summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/test_autodiff_5.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/test_autodiff_5.cpp
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/test_autodiff_5.cpp')
-rw-r--r--src/boost/libs/math/test/test_autodiff_5.cpp120
1 files changed, 120 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_autodiff_5.cpp b/src/boost/libs/math/test/test_autodiff_5.cpp
new file mode 100644
index 00000000..614630ca
--- /dev/null
+++ b/src/boost/libs/math/test/test_autodiff_5.cpp
@@ -0,0 +1,120 @@
+// Copyright Matthew Pulver 2018 - 2019.
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt or copy at
+// https://www.boost.org/LICENSE_1_0.txt)
+
+#include "test_autodiff.hpp"
+
+BOOST_AUTO_TEST_SUITE(test_autodiff_5)
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(binomial_hpp, T, all_float_types) {
+ using boost::multiprecision::min;
+ using std::fabs;
+ using std::min;
+
+ using test_constants = test_constants_t<T>;
+ static constexpr auto m = test_constants::order;
+ test_detail::RandomSample<unsigned> n_sampler{0u, 30u};
+ test_detail::RandomSample<unsigned> r_sampler{0u, 30u};
+
+ for (auto i : boost::irange(test_constants::n_samples)) {
+ std::ignore = i;
+ auto n = n_sampler.next();
+ auto r = n == 0 ? 0 : (min)(r_sampler.next(), n - 1);
+
+ // This is a hard function to test for type float due to a specialization of
+ // boost::math::binomial_coefficient
+ auto autodiff_v =
+ std::is_same<T, float>::value
+ ? make_fvar<T, m>(boost::math::binomial_coefficient<T>(n, r))
+ : boost::math::binomial_coefficient<T>(n, r);
+ auto anchor_v = boost::math::binomial_coefficient<T>(n, r);
+ BOOST_CHECK_EQUAL(autodiff_v.derivative(0u), anchor_v);
+ }
+}
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(cbrt_hpp, T, all_float_types) {
+ using test_constants = test_constants_t<T>;
+ static constexpr auto m = test_constants::order;
+ test_detail::RandomSample<T> x_sampler{-2000, 2000};
+ for (auto i : boost::irange(test_constants::n_samples)) {
+ std::ignore = i;
+ auto x = x_sampler.next();
+ BOOST_CHECK_CLOSE(boost::math::cbrt(make_fvar<T, m>(x)).derivative(0u),
+ boost::math::cbrt(x), 50 * test_constants::pct_epsilon());
+ }
+}
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(chebyshev_hpp, T, all_float_types) {
+ using test_constants = test_constants_t<T>;
+ static constexpr auto m = test_constants::order;
+ {
+ test_detail::RandomSample<unsigned> n_sampler{0u, 10u};
+ test_detail::RandomSample<T> x_sampler{-2, 2};
+ for (auto i : boost::irange(test_constants::n_samples)) {
+ std::ignore = i;
+ auto n = n_sampler.next();
+ auto x = x_sampler.next();
+ BOOST_CHECK_CLOSE(
+ boost::math::chebyshev_t(n, make_fvar<T, m>(x)).derivative(0u),
+ boost::math::chebyshev_t(n, x), 40 * test_constants::pct_epsilon());
+
+ BOOST_CHECK_CLOSE(
+ boost::math::chebyshev_u(n, make_fvar<T, m>(x)).derivative(0u),
+ boost::math::chebyshev_u(n, x), 40 * test_constants::pct_epsilon());
+
+ BOOST_CHECK_CLOSE(
+ boost::math::chebyshev_t_prime(n, make_fvar<T, m>(x)).derivative(0u),
+ boost::math::chebyshev_t_prime(n, x),
+ 40 * test_constants::pct_epsilon());
+
+ /*/usr/include/boost/math/special_functions/chebyshev.hpp:164:40: error:
+ cannot convert
+ boost::math::differentiation::autodiff_v1::detail::fvar<double, 3> to
+ double in return
+ BOOST_CHECK_EQUAL(boost::math::chebyshev_clenshaw_recurrence(c.data(),c.size(),make_fvar<T,m>(0.20))
+ ,
+ boost::math::chebyshev_clenshaw_recurrence(c.data(),c.size(),static_cast<T>(0.20)));*/
+ /*try {
+ std::array<T, 4> c0{{14.2, -13.7, 82.3, 96}};
+ BOOST_CHECK_CLOSE(boost::math::chebyshev_clenshaw_recurrence(c0.data(),
+ c0.size(), make_fvar<T,m>(x)),
+ boost::math::chebyshev_clenshaw_recurrence(c0.data(),
+ c0.size(), x), 10*test_constants::pct_epsilon()); } catch (...) {
+ std::rethrow_exception(std::exception_ptr(std::current_exception()));
+ }*/
+ }
+ }
+}
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(cospi_hpp, T, all_float_types) {
+ using test_constants = test_constants_t<T>;
+ static constexpr auto m = test_constants::order;
+ test_detail::RandomSample<T> x_sampler{-2000, 2000};
+ for (auto i : boost::irange(test_constants::n_samples)) {
+ std::ignore = i;
+ auto x = x_sampler.next();
+ BOOST_CHECK_CLOSE(boost::math::cos_pi(make_fvar<T, m>(x)).derivative(0u),
+ boost::math::cos_pi(x), test_constants::pct_epsilon());
+ }
+}
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(digamma_hpp, T, all_float_types) {
+
+ using boost::math::nextafter;
+ using std::nextafter;
+
+ using test_constants = test_constants_t<T>;
+ static constexpr auto m = test_constants::order;
+ test_detail::RandomSample<T> x_sampler{-1, 2000};
+ for (auto i : boost::irange(test_constants::n_samples)) {
+ std::ignore = i;
+ auto x = nextafter(x_sampler.next(), ((std::numeric_limits<T>::max))());
+ auto autodiff_v = boost::math::digamma(make_fvar<T, m>(x));
+ auto anchor_v = boost::math::digamma(x);
+ BOOST_CHECK_CLOSE(autodiff_v.derivative(0u), anchor_v,
+ 1e4 * test_constants::pct_epsilon());
+ }
+}
+
+BOOST_AUTO_TEST_SUITE_END()