summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/multiprecision/example/integer_examples.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/multiprecision/example/integer_examples.cpp
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/multiprecision/example/integer_examples.cpp')
-rw-r--r--src/boost/libs/multiprecision/example/integer_examples.cpp232
1 files changed, 232 insertions, 0 deletions
diff --git a/src/boost/libs/multiprecision/example/integer_examples.cpp b/src/boost/libs/multiprecision/example/integer_examples.cpp
new file mode 100644
index 00000000..5c2f8147
--- /dev/null
+++ b/src/boost/libs/multiprecision/example/integer_examples.cpp
@@ -0,0 +1,232 @@
+///////////////////////////////////////////////////////////////
+// Copyright 2012 John Maddock. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
+
+#include <boost/multiprecision/cpp_int.hpp>
+#include <iostream>
+#include <iomanip>
+#include <vector>
+
+// Includes Quickbook code snippets as comments.
+
+//[FAC1
+
+/*`
+In this simple example, we'll write a routine to print out all of the factorials
+which will fit into a 128-bit integer. At the end of the routine we do some
+fancy iostream formatting of the results:
+*/
+/*=
+#include <boost/multiprecision/cpp_int.hpp>
+#include <iostream>
+#include <iomanip>
+#include <vector>
+*/
+
+void print_factorials()
+{
+ using boost::multiprecision::cpp_int;
+ //
+ // Print all the factorials that will fit inside a 128-bit integer.
+ //
+ // Begin by building a big table of factorials, once we know just how
+ // large the largest is, we'll be able to "pretty format" the results.
+ //
+ // Calculate the largest number that will fit inside 128 bits, we could
+ // also have used numeric_limits<int128_t>::max() for this value:
+ cpp_int limit = (cpp_int(1) << 128) - 1;
+ //
+ // Our table of values:
+ std::vector<cpp_int> results;
+ //
+ // Initial values:
+ unsigned i = 1;
+ cpp_int factorial = 1;
+ //
+ // Cycle through the factorials till we reach the limit:
+ while(factorial < limit)
+ {
+ results.push_back(factorial);
+ ++i;
+ factorial *= i;
+ }
+ //
+ // Lets see how many digits the largest factorial was:
+ unsigned digits = results.back().str().size();
+ //
+ // Now print them out, using right justification, while we're at it
+ // we'll indicate the limit of each integer type, so begin by defining
+ // the limits for 16, 32, 64 etc bit integers:
+ cpp_int limits[] = {
+ (cpp_int(1) << 16) - 1,
+ (cpp_int(1) << 32) - 1,
+ (cpp_int(1) << 64) - 1,
+ (cpp_int(1) << 128) - 1,
+ };
+ std::string bit_counts[] = { "16", "32", "64", "128" };
+ unsigned current_limit = 0;
+ for(unsigned j = 0; j < results.size(); ++j)
+ {
+ if(limits[current_limit] < results[j])
+ {
+ std::string message = "Limit of " + bit_counts[current_limit] + " bit integers";
+ std::cout << std::setfill('.') << std::setw(digits+1) << std::right << message << std::setfill(' ') << std::endl;
+ ++current_limit;
+ }
+ std::cout << std::setw(digits + 1) << std::right << results[j] << std::endl;
+ }
+}
+
+/*`
+The output from this routine is:
+[pre
+ 1
+ 2
+ 6
+ 24
+ 120
+ 720
+ 5040
+ 40320
+................Limit of 16 bit integers
+ 362880
+ 3628800
+ 39916800
+ 479001600
+................Limit of 32 bit integers
+ 6227020800
+ 87178291200
+ 1307674368000
+ 20922789888000
+ 355687428096000
+ 6402373705728000
+ 121645100408832000
+ 2432902008176640000
+................Limit of 64 bit integers
+ 51090942171709440000
+ 1124000727777607680000
+ 25852016738884976640000
+ 620448401733239439360000
+ 15511210043330985984000000
+ 403291461126605635584000000
+ 10888869450418352160768000000
+ 304888344611713860501504000000
+ 8841761993739701954543616000000
+ 265252859812191058636308480000000
+ 8222838654177922817725562880000000
+ 263130836933693530167218012160000000
+ 8683317618811886495518194401280000000
+ 295232799039604140847618609643520000000
+]
+*/
+
+//]
+
+//[BITOPS
+
+/*`
+In this example we'll show how individual bits within an integer may be manipulated,
+we'll start with an often needed calculation of ['2[super n] - 1], which we could obviously
+implement like this:
+*/
+
+using boost::multiprecision::cpp_int;
+
+cpp_int b1(unsigned n)
+{
+ cpp_int r(1);
+ return (r << n) - 1;
+}
+
+/*`
+Calling:
+
+ std::cout << std::hex << std::showbase << b1(200) << std::endl;
+
+Yields as expected:
+
+[pre 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF]
+
+However, we could equally just set the n'th bit in the result, like this:
+*/
+
+cpp_int b2(unsigned n)
+{
+ cpp_int r(0);
+ return --bit_set(r, n);
+}
+
+/*`
+Note how the `bit_set` function sets the specified bit in its argument and then returns a reference to the result -
+which we can then simply decrement. The result from a call to `b2` is the same as that to `b1`.
+
+We can equally test bits, so for example the n'th bit of the result returned from `b2` shouldn't be set
+unless we increment it first:
+
+ BOOST_ASSERT(!bit_test(b1(200), 200)); // OK
+ BOOST_ASSERT(bit_test(++b1(200), 200)); // OK
+
+And of course if we flip the n'th bit after increment, then we should get back to zero:
+
+ BOOST_ASSERT(!bit_flip(++b1(200), 200)); // OK
+*/
+
+//]
+
+int main()
+{
+ print_factorials();
+
+ std::cout << std::hex << std::showbase << b1(200) << std::endl;
+ std::cout << std::hex << std::showbase << b2(200) << std::endl;
+ BOOST_ASSERT(!bit_test(b1(200), 200)); // OK
+ BOOST_ASSERT(bit_test(++b1(200), 200)); // OK
+ BOOST_ASSERT(!bit_flip(++b1(200), 200)); // OK
+ return 0;
+}
+
+/*
+
+Program output:
+
+ 1
+ 2
+ 6
+ 24
+ 120
+ 720
+ 5040
+ 40320
+................Limit of 16 bit integers
+ 362880
+ 3628800
+ 39916800
+ 479001600
+................Limit of 32 bit integers
+ 6227020800
+ 87178291200
+ 1307674368000
+ 20922789888000
+ 355687428096000
+ 6402373705728000
+ 121645100408832000
+ 2432902008176640000
+................Limit of 64 bit integers
+ 51090942171709440000
+ 1124000727777607680000
+ 25852016738884976640000
+ 620448401733239439360000
+ 15511210043330985984000000
+ 403291461126605635584000000
+ 10888869450418352160768000000
+ 304888344611713860501504000000
+ 8841761993739701954543616000000
+ 265252859812191058636308480000000
+ 8222838654177922817725562880000000
+ 263130836933693530167218012160000000
+ 8683317618811886495518194401280000000
+ 295232799039604140847618609643520000000
+ 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
+ 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
+ */