diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/test_igamma_inv.hpp | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/test_igamma_inv.hpp')
-rw-r--r-- | src/boost/libs/math/test/test_igamma_inv.hpp | 233 |
1 files changed, 233 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_igamma_inv.hpp b/src/boost/libs/math/test/test_igamma_inv.hpp new file mode 100644 index 00000000..7330e918 --- /dev/null +++ b/src/boost/libs/math/test/test_igamma_inv.hpp @@ -0,0 +1,233 @@ +// Copyright John Maddock 2006. +// Copyright Paul A. Bristow 2007, 2009 +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + +#include <boost/math/concepts/real_concept.hpp> +#include <boost/math/special_functions/math_fwd.hpp> +#define BOOST_TEST_MAIN +#include <boost/test/unit_test.hpp> +#include <boost/test/results_collector.hpp> +#include <boost/test/unit_test.hpp> +#include <boost/test/tools/floating_point_comparison.hpp> +#include <boost/math/tools/stats.hpp> +#include <boost/math/tools/test.hpp> +#include <boost/math/constants/constants.hpp> +#include <boost/type_traits/is_floating_point.hpp> +#include <boost/array.hpp> +#include "functor.hpp" + +#include "handle_test_result.hpp" +#include "table_type.hpp" + +#ifndef SC_ +#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L)) +#endif + +#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \ + {\ + unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ + BOOST_CHECK_CLOSE(a, b, prec); \ + if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ + {\ + std::cerr << "Failure was at row " << i << std::endl;\ + std::cerr << std::setprecision(35); \ + std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ + std::cerr << " , " << data[i][3] << " , " << data[i][4] << " , " << data[i][5] << " } " << std::endl;\ + }\ + } + +template <class Real, class T> +void do_test_gamma_2(const T& data, const char* type_name, const char* test_name) +{ + // + // test gamma_p_inv(T, T) against data: + // + using namespace std; + typedef Real value_type; + + std::cout << test_name << " with type " << type_name << std::endl; + + // + // These sanity checks test for a round trip accuracy of one half + // of the bits in T, unless T is type float, in which case we check + // for just one decimal digit. The problem here is the sensitivity + // of the functions, not their accuracy. This test data was generated + // for the forward functions, which means that when it is used as + // the input to the inverses then it is necessarily inexact. This rounding + // of the input is what makes the data unsuitable for use as an accuracy check, + // and also demonstrates that you can't in general round-trip these functions. + // It is however a useful sanity check. + // + value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100; + if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50) + precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float + + for(unsigned i = 0; i < data.size(); ++i) + { + // + // These inverse tests are thrown off if the output of the + // incomplete gamma is too close to 1: basically there is insuffient + // information left in the value we're using as input to the inverse + // to be able to get back to the original value. + // + if(Real(data[i][5]) == 0) + BOOST_CHECK_EQUAL(boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5])), value_type(0)); + else if((1 - Real(data[i][5]) > 0.001) + && (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<value_type>()) + && (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<double>())) + { + value_type inv = boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5])); + BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, precision, i); + } + else if(1 == Real(data[i][5])) + BOOST_CHECK_EQUAL(boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>()); + else + { + // not enough bits in our input to get back to x, but we should be in + // the same ball park: + value_type inv = boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5])); + BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, 100000, i); + } + + if(Real(data[i][3]) == 0) + BOOST_CHECK_EQUAL(boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>()); + else if((1 - Real(data[i][3]) > 0.001) && (fabs(Real(data[i][3])) > 2 * boost::math::tools::min_value<value_type>())) + { + value_type inv = boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3])); + BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, precision, i); + } + else if(1 == Real(data[i][3])) + BOOST_CHECK_EQUAL(boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3])), value_type(0)); + else if(fabs(Real(data[i][3])) > 2 * boost::math::tools::min_value<value_type>()) + { + // not enough bits in our input to get back to x, but we should be in + // the same ball park: + value_type inv = boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3])); + BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, 100, i); + } + } + std::cout << std::endl; +} + +template <class Real, class T> +void do_test_gamma_inv(const T& data, const char* type_name, const char* test_name) +{ +#if !(defined(ERROR_REPORTING_MODE) && !defined(GAMMAP_INV_FUNCTION_TO_TEST)) + typedef Real value_type; + + typedef value_type (*pg)(value_type, value_type); +#ifdef GAMMAP_INV_FUNCTION_TO_TEST + pg funcp = GAMMAP_INV_FUNCTION_TO_TEST; +#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) + pg funcp = boost::math::gamma_p_inv<value_type, value_type>; +#else + pg funcp = boost::math::gamma_p_inv; +#endif + + boost::math::tools::test_result<value_type> result; + + std::cout << "Testing " << test_name << " with type " << type_name + << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; + + // + // test gamma_p_inv(T, T) against data: + // + result = boost::math::tools::test_hetero<Real>( + data, + bind_func<Real>(funcp, 0, 1), + extract_result<Real>(2)); + handle_test_result(result, data[result.worst()], result.worst(), type_name, "gamma_p_inv", test_name); + // + // test gamma_q_inv(T, T) against data: + // +#ifdef GAMMAQ_INV_FUNCTION_TO_TEST + funcp = GAMMAQ_INV_FUNCTION_TO_TEST; +#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) + funcp = boost::math::gamma_q_inv<value_type, value_type>; +#else + funcp = boost::math::gamma_q_inv; +#endif + result = boost::math::tools::test_hetero<Real>( + data, + bind_func<Real>(funcp, 0, 1), + extract_result<Real>(3)); + handle_test_result(result, data[result.worst()], result.worst(), type_name, "gamma_q_inv", test_name); +#endif +} + +template <class T> +void test_gamma(T, const char* name) +{ +#if !defined(TEST_UDT) && !defined(ERROR_REPORTING_MODE) + // + // The actual test data is rather verbose, so it's in a separate file + // + // First the data for the incomplete gamma function, each + // row has the following 6 entries: + // Parameter a, parameter z, + // Expected tgamma(a, z), Expected gamma_q(a, z) + // Expected tgamma_lower(a, z), Expected gamma_p(a, z) + // +# include "igamma_med_data.ipp" + + do_test_gamma_2<T>(igamma_med_data, name, "Running round trip sanity checks on incomplete gamma medium sized values"); + +# include "igamma_small_data.ipp" + + do_test_gamma_2<T>(igamma_small_data, name, "Running round trip sanity checks on incomplete gamma small values"); + +# include "igamma_big_data.ipp" + + do_test_gamma_2<T>(igamma_big_data, name, "Running round trip sanity checks on incomplete gamma large values"); + +#endif + +# include "gamma_inv_data.ipp" + + do_test_gamma_inv<T>(gamma_inv_data, name, "incomplete gamma inverse(a, z) medium values"); + +# include "gamma_inv_big_data.ipp" + + do_test_gamma_inv<T>(gamma_inv_big_data, name, "incomplete gamma inverse(a, z) large values"); + +# include "gamma_inv_small_data.ipp" + + do_test_gamma_inv<T>(gamma_inv_small_data, name, "incomplete gamma inverse(a, z) small values"); +} + +template <class T> +void test_spots(T, const char* type_name) +{ + std::cout << "Running spot checks for type " << type_name << std::endl; + // + // basic sanity checks, tolerance is 150 epsilon expressed as a percentage: + // + T tolerance = boost::math::tools::epsilon<T>() * 15000; + if(tolerance < 1e-25f) + tolerance = 1e-25f; // limit of test data? + BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1)/100, static_cast<T>(1.0/128)), static_cast<T>(0.35767144525455121503672919307647515332256996883787L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1)/100, static_cast<T>(0.5)), static_cast<T>(4.4655350189103486773248562646452806745879516124613e-31L), tolerance*10); + // + // We can't test in this region against Mathworld's data as the results produced + // by functions.wolfram.com appear to be in error, and do *not* round trip with + // their own version of gamma_q. Using our output from the inverse as input to + // their version of gamma_q *does* round trip however. It should be pointed out + // that the functions in this area are very sensitive with nearly infinite + // first derivatives, it's also questionable how useful these functions are + // in this part of the domain. + // + //BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1e-2), static_cast<T>(1.0-1.0/128)), static_cast<T>(3.8106736649978161389878528903698068142257930575497e-181L), tolerance); + // + BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0/128)), static_cast<T>(3.5379794687984498627918583429482809311448951189097L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0/2)), static_cast<T>(0.22746821155978637597125832348982469815821055329511L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0-1.0/128)), static_cast<T>(0.000047938431649305382237483273209405461203600840052182L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0/128)), static_cast<T>(19.221865946801723949866005318845155649972164294057L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0/2)), static_cast<T>(9.6687146147141311517500637401166726067778162022664L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0-1.0/128)), static_cast<T>(3.9754602513640844712089002210120603689809432130520L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0/128)), static_cast<T>(10243.369973939134157953734588122880006091919872879L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0/2)), static_cast<T>(9999.6666686420474237369661574633153551436435884101L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0-1.0/128)), static_cast<T>(9759.8597223369324083191194574874497413261589080204L), tolerance); +} + |