summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/test_autodiff_7.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/test_autodiff_7.cpp
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/test_autodiff_7.cpp')
-rw-r--r--src/boost/libs/math/test/test_autodiff_7.cpp67
1 files changed, 67 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_autodiff_7.cpp b/src/boost/libs/math/test/test_autodiff_7.cpp
new file mode 100644
index 00000000..c41d806a
--- /dev/null
+++ b/src/boost/libs/math/test/test_autodiff_7.cpp
@@ -0,0 +1,67 @@
+// Copyright Matthew Pulver 2018 - 2019.
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt or copy at
+// https://www.boost.org/LICENSE_1_0.txt)
+
+#include "test_autodiff.hpp"
+
+BOOST_AUTO_TEST_SUITE(test_autodiff_7)
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(expm1_hpp, T, all_float_types) {
+ using boost::math::differentiation::detail::log;
+ using boost::multiprecision::log;
+ using std::log;
+ using test_constants = test_constants_t<T>;
+ static constexpr auto m = test_constants::order;
+ test_detail::RandomSample<T> x_sampler{-log(T(2000)), log(T(2000))};
+ for (auto i : boost::irange(test_constants::n_samples)) {
+ std::ignore = i;
+ auto x = x_sampler.next();
+ BOOST_CHECK_CLOSE(boost::math::expm1(make_fvar<T, m>(x)).derivative(0u),
+ boost::math::expm1(x),
+ 50 * test_constants::pct_epsilon());
+ }
+}
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(fpclassify_hpp, T, all_float_types) {
+ using boost::math::fpclassify;
+ using boost::math::isfinite;
+ using boost::math::isinf;
+ using boost::math::isnan;
+ using boost::math::isnormal;
+ using boost::multiprecision::fpclassify;
+ using boost::multiprecision::isfinite;
+ using boost::multiprecision::isinf;
+ using boost::multiprecision::isnan;
+ using boost::multiprecision::isnormal;
+
+ using test_constants = test_constants_t<T>;
+ static constexpr auto m = test_constants::order;
+ test_detail::RandomSample<T> x_sampler{-1000, 1000};
+ for (auto i : boost::irange(test_constants::n_samples)) {
+ std::ignore = i;
+
+ BOOST_CHECK_EQUAL(fpclassify(make_fvar<T, m>(0)), FP_ZERO);
+ BOOST_CHECK_EQUAL(fpclassify(make_fvar<T, m>(10)), FP_NORMAL);
+ BOOST_CHECK_EQUAL(
+ fpclassify(make_fvar<T, m>(std::numeric_limits<T>::infinity())),
+ FP_INFINITE);
+ BOOST_CHECK_EQUAL(
+ fpclassify(make_fvar<T, m>(std::numeric_limits<T>::quiet_NaN())),
+ FP_NAN);
+ if (std::numeric_limits<T>::has_denorm != std::denorm_absent) {
+ BOOST_CHECK_EQUAL(
+ fpclassify(make_fvar<T, m>(std::numeric_limits<T>::denorm_min())),
+ FP_SUBNORMAL);
+ }
+
+ BOOST_CHECK(isfinite(make_fvar<T, m>(0)));
+ BOOST_CHECK(isnormal(make_fvar<T, m>((std::numeric_limits<T>::min)())));
+ BOOST_CHECK(
+ !isnormal(make_fvar<T, m>(std::numeric_limits<T>::denorm_min())));
+ BOOST_CHECK(isinf(make_fvar<T, m>(std::numeric_limits<T>::infinity())));
+ BOOST_CHECK(isnan(make_fvar<T, m>(std::numeric_limits<T>::quiet_NaN())));
+ }
+}
+
+BOOST_AUTO_TEST_SUITE_END()