diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/test_autodiff_7.cpp | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/test_autodiff_7.cpp')
-rw-r--r-- | src/boost/libs/math/test/test_autodiff_7.cpp | 67 |
1 files changed, 67 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_autodiff_7.cpp b/src/boost/libs/math/test/test_autodiff_7.cpp new file mode 100644 index 00000000..c41d806a --- /dev/null +++ b/src/boost/libs/math/test/test_autodiff_7.cpp @@ -0,0 +1,67 @@ +// Copyright Matthew Pulver 2018 - 2019. +// Distributed under the Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt or copy at +// https://www.boost.org/LICENSE_1_0.txt) + +#include "test_autodiff.hpp" + +BOOST_AUTO_TEST_SUITE(test_autodiff_7) + +BOOST_AUTO_TEST_CASE_TEMPLATE(expm1_hpp, T, all_float_types) { + using boost::math::differentiation::detail::log; + using boost::multiprecision::log; + using std::log; + using test_constants = test_constants_t<T>; + static constexpr auto m = test_constants::order; + test_detail::RandomSample<T> x_sampler{-log(T(2000)), log(T(2000))}; + for (auto i : boost::irange(test_constants::n_samples)) { + std::ignore = i; + auto x = x_sampler.next(); + BOOST_CHECK_CLOSE(boost::math::expm1(make_fvar<T, m>(x)).derivative(0u), + boost::math::expm1(x), + 50 * test_constants::pct_epsilon()); + } +} + +BOOST_AUTO_TEST_CASE_TEMPLATE(fpclassify_hpp, T, all_float_types) { + using boost::math::fpclassify; + using boost::math::isfinite; + using boost::math::isinf; + using boost::math::isnan; + using boost::math::isnormal; + using boost::multiprecision::fpclassify; + using boost::multiprecision::isfinite; + using boost::multiprecision::isinf; + using boost::multiprecision::isnan; + using boost::multiprecision::isnormal; + + using test_constants = test_constants_t<T>; + static constexpr auto m = test_constants::order; + test_detail::RandomSample<T> x_sampler{-1000, 1000}; + for (auto i : boost::irange(test_constants::n_samples)) { + std::ignore = i; + + BOOST_CHECK_EQUAL(fpclassify(make_fvar<T, m>(0)), FP_ZERO); + BOOST_CHECK_EQUAL(fpclassify(make_fvar<T, m>(10)), FP_NORMAL); + BOOST_CHECK_EQUAL( + fpclassify(make_fvar<T, m>(std::numeric_limits<T>::infinity())), + FP_INFINITE); + BOOST_CHECK_EQUAL( + fpclassify(make_fvar<T, m>(std::numeric_limits<T>::quiet_NaN())), + FP_NAN); + if (std::numeric_limits<T>::has_denorm != std::denorm_absent) { + BOOST_CHECK_EQUAL( + fpclassify(make_fvar<T, m>(std::numeric_limits<T>::denorm_min())), + FP_SUBNORMAL); + } + + BOOST_CHECK(isfinite(make_fvar<T, m>(0))); + BOOST_CHECK(isnormal(make_fvar<T, m>((std::numeric_limits<T>::min)()))); + BOOST_CHECK( + !isnormal(make_fvar<T, m>(std::numeric_limits<T>::denorm_min()))); + BOOST_CHECK(isinf(make_fvar<T, m>(std::numeric_limits<T>::infinity()))); + BOOST_CHECK(isnan(make_fvar<T, m>(std::numeric_limits<T>::quiet_NaN()))); + } +} + +BOOST_AUTO_TEST_SUITE_END() |