diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/lanczos_smoothing_test.cpp | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/lanczos_smoothing_test.cpp')
-rw-r--r-- | src/boost/libs/math/test/lanczos_smoothing_test.cpp | 708 |
1 files changed, 708 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/lanczos_smoothing_test.cpp b/src/boost/libs/math/test/lanczos_smoothing_test.cpp new file mode 100644 index 00000000..e7dbeac0 --- /dev/null +++ b/src/boost/libs/math/test/lanczos_smoothing_test.cpp @@ -0,0 +1,708 @@ +/* + * Copyright Nick Thompson, 2019 + * Use, modification and distribution are subject to the + * Boost Software License, Version 1.0. (See accompanying file + * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + */ +#define BOOST_TEST_MODULE lanczos_smoothing_test + +#include <random> +#include <array> +#include <boost/range.hpp> +#include <boost/numeric/ublas/vector.hpp> +#include <boost/math/constants/constants.hpp> +#include <boost/test/included/unit_test.hpp> +#include <boost/test/tools/floating_point_comparison.hpp> +#include <boost/math/differentiation/lanczos_smoothing.hpp> +#include <boost/multiprecision/cpp_bin_float.hpp> +#include <boost/math/special_functions/next.hpp> // for float_distance +#include <boost/math/tools/condition_numbers.hpp> + +using std::abs; +using std::pow; +using std::sqrt; +using std::sin; +using boost::math::constants::two_pi; +using boost::multiprecision::cpp_bin_float_50; +using boost::multiprecision::cpp_bin_float_100; +using boost::math::differentiation::discrete_lanczos_derivative; +using boost::math::differentiation::detail::discrete_legendre; +using boost::math::differentiation::detail::interior_velocity_filter; +using boost::math::differentiation::detail::boundary_velocity_filter; +using boost::math::tools::summation_condition_number; + +template<class Real> +void test_dlp_norms() +{ + std::cout << "Testing Discrete Legendre Polynomial norms on type " << typeid(Real).name() << "\n"; + Real tol = std::numeric_limits<Real>::epsilon(); + auto dlp = discrete_legendre<Real>(1, Real(0)); + BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(0), 3, tol); + BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(1), 2, tol); + dlp = discrete_legendre<Real>(2, Real(0)); + BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(0), Real(5)/Real(2), tol); + BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(1), Real(5)/Real(4), tol); + BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(2), Real(3*3*7)/Real(pow(2,6)), 2*tol); + dlp = discrete_legendre<Real>(200, Real(0)); + for(size_t r = 0; r < 10; ++r) + { + Real calc = dlp.norm_sq(r); + Real expected = Real(2)/Real(2*r+1); + // As long as r << n, ||q_r||^2 -> 2/(2r+1) as n->infty + BOOST_CHECK_CLOSE_FRACTION(calc, expected, 0.05); + } + +} + +template<class Real> +void test_dlp_evaluation() +{ + std::cout << "Testing evaluation of Discrete Legendre polynomials on type " << typeid(Real).name() << "\n"; + Real tol = std::numeric_limits<Real>::epsilon(); + size_t n = 25; + Real x = 0.72; + auto dlp = discrete_legendre<Real>(n, x); + Real q0 = dlp(x, 0); + BOOST_TEST(q0 == 1); + Real q1 = dlp(x, 1); + BOOST_TEST(q1 == x); + Real q2 = dlp(x, 2); + int N = 2*n+1; + Real expected = 0.5*(3*x*x - Real(N*N - 1)/Real(4*n*n)); + BOOST_CHECK_CLOSE_FRACTION(q2, expected, tol); + Real q3 = dlp(x, 3); + expected = (x/3)*(5*expected - (Real(N*N - 4))/(2*n*n)); + BOOST_CHECK_CLOSE_FRACTION(q3, expected, 2*tol); + + // q_r(x) is even for even r, and odd for odd r: + for (size_t n = 8; n < 22; ++n) + { + dlp = discrete_legendre<Real>(n, x); + for(size_t r = 2; r <= n; ++r) + { + if (r & 1) + { + Real q1 = dlp(x, r); + Real q2 = -dlp(-x, r); + BOOST_CHECK_CLOSE_FRACTION(q1, q2, tol); + } + else + { + Real q1 = dlp(x, r); + Real q2 = dlp(-x, r); + BOOST_CHECK_CLOSE_FRACTION(q1, q2, tol); + } + + Real l2_sq = 0; + for (int j = -(int)n; j <= (int) n; ++j) + { + Real y = Real(j)/Real(n); + Real term = dlp(y, r); + l2_sq += term*term; + } + l2_sq /= n; + Real l2_sq_expected = dlp.norm_sq(r); + BOOST_CHECK_CLOSE_FRACTION(l2_sq, l2_sq_expected, 20*tol); + } + } +} + +template<class Real> +void test_dlp_next() +{ + std::cout << "Testing Discrete Legendre polynomial 'next' function on type " << typeid(Real).name() << "\n"; + Real tol = std::numeric_limits<Real>::epsilon(); + + for(size_t n = 2; n < 20; ++n) + { + for(Real x = -1; x <= 1; x += 0.1) + { + auto dlp = discrete_legendre<Real>(n, x); + for (size_t k = 2; k < n; ++k) + { + BOOST_CHECK_CLOSE(dlp.next(), dlp(x, k), tol); + } + + dlp = discrete_legendre<Real>(n, x); + for (size_t k = 2; k < n; ++k) + { + BOOST_CHECK_CLOSE(dlp.next_prime(), dlp.prime(x, k), tol); + } + } + } +} + + +template<class Real> +void test_dlp_derivatives() +{ + std::cout << "Testing Discrete Legendre polynomial derivatives on type " << typeid(Real).name() << "\n"; + Real tol = 10*std::numeric_limits<Real>::epsilon(); + int n = 25; + Real x = 0.72; + auto dlp = discrete_legendre<Real>(n, x); + Real q0p = dlp.prime(x, 0); + BOOST_TEST(q0p == 0); + Real q1p = dlp.prime(x, 1); + BOOST_TEST(q1p == 1); + Real q2p = dlp.prime(x, 2); + Real expected = 3*x; + BOOST_CHECK_CLOSE_FRACTION(q2p, expected, tol); +} + +template<class Real> +void test_dlp_second_derivative() +{ + std::cout << "Testing Discrete Legendre polynomial derivatives on type " << typeid(Real).name() << "\n"; + int n = 25; + Real x = Real(1)/Real(3); + auto dlp = discrete_legendre<Real>(n, x); + Real q2pp = dlp.next_dbl_prime(); + BOOST_TEST(q2pp == 3); +} + + +template<class Real> +void test_interior_velocity_filter() +{ + using boost::math::constants::half; + std::cout << "Testing interior filter on type " << typeid(Real).name() << "\n"; + Real tol = std::numeric_limits<Real>::epsilon(); + for(int n = 1; n < 10; ++n) + { + for (int p = 1; p < n; p += 2) + { + auto f = interior_velocity_filter<Real>(n,p); + // Since we only store half the filter coefficients, + // we need to reindex the moment sums: + auto cond = summation_condition_number<Real>(0); + for (size_t j = 0; j < f.size(); ++j) + { + cond += j*f[j]; + } + BOOST_CHECK_CLOSE_FRACTION(cond.sum(), half<Real>(), 2*cond()*tol); + + for (int l = 3; l <= p; l += 2) + { + cond = summation_condition_number<Real>(0); + for (size_t j = 0; j < f.size() - 1; ++j) + { + cond += pow(Real(j), l)*f[j]; + } + Real expected = -pow(Real(f.size() - 1), l)*f[f.size()-1]; + BOOST_CHECK_CLOSE_FRACTION(expected, cond.sum(), 7*cond()*tol); + } + //std::cout << "(n,p) = (" << n << "," << p << ") = {"; + //for (auto & x : f) + //{ + // std::cout << x << ", "; + //} + //std::cout << "}\n"; + } + } +} + +template<class Real> +void test_interior_lanczos() +{ + std::cout << "Testing interior Lanczos on type " << typeid(Real).name() << "\n"; + Real tol = std::numeric_limits<Real>::epsilon(); + std::vector<Real> v(500); + std::fill(v.begin(), v.end(), 7); + + for (size_t n = 1; n < 10; ++n) + { + for (size_t p = 2; p < 2*n; p += 2) + { + auto dld = discrete_lanczos_derivative(Real(0.1), n, p); + for (size_t m = n; m < v.size() - n; ++m) + { + Real dvdt = dld(v, m); + BOOST_CHECK_SMALL(dvdt, tol); + } + auto dvdt = dld(v); + for (size_t m = n; m < v.size() - n; ++m) + { + BOOST_CHECK_SMALL(dvdt[m], tol); + } + } + } + + + for(size_t i = 0; i < v.size(); ++i) + { + v[i] = 7*i+8; + } + + for (size_t n = 1; n < 10; ++n) + { + for (size_t p = 2; p < 2*n; p += 2) + { + auto dld = discrete_lanczos_derivative(Real(1), n, p); + for (size_t m = n; m < v.size() - n; ++m) + { + Real dvdt = dld(v, m); + BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, 2000*tol); + } + auto dvdt = dld(v); + for (size_t m = n; m < v.size() - n; ++m) + { + BOOST_CHECK_CLOSE_FRACTION(dvdt[m], 7, 2000*tol); + } + } + } + + //std::random_device rd{}; + //auto seed = rd(); + //std::cout << "Seed = " << seed << "\n"; + std::mt19937 gen(4172378669); + std::normal_distribution<> dis{0, 0.01}; + for (size_t i = 0; i < v.size(); ++i) + { + v[i] = 7*i+8 + dis(gen); + } + + for (size_t n = 1; n < 10; ++n) + { + for (size_t p = 2; p < 2*n; p += 2) + { + auto dld = discrete_lanczos_derivative(Real(1), n, p); + for (size_t m = n; m < v.size() - n; ++m) + { + BOOST_CHECK_CLOSE_FRACTION(dld(v, m), Real(7), Real(0.0042)); + } + } + } + + + for (size_t i = 0; i < v.size(); ++i) + { + v[i] = 15*i*i + 7*i+8 + dis(gen); + } + + for (size_t n = 1; n < 10; ++n) + { + for (size_t p = 2; p < 2*n; p += 2) + { + auto dld = discrete_lanczos_derivative(Real(1), n, p); + for (size_t m = n; m < v.size() - n; ++m) + { + BOOST_CHECK_CLOSE_FRACTION(dld(v,m), Real(30*m + 7), Real(0.00008)); + } + } + } + + std::normal_distribution<> dis1{0, 0.0001}; + Real omega = Real(1)/Real(16); + for (size_t i = 0; i < v.size(); ++i) + { + v[i] = sin(i*omega) + dis1(gen); + } + + for (size_t n = 10; n < 20; ++n) + { + for (size_t p = 3; p < 100 && p < n/2; p += 2) + { + auto dld = discrete_lanczos_derivative(Real(1), n, p); + + for (size_t m = n; m < v.size() - n && m < n + 10; ++m) + { + BOOST_CHECK_CLOSE_FRACTION(dld(v,m), omega*cos(omega*m), Real(0.03)); + } + } + } +} + +template<class Real> +void test_boundary_velocity_filters() +{ + std::cout << "Testing boundary filters on type " << typeid(Real).name() << "\n"; + Real tol = std::numeric_limits<Real>::epsilon(); + for(int n = 1; n < 5; ++n) + { + for (int p = 1; p < 2*n+1; ++p) + { + for (int s = -n; s <= n; ++s) + { + auto f = boundary_velocity_filter<Real>(n, p, s); + // Sum is zero: + auto cond = summation_condition_number<Real>(0); + for (size_t i = 0; i < f.size() - 1; ++i) + { + cond += f[i]; + } + + BOOST_CHECK_CLOSE_FRACTION(cond.sum(), -f[f.size()-1], 6*cond()*tol); + + cond = summation_condition_number<Real>(0); + for (size_t k = 0; k < f.size(); ++k) + { + Real j = Real(k) - Real(n); + // note the shifted index here: + cond += (j-s)*f[k]; + } + BOOST_CHECK_CLOSE_FRACTION(cond.sum(), 1, 6*cond()*tol); + + + for (int l = 2; l <= p; ++l) + { + cond = summation_condition_number<Real>(0); + for (size_t k = 0; k < f.size() - 1; ++k) + { + Real j = Real(k) - Real(n); + // The condition number of this sum is infinite! + // No need to get to worked up about the tolerance. + cond += pow(j-s, l)*f[k]; + } + + Real expected = -pow(Real(f.size()-1) - Real(n) - Real(s), l)*f[f.size()-1]; + if (expected == 0) + { + BOOST_CHECK_SMALL(cond.sum(), cond()*tol); + } + else + { + BOOST_CHECK_CLOSE_FRACTION(expected, cond.sum(), 200*cond()*tol); + } + } + + //std::cout << "(n,p,s) = ("<< n << ", " << p << "," << s << ") = {"; + //for (auto & x : f) + //{ + // std::cout << x << ", "; + //} + //std::cout << "}\n";*/ + } + } + } +} + +template<class Real> +void test_boundary_lanczos() +{ + std::cout << "Testing Lanczos boundary on type " << typeid(Real).name() << "\n"; + Real tol = std::numeric_limits<Real>::epsilon(); + std::vector<Real> v(500, 7); + + for (size_t n = 1; n < 10; ++n) + { + for (size_t p = 2; p < 2*n; ++p) + { + auto lsd = discrete_lanczos_derivative(Real(0.0125), n, p); + for (size_t m = 0; m < n; ++m) + { + Real dvdt = lsd(v,m); + BOOST_CHECK_SMALL(dvdt, 4*sqrt(tol)); + } + for (size_t m = v.size() - n; m < v.size(); ++m) + { + Real dvdt = lsd(v,m); + BOOST_CHECK_SMALL(dvdt, 4*sqrt(tol)); + } + } + } + + for(size_t i = 0; i < v.size(); ++i) + { + v[i] = 7*i+8; + } + + for (size_t n = 3; n < 10; ++n) + { + for (size_t p = 2; p < 2*n; ++p) + { + auto lsd = discrete_lanczos_derivative(Real(1), n, p); + for (size_t m = 0; m < n; ++m) + { + Real dvdt = lsd(v,m); + BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, sqrt(tol)); + } + + for (size_t m = v.size() - n; m < v.size(); ++m) + { + Real dvdt = lsd(v,m); + BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, 4*sqrt(tol)); + } + } + } + + for (size_t i = 0; i < v.size(); ++i) + { + v[i] = 15*i*i + 7*i+8; + } + + for (size_t n = 1; n < 10; ++n) + { + for (size_t p = 2; p < 2*n; ++p) + { + auto lsd = discrete_lanczos_derivative(Real(1), n, p); + for (size_t m = 0; m < v.size(); ++m) + { + BOOST_CHECK_CLOSE_FRACTION(lsd(v,m), 30*m+7, 30*sqrt(tol)); + } + } + } + + // Demonstrate that the boundary filters are also denoising: + //std::random_device rd{}; + //auto seed = rd(); + //std::cout << "seed = " << seed << "\n"; + std::mt19937 gen(311354333); + std::normal_distribution<> dis{0, 0.01}; + for (size_t i = 0; i < v.size(); ++i) + { + v[i] += dis(gen); + } + + for (size_t n = 1; n < 10; ++n) + { + for (size_t p = 2; p < n; ++p) + { + auto lsd = discrete_lanczos_derivative(Real(1), n, p); + for (size_t m = 0; m < v.size(); ++m) + { + BOOST_CHECK_CLOSE_FRACTION(lsd(v,m), 30*m+7, 0.005); + } + auto dvdt = lsd(v); + for (size_t m = 0; m < v.size(); ++m) + { + BOOST_CHECK_CLOSE_FRACTION(dvdt[m], 30*m+7, 0.005); + } + } + } +} + +template<class Real> +void test_acceleration_filters() +{ + Real eps = std::numeric_limits<Real>::epsilon(); + for (size_t n = 1; n < 5; ++n) + { + for(size_t p = 3; p <= 2*n; ++p) + { + for(int64_t s = -int64_t(n); s <= 0; ++s) + { + auto g = boost::math::differentiation::detail::acceleration_filter<long double>(n,p,s); + + std::vector<Real> f(g.size()); + for (size_t i = 0; i < g.size(); ++i) + { + f[i] = static_cast<Real>(g[i]); + } + + auto cond = summation_condition_number<Real>(0); + + for (size_t i = 0; i < f.size() - 1; ++i) + { + cond += f[i]; + } + BOOST_CHECK_CLOSE_FRACTION(cond.sum(), -f[f.size()-1], 10*cond()*eps); + + + cond = summation_condition_number<Real>(0); + for (size_t k = 0; k < f.size() -1; ++k) + { + Real j = Real(k) - Real(n); + cond += (j-s)*f[k]; + } + Real expected = -(Real(f.size()-1)- Real(n) - s)*f[f.size()-1]; + BOOST_CHECK_CLOSE_FRACTION(cond.sum(), expected, 10*cond()*eps); + + cond = summation_condition_number<Real>(0); + for (size_t k = 0; k < f.size(); ++k) + { + Real j = Real(k) - Real(n); + cond += (j-s)*(j-s)*f[k]; + } + BOOST_CHECK_CLOSE_FRACTION(cond.sum(), 2, 100*cond()*eps); + // See unlabelled equation in McDevitt, 2012, just after equation 26: + // It appears that there is an off-by-one error in that equation, since p + 1 moments don't vanish, only p. + // This test is itself suspect; the condition number of the moment sum is infinite. + // So the *slightest* error in the filter gets amplified by the test; in terms of the + // behavior of the actual filter, it's not a big deal. + for (size_t l = 3; l <= p; ++l) + { + cond = summation_condition_number<Real>(0); + for (size_t k = 0; k < f.size() - 1; ++k) + { + Real j = Real(k) - Real(n); + cond += pow((j-s), l)*f[k]; + } + Real expected = -pow(Real(f.size()- 1 - n -s), l)*f[f.size()-1]; + BOOST_CHECK_CLOSE_FRACTION(cond.sum(), expected, 1000*cond()*eps); + } + } + } + } +} + +template<class Real> +void test_lanczos_acceleration() +{ + Real eps = std::numeric_limits<Real>::epsilon(); + std::vector<Real> v(100, 7); + auto lanczos = discrete_lanczos_derivative<Real, 2>(Real(1), 4, 3); + for (size_t i = 0; i < v.size(); ++i) + { + BOOST_CHECK_SMALL(lanczos(v, i), eps); + } + + for(size_t i = 0; i < v.size(); ++i) + { + v[i] = 7*i + 6; + } + for (size_t i = 0; i < v.size(); ++i) + { + BOOST_CHECK_SMALL(lanczos(v,i), 200*eps); + } + + for(size_t i = 0; i < v.size(); ++i) + { + v[i] = 7*i*i + 9*i + 6; + } + for (size_t i = 0; i < v.size(); ++i) + { + BOOST_CHECK_CLOSE_FRACTION(lanczos(v, i), 14, 1500*eps); + } + + // Now add noise, and kick up the smoothing of the Lanzcos derivative (increase n): + //std::random_device rd{}; + //auto seed = rd(); + //std::cout << "seed = " << seed << "\n"; + size_t seed = 2507134629; + std::mt19937 gen(seed); + Real std_dev = 0.1; + std::normal_distribution<Real> dis{0, std_dev}; + for (size_t i = 0; i < v.size(); ++i) + { + v[i] += dis(gen); + } + lanczos = discrete_lanczos_derivative<Real, 2>(Real(1), 18, 3); + auto w = lanczos(v); + for (size_t i = 0; i < v.size(); ++i) + { + BOOST_CHECK_CLOSE_FRACTION(w[i], 14, std_dev/200); + } +} + +template<class Real> +void test_rescaling() +{ + std::cout << "Test rescaling on type " << typeid(Real).name() << "\n"; + Real tol = std::numeric_limits<Real>::epsilon(); + std::vector<Real> v(500); + for(size_t i = 0; i < v.size(); ++i) + { + v[i] = 7*i*i + 9*i + 6; + } + std::vector<Real> dvdt1(500); + std::vector<Real> dvdt2(500); + auto lanczos1 = discrete_lanczos_derivative(Real(1)); + auto lanczos2 = discrete_lanczos_derivative(Real(2)); + + lanczos1(v, dvdt1); + lanczos2(v, dvdt2); + + for(size_t i = 0; i < v.size(); ++i) + { + BOOST_CHECK_CLOSE_FRACTION(dvdt1[i], 2*dvdt2[i], tol); + } + + auto lanczos3 = discrete_lanczos_derivative<Real, 2>(Real(1)); + auto lanczos4 = discrete_lanczos_derivative<Real, 2>(Real(2)); + + + std::vector<Real> dv2dt21(500); + std::vector<Real> dv2dt22(500); + + for(size_t i = 0; i < v.size(); ++i) + { + BOOST_CHECK_CLOSE_FRACTION(dv2dt21[i], 4*dv2dt22[i], tol); + } +} + +template<class Real> +void test_data_representations() +{ + std::cout << "Test rescaling on type " << typeid(Real).name() << "\n"; + Real tol = 150*std::numeric_limits<Real>::epsilon(); + std::array<Real, 500> v; + for(size_t i = 0; i < v.size(); ++i) + { + v[i] = 9*i + 6; + } + std::array<Real, 500> dvdt; + auto lanczos = discrete_lanczos_derivative(Real(1)); + + lanczos(v, dvdt); + + for(size_t i = 0; i < v.size(); ++i) + { + BOOST_CHECK_CLOSE_FRACTION(dvdt[i], 9, tol); + } + + boost::numeric::ublas::vector<Real> w(500); + boost::numeric::ublas::vector<Real> dwdt(500); + for(size_t i = 0; i < w.size(); ++i) + { + w[i] = 9*i + 6; + } + + lanczos(w, dwdt); + + for(size_t i = 0; i < v.size(); ++i) + { + BOOST_CHECK_CLOSE_FRACTION(dwdt[i], 9, tol); + } + + auto v1 = boost::make_iterator_range(v.begin(), v.end()); + auto v2 = boost::make_iterator_range(dvdt.begin(), dvdt.end()); + lanczos(v1, v2); + + for(size_t i = 0; i < v2.size(); ++i) + { + BOOST_CHECK_CLOSE_FRACTION(v2[i], 9, tol); + } + + auto lanczos2 = discrete_lanczos_derivative<Real, 2>(Real(1)); + + lanczos2(v1, v2); + + for(size_t i = 0; i < v2.size(); ++i) + { + BOOST_CHECK_SMALL(v2[i], 10*tol); + } + +} + +BOOST_AUTO_TEST_CASE(lanczos_smoothing_test) +{ + test_dlp_second_derivative<double>(); + test_dlp_norms<double>(); + test_dlp_evaluation<double>(); + test_dlp_derivatives<double>(); + test_dlp_next<double>(); + + // Takes too long! + //test_dlp_norms<cpp_bin_float_50>(); + test_boundary_velocity_filters<double>(); + test_boundary_velocity_filters<long double>(); + // Takes too long! + //test_boundary_velocity_filters<cpp_bin_float_50>(); + test_boundary_lanczos<double>(); + test_boundary_lanczos<long double>(); + // Takes too long! + //test_boundary_lanczos<cpp_bin_float_50>(); + + test_interior_velocity_filter<double>(); + test_interior_velocity_filter<long double>(); + test_interior_lanczos<double>(); + + test_acceleration_filters<double>(); + + test_lanczos_acceleration<float>(); + test_lanczos_acceleration<double>(); + + test_rescaling<double>(); + test_data_representations<double>(); +} |