summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/cardinal_trigonometric_test.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/cardinal_trigonometric_test.cpp
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/cardinal_trigonometric_test.cpp')
-rw-r--r--src/boost/libs/math/test/cardinal_trigonometric_test.cpp233
1 files changed, 233 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/cardinal_trigonometric_test.cpp b/src/boost/libs/math/test/cardinal_trigonometric_test.cpp
new file mode 100644
index 00000000..99db9cd4
--- /dev/null
+++ b/src/boost/libs/math/test/cardinal_trigonometric_test.cpp
@@ -0,0 +1,233 @@
+/*
+ * Copyright Nick Thompson, 2019
+ * Use, modification and distribution are subject to the
+ * Boost Software License, Version 1.0. (See accompanying file
+ * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+ */
+
+#include "math_unit_test.hpp"
+#include <vector>
+#include <random>
+#include <boost/math/constants/constants.hpp>
+#include <boost/math/interpolators/cardinal_trigonometric.hpp>
+#ifdef BOOST_HAS_FLOAT128
+#include <boost/multiprecision/float128.hpp>
+#endif
+
+
+using std::sin;
+using boost::math::constants::two_pi;
+using boost::math::interpolators::cardinal_trigonometric;
+
+template<class Real>
+void test_constant()
+{
+ Real t0 = 0;
+ Real h = 1;
+ for(size_t n = 1; n < 20; ++n)
+ {
+ Real c = 8;
+ std::vector<Real> v(n, c);
+ auto ct = cardinal_trigonometric<decltype(v)>(v, t0, h);
+ CHECK_ULP_CLOSE(c, ct(0.3), 3);
+ CHECK_ULP_CLOSE(c*h*n, ct.integrate(), 3);
+ CHECK_ULP_CLOSE(c*c*h*n, ct.squared_l2(), 3);
+ CHECK_MOLLIFIED_CLOSE(Real(0), ct.prime(0.8), 25*std::numeric_limits<Real>::epsilon());
+ CHECK_MOLLIFIED_CLOSE(Real(0), ct.double_prime(0.8), 25*std::numeric_limits<Real>::epsilon());
+ }
+}
+
+template<class Real>
+void test_interpolation_condition()
+{
+ std::mt19937 gen(1234);
+ std::uniform_real_distribution<Real> dis(1, 10);
+
+ for(size_t n = 1; n < 20; ++n) {
+ Real t0 = dis(gen);
+ Real h = dis(gen);
+ std::vector<Real> v(n);
+ for (size_t i = 0; i < n; ++i) {
+ v[i] = dis(gen);
+ }
+ auto ct = cardinal_trigonometric<decltype(v)>(v, t0, h);
+ for (size_t i = 0; i < n; ++i) {
+ Real arg = t0 + i*h;
+ Real expected = v[i];
+ Real computed = ct(arg);
+ if(!CHECK_ULP_CLOSE(expected, computed, 5*n))
+ {
+ std::cerr << " Samples: " << n << "\n";
+ }
+ }
+ }
+
+}
+
+
+#ifdef BOOST_HAS_FLOAT128
+void test_constant_q()
+{
+ __float128 t0 = 0;
+ __float128 h = 1;
+ for(size_t n = 1; n < 20; ++n)
+ {
+ __float128 c = 8;
+ std::vector<__float128> v(n, c);
+ auto ct = cardinal_trigonometric<decltype(v)>(v, t0, h);
+ CHECK_ULP_CLOSE(boost::multiprecision::float128(c), boost::multiprecision::float128(ct(0.3)), 3);
+ CHECK_ULP_CLOSE(boost::multiprecision::float128(c*h*n), boost::multiprecision::float128(ct.integrate()), 3);
+ }
+}
+#endif
+
+
+template<class Real>
+void test_sampled_sine()
+{
+ using std::sin;
+ using std::cos;
+ for (unsigned n = 15; n < 50; ++n)
+ {
+ Real t0 = 0;
+ Real T = 1;
+ Real h = T/n;
+ std::vector<Real> v(n);
+ auto s = [&](Real t) { return sin(two_pi<Real>()*(t-t0)/T);};
+ auto s_prime = [&](Real t) { return two_pi<Real>()*cos(two_pi<Real>()*(t-t0)/T)/T;};
+ auto s_double_prime = [&](Real t) { return -two_pi<Real>()*two_pi<Real>()*sin(two_pi<Real>()*(t-t0)/T)/(T*T);};
+ for(size_t j = 0; j < v.size(); ++j)
+ {
+ Real t = t0 + j*h;
+ v[j] = s(t);
+ }
+ auto ct = cardinal_trigonometric<decltype(v)>(v, t0, h);
+ CHECK_ULP_CLOSE(T, ct.period(), 3);
+ std::mt19937 gen(1234);
+ std::uniform_real_distribution<Real> dist(0, 500);
+
+ unsigned j = 0;
+ while (j++ < 50) {
+ Real arg = dist(gen);
+ Real expected = s(arg);
+ Real computed = ct(arg);
+ CHECK_MOLLIFIED_CLOSE(expected, computed, std::numeric_limits<Real>::epsilon()*4000);
+
+ expected = s_prime(arg);
+ computed = ct.prime(arg);
+ CHECK_MOLLIFIED_CLOSE(expected, computed, 18000*std::numeric_limits<Real>::epsilon());
+
+ expected = s_double_prime(arg);
+ computed = ct.double_prime(arg);
+ CHECK_MOLLIFIED_CLOSE(expected, computed, 100000*std::numeric_limits<Real>::epsilon());
+
+ }
+ CHECK_MOLLIFIED_CLOSE(Real(0), ct.integrate(), std::numeric_limits<Real>::epsilon());
+ }
+}
+
+template<class Real>
+void test_bump()
+{
+ using std::exp;
+ using std::abs;
+ using std::sqrt;
+ using std::pow;
+ auto bump = [](Real x)->Real { if (abs(x) >= 1) { return Real(0); } return exp(-Real(1)/(Real(1)-x*x)); };
+ auto bump_prime = [](Real x)->Real {
+ if (abs(x) >= 1) { return Real(0); }
+
+ return -2*x*exp(-Real(1)/(Real(1)-x*x))/pow(1-x*x,2);
+ };
+
+ auto bump_double_prime = [](Real x)->Real {
+ if (abs(x) >= 1) { return Real(0); }
+
+ return (6*pow(x,4)-2)*exp(-Real(1)/(Real(1)-x*x))/pow(1-x*x,4);
+ };
+
+
+ Real t0 = -1;
+ size_t n = 4096;
+ Real h = Real(2)/Real(n);
+
+ std::vector<Real> v(n);
+ for(size_t i = 0; i < n; ++i)
+ {
+ Real t = t0 + i*h;
+ v[i] = bump(t);
+ }
+
+ auto ct = cardinal_trigonometric<decltype(v)>(v, t0, h);
+ std::mt19937 gen(323723);
+ std::uniform_real_distribution<long double> dis(-0.9, 0.9);
+
+ size_t i = 0;
+ while (i++ < 1000)
+ {
+ Real t = static_cast<Real>(dis(gen));
+ Real expected = bump(t);
+ Real computed = ct(t);
+ if(!CHECK_MOLLIFIED_CLOSE(expected, computed, 2*std::numeric_limits<Real>::epsilon())) {
+ std::cerr << " Problem occured at abscissa " << t << "\n";
+ }
+
+ expected = bump_prime(t);
+ computed = ct.prime(t);
+ if(!CHECK_MOLLIFIED_CLOSE(expected, computed, 4000*std::numeric_limits<Real>::epsilon())) {
+ std::cerr << " Problem occured at abscissa " << t << "\n";
+ }
+
+ expected = bump_double_prime(t);
+ computed = ct.double_prime(t);
+ if(!CHECK_MOLLIFIED_CLOSE(expected, computed, 4000*4000*std::numeric_limits<Real>::epsilon())) {
+ std::cerr << " Problem occured at abscissa " << t << "\n";
+ }
+
+
+ }
+
+ // Wolfram Alpha:
+ // NIntegrate[Exp[-1/(1-x*x)],{x,-1,1}]
+ CHECK_ULP_CLOSE(Real(0.443993816168079437823L), ct.integrate(), 3);
+
+ // NIntegrate[Exp[-2/(1-x*x)],{x,-1,1}]
+ CHECK_ULP_CLOSE(Real(0.1330861208449942715569473279553285713625791551628130055345002588895389L), ct.squared_l2(), 1);
+
+
+}
+
+
+int main()
+{
+
+#ifdef TEST1
+ test_constant<float>();
+ test_sampled_sine<float>();
+ test_bump<float>();
+ test_interpolation_condition<float>();
+#endif
+
+
+#ifdef TEST2
+ test_constant<double>();
+ test_sampled_sine<double>();
+ test_bump<double>();
+ test_interpolation_condition<double>();
+#endif
+
+#ifdef TEST3
+ test_constant<long double>();
+ test_sampled_sine<long double>();
+ test_bump<long double>();
+ test_interpolation_condition<long double>();
+#endif
+
+#ifdef TEST4
+#ifdef BOOST_HAS_FLOAT128
+test_constant_q();
+#endif
+#endif
+
+ return boost::math::test::report_errors();
+}