diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/example/numerical_derivative_example.cpp | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/example/numerical_derivative_example.cpp')
-rw-r--r-- | src/boost/libs/math/example/numerical_derivative_example.cpp | 209 |
1 files changed, 209 insertions, 0 deletions
diff --git a/src/boost/libs/math/example/numerical_derivative_example.cpp b/src/boost/libs/math/example/numerical_derivative_example.cpp new file mode 100644 index 00000000..ff45b458 --- /dev/null +++ b/src/boost/libs/math/example/numerical_derivative_example.cpp @@ -0,0 +1,209 @@ +// Copyright Christopher Kormanyos 2013. +// Distributed under the Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt or +// copy at http://www.boost.org/LICENSE_1_0.txt). + +#ifdef _MSC_VER +# pragma warning (disable : 4996) // assignment operator could not be generated. +#endif + +# include <iostream> +# include <iomanip> +# include <limits> +# include <cmath> + +#include <boost/static_assert.hpp> +#include <boost/type_traits/is_floating_point.hpp> +#include <boost/math/special_functions/next.hpp> // for float_distance + +//[numeric_derivative_example +/*`The following example shows how multiprecision calculations can be used to +obtain full precision in a numerical derivative calculation that suffers from precision loss. + +Consider some well-known central difference rules for numerically +computing the 1st derivative of a function [f'(x)] with [/x] real. + +Need a reference here? Introduction to Partial Differential Equations, Peter J. Olver + December 16, 2012 + +Here, the implementation uses a C++ template that can be instantiated with various +floating-point types such as `float`, `double`, `long double`, or even +a user-defined floating-point type like __multiprecision. + +We will now use the derivative template with the built-in type `double` in +order to numerically compute the derivative of a function, and then repeat +with a 5 decimal digit higher precision user-defined floating-point type. + +Consider the function shown below. +!! +(3) +We will now take the derivative of this function with respect to x evaluated +at x = 3= 2. In other words, + +(4) + +The expected result is + + 0:74535 59924 99929 89880 . (5) +The program below uses the derivative template in order to perform +the numerical calculation of this derivative. The program also compares the +numerically-obtained result with the expected result and reports the absolute +relative error scaled to a deviation that can easily be related to the number of +bits of lost precision. + +*/ + +/*` [note Rquires the C++11 feature of +[@http://en.wikipedia.org/wiki/Anonymous_function#C.2B.2B anonymous functions] +for the derivative function calls like `[]( const double & x_) -> double`. +*/ + + + +template <typename value_type, typename function_type> +value_type derivative (const value_type x, const value_type dx, function_type function) +{ + /*! \brief Compute the derivative of function using a 3-point central difference rule of O(dx^6). + \tparam value_type, floating-point type, for example: `double` or `cpp_dec_float_50` + \tparam function_type + + \param x Value at which to evaluate derivative. + \param dx Incremental step-size. + \param function Function whose derivative is to computed. + + \return derivative at x. + */ + + BOOST_STATIC_ASSERT_MSG(false == std::numeric_limits<value_type>::is_integer, "value_type must be a floating-point type!"); + + const value_type dx2(dx * 2U); + const value_type dx3(dx * 3U); + // Difference terms. + const value_type m1 ((function (x + dx) - function(x - dx)) / 2U); + const value_type m2 ((function (x + dx2) - function(x - dx2)) / 4U); + const value_type m3 ((function (x + dx3) - function(x - dx3)) / 6U); + const value_type fifteen_m1 (m1 * 15U); + const value_type six_m2 (m2 * 6U); + const value_type ten_dx (dx * 10U); + return ((fifteen_m1 - six_m2) + m3) / ten_dx; // Derivative. +} // + +#include <boost/multiprecision/cpp_dec_float.hpp> + using boost::multiprecision::number; + using boost::multiprecision::cpp_dec_float; + +// Re-compute using 5 extra decimal digits precision (22) than double (17). +#define MP_DIGITS10 unsigned (std::numeric_limits<double>::max_digits10 + 5) + +typedef cpp_dec_float<MP_DIGITS10> mp_backend; +typedef number<mp_backend> mp_type; + + +int main() +{ + { + const double d = + derivative + ( 1.5, // x = 3.2 + std::ldexp (1., -9), // step size 2^-9 = see below for choice. + [](const double & x)->double // Function f(x). + { + return std::sqrt((x * x) - 1.) - std::acos(1. / x); + } + ); + + // The 'exactly right' result is [sqrt]5 / 3 = 0.74535599249992989880. + const double rel_error = (d - 0.74535599249992989880) / 0.74535599249992989880; + const double bit_error = std::abs(rel_error) / std::numeric_limits<double>::epsilon(); + std::cout.precision (std::numeric_limits<double>::digits10); // Show all guaranteed decimal digits. + std::cout << std::showpoint ; // Ensure that any trailing zeros are shown too. + + std::cout << " derivative : " << d << std::endl; + std::cout << " expected : " << 0.74535599249992989880 << std::endl; + // Can compute an 'exact' value using multiprecision type. + std::cout << " expected : " << sqrt(static_cast<mp_type>(5))/3U << std::endl; + std::cout << " bit_error : " << static_cast<unsigned long>(bit_error) << std::endl; + + std::cout.precision(6); + std::cout << "float_distance = " << boost::math::float_distance(0.74535599249992989880, d) << std::endl; + + } + + { // Compute using multiprecision type with an extra 5 decimal digits of precision. + const mp_type mp = + derivative(mp_type(mp_type(3) / 2U), // x = 3/2 + mp_type(mp_type(1) / 10000000U), // Step size 10^7. + [](const mp_type & x)->mp_type + { + return sqrt((x * x) - 1.) - acos (1. / x); // Function + } + ); + + const double d = mp.convert_to<double>(); // Convert to closest double. + const double rel_error = (d - 0.74535599249992989880) / 0.74535599249992989880; + const double bit_error = std::abs (rel_error) / std::numeric_limits<double>::epsilon(); + std::cout.precision (std::numeric_limits <double>::digits10); // All guaranteed decimal digits. + std::cout << std::showpoint ; // Ensure that any trailing zeros are shown too. + std::cout << " derivative : " << d << std::endl; + // Can compute an 'exact' value using multiprecision type. + std::cout << " expected : " << sqrt(static_cast<mp_type>(5))/3U << std::endl; + std::cout << " expected : " << 0.74535599249992989880 + << std::endl; + std::cout << " bit_error : " << static_cast<unsigned long>(bit_error) << std::endl; + + std::cout.precision(6); + std::cout << "float_distance = " << boost::math::float_distance(0.74535599249992989880, d) << std::endl; + + + } + + +} // int main() + +/*` +The result of this program on a system with an eight-byte, 64-bit IEEE-754 +conforming floating-point representation for `double` is: + + derivative : 0.745355992499951 + + derivative : 0.745355992499943 + expected : 0.74535599249993 + bit_error : 78 + + derivative : 0.745355992499930 + expected : 0.745355992499930 + bit_error : 0 + +The resulting bit error is 0. This means that the result of the derivative +calculation is bit-identical with the double representation of the expected result, +and this is the best result possible for the built-in type. + +The derivative in this example has a known closed form. There are, however, +countless situations in numerical analysis (and not only for numerical deriva- +tives) for which the calculation at hand does not have a known closed-form +solution or for which the closed-form solution is highly inconvenient to use. In +such cases, this technique may be useful. + +This example has shown how multiprecision can be used to add extra digits +to an ill-conditioned calculation that suffers from precision loss. When the result +of the multiprecision calculation is converted to a built-in type such as double, +the entire precision of the result in double is preserved. + + */ + +/* + + Description: Autorun "J:\Cpp\big_number\Debug\numerical_derivative_example.exe" + derivative : 0.745355992499943 + expected : 0.745355992499930 + expected : 0.745355992499930 + bit_error : 78 + float_distance = 117.000 + derivative : 0.745355992499930 + expected : 0.745355992499930 + expected : 0.745355992499930 + bit_error : 0 + float_distance = 0.000000 + + */ + |