diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/test_legendre.hpp | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/test_legendre.hpp')
-rw-r--r-- | src/boost/libs/math/test/test_legendre.hpp | 367 |
1 files changed, 367 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_legendre.hpp b/src/boost/libs/math/test/test_legendre.hpp new file mode 100644 index 00000000..b260050b --- /dev/null +++ b/src/boost/libs/math/test/test_legendre.hpp @@ -0,0 +1,367 @@ +// Copyright John Maddock 2006. +// Copyright Paul A. Bristow 2007, 2009 +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + +#ifdef _MSC_VER +# pragma warning (disable : 4756) // overflow in constant arithmetic +#endif + +#include <boost/math/concepts/real_concept.hpp> +#define BOOST_TEST_MAIN +#include <boost/test/unit_test.hpp> +#include <boost/test/tools/floating_point_comparison.hpp> +#include <boost/math/special_functions/math_fwd.hpp> +#include <boost/math/special_functions/legendre.hpp> +#include <boost/math/constants/constants.hpp> +#include <boost/multiprecision/cpp_bin_float.hpp> +#include <boost/array.hpp> +#include "functor.hpp" + +#include "handle_test_result.hpp" +#include "table_type.hpp" + +#ifndef SC_ +#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L)) +#endif + +template <class Real, class T> +void do_test_legendre_p(const T& data, const char* type_name, const char* test_name) +{ + typedef Real value_type; + + typedef value_type (*pg)(int, value_type); + pg funcp; + +#if !(defined(ERROR_REPORTING_MODE) && !defined(LEGENDRE_P_FUNCTION_TO_TEST)) +#ifdef LEGENDRE_P_FUNCTION_TO_TEST + funcp = LEGENDRE_P_FUNCTION_TO_TEST; +#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) + funcp = boost::math::legendre_p<value_type>; +#else + funcp = boost::math::legendre_p; +#endif + + boost::math::tools::test_result<value_type> result; + + std::cout << "Testing " << test_name << " with type " << type_name + << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; + + // + // test legendre_p against data: + // + result = boost::math::tools::test_hetero<Real>( + data, + bind_func_int1<Real>(funcp, 0, 1), + extract_result<Real>(2)); + handle_test_result(result, data[result.worst()], result.worst(), type_name, "legendre_p", test_name); +#endif + + typedef value_type (*pg2)(unsigned, value_type); +#if !(defined(ERROR_REPORTING_MODE) && !defined(LEGENDRE_Q_FUNCTION_TO_TEST)) +#ifdef LEGENDRE_Q_FUNCTION_TO_TEST + pg2 funcp2 = LEGENDRE_Q_FUNCTION_TO_TEST; +#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) + pg2 funcp2 = boost::math::legendre_q<value_type>; +#else + pg2 funcp2 = boost::math::legendre_q; +#endif + + // + // test legendre_q against data: + // + result = boost::math::tools::test_hetero<Real>( + data, + bind_func_int1<Real>(funcp2, 0, 1), + extract_result<Real>(3)); + handle_test_result(result, data[result.worst()], result.worst(), type_name, "legendre_q", test_name); + + std::cout << std::endl; +#endif +} + +template <class Real, class T> +void do_test_assoc_legendre_p(const T& data, const char* type_name, const char* test_name) +{ +#if !(defined(ERROR_REPORTING_MODE) && !defined(LEGENDRE_PA_FUNCTION_TO_TEST)) + typedef Real value_type; + + typedef value_type (*pg)(int, int, value_type); +#ifdef LEGENDRE_PA_FUNCTION_TO_TEST + pg funcp = LEGENDRE_PA_FUNCTION_TO_TEST; +#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) + pg funcp = boost::math::legendre_p<value_type>; +#else + pg funcp = boost::math::legendre_p; +#endif + + boost::math::tools::test_result<value_type> result; + + std::cout << "Testing " << test_name << " with type " << type_name + << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; + + // + // test legendre_p against data: + // + result = boost::math::tools::test_hetero<Real>( + data, + bind_func_int2<Real>(funcp, 0, 1, 2), + extract_result<Real>(3)); + handle_test_result(result, data[result.worst()], result.worst(), type_name, "legendre_p (associated)", test_name); + std::cout << std::endl; +#endif +} + +template <class T> +void test_legendre_p(T, const char* name) +{ + // + // The actual test data is rather verbose, so it's in a separate file + // + // The contents are as follows, each row of data contains + // three items, input value a, input value b and erf(a, b): + // +# include "legendre_p.ipp" + + do_test_legendre_p<T>(legendre_p, name, "Legendre Polynomials: Small Values"); + +# include "legendre_p_large.ipp" + + do_test_legendre_p<T>(legendre_p_large, name, "Legendre Polynomials: Large Values"); + +# include "assoc_legendre_p.ipp" + + do_test_assoc_legendre_p<T>(assoc_legendre_p, name, "Associated Legendre Polynomials: Small Values"); + +} + +template <class T> +void test_spots(T, const char* t) +{ + std::cout << "Testing basic sanity checks for type " << t << std::endl; + // + // basic sanity checks, tolerance is 100 epsilon: + // + T tolerance = boost::math::tools::epsilon<T>() * 100; + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(1, static_cast<T>(0.5L)), static_cast<T>(0.5L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-1, static_cast<T>(0.5L)), static_cast<T>(1L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, static_cast<T>(0.5L)), static_cast<T>(-0.2890625000000000000000000000000000000000L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, static_cast<T>(0.5L)), static_cast<T>(-0.4375000000000000000000000000000000000000L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, static_cast<T>(0.5L)), static_cast<T>(0.2231445312500000000000000000000000000000L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, static_cast<T>(0.5L)), static_cast<T>(0.3232421875000000000000000000000000000000L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, static_cast<T>(0.5L)), static_cast<T>(-0.09542943523261546936538467572384923220258L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, static_cast<T>(0.5L)), static_cast<T>(-0.1316993126940266257030910566308990611306L), tolerance); + + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, 2, static_cast<T>(0.5L)), static_cast<T>(4.218750000000000000000000000000000000000L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, 2, static_cast<T>(0.5L)), static_cast<T>(5.625000000000000000000000000000000000000L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, 5, static_cast<T>(0.5L)), static_cast<T>(-5696.789530152175143607977274672800795328L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, 4, static_cast<T>(0.5L)), static_cast<T>(465.1171875000000000000000000000000000000L), tolerance); + if(std::numeric_limits<T>::max_exponent > std::numeric_limits<float>::max_exponent) + { + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, 30, static_cast<T>(0.5L)), static_cast<T>(-7.855722083232252643913331343916012143461e45L), tolerance); + } + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, 20, static_cast<T>(0.5L)), static_cast<T>(4.966634149702370788037088925152355134665e30L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, 2, static_cast<T>(-0.5L)), static_cast<T>(4.218750000000000000000000000000000000000L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, 2, static_cast<T>(-0.5L)), static_cast<T>(-5.625000000000000000000000000000000000000L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, 5, static_cast<T>(-0.5L)), static_cast<T>(-5696.789530152175143607977274672800795328L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, 4, static_cast<T>(-0.5L)), static_cast<T>(465.1171875000000000000000000000000000000L), tolerance); + if(std::numeric_limits<T>::max_exponent > std::numeric_limits<float>::max_exponent) + { + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, 30, static_cast<T>(-0.5L)), static_cast<T>(-7.855722083232252643913331343916012143461e45L), tolerance); + } + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, 20, static_cast<T>(-0.5L)), static_cast<T>(-4.966634149702370788037088925152355134665e30L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, -2, static_cast<T>(0.5L)), static_cast<T>(0.01171875000000000000000000000000000000000L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, -2, static_cast<T>(0.5L)), static_cast<T>(0.04687500000000000000000000000000000000000L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, -5, static_cast<T>(0.5L)), static_cast<T>(0.00002378609812640364935569308025139290054701L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, -4, static_cast<T>(0.5L)), static_cast<T>(0.0002563476562500000000000000000000000000000L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, -30, static_cast<T>(0.5L)), static_cast<T>(-2.379819988646847616996471299410611801239e-48L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, -20, static_cast<T>(0.5L)), static_cast<T>(4.356454600748202401657099008867502679122e-33L), tolerance); + + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(1, static_cast<T>(0.5L)), static_cast<T>(-0.7253469278329725771511886907693685738381L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(4, static_cast<T>(0.5L)), static_cast<T>(0.4401745259867706044988642951843745400835L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(7, static_cast<T>(0.5L)), static_cast<T>(-0.3439152932669753451878700644212067616780L), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(40, static_cast<T>(0.5L)), static_cast<T>(0.1493671665503550095010454949479907886011L), tolerance); +} + +template <class T> +void test_legendre_p_prime() +{ + T tolerance = 100*boost::math::tools::epsilon<T>(); + T x = -1; + while (x <= 1) + { + // P_0'(x) = 0 + BOOST_CHECK_SMALL(::boost::math::legendre_p_prime<T>(0, x), tolerance); + // Reflection formula for P_{-1}(x) = P_{0}(x): + BOOST_CHECK_SMALL(::boost::math::legendre_p_prime<T>(-1, x), tolerance); + + // P_1(x) = x, so P_1'(x) = 1: + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(1, x), static_cast<T>(1), tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-2, x), static_cast<T>(1), tolerance); + + // P_2(x) = 3x^2/2 + k => P_2'(x) = 3x + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(2, x), 3*x, tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-3, x), 3*x, tolerance); + + // P_3(x) = (5x^3 - 3x)/2 => P_3'(x) = (15x^2 - 3)/2: + T xsq = x*x; + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(3, x), (15*xsq - 3)/2, tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-4, x), (15*xsq -3)/2, tolerance); + + // P_4(x) = (35x^4 - 30x^2 +3)/8 => P_4'(x) = (5x/2)*(7x^2 - 3) + T expected = 5*x*(7*xsq - 3)/2; + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(4, x), expected, tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-5, x), expected, tolerance); + + // P_5(x) = (63x^5 - 70x^3 + 15x)/8 => P_5'(x) = (315*x^4 - 210*x^2 + 15)/8 + T x4 = xsq*xsq; + expected = (315*x4 - 210*xsq + 15)/8; + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(5, x), expected, tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-6, x), expected, tolerance); + + // P_6(x) = (231x^6 -315*x^4 +105x^2 -5)/16 => P_6'(x) = (6*231*x^5 - 4*315*x^3 + 105x)/16 + expected = 21*x*(33*x4 - 30*xsq + 5)/8; + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(6, x), expected, tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-7, x), expected, tolerance); + + // Mathematica: D[LegendreP[7, x],x] + T x6 = x4*xsq; + expected = 7*(429*x6 -495*x4 + 135*xsq - 5)/16; + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(7, x), expected, tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-8, x), expected, tolerance); + + // Mathematica: D[LegendreP[8, x],x] + // The naive polynomial evaluation algorithm is going to get worse from here out, so this will be enough. + expected = 9*x*(715*x6 - 1001*x4 + 385*xsq - 35)/16; + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(8, x), expected, tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-9, x), expected, tolerance); + + x += static_cast<T>(1)/static_cast<T>(pow(T(2), T(4))); + } + + int n = 0; + while (n < 5000) + { + T expected = n*(n+1)*boost::math::constants::half<T>(); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(n, (T) 1), expected, tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-n - 1, (T) 1), expected, tolerance); + if (n & 1) + { + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(n, (T) -1), expected, tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-n - 1, (T) -1), expected, tolerance); + } + else + { + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(n, (T) -1), -expected, tolerance); + BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-n - 1, (T) -1), -expected, tolerance); + } + ++n; + } +} + +template<class Real> +void test_legendre_p_zeros() +{ + std::cout << "Testing Legendre zeros on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n"; + using std::sqrt; + using std::abs; + using boost::math::legendre_p_zeros; + using boost::math::legendre_p; + using boost::math::constants::third; + Real tol = std::numeric_limits<Real>::epsilon(); + + // Check the trivial cases: + std::vector<Real> zeros = legendre_p_zeros<Real>(1); + BOOST_ASSERT(zeros.size() == 1); + BOOST_CHECK_SMALL(zeros[0], tol); + + zeros = legendre_p_zeros<Real>(2); + BOOST_ASSERT(zeros.size() == 1); + BOOST_CHECK_CLOSE_FRACTION(zeros[0], (Real) 1/ sqrt(static_cast<Real>(3)), tol); + + zeros = legendre_p_zeros<Real>(3); + BOOST_ASSERT(zeros.size() == 2); + BOOST_CHECK_SMALL(zeros[0], tol); + BOOST_CHECK_CLOSE_FRACTION(zeros[1], sqrt(static_cast<Real>(3)/static_cast<Real>(5)), tol); + + zeros = legendre_p_zeros<Real>(4); + BOOST_ASSERT(zeros.size() == 2); + BOOST_CHECK_CLOSE_FRACTION(zeros[0], sqrt( (15-2*sqrt(static_cast<Real>(30)))/static_cast<Real>(35) ), tol); + BOOST_CHECK_CLOSE_FRACTION(zeros[1], sqrt( (15+2*sqrt(static_cast<Real>(30)))/static_cast<Real>(35) ), tol); + + + zeros = legendre_p_zeros<Real>(5); + BOOST_ASSERT(zeros.size() == 3); + BOOST_CHECK_SMALL(zeros[0], tol); + BOOST_CHECK_CLOSE_FRACTION(zeros[1], third<Real>()*sqrt( (35 - 2*sqrt(static_cast<Real>(70)))/static_cast<Real>(7) ), 2*tol); + BOOST_CHECK_CLOSE_FRACTION(zeros[2], third<Real>()*sqrt( (35 + 2*sqrt(static_cast<Real>(70)))/static_cast<Real>(7) ), 2*tol); + + // Don't take the tolerances too seriously. + // The other test shows that the zeros are estimated more accurately than the function! + for (unsigned n = 6; n < 130; ++n) + { + zeros = legendre_p_zeros<Real>(n); + if (n & 1) + { + BOOST_CHECK(zeros.size() == (n-1)/2 +1); + BOOST_CHECK_SMALL(zeros[0], tol); + } + else + { + // Zero is not a zero of the odd Legendre polynomials + BOOST_CHECK(zeros.size() == n/2); + BOOST_CHECK(zeros[0] > 0); + BOOST_CHECK_SMALL(legendre_p(n, zeros[0]), 550*tol); + } + Real previous_zero = zeros[0]; + for (unsigned k = 1; k < zeros.size(); ++k) + { + Real next_zero = zeros[k]; + BOOST_CHECK(next_zero > previous_zero); + + std::string err = "Tolerance failed for (n, k) = (" + boost::lexical_cast<std::string>(n) + "," + boost::lexical_cast<std::string>(k) + ")\n"; + if (n < 40) + { + BOOST_CHECK_MESSAGE( abs(legendre_p(n, next_zero)) < 100*tol, + err); + } + else + { + BOOST_CHECK_MESSAGE( abs(legendre_p(n, next_zero)) < 1000*tol, + err); + } + previous_zero = next_zero; + } + // The zeros of orthogonal polynomials are contained strictly in (a, b). + BOOST_CHECK(previous_zero < 1); + } + return; +} + +int test_legendre_p_zeros_double_ulp(int min_x, int max_n) +{ + std::cout << "Testing ULP distance for Legendre zeros.\n"; + using std::abs; + using boost::math::legendre_p_zeros; + using boost::math::float_distance; + using boost::multiprecision::cpp_bin_float_quad; + + double max_float_distance = 0; + for (int n = min_x; n < max_n; ++n) + { + std::vector<double> double_zeros = legendre_p_zeros<double>(n); + std::vector<cpp_bin_float_quad> quad_zeros = legendre_p_zeros<cpp_bin_float_quad>(n); + BOOST_ASSERT(quad_zeros.size() == double_zeros.size()); + for (int k = 0; k < (int)double_zeros.size(); ++k) + { + double d = abs(float_distance(double_zeros[k], quad_zeros[k].convert_to<double>())); + if (d > max_float_distance) + { + max_float_distance = d; + } + } + } + + return (int) max_float_distance; +} |