summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/lanczos_smoothing_test.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/lanczos_smoothing_test.cpp
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/lanczos_smoothing_test.cpp')
-rw-r--r--src/boost/libs/math/test/lanczos_smoothing_test.cpp708
1 files changed, 708 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/lanczos_smoothing_test.cpp b/src/boost/libs/math/test/lanczos_smoothing_test.cpp
new file mode 100644
index 00000000..e7dbeac0
--- /dev/null
+++ b/src/boost/libs/math/test/lanczos_smoothing_test.cpp
@@ -0,0 +1,708 @@
+/*
+ * Copyright Nick Thompson, 2019
+ * Use, modification and distribution are subject to the
+ * Boost Software License, Version 1.0. (See accompanying file
+ * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+ */
+#define BOOST_TEST_MODULE lanczos_smoothing_test
+
+#include <random>
+#include <array>
+#include <boost/range.hpp>
+#include <boost/numeric/ublas/vector.hpp>
+#include <boost/math/constants/constants.hpp>
+#include <boost/test/included/unit_test.hpp>
+#include <boost/test/tools/floating_point_comparison.hpp>
+#include <boost/math/differentiation/lanczos_smoothing.hpp>
+#include <boost/multiprecision/cpp_bin_float.hpp>
+#include <boost/math/special_functions/next.hpp> // for float_distance
+#include <boost/math/tools/condition_numbers.hpp>
+
+using std::abs;
+using std::pow;
+using std::sqrt;
+using std::sin;
+using boost::math::constants::two_pi;
+using boost::multiprecision::cpp_bin_float_50;
+using boost::multiprecision::cpp_bin_float_100;
+using boost::math::differentiation::discrete_lanczos_derivative;
+using boost::math::differentiation::detail::discrete_legendre;
+using boost::math::differentiation::detail::interior_velocity_filter;
+using boost::math::differentiation::detail::boundary_velocity_filter;
+using boost::math::tools::summation_condition_number;
+
+template<class Real>
+void test_dlp_norms()
+{
+ std::cout << "Testing Discrete Legendre Polynomial norms on type " << typeid(Real).name() << "\n";
+ Real tol = std::numeric_limits<Real>::epsilon();
+ auto dlp = discrete_legendre<Real>(1, Real(0));
+ BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(0), 3, tol);
+ BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(1), 2, tol);
+ dlp = discrete_legendre<Real>(2, Real(0));
+ BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(0), Real(5)/Real(2), tol);
+ BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(1), Real(5)/Real(4), tol);
+ BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(2), Real(3*3*7)/Real(pow(2,6)), 2*tol);
+ dlp = discrete_legendre<Real>(200, Real(0));
+ for(size_t r = 0; r < 10; ++r)
+ {
+ Real calc = dlp.norm_sq(r);
+ Real expected = Real(2)/Real(2*r+1);
+ // As long as r << n, ||q_r||^2 -> 2/(2r+1) as n->infty
+ BOOST_CHECK_CLOSE_FRACTION(calc, expected, 0.05);
+ }
+
+}
+
+template<class Real>
+void test_dlp_evaluation()
+{
+ std::cout << "Testing evaluation of Discrete Legendre polynomials on type " << typeid(Real).name() << "\n";
+ Real tol = std::numeric_limits<Real>::epsilon();
+ size_t n = 25;
+ Real x = 0.72;
+ auto dlp = discrete_legendre<Real>(n, x);
+ Real q0 = dlp(x, 0);
+ BOOST_TEST(q0 == 1);
+ Real q1 = dlp(x, 1);
+ BOOST_TEST(q1 == x);
+ Real q2 = dlp(x, 2);
+ int N = 2*n+1;
+ Real expected = 0.5*(3*x*x - Real(N*N - 1)/Real(4*n*n));
+ BOOST_CHECK_CLOSE_FRACTION(q2, expected, tol);
+ Real q3 = dlp(x, 3);
+ expected = (x/3)*(5*expected - (Real(N*N - 4))/(2*n*n));
+ BOOST_CHECK_CLOSE_FRACTION(q3, expected, 2*tol);
+
+ // q_r(x) is even for even r, and odd for odd r:
+ for (size_t n = 8; n < 22; ++n)
+ {
+ dlp = discrete_legendre<Real>(n, x);
+ for(size_t r = 2; r <= n; ++r)
+ {
+ if (r & 1)
+ {
+ Real q1 = dlp(x, r);
+ Real q2 = -dlp(-x, r);
+ BOOST_CHECK_CLOSE_FRACTION(q1, q2, tol);
+ }
+ else
+ {
+ Real q1 = dlp(x, r);
+ Real q2 = dlp(-x, r);
+ BOOST_CHECK_CLOSE_FRACTION(q1, q2, tol);
+ }
+
+ Real l2_sq = 0;
+ for (int j = -(int)n; j <= (int) n; ++j)
+ {
+ Real y = Real(j)/Real(n);
+ Real term = dlp(y, r);
+ l2_sq += term*term;
+ }
+ l2_sq /= n;
+ Real l2_sq_expected = dlp.norm_sq(r);
+ BOOST_CHECK_CLOSE_FRACTION(l2_sq, l2_sq_expected, 20*tol);
+ }
+ }
+}
+
+template<class Real>
+void test_dlp_next()
+{
+ std::cout << "Testing Discrete Legendre polynomial 'next' function on type " << typeid(Real).name() << "\n";
+ Real tol = std::numeric_limits<Real>::epsilon();
+
+ for(size_t n = 2; n < 20; ++n)
+ {
+ for(Real x = -1; x <= 1; x += 0.1)
+ {
+ auto dlp = discrete_legendre<Real>(n, x);
+ for (size_t k = 2; k < n; ++k)
+ {
+ BOOST_CHECK_CLOSE(dlp.next(), dlp(x, k), tol);
+ }
+
+ dlp = discrete_legendre<Real>(n, x);
+ for (size_t k = 2; k < n; ++k)
+ {
+ BOOST_CHECK_CLOSE(dlp.next_prime(), dlp.prime(x, k), tol);
+ }
+ }
+ }
+}
+
+
+template<class Real>
+void test_dlp_derivatives()
+{
+ std::cout << "Testing Discrete Legendre polynomial derivatives on type " << typeid(Real).name() << "\n";
+ Real tol = 10*std::numeric_limits<Real>::epsilon();
+ int n = 25;
+ Real x = 0.72;
+ auto dlp = discrete_legendre<Real>(n, x);
+ Real q0p = dlp.prime(x, 0);
+ BOOST_TEST(q0p == 0);
+ Real q1p = dlp.prime(x, 1);
+ BOOST_TEST(q1p == 1);
+ Real q2p = dlp.prime(x, 2);
+ Real expected = 3*x;
+ BOOST_CHECK_CLOSE_FRACTION(q2p, expected, tol);
+}
+
+template<class Real>
+void test_dlp_second_derivative()
+{
+ std::cout << "Testing Discrete Legendre polynomial derivatives on type " << typeid(Real).name() << "\n";
+ int n = 25;
+ Real x = Real(1)/Real(3);
+ auto dlp = discrete_legendre<Real>(n, x);
+ Real q2pp = dlp.next_dbl_prime();
+ BOOST_TEST(q2pp == 3);
+}
+
+
+template<class Real>
+void test_interior_velocity_filter()
+{
+ using boost::math::constants::half;
+ std::cout << "Testing interior filter on type " << typeid(Real).name() << "\n";
+ Real tol = std::numeric_limits<Real>::epsilon();
+ for(int n = 1; n < 10; ++n)
+ {
+ for (int p = 1; p < n; p += 2)
+ {
+ auto f = interior_velocity_filter<Real>(n,p);
+ // Since we only store half the filter coefficients,
+ // we need to reindex the moment sums:
+ auto cond = summation_condition_number<Real>(0);
+ for (size_t j = 0; j < f.size(); ++j)
+ {
+ cond += j*f[j];
+ }
+ BOOST_CHECK_CLOSE_FRACTION(cond.sum(), half<Real>(), 2*cond()*tol);
+
+ for (int l = 3; l <= p; l += 2)
+ {
+ cond = summation_condition_number<Real>(0);
+ for (size_t j = 0; j < f.size() - 1; ++j)
+ {
+ cond += pow(Real(j), l)*f[j];
+ }
+ Real expected = -pow(Real(f.size() - 1), l)*f[f.size()-1];
+ BOOST_CHECK_CLOSE_FRACTION(expected, cond.sum(), 7*cond()*tol);
+ }
+ //std::cout << "(n,p) = (" << n << "," << p << ") = {";
+ //for (auto & x : f)
+ //{
+ // std::cout << x << ", ";
+ //}
+ //std::cout << "}\n";
+ }
+ }
+}
+
+template<class Real>
+void test_interior_lanczos()
+{
+ std::cout << "Testing interior Lanczos on type " << typeid(Real).name() << "\n";
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v(500);
+ std::fill(v.begin(), v.end(), 7);
+
+ for (size_t n = 1; n < 10; ++n)
+ {
+ for (size_t p = 2; p < 2*n; p += 2)
+ {
+ auto dld = discrete_lanczos_derivative(Real(0.1), n, p);
+ for (size_t m = n; m < v.size() - n; ++m)
+ {
+ Real dvdt = dld(v, m);
+ BOOST_CHECK_SMALL(dvdt, tol);
+ }
+ auto dvdt = dld(v);
+ for (size_t m = n; m < v.size() - n; ++m)
+ {
+ BOOST_CHECK_SMALL(dvdt[m], tol);
+ }
+ }
+ }
+
+
+ for(size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = 7*i+8;
+ }
+
+ for (size_t n = 1; n < 10; ++n)
+ {
+ for (size_t p = 2; p < 2*n; p += 2)
+ {
+ auto dld = discrete_lanczos_derivative(Real(1), n, p);
+ for (size_t m = n; m < v.size() - n; ++m)
+ {
+ Real dvdt = dld(v, m);
+ BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, 2000*tol);
+ }
+ auto dvdt = dld(v);
+ for (size_t m = n; m < v.size() - n; ++m)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(dvdt[m], 7, 2000*tol);
+ }
+ }
+ }
+
+ //std::random_device rd{};
+ //auto seed = rd();
+ //std::cout << "Seed = " << seed << "\n";
+ std::mt19937 gen(4172378669);
+ std::normal_distribution<> dis{0, 0.01};
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = 7*i+8 + dis(gen);
+ }
+
+ for (size_t n = 1; n < 10; ++n)
+ {
+ for (size_t p = 2; p < 2*n; p += 2)
+ {
+ auto dld = discrete_lanczos_derivative(Real(1), n, p);
+ for (size_t m = n; m < v.size() - n; ++m)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(dld(v, m), Real(7), Real(0.0042));
+ }
+ }
+ }
+
+
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = 15*i*i + 7*i+8 + dis(gen);
+ }
+
+ for (size_t n = 1; n < 10; ++n)
+ {
+ for (size_t p = 2; p < 2*n; p += 2)
+ {
+ auto dld = discrete_lanczos_derivative(Real(1), n, p);
+ for (size_t m = n; m < v.size() - n; ++m)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(dld(v,m), Real(30*m + 7), Real(0.00008));
+ }
+ }
+ }
+
+ std::normal_distribution<> dis1{0, 0.0001};
+ Real omega = Real(1)/Real(16);
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = sin(i*omega) + dis1(gen);
+ }
+
+ for (size_t n = 10; n < 20; ++n)
+ {
+ for (size_t p = 3; p < 100 && p < n/2; p += 2)
+ {
+ auto dld = discrete_lanczos_derivative(Real(1), n, p);
+
+ for (size_t m = n; m < v.size() - n && m < n + 10; ++m)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(dld(v,m), omega*cos(omega*m), Real(0.03));
+ }
+ }
+ }
+}
+
+template<class Real>
+void test_boundary_velocity_filters()
+{
+ std::cout << "Testing boundary filters on type " << typeid(Real).name() << "\n";
+ Real tol = std::numeric_limits<Real>::epsilon();
+ for(int n = 1; n < 5; ++n)
+ {
+ for (int p = 1; p < 2*n+1; ++p)
+ {
+ for (int s = -n; s <= n; ++s)
+ {
+ auto f = boundary_velocity_filter<Real>(n, p, s);
+ // Sum is zero:
+ auto cond = summation_condition_number<Real>(0);
+ for (size_t i = 0; i < f.size() - 1; ++i)
+ {
+ cond += f[i];
+ }
+
+ BOOST_CHECK_CLOSE_FRACTION(cond.sum(), -f[f.size()-1], 6*cond()*tol);
+
+ cond = summation_condition_number<Real>(0);
+ for (size_t k = 0; k < f.size(); ++k)
+ {
+ Real j = Real(k) - Real(n);
+ // note the shifted index here:
+ cond += (j-s)*f[k];
+ }
+ BOOST_CHECK_CLOSE_FRACTION(cond.sum(), 1, 6*cond()*tol);
+
+
+ for (int l = 2; l <= p; ++l)
+ {
+ cond = summation_condition_number<Real>(0);
+ for (size_t k = 0; k < f.size() - 1; ++k)
+ {
+ Real j = Real(k) - Real(n);
+ // The condition number of this sum is infinite!
+ // No need to get to worked up about the tolerance.
+ cond += pow(j-s, l)*f[k];
+ }
+
+ Real expected = -pow(Real(f.size()-1) - Real(n) - Real(s), l)*f[f.size()-1];
+ if (expected == 0)
+ {
+ BOOST_CHECK_SMALL(cond.sum(), cond()*tol);
+ }
+ else
+ {
+ BOOST_CHECK_CLOSE_FRACTION(expected, cond.sum(), 200*cond()*tol);
+ }
+ }
+
+ //std::cout << "(n,p,s) = ("<< n << ", " << p << "," << s << ") = {";
+ //for (auto & x : f)
+ //{
+ // std::cout << x << ", ";
+ //}
+ //std::cout << "}\n";*/
+ }
+ }
+ }
+}
+
+template<class Real>
+void test_boundary_lanczos()
+{
+ std::cout << "Testing Lanczos boundary on type " << typeid(Real).name() << "\n";
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v(500, 7);
+
+ for (size_t n = 1; n < 10; ++n)
+ {
+ for (size_t p = 2; p < 2*n; ++p)
+ {
+ auto lsd = discrete_lanczos_derivative(Real(0.0125), n, p);
+ for (size_t m = 0; m < n; ++m)
+ {
+ Real dvdt = lsd(v,m);
+ BOOST_CHECK_SMALL(dvdt, 4*sqrt(tol));
+ }
+ for (size_t m = v.size() - n; m < v.size(); ++m)
+ {
+ Real dvdt = lsd(v,m);
+ BOOST_CHECK_SMALL(dvdt, 4*sqrt(tol));
+ }
+ }
+ }
+
+ for(size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = 7*i+8;
+ }
+
+ for (size_t n = 3; n < 10; ++n)
+ {
+ for (size_t p = 2; p < 2*n; ++p)
+ {
+ auto lsd = discrete_lanczos_derivative(Real(1), n, p);
+ for (size_t m = 0; m < n; ++m)
+ {
+ Real dvdt = lsd(v,m);
+ BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, sqrt(tol));
+ }
+
+ for (size_t m = v.size() - n; m < v.size(); ++m)
+ {
+ Real dvdt = lsd(v,m);
+ BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, 4*sqrt(tol));
+ }
+ }
+ }
+
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = 15*i*i + 7*i+8;
+ }
+
+ for (size_t n = 1; n < 10; ++n)
+ {
+ for (size_t p = 2; p < 2*n; ++p)
+ {
+ auto lsd = discrete_lanczos_derivative(Real(1), n, p);
+ for (size_t m = 0; m < v.size(); ++m)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(lsd(v,m), 30*m+7, 30*sqrt(tol));
+ }
+ }
+ }
+
+ // Demonstrate that the boundary filters are also denoising:
+ //std::random_device rd{};
+ //auto seed = rd();
+ //std::cout << "seed = " << seed << "\n";
+ std::mt19937 gen(311354333);
+ std::normal_distribution<> dis{0, 0.01};
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] += dis(gen);
+ }
+
+ for (size_t n = 1; n < 10; ++n)
+ {
+ for (size_t p = 2; p < n; ++p)
+ {
+ auto lsd = discrete_lanczos_derivative(Real(1), n, p);
+ for (size_t m = 0; m < v.size(); ++m)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(lsd(v,m), 30*m+7, 0.005);
+ }
+ auto dvdt = lsd(v);
+ for (size_t m = 0; m < v.size(); ++m)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(dvdt[m], 30*m+7, 0.005);
+ }
+ }
+ }
+}
+
+template<class Real>
+void test_acceleration_filters()
+{
+ Real eps = std::numeric_limits<Real>::epsilon();
+ for (size_t n = 1; n < 5; ++n)
+ {
+ for(size_t p = 3; p <= 2*n; ++p)
+ {
+ for(int64_t s = -int64_t(n); s <= 0; ++s)
+ {
+ auto g = boost::math::differentiation::detail::acceleration_filter<long double>(n,p,s);
+
+ std::vector<Real> f(g.size());
+ for (size_t i = 0; i < g.size(); ++i)
+ {
+ f[i] = static_cast<Real>(g[i]);
+ }
+
+ auto cond = summation_condition_number<Real>(0);
+
+ for (size_t i = 0; i < f.size() - 1; ++i)
+ {
+ cond += f[i];
+ }
+ BOOST_CHECK_CLOSE_FRACTION(cond.sum(), -f[f.size()-1], 10*cond()*eps);
+
+
+ cond = summation_condition_number<Real>(0);
+ for (size_t k = 0; k < f.size() -1; ++k)
+ {
+ Real j = Real(k) - Real(n);
+ cond += (j-s)*f[k];
+ }
+ Real expected = -(Real(f.size()-1)- Real(n) - s)*f[f.size()-1];
+ BOOST_CHECK_CLOSE_FRACTION(cond.sum(), expected, 10*cond()*eps);
+
+ cond = summation_condition_number<Real>(0);
+ for (size_t k = 0; k < f.size(); ++k)
+ {
+ Real j = Real(k) - Real(n);
+ cond += (j-s)*(j-s)*f[k];
+ }
+ BOOST_CHECK_CLOSE_FRACTION(cond.sum(), 2, 100*cond()*eps);
+ // See unlabelled equation in McDevitt, 2012, just after equation 26:
+ // It appears that there is an off-by-one error in that equation, since p + 1 moments don't vanish, only p.
+ // This test is itself suspect; the condition number of the moment sum is infinite.
+ // So the *slightest* error in the filter gets amplified by the test; in terms of the
+ // behavior of the actual filter, it's not a big deal.
+ for (size_t l = 3; l <= p; ++l)
+ {
+ cond = summation_condition_number<Real>(0);
+ for (size_t k = 0; k < f.size() - 1; ++k)
+ {
+ Real j = Real(k) - Real(n);
+ cond += pow((j-s), l)*f[k];
+ }
+ Real expected = -pow(Real(f.size()- 1 - n -s), l)*f[f.size()-1];
+ BOOST_CHECK_CLOSE_FRACTION(cond.sum(), expected, 1000*cond()*eps);
+ }
+ }
+ }
+ }
+}
+
+template<class Real>
+void test_lanczos_acceleration()
+{
+ Real eps = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v(100, 7);
+ auto lanczos = discrete_lanczos_derivative<Real, 2>(Real(1), 4, 3);
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ BOOST_CHECK_SMALL(lanczos(v, i), eps);
+ }
+
+ for(size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = 7*i + 6;
+ }
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ BOOST_CHECK_SMALL(lanczos(v,i), 200*eps);
+ }
+
+ for(size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = 7*i*i + 9*i + 6;
+ }
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(lanczos(v, i), 14, 1500*eps);
+ }
+
+ // Now add noise, and kick up the smoothing of the Lanzcos derivative (increase n):
+ //std::random_device rd{};
+ //auto seed = rd();
+ //std::cout << "seed = " << seed << "\n";
+ size_t seed = 2507134629;
+ std::mt19937 gen(seed);
+ Real std_dev = 0.1;
+ std::normal_distribution<Real> dis{0, std_dev};
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] += dis(gen);
+ }
+ lanczos = discrete_lanczos_derivative<Real, 2>(Real(1), 18, 3);
+ auto w = lanczos(v);
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(w[i], 14, std_dev/200);
+ }
+}
+
+template<class Real>
+void test_rescaling()
+{
+ std::cout << "Test rescaling on type " << typeid(Real).name() << "\n";
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v(500);
+ for(size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = 7*i*i + 9*i + 6;
+ }
+ std::vector<Real> dvdt1(500);
+ std::vector<Real> dvdt2(500);
+ auto lanczos1 = discrete_lanczos_derivative(Real(1));
+ auto lanczos2 = discrete_lanczos_derivative(Real(2));
+
+ lanczos1(v, dvdt1);
+ lanczos2(v, dvdt2);
+
+ for(size_t i = 0; i < v.size(); ++i)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(dvdt1[i], 2*dvdt2[i], tol);
+ }
+
+ auto lanczos3 = discrete_lanczos_derivative<Real, 2>(Real(1));
+ auto lanczos4 = discrete_lanczos_derivative<Real, 2>(Real(2));
+
+
+ std::vector<Real> dv2dt21(500);
+ std::vector<Real> dv2dt22(500);
+
+ for(size_t i = 0; i < v.size(); ++i)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(dv2dt21[i], 4*dv2dt22[i], tol);
+ }
+}
+
+template<class Real>
+void test_data_representations()
+{
+ std::cout << "Test rescaling on type " << typeid(Real).name() << "\n";
+ Real tol = 150*std::numeric_limits<Real>::epsilon();
+ std::array<Real, 500> v;
+ for(size_t i = 0; i < v.size(); ++i)
+ {
+ v[i] = 9*i + 6;
+ }
+ std::array<Real, 500> dvdt;
+ auto lanczos = discrete_lanczos_derivative(Real(1));
+
+ lanczos(v, dvdt);
+
+ for(size_t i = 0; i < v.size(); ++i)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(dvdt[i], 9, tol);
+ }
+
+ boost::numeric::ublas::vector<Real> w(500);
+ boost::numeric::ublas::vector<Real> dwdt(500);
+ for(size_t i = 0; i < w.size(); ++i)
+ {
+ w[i] = 9*i + 6;
+ }
+
+ lanczos(w, dwdt);
+
+ for(size_t i = 0; i < v.size(); ++i)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(dwdt[i], 9, tol);
+ }
+
+ auto v1 = boost::make_iterator_range(v.begin(), v.end());
+ auto v2 = boost::make_iterator_range(dvdt.begin(), dvdt.end());
+ lanczos(v1, v2);
+
+ for(size_t i = 0; i < v2.size(); ++i)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(v2[i], 9, tol);
+ }
+
+ auto lanczos2 = discrete_lanczos_derivative<Real, 2>(Real(1));
+
+ lanczos2(v1, v2);
+
+ for(size_t i = 0; i < v2.size(); ++i)
+ {
+ BOOST_CHECK_SMALL(v2[i], 10*tol);
+ }
+
+}
+
+BOOST_AUTO_TEST_CASE(lanczos_smoothing_test)
+{
+ test_dlp_second_derivative<double>();
+ test_dlp_norms<double>();
+ test_dlp_evaluation<double>();
+ test_dlp_derivatives<double>();
+ test_dlp_next<double>();
+
+ // Takes too long!
+ //test_dlp_norms<cpp_bin_float_50>();
+ test_boundary_velocity_filters<double>();
+ test_boundary_velocity_filters<long double>();
+ // Takes too long!
+ //test_boundary_velocity_filters<cpp_bin_float_50>();
+ test_boundary_lanczos<double>();
+ test_boundary_lanczos<long double>();
+ // Takes too long!
+ //test_boundary_lanczos<cpp_bin_float_50>();
+
+ test_interior_velocity_filter<double>();
+ test_interior_velocity_filter<long double>();
+ test_interior_lanczos<double>();
+
+ test_acceleration_filters<double>();
+
+ test_lanczos_acceleration<float>();
+ test_lanczos_acceleration<double>();
+
+ test_rescaling<double>();
+ test_data_representations<double>();
+}