diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/multiprecision/example/integer_examples.cpp | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/multiprecision/example/integer_examples.cpp')
-rw-r--r-- | src/boost/libs/multiprecision/example/integer_examples.cpp | 232 |
1 files changed, 232 insertions, 0 deletions
diff --git a/src/boost/libs/multiprecision/example/integer_examples.cpp b/src/boost/libs/multiprecision/example/integer_examples.cpp new file mode 100644 index 00000000..5c2f8147 --- /dev/null +++ b/src/boost/libs/multiprecision/example/integer_examples.cpp @@ -0,0 +1,232 @@ +/////////////////////////////////////////////////////////////// +// Copyright 2012 John Maddock. Distributed under the Boost +// Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt + +#include <boost/multiprecision/cpp_int.hpp> +#include <iostream> +#include <iomanip> +#include <vector> + +// Includes Quickbook code snippets as comments. + +//[FAC1 + +/*` +In this simple example, we'll write a routine to print out all of the factorials +which will fit into a 128-bit integer. At the end of the routine we do some +fancy iostream formatting of the results: +*/ +/*= +#include <boost/multiprecision/cpp_int.hpp> +#include <iostream> +#include <iomanip> +#include <vector> +*/ + +void print_factorials() +{ + using boost::multiprecision::cpp_int; + // + // Print all the factorials that will fit inside a 128-bit integer. + // + // Begin by building a big table of factorials, once we know just how + // large the largest is, we'll be able to "pretty format" the results. + // + // Calculate the largest number that will fit inside 128 bits, we could + // also have used numeric_limits<int128_t>::max() for this value: + cpp_int limit = (cpp_int(1) << 128) - 1; + // + // Our table of values: + std::vector<cpp_int> results; + // + // Initial values: + unsigned i = 1; + cpp_int factorial = 1; + // + // Cycle through the factorials till we reach the limit: + while(factorial < limit) + { + results.push_back(factorial); + ++i; + factorial *= i; + } + // + // Lets see how many digits the largest factorial was: + unsigned digits = results.back().str().size(); + // + // Now print them out, using right justification, while we're at it + // we'll indicate the limit of each integer type, so begin by defining + // the limits for 16, 32, 64 etc bit integers: + cpp_int limits[] = { + (cpp_int(1) << 16) - 1, + (cpp_int(1) << 32) - 1, + (cpp_int(1) << 64) - 1, + (cpp_int(1) << 128) - 1, + }; + std::string bit_counts[] = { "16", "32", "64", "128" }; + unsigned current_limit = 0; + for(unsigned j = 0; j < results.size(); ++j) + { + if(limits[current_limit] < results[j]) + { + std::string message = "Limit of " + bit_counts[current_limit] + " bit integers"; + std::cout << std::setfill('.') << std::setw(digits+1) << std::right << message << std::setfill(' ') << std::endl; + ++current_limit; + } + std::cout << std::setw(digits + 1) << std::right << results[j] << std::endl; + } +} + +/*` +The output from this routine is: +[pre + 1 + 2 + 6 + 24 + 120 + 720 + 5040 + 40320 +................Limit of 16 bit integers + 362880 + 3628800 + 39916800 + 479001600 +................Limit of 32 bit integers + 6227020800 + 87178291200 + 1307674368000 + 20922789888000 + 355687428096000 + 6402373705728000 + 121645100408832000 + 2432902008176640000 +................Limit of 64 bit integers + 51090942171709440000 + 1124000727777607680000 + 25852016738884976640000 + 620448401733239439360000 + 15511210043330985984000000 + 403291461126605635584000000 + 10888869450418352160768000000 + 304888344611713860501504000000 + 8841761993739701954543616000000 + 265252859812191058636308480000000 + 8222838654177922817725562880000000 + 263130836933693530167218012160000000 + 8683317618811886495518194401280000000 + 295232799039604140847618609643520000000 +] +*/ + +//] + +//[BITOPS + +/*` +In this example we'll show how individual bits within an integer may be manipulated, +we'll start with an often needed calculation of ['2[super n] - 1], which we could obviously +implement like this: +*/ + +using boost::multiprecision::cpp_int; + +cpp_int b1(unsigned n) +{ + cpp_int r(1); + return (r << n) - 1; +} + +/*` +Calling: + + std::cout << std::hex << std::showbase << b1(200) << std::endl; + +Yields as expected: + +[pre 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF] + +However, we could equally just set the n'th bit in the result, like this: +*/ + +cpp_int b2(unsigned n) +{ + cpp_int r(0); + return --bit_set(r, n); +} + +/*` +Note how the `bit_set` function sets the specified bit in its argument and then returns a reference to the result - +which we can then simply decrement. The result from a call to `b2` is the same as that to `b1`. + +We can equally test bits, so for example the n'th bit of the result returned from `b2` shouldn't be set +unless we increment it first: + + BOOST_ASSERT(!bit_test(b1(200), 200)); // OK + BOOST_ASSERT(bit_test(++b1(200), 200)); // OK + +And of course if we flip the n'th bit after increment, then we should get back to zero: + + BOOST_ASSERT(!bit_flip(++b1(200), 200)); // OK +*/ + +//] + +int main() +{ + print_factorials(); + + std::cout << std::hex << std::showbase << b1(200) << std::endl; + std::cout << std::hex << std::showbase << b2(200) << std::endl; + BOOST_ASSERT(!bit_test(b1(200), 200)); // OK + BOOST_ASSERT(bit_test(++b1(200), 200)); // OK + BOOST_ASSERT(!bit_flip(++b1(200), 200)); // OK + return 0; +} + +/* + +Program output: + + 1 + 2 + 6 + 24 + 120 + 720 + 5040 + 40320 +................Limit of 16 bit integers + 362880 + 3628800 + 39916800 + 479001600 +................Limit of 32 bit integers + 6227020800 + 87178291200 + 1307674368000 + 20922789888000 + 355687428096000 + 6402373705728000 + 121645100408832000 + 2432902008176640000 +................Limit of 64 bit integers + 51090942171709440000 + 1124000727777607680000 + 25852016738884976640000 + 620448401733239439360000 + 15511210043330985984000000 + 403291461126605635584000000 + 10888869450418352160768000000 + 304888344611713860501504000000 + 8841761993739701954543616000000 + 265252859812191058636308480000000 + 8222838654177922817725562880000000 + 263130836933693530167218012160000000 + 8683317618811886495518194401280000000 + 295232799039604140847618609643520000000 + 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF + 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF + */ |