.23456789012345678901234567890)) << std::endl; +/*` +A correct way from a multi-digit string value is +*/ + std::cout << pdf(mydist8, cpp_bin_float_50("1.23456789012345678901234567890")) << std::endl; +/*` + +[tip Getting about 17 decimal digits followed by many zeros is often a sign of accidental truncation.] +*/ + +/*` +[h4 Default arguments to distribution constructors.] + +Note that default constructor arguments are only provided for some distributions. +So if you wrongly assume a default argument, you will get an error message, for example: + + negative_binomial_distribution<> mydist8; + +[pre error C2512 no appropriate default constructor available.] + +No default constructors are provided for the `negative binomial` distribution, +because it is difficult to chose any sensible default values for this distribution. + +For other distributions, like the normal distribution, +it is obviously very useful to provide 'standard' +defaults for the mean (zero) and standard deviation (unity) thus: + + normal_distribution(RealType mean = 0, RealType sd = 1); + +So in this case we can more tersely write: +*/ + using boost::math::normal; + + normal norm1; // Standard normal distribution N[0,1]. + normal norm2(2); // Mean = 2, std deviation = 1. + normal norm3(2, 3); // Mean = 2, std deviation = 3. + + } + catch(std::exception &ex) + { + std::cout << ex.what() << std::endl; + } + + return 0; +} // int main() + +/*`There is no useful output from this demonstration program, of course. */ + +//] [/end of distribution_construction_2] + +/* +//[distribution_construction_output + + 0.00012630010495970320103876754721976419438231705359935 + 0.00012630010495970318465064569310967179576805651692929 + 0.00012630010495970318465064569310967179576805651692929 + 0.00012630010495970320103876754721976419438231705359935 + +//] [/distribution_construction_output] + + + 0.00012630010495970320103876754721976419438231528547467 + 0.0001263001049597031846506456931096717957680547488046 + 0.0001263001049597031846506456931096717957680547488046 + 0.00012630010495970320103876754721976419438231528547467 + + +*/ + + + |