summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/multiprecision/test/test_arithmetic.hpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/multiprecision/test/test_arithmetic.hpp
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/multiprecision/test/test_arithmetic.hpp')
-rw-r--r--src/boost/libs/multiprecision/test/test_arithmetic.hpp3020
1 files changed, 3020 insertions, 0 deletions
diff --git a/src/boost/libs/multiprecision/test/test_arithmetic.hpp b/src/boost/libs/multiprecision/test/test_arithmetic.hpp
new file mode 100644
index 00000000..58699fde
--- /dev/null
+++ b/src/boost/libs/multiprecision/test/test_arithmetic.hpp
@@ -0,0 +1,3020 @@
+///////////////////////////////////////////////////////////////
+// Copyright 2012 John Maddock. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
+
+#ifdef TEST_VLD
+#include <vld.h>
+#endif
+
+#include <boost/math/special_functions/pow.hpp>
+#include <boost/integer/common_factor_rt.hpp>
+#include <boost/functional/hash.hpp>
+#include <functional>
+#include "test.hpp"
+
+template <class T>
+struct is_boost_rational : public boost::mpl::false_
+{};
+template <class T>
+struct is_checked_cpp_int : public boost::mpl::false_
+{};
+
+#ifdef BOOST_MSVC
+// warning C4127: conditional expression is constant
+#pragma warning(disable : 4127)
+#endif
+
+template <class Target, class Source>
+Target checked_lexical_cast(const Source& val)
+{
+#ifndef BOOST_NO_EXCEPTIONS
+ try
+ {
+#endif
+ return boost::lexical_cast<Target>(val);
+#ifndef BOOST_NO_EXCEPTIONS
+ }
+ catch (...)
+ {
+ std::cerr << "Error in lexical cast\nSource type = " << typeid(Source).name() << " \"" << val << "\"\n";
+ std::cerr << "Target type = " << typeid(Target).name() << std::endl;
+ throw;
+ }
+#endif
+}
+
+bool isfloat(float) { return true; }
+bool isfloat(double) { return true; }
+bool isfloat(long double) { return true; }
+template <class T>
+bool isfloat(T) { return false; }
+
+namespace detail {
+
+template <class tag, class Arg1, class Arg2, class Arg3, class Arg4>
+typename boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type
+abs(boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4> const& v)
+{
+ typedef typename boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type result_type;
+ return v < 0 ? result_type(-v) : result_type(v);
+}
+
+} // namespace detail
+
+template <class T>
+struct is_twos_complement_integer : public boost::mpl::true_
+{};
+
+template <class T>
+struct related_type
+{
+ typedef T type;
+};
+
+template <class Real, class Val>
+void test_comparisons(Val, Val, const boost::mpl::false_)
+{}
+
+int normalize_compare_result(int r)
+{
+ return r > 0 ? 1 : r < 0 ? -1 : 0;
+}
+
+template <class Real, class Val>
+typename boost::disable_if_c<boost::multiprecision::number_category<Real>::value == boost::multiprecision::number_kind_complex>::type
+test_comparisons(Val a, Val b, const boost::mpl::true_)
+{
+ Real r1(a);
+ Real r2(b);
+ Real z(1);
+
+ int cr = a < b ? -1 : a > b ? 1 : 0;
+
+ BOOST_CHECK_EQUAL(r1 == r2, a == b);
+ BOOST_CHECK_EQUAL(r1 != r2, a != b);
+ BOOST_CHECK_EQUAL(r1 <= r2, a <= b);
+ BOOST_CHECK_EQUAL(r1 < r2, a < b);
+ BOOST_CHECK_EQUAL(r1 >= r2, a >= b);
+ BOOST_CHECK_EQUAL(r1 > r2, a > b);
+
+ BOOST_CHECK_EQUAL(r1 == b, a == b);
+ BOOST_CHECK_EQUAL(r1 != b, a != b);
+ BOOST_CHECK_EQUAL(r1 <= b, a <= b);
+ BOOST_CHECK_EQUAL(r1 < b, a < b);
+ BOOST_CHECK_EQUAL(r1 >= b, a >= b);
+ BOOST_CHECK_EQUAL(r1 > b, a > b);
+
+ BOOST_CHECK_EQUAL(a == r2, a == b);
+ BOOST_CHECK_EQUAL(a != r2, a != b);
+ BOOST_CHECK_EQUAL(a <= r2, a <= b);
+ BOOST_CHECK_EQUAL(a < r2, a < b);
+ BOOST_CHECK_EQUAL(a >= r2, a >= b);
+ BOOST_CHECK_EQUAL(a > r2, a > b);
+
+ BOOST_CHECK_EQUAL(r1 * z == r2, a == b);
+ BOOST_CHECK_EQUAL(r1 * z != r2, a != b);
+ BOOST_CHECK_EQUAL(r1 * z <= r2, a <= b);
+ BOOST_CHECK_EQUAL(r1 * z < r2, a < b);
+ BOOST_CHECK_EQUAL(r1 * z >= r2, a >= b);
+ BOOST_CHECK_EQUAL(r1 * z > r2, a > b);
+
+ BOOST_CHECK_EQUAL(r1 == r2 * z, a == b);
+ BOOST_CHECK_EQUAL(r1 != r2 * z, a != b);
+ BOOST_CHECK_EQUAL(r1 <= r2 * z, a <= b);
+ BOOST_CHECK_EQUAL(r1 < r2 * z, a < b);
+ BOOST_CHECK_EQUAL(r1 >= r2 * z, a >= b);
+ BOOST_CHECK_EQUAL(r1 > r2 * z, a > b);
+
+ BOOST_CHECK_EQUAL(r1 * z == r2 * z, a == b);
+ BOOST_CHECK_EQUAL(r1 * z != r2 * z, a != b);
+ BOOST_CHECK_EQUAL(r1 * z <= r2 * z, a <= b);
+ BOOST_CHECK_EQUAL(r1 * z < r2 * z, a < b);
+ BOOST_CHECK_EQUAL(r1 * z >= r2 * z, a >= b);
+ BOOST_CHECK_EQUAL(r1 * z > r2 * z, a > b);
+
+ BOOST_CHECK_EQUAL(r1 * z == b, a == b);
+ BOOST_CHECK_EQUAL(r1 * z != b, a != b);
+ BOOST_CHECK_EQUAL(r1 * z <= b, a <= b);
+ BOOST_CHECK_EQUAL(r1 * z < b, a < b);
+ BOOST_CHECK_EQUAL(r1 * z >= b, a >= b);
+ BOOST_CHECK_EQUAL(r1 * z > b, a > b);
+
+ BOOST_CHECK_EQUAL(a == r2 * z, a == b);
+ BOOST_CHECK_EQUAL(a != r2 * z, a != b);
+ BOOST_CHECK_EQUAL(a <= r2 * z, a <= b);
+ BOOST_CHECK_EQUAL(a < r2 * z, a < b);
+ BOOST_CHECK_EQUAL(a >= r2 * z, a >= b);
+ BOOST_CHECK_EQUAL(a > r2 * z, a > b);
+
+ BOOST_CHECK_EQUAL(normalize_compare_result(r1.compare(r2)), cr);
+ BOOST_CHECK_EQUAL(normalize_compare_result(r2.compare(r1)), -cr);
+ BOOST_CHECK_EQUAL(normalize_compare_result(r1.compare(b)), cr);
+ BOOST_CHECK_EQUAL(normalize_compare_result(r2.compare(a)), -cr);
+}
+
+template <class Real, class Val>
+typename boost::enable_if_c<boost::multiprecision::number_category<Real>::value == boost::multiprecision::number_kind_complex>::type
+test_comparisons(Val a, Val b, const boost::mpl::true_)
+{
+ Real r1(a);
+ Real r2(b);
+ Real z(1);
+
+ int cr = a < b ? -1 : a > b ? 1 : 0;
+ (void)cr;
+
+ BOOST_CHECK_EQUAL(r1 == r2, a == b);
+ BOOST_CHECK_EQUAL(r1 != r2, a != b);
+
+ BOOST_CHECK_EQUAL(r1 == b, a == b);
+ BOOST_CHECK_EQUAL(r1 != b, a != b);
+
+ BOOST_CHECK_EQUAL(a == r2, a == b);
+ BOOST_CHECK_EQUAL(a != r2, a != b);
+
+ BOOST_CHECK_EQUAL(r1 * z == r2, a == b);
+ BOOST_CHECK_EQUAL(r1 * z != r2, a != b);
+
+ BOOST_CHECK_EQUAL(r1 == r2 * z, a == b);
+ BOOST_CHECK_EQUAL(r1 != r2 * z, a != b);
+
+ BOOST_CHECK_EQUAL(r1 * z == r2 * z, a == b);
+ BOOST_CHECK_EQUAL(r1 * z != r2 * z, a != b);
+
+ BOOST_CHECK_EQUAL(r1 * z == b, a == b);
+ BOOST_CHECK_EQUAL(r1 * z != b, a != b);
+
+ BOOST_CHECK_EQUAL(a == r2 * z, a == b);
+ BOOST_CHECK_EQUAL(a != r2 * z, a != b);
+
+ if (r1 == r2)
+ {
+ BOOST_CHECK_EQUAL(normalize_compare_result(r1.compare(r2)), 0);
+ BOOST_CHECK_EQUAL(normalize_compare_result(r2.compare(r1)), 0);
+ BOOST_CHECK_EQUAL(normalize_compare_result(r1.compare(b)), 0);
+ BOOST_CHECK_EQUAL(normalize_compare_result(r2.compare(a)), 0);
+ }
+ else
+ {
+ BOOST_CHECK_NE(normalize_compare_result(r1.compare(r2)), 0);
+ BOOST_CHECK_NE(normalize_compare_result(r2.compare(r1)), 0);
+ BOOST_CHECK_NE(normalize_compare_result(r1.compare(b)), 0);
+ BOOST_CHECK_NE(normalize_compare_result(r2.compare(a)), 0);
+ }
+}
+
+template <class Real, class Exp>
+void test_conditional(Real v, Exp e)
+{
+ //
+ // Verify that Exp is usable in Boolean contexts, and has the same value as v:
+ //
+ if (e)
+ {
+ BOOST_CHECK(v);
+ }
+ else
+ {
+ BOOST_CHECK(!v);
+ }
+ if (!e)
+ {
+ BOOST_CHECK(!v);
+ }
+ else
+ {
+ BOOST_CHECK(v);
+ }
+}
+
+template <class Real>
+void test_complement(Real a, Real b, Real c, const boost::mpl::true_&)
+{
+ int i = 1020304;
+ int j = 56789123;
+ int sign_mask = ~0;
+ if (std::numeric_limits<Real>::is_signed)
+ {
+ BOOST_CHECK_EQUAL(~a, (~i & sign_mask));
+ c = a & ~b;
+ BOOST_CHECK_EQUAL(c, (i & (~j & sign_mask)));
+ c = ~(a | b);
+ BOOST_CHECK_EQUAL(c, (~(i | j) & sign_mask));
+ }
+ else
+ {
+ BOOST_CHECK_EQUAL((~a & a), 0);
+ }
+}
+
+template <class Real>
+void test_complement(Real, Real, Real, const boost::mpl::false_&)
+{
+}
+
+template <class Real, class T>
+void test_integer_ops(const T&) {}
+
+template <class Real>
+void test_rational(const boost::mpl::true_&)
+{
+ Real a(2);
+ a /= 3;
+ BOOST_CHECK_EQUAL(numerator(a), 2);
+ BOOST_CHECK_EQUAL(denominator(a), 3);
+ Real b(4);
+ b /= 6;
+ BOOST_CHECK_EQUAL(a, b);
+
+ //
+ // Check IO code:
+ //
+ std::stringstream ss;
+ ss << a;
+ ss >> b;
+ BOOST_CHECK_EQUAL(a, b);
+}
+
+template <class Real>
+void test_rational(const boost::mpl::false_&)
+{
+ Real a(2);
+ a /= 3;
+ BOOST_CHECK_EQUAL(numerator(a), 2);
+ BOOST_CHECK_EQUAL(denominator(a), 3);
+ Real b(4);
+ b /= 6;
+ BOOST_CHECK_EQUAL(a, b);
+
+#ifndef BOOST_NO_EXCEPTIONS
+ BOOST_CHECK_THROW(Real(a / 0), std::overflow_error);
+ BOOST_CHECK_THROW(Real("3.14"), std::runtime_error);
+#endif
+ b = Real("2/3");
+ BOOST_CHECK_EQUAL(a, b);
+ //
+ // Check IO code:
+ //
+ std::stringstream ss;
+ ss << a;
+ ss >> b;
+ BOOST_CHECK_EQUAL(a, b);
+}
+
+template <class Real>
+void test_integer_ops(const boost::mpl::int_<boost::multiprecision::number_kind_rational>&)
+{
+ test_rational<Real>(is_boost_rational<Real>());
+}
+
+template <class Real>
+void test_signed_integer_ops(const boost::mpl::true_&)
+{
+ Real a(20);
+ Real b(7);
+ Real c(5);
+ BOOST_CHECK_EQUAL(-a % c, 0);
+ BOOST_CHECK_EQUAL(-a % b, -20 % 7);
+ BOOST_CHECK_EQUAL(-a % -b, -20 % -7);
+ BOOST_CHECK_EQUAL(a % -b, 20 % -7);
+ BOOST_CHECK_EQUAL(-a % 7, -20 % 7);
+ BOOST_CHECK_EQUAL(-a % -7, -20 % -7);
+ BOOST_CHECK_EQUAL(a % -7, 20 % -7);
+ BOOST_CHECK_EQUAL(-a % 7u, -20 % 7);
+ BOOST_CHECK_EQUAL(-a % a, 0);
+ BOOST_CHECK_EQUAL(-a % 5, 0);
+ BOOST_CHECK_EQUAL(-a % -5, 0);
+ BOOST_CHECK_EQUAL(a % -5, 0);
+
+ b = -b;
+ BOOST_CHECK_EQUAL(a % b, 20 % -7);
+ a = -a;
+ BOOST_CHECK_EQUAL(a % b, -20 % -7);
+ BOOST_CHECK_EQUAL(a % -7, -20 % -7);
+ b = 7;
+ BOOST_CHECK_EQUAL(a % b, -20 % 7);
+ BOOST_CHECK_EQUAL(a % 7, -20 % 7);
+ BOOST_CHECK_EQUAL(a % 7u, -20 % 7);
+
+ a = 20;
+ a %= b;
+ BOOST_CHECK_EQUAL(a, 20 % 7);
+ a = -20;
+ a %= b;
+ BOOST_CHECK_EQUAL(a, -20 % 7);
+ a = 20;
+ a %= -b;
+ BOOST_CHECK_EQUAL(a, 20 % -7);
+ a = -20;
+ a %= -b;
+ BOOST_CHECK_EQUAL(a, -20 % -7);
+ a = 5;
+ a %= b - a;
+ BOOST_CHECK_EQUAL(a, 5 % (7 - 5));
+ a = -20;
+ a %= 7;
+ BOOST_CHECK_EQUAL(a, -20 % 7);
+ a = 20;
+ a %= -7;
+ BOOST_CHECK_EQUAL(a, 20 % -7);
+ a = -20;
+ a %= -7;
+ BOOST_CHECK_EQUAL(a, -20 % -7);
+#ifndef BOOST_NO_LONG_LONG
+ a = -20;
+ a %= 7uLL;
+ BOOST_CHECK_EQUAL(a, -20 % 7);
+ a = 20;
+ a %= -7LL;
+ BOOST_CHECK_EQUAL(a, 20 % -7);
+ a = -20;
+ a %= -7LL;
+ BOOST_CHECK_EQUAL(a, -20 % -7);
+#endif
+ a = 400;
+ b = 45;
+ BOOST_CHECK_EQUAL(gcd(a, -45), boost::integer::gcd(400, 45));
+ BOOST_CHECK_EQUAL(lcm(a, -45), boost::integer::lcm(400, 45));
+ BOOST_CHECK_EQUAL(gcd(-400, b), boost::integer::gcd(400, 45));
+ BOOST_CHECK_EQUAL(lcm(-400, b), boost::integer::lcm(400, 45));
+ a = -20;
+ BOOST_CHECK_EQUAL(abs(a), 20);
+ BOOST_CHECK_EQUAL(abs(-a), 20);
+ BOOST_CHECK_EQUAL(abs(+a), 20);
+ a = 20;
+ BOOST_CHECK_EQUAL(abs(a), 20);
+ BOOST_CHECK_EQUAL(abs(-a), 20);
+ BOOST_CHECK_EQUAL(abs(+a), 20);
+ a = -400;
+ b = 45;
+ BOOST_CHECK_EQUAL(gcd(a, b), boost::integer::gcd(-400, 45));
+ BOOST_CHECK_EQUAL(lcm(a, b), boost::integer::lcm(-400, 45));
+ BOOST_CHECK_EQUAL(gcd(a, 45), boost::integer::gcd(-400, 45));
+ BOOST_CHECK_EQUAL(lcm(a, 45), boost::integer::lcm(-400, 45));
+ BOOST_CHECK_EQUAL(gcd(-400, b), boost::integer::gcd(-400, 45));
+ BOOST_CHECK_EQUAL(lcm(-400, b), boost::integer::lcm(-400, 45));
+ Real r;
+ divide_qr(a, b, c, r);
+ BOOST_CHECK_EQUAL(c, a / b);
+ BOOST_CHECK_EQUAL(r, a % b);
+ BOOST_CHECK_EQUAL(integer_modulus(a, 57), abs(a % 57));
+ b = -57;
+ divide_qr(a, b, c, r);
+ BOOST_CHECK_EQUAL(c, a / b);
+ BOOST_CHECK_EQUAL(r, a % b);
+ BOOST_CHECK_EQUAL(integer_modulus(a, -57), abs(a % -57));
+ a = 458;
+ divide_qr(a, b, c, r);
+ BOOST_CHECK_EQUAL(c, a / b);
+ BOOST_CHECK_EQUAL(r, a % b);
+ BOOST_CHECK_EQUAL(integer_modulus(a, -57), abs(a % -57));
+#ifndef TEST_CHECKED_INT
+ if (is_checked_cpp_int<Real>::value)
+ {
+ a = -1;
+#ifndef BOOST_NO_EXCEPTIONS
+ BOOST_CHECK_THROW(a << 2, std::range_error);
+ BOOST_CHECK_THROW(a >> 2, std::range_error);
+ BOOST_CHECK_THROW(a <<= 2, std::range_error);
+ BOOST_CHECK_THROW(a >>= 2, std::range_error);
+#endif
+ }
+ else
+ {
+ a = -1;
+ BOOST_CHECK_EQUAL(a << 10, -1024);
+ a = -23;
+ BOOST_CHECK_EQUAL(a << 10, -23552);
+ a = -23456;
+ BOOST_CHECK_EQUAL(a >> 10, -23);
+ a = -3;
+ BOOST_CHECK_EQUAL(a >> 10, -1);
+ }
+#endif
+}
+template <class Real>
+void test_signed_integer_ops(const boost::mpl::false_&)
+{
+}
+
+template <class Real>
+inline Real negate_if_signed(Real r, const boost::mpl::bool_<true>&)
+{
+ return -r;
+}
+template <class Real>
+inline Real negate_if_signed(Real r, const boost::mpl::bool_<false>&)
+{
+ return r;
+}
+
+template <class Real, class Int>
+void test_integer_overflow()
+{
+ if (std::numeric_limits<Real>::digits > std::numeric_limits<Int>::digits)
+ {
+ Real m((std::numeric_limits<Int>::max)());
+ Int r;
+ ++m;
+ if (is_checked_cpp_int<Real>::value)
+ {
+ BOOST_CHECK_THROW(m.template convert_to<Int>(), std::overflow_error);
+ }
+ else if (boost::is_signed<Int>::value)
+ {
+ r = m.template convert_to<Int>();
+ BOOST_CHECK_EQUAL(r, (std::numeric_limits<Int>::max)());
+ }
+ else
+ {
+ r = m.template convert_to<Int>();
+ BOOST_CHECK_EQUAL(r, 0);
+ }
+ // Again with much larger value:
+ m = 1u;
+ m <<= (std::min)(std::numeric_limits<Real>::digits - 1, 1000);
+ if (is_checked_cpp_int<Real>::value)
+ {
+ BOOST_CHECK_THROW(m.template convert_to<Int>(), std::overflow_error);
+ }
+ else if (boost::is_signed<Int>::value)
+ {
+ r = m.template convert_to<Int>();
+ BOOST_CHECK_EQUAL(r, (std::numeric_limits<Int>::max)());
+ }
+ else
+ {
+ r = m.template convert_to<Int>();
+ BOOST_CHECK_EQUAL(r, 0);
+ }
+
+ if (std::numeric_limits<Real>::is_signed && (boost::is_signed<Int>::value))
+ {
+ m = (std::numeric_limits<Int>::min)();
+ --m;
+ if (is_checked_cpp_int<Real>::value)
+ {
+ BOOST_CHECK_THROW(m.template convert_to<Int>(), std::overflow_error);
+ }
+ else
+ {
+ r = m.template convert_to<Int>();
+ BOOST_CHECK_EQUAL(r, (std::numeric_limits<Int>::min)());
+ }
+ // Again with much larger value:
+ m = 2u;
+ m = pow(m, (std::min)(std::numeric_limits<Real>::digits - 1, 1000));
+ ++m;
+ m = negate_if_signed(m, boost::mpl::bool_<std::numeric_limits<Real>::is_signed>());
+ if (is_checked_cpp_int<Real>::value)
+ {
+ BOOST_CHECK_THROW(m.template convert_to<Int>(), std::overflow_error);
+ }
+ else
+ {
+ r = m.template convert_to<Int>();
+ BOOST_CHECK_EQUAL(r, (std::numeric_limits<Int>::min)());
+ }
+ }
+ else if (std::numeric_limits<Real>::is_signed && !boost::is_signed<Int>::value)
+ {
+ // signed to unsigned converison with overflow, it's really not clear what should happen here!
+ m = (std::numeric_limits<Int>::max)();
+ ++m;
+ m = negate_if_signed(m, boost::mpl::bool_<std::numeric_limits<Real>::is_signed>());
+ BOOST_CHECK_THROW(m.template convert_to<Int>(), std::range_error);
+ // Again with much larger value:
+ m = 2u;
+ m = pow(m, (std::min)(std::numeric_limits<Real>::digits - 1, 1000));
+ m = negate_if_signed(m, boost::mpl::bool_<std::numeric_limits<Real>::is_signed>());
+ BOOST_CHECK_THROW(m.template convert_to<Int>(), std::range_error);
+ }
+ }
+}
+
+template <class Real, class Int>
+void test_integer_round_trip()
+{
+ if (std::numeric_limits<Real>::digits >= std::numeric_limits<Int>::digits)
+ {
+ Real m((std::numeric_limits<Int>::max)());
+ Int r = m.template convert_to<Int>();
+ BOOST_CHECK_EQUAL(m, r);
+ if (std::numeric_limits<Real>::is_signed && (std::numeric_limits<Real>::digits > std::numeric_limits<Int>::digits))
+ {
+ m = (std::numeric_limits<Int>::min)();
+ r = m.template convert_to<Int>();
+ BOOST_CHECK_EQUAL(m, r);
+ }
+ }
+ test_integer_overflow<Real, Int>();
+}
+
+template <class Real>
+void test_integer_ops(const boost::mpl::int_<boost::multiprecision::number_kind_integer>&)
+{
+ test_signed_integer_ops<Real>(boost::mpl::bool_<std::numeric_limits<Real>::is_signed>());
+
+ Real a(20);
+ Real b(7);
+ Real c(5);
+ BOOST_CHECK_EQUAL(a % b, 20 % 7);
+ BOOST_CHECK_EQUAL(a % 7, 20 % 7);
+ BOOST_CHECK_EQUAL(a % 7u, 20 % 7);
+ BOOST_CHECK_EQUAL(a % a, 0);
+ BOOST_CHECK_EQUAL(a % c, 0);
+ BOOST_CHECK_EQUAL(a % 5, 0);
+ a = a % (b + 0);
+ BOOST_CHECK_EQUAL(a, 20 % 7);
+ a = 20;
+ c = (a + 2) % (a - 1);
+ BOOST_CHECK_EQUAL(c, 22 % 19);
+ c = 5;
+ a = b % (a - 15);
+ BOOST_CHECK_EQUAL(a, 7 % 5);
+ a = 20;
+
+ a = 20;
+ a %= 7;
+ BOOST_CHECK_EQUAL(a, 20 % 7);
+#ifndef BOOST_NO_LONG_LONG
+ a = 20;
+ a %= 7uLL;
+ BOOST_CHECK_EQUAL(a, 20 % 7);
+#endif
+ a = 20;
+ ++a;
+ BOOST_CHECK_EQUAL(a, 21);
+ --a;
+ BOOST_CHECK_EQUAL(a, 20);
+ BOOST_CHECK_EQUAL(a++, 20);
+ BOOST_CHECK_EQUAL(a, 21);
+ BOOST_CHECK_EQUAL(a--, 21);
+ BOOST_CHECK_EQUAL(a, 20);
+ a = 2000;
+ a <<= 20;
+ BOOST_CHECK_EQUAL(a, 2000L << 20);
+ a >>= 20;
+ BOOST_CHECK_EQUAL(a, 2000);
+ a <<= 20u;
+ BOOST_CHECK_EQUAL(a, 2000L << 20);
+ a >>= 20u;
+ BOOST_CHECK_EQUAL(a, 2000);
+#ifndef BOOST_NO_EXCEPTIONS
+ BOOST_CHECK_THROW(a <<= -20, std::out_of_range);
+ BOOST_CHECK_THROW(a >>= -20, std::out_of_range);
+ BOOST_CHECK_THROW(Real(a << -20), std::out_of_range);
+ BOOST_CHECK_THROW(Real(a >> -20), std::out_of_range);
+#endif
+#ifndef BOOST_NO_LONG_LONG
+ if (sizeof(long long) > sizeof(std::size_t))
+ {
+ // extreme values should trigger an exception:
+#ifndef BOOST_NO_EXCEPTIONS
+ BOOST_CHECK_THROW(a >>= (1uLL << (sizeof(long long) * CHAR_BIT - 2)), std::out_of_range);
+ BOOST_CHECK_THROW(a <<= (1uLL << (sizeof(long long) * CHAR_BIT - 2)), std::out_of_range);
+ BOOST_CHECK_THROW(a >>= -(1LL << (sizeof(long long) * CHAR_BIT - 2)), std::out_of_range);
+ BOOST_CHECK_THROW(a <<= -(1LL << (sizeof(long long) * CHAR_BIT - 2)), std::out_of_range);
+ BOOST_CHECK_THROW(a >>= (1LL << (sizeof(long long) * CHAR_BIT - 2)), std::out_of_range);
+ BOOST_CHECK_THROW(a <<= (1LL << (sizeof(long long) * CHAR_BIT - 2)), std::out_of_range);
+#endif
+ // Unless they fit within range:
+ a = 2000L;
+ a <<= 20uLL;
+ BOOST_CHECK_EQUAL(a, (2000L << 20));
+ a = 2000;
+ a <<= 20LL;
+ BOOST_CHECK_EQUAL(a, (2000L << 20));
+
+#ifndef BOOST_NO_EXCEPTIONS
+ BOOST_CHECK_THROW(Real(a >> (1uLL << (sizeof(long long) * CHAR_BIT - 2))), std::out_of_range);
+ BOOST_CHECK_THROW(Real(a <<= (1uLL << (sizeof(long long) * CHAR_BIT - 2))), std::out_of_range);
+ BOOST_CHECK_THROW(Real(a >>= -(1LL << (sizeof(long long) * CHAR_BIT - 2))), std::out_of_range);
+ BOOST_CHECK_THROW(Real(a <<= -(1LL << (sizeof(long long) * CHAR_BIT - 2))), std::out_of_range);
+ BOOST_CHECK_THROW(Real(a >>= (1LL << (sizeof(long long) * CHAR_BIT - 2))), std::out_of_range);
+ BOOST_CHECK_THROW(Real(a <<= (1LL << (sizeof(long long) * CHAR_BIT - 2))), std::out_of_range);
+#endif
+ // Unless they fit within range:
+ a = 2000L;
+ BOOST_CHECK_EQUAL(Real(a << 20uLL), (2000L << 20));
+ a = 2000;
+ BOOST_CHECK_EQUAL(Real(a << 20LL), (2000L << 20));
+ }
+#endif
+ a = 20;
+ b = a << 20;
+ BOOST_CHECK_EQUAL(b, (20 << 20));
+ b = a >> 2;
+ BOOST_CHECK_EQUAL(b, (20 >> 2));
+ b = (a + 2) << 10;
+ BOOST_CHECK_EQUAL(b, (22 << 10));
+ b = (a + 3) >> 3;
+ BOOST_CHECK_EQUAL(b, (23 >> 3));
+ //
+ // Bit fiddling:
+ //
+ int i = 1020304;
+ int j = 56789123;
+ int k = 4523187;
+ a = i;
+ b = j;
+ c = a;
+ c &= b;
+ BOOST_CHECK_EQUAL(c, (i & j));
+ c = a;
+ c &= j;
+ BOOST_CHECK_EQUAL(c, (i & j));
+ c = a;
+ c &= a + b;
+ BOOST_CHECK_EQUAL(c, (i & (i + j)));
+ BOOST_CHECK_EQUAL((a & b), (i & j));
+ c = k;
+ a = a & (b + k);
+ BOOST_CHECK_EQUAL(a, (i & (j + k)));
+ a = i;
+ a = (b + k) & a;
+ BOOST_CHECK_EQUAL(a, (i & (j + k)));
+ a = i;
+ c = a & b & k;
+ BOOST_CHECK_EQUAL(c, (i & j & k));
+ c = a;
+ c &= (c + b);
+ BOOST_CHECK_EQUAL(c, (i & (i + j)));
+ c = a & (b | 1);
+ BOOST_CHECK_EQUAL(c, (i & (j | 1)));
+
+ test_complement<Real>(a, b, c, typename is_twos_complement_integer<Real>::type());
+
+ a = i;
+ b = j;
+ c = a;
+ c |= b;
+ BOOST_CHECK_EQUAL(c, (i | j));
+ c = a;
+ c |= j;
+ BOOST_CHECK_EQUAL(c, (i | j));
+ c = a;
+ c |= a + b;
+ BOOST_CHECK_EQUAL(c, (i | (i + j)));
+ BOOST_CHECK_EQUAL((a | b), (i | j));
+ c = k;
+ a = a | (b + k);
+ BOOST_CHECK_EQUAL(a, (i | (j + k)));
+ a = i;
+ a = (b + k) | a;
+ BOOST_CHECK_EQUAL(a, (i | (j + k)));
+ a = i;
+ c = a | b | k;
+ BOOST_CHECK_EQUAL(c, (i | j | k));
+ c = a;
+ c |= (c + b);
+ BOOST_CHECK_EQUAL(c, (i | (i + j)));
+ c = a | (b | 1);
+ BOOST_CHECK_EQUAL(c, (i | (j | 1)));
+
+ a = i;
+ b = j;
+ c = a;
+ c ^= b;
+ BOOST_CHECK_EQUAL(c, (i ^ j));
+ c = a;
+ c ^= j;
+ BOOST_CHECK_EQUAL(c, (i ^ j));
+ c = a;
+ c ^= a + b;
+ BOOST_CHECK_EQUAL(c, (i ^ (i + j)));
+ BOOST_CHECK_EQUAL((a ^ b), (i ^ j));
+ c = k;
+ a = a ^ (b + k);
+ BOOST_CHECK_EQUAL(a, (i ^ (j + k)));
+ a = i;
+ a = (b + k) ^ a;
+ BOOST_CHECK_EQUAL(a, (i ^ (j + k)));
+ a = i;
+ c = a ^ b ^ k;
+ BOOST_CHECK_EQUAL(c, (i ^ j ^ k));
+ c = a;
+ c ^= (c + b);
+ BOOST_CHECK_EQUAL(c, (i ^ (i + j)));
+ c = a ^ (b | 1);
+ BOOST_CHECK_EQUAL(c, (i ^ (j | 1)));
+
+ a = i;
+ b = j;
+ c = k;
+ //
+ // Non-member functions:
+ //
+ a = 400;
+ b = 45;
+ BOOST_CHECK_EQUAL(gcd(a, b), boost::integer::gcd(400, 45));
+ BOOST_CHECK_EQUAL(lcm(a, b), boost::integer::lcm(400, 45));
+ BOOST_CHECK_EQUAL(gcd(a, 45), boost::integer::gcd(400, 45));
+ BOOST_CHECK_EQUAL(lcm(a, 45), boost::integer::lcm(400, 45));
+ BOOST_CHECK_EQUAL(gcd(a, 45u), boost::integer::gcd(400, 45));
+ BOOST_CHECK_EQUAL(lcm(a, 45u), boost::integer::lcm(400, 45));
+ BOOST_CHECK_EQUAL(gcd(400, b), boost::integer::gcd(400, 45));
+ BOOST_CHECK_EQUAL(lcm(400, b), boost::integer::lcm(400, 45));
+ BOOST_CHECK_EQUAL(gcd(400u, b), boost::integer::gcd(400, 45));
+ BOOST_CHECK_EQUAL(lcm(400u, b), boost::integer::lcm(400, 45));
+
+ //
+ // Conditionals involving 2 arg functions:
+ //
+ test_conditional(Real(gcd(a, b)), gcd(a, b));
+
+ Real r;
+ divide_qr(a, b, c, r);
+ BOOST_CHECK_EQUAL(c, a / b);
+ BOOST_CHECK_EQUAL(r, a % b);
+ divide_qr(a + 0, b, c, r);
+ BOOST_CHECK_EQUAL(c, a / b);
+ BOOST_CHECK_EQUAL(r, a % b);
+ divide_qr(a, b + 0, c, r);
+ BOOST_CHECK_EQUAL(c, a / b);
+ BOOST_CHECK_EQUAL(r, a % b);
+ divide_qr(a + 0, b + 0, c, r);
+ BOOST_CHECK_EQUAL(c, a / b);
+ BOOST_CHECK_EQUAL(r, a % b);
+ BOOST_CHECK_EQUAL(integer_modulus(a, 57), a % 57);
+ for (i = 0; i < 20; ++i)
+ {
+ if (std::numeric_limits<Real>::is_specialized && (!std::numeric_limits<Real>::is_bounded || ((int)i * 17 < std::numeric_limits<Real>::digits)))
+ {
+ BOOST_CHECK_EQUAL(lsb(Real(1) << (i * 17)), static_cast<unsigned>(i * 17));
+ BOOST_CHECK_EQUAL(msb(Real(1) << (i * 17)), static_cast<unsigned>(i * 17));
+ BOOST_CHECK(bit_test(Real(1) << (i * 17), i * 17));
+ BOOST_CHECK(!bit_test(Real(1) << (i * 17), i * 17 + 1));
+ if (i)
+ {
+ BOOST_CHECK(!bit_test(Real(1) << (i * 17), i * 17 - 1));
+ }
+ Real zero(0);
+ BOOST_CHECK(bit_test(bit_set(zero, i * 17), i * 17));
+ zero = 0;
+ BOOST_CHECK_EQUAL(bit_flip(zero, i * 17), Real(1) << i * 17);
+ zero = Real(1) << i * 17;
+ BOOST_CHECK_EQUAL(bit_flip(zero, i * 17), 0);
+ zero = Real(1) << i * 17;
+ BOOST_CHECK_EQUAL(bit_unset(zero, i * 17), 0);
+ }
+ }
+ //
+ // pow, powm:
+ //
+ BOOST_CHECK_EQUAL(pow(Real(3), 4u), 81);
+ BOOST_CHECK_EQUAL(pow(Real(3) + Real(0), 4u), 81);
+ BOOST_CHECK_EQUAL(powm(Real(3), Real(4), Real(13)), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3), Real(4), 13), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3), Real(4), Real(13) + 0), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3), Real(4) + 0, Real(13)), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3), Real(4) + 0, 13), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3), Real(4) + 0, Real(13) + 0), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3), 4 + 0, Real(13)), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3), 4 + 0, 13), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3), 4 + 0, Real(13) + 0), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3) + 0, Real(4), Real(13)), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3) + 0, Real(4), 13), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3) + 0, Real(4), Real(13) + 0), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3) + 0, Real(4) + 0, Real(13)), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3) + 0, Real(4) + 0, 13), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3) + 0, Real(4) + 0, Real(13) + 0), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3) + 0, 4 + 0, Real(13)), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3) + 0, 4 + 0, 13), 81 % 13);
+ BOOST_CHECK_EQUAL(powm(Real(3) + 0, 4 + 0, Real(13) + 0), 81 % 13);
+ //
+ // Conditionals involving 3 arg functions:
+ //
+ test_conditional(Real(powm(Real(3), Real(4), Real(13))), powm(Real(3), Real(4), Real(13)));
+
+#ifndef BOOST_NO_EXCEPTIONS
+ //
+ // Things that are expected errors:
+ //
+ BOOST_CHECK_THROW(Real("3.14"), std::runtime_error);
+ BOOST_CHECK_THROW(Real("3L"), std::runtime_error);
+ BOOST_CHECK_THROW(Real(Real(20) / 0u), std::overflow_error);
+#endif
+ //
+ // Extra tests added for full coverage:
+ //
+ a = 20;
+ b = 7;
+ c = 20 % b;
+ BOOST_CHECK_EQUAL(c, (20 % 7));
+ c = 20 % (b + 0);
+ BOOST_CHECK_EQUAL(c, (20 % 7));
+ c = a & 10;
+ BOOST_CHECK_EQUAL(c, (20 & 10));
+ c = 10 & a;
+ BOOST_CHECK_EQUAL(c, (20 & 10));
+ c = (a + 0) & (b + 0);
+ BOOST_CHECK_EQUAL(c, (20 & 7));
+ c = 10 & (a + 0);
+ BOOST_CHECK_EQUAL(c, (20 & 10));
+ c = 10 | a;
+ BOOST_CHECK_EQUAL(c, (20 | 10));
+ c = (a + 0) | (b + 0);
+ BOOST_CHECK(c == (20 | 7))
+ c = 20 | (b + 0);
+ BOOST_CHECK_EQUAL(c, (20 | 7));
+ c = a ^ 7;
+ BOOST_CHECK_EQUAL(c, (20 ^ 7));
+ c = 20 ^ b;
+ BOOST_CHECK_EQUAL(c, (20 ^ 7));
+ c = (a + 0) ^ (b + 0);
+ BOOST_CHECK_EQUAL(c, (20 ^ 7));
+ c = 20 ^ (b + 0);
+ BOOST_CHECK_EQUAL(c, (20 ^ 7));
+
+ //
+ // Round tripping of built in integers:
+ //
+ test_integer_round_trip<Real, short>();
+ test_integer_round_trip<Real, unsigned short>();
+ test_integer_round_trip<Real, int>();
+ test_integer_round_trip<Real, unsigned int>();
+ test_integer_round_trip<Real, long>();
+ test_integer_round_trip<Real, unsigned long>();
+#ifndef BOOST_NO_CXX11_LONG_LONG
+ test_integer_round_trip<Real, long long>();
+ test_integer_round_trip<Real, unsigned long long>();
+#endif
+}
+
+template <class Real, class T>
+void test_float_funcs(const T&) {}
+
+template <class Real>
+void test_float_funcs(const boost::mpl::true_&)
+{
+ if (boost::multiprecision::is_interval_number<Real>::value)
+ return;
+ //
+ // Test variable reuse in function calls, see https://svn.boost.org/trac/boost/ticket/8326
+ //
+ Real a(2), b(10), c, d;
+ a = pow(a, b);
+ BOOST_CHECK_EQUAL(a, 1024);
+ a = 2;
+ b = pow(a, b);
+ BOOST_CHECK_EQUAL(b, 1024);
+ b = 10;
+ a = pow(a, 10);
+ BOOST_CHECK_EQUAL(a, 1024);
+ a = -2;
+ a = abs(a);
+ BOOST_CHECK_EQUAL(a, 2);
+ a = -2;
+ a = fabs(a);
+ BOOST_CHECK_EQUAL(a, 2);
+ a = 2.5;
+ a = floor(a);
+ BOOST_CHECK_EQUAL(a, 2);
+ a = 2.5;
+ a = ceil(a);
+ BOOST_CHECK_EQUAL(a, 3);
+ a = 2.5;
+ a = trunc(a);
+ BOOST_CHECK_EQUAL(a, 2);
+ a = 2.25;
+ a = round(a);
+ BOOST_CHECK_EQUAL(a, 2);
+ a = 2;
+ a = ldexp(a, 1);
+ BOOST_CHECK_EQUAL(a, 4);
+ int i;
+ a = frexp(a, &i);
+ BOOST_CHECK_EQUAL(a, 0.5);
+
+ Real tol = std::numeric_limits<Real>::epsilon() * 3;
+ a = 4;
+ a = sqrt(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, 2, tol);
+ a = 3;
+ a = exp(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(exp(Real(3))), tol);
+ a = 3;
+ a = log(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(log(Real(3))), tol);
+ a = 3;
+ a = log10(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(log10(Real(3))), tol);
+
+ a = 0.5;
+ a = sin(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(sin(Real(0.5))), tol);
+ a = 0.5;
+ a = cos(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(cos(Real(0.5))), tol);
+ a = 0.5;
+ a = tan(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(tan(Real(0.5))), tol);
+ a = 0.5;
+ a = asin(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(asin(Real(0.5))), tol);
+ a = 0.5;
+ a = acos(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(acos(Real(0.5))), tol);
+ a = 0.5;
+ a = atan(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(atan(Real(0.5))), tol);
+ a = 0.5;
+ a = sinh(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(sinh(Real(0.5))), tol);
+ a = 0.5;
+ a = cosh(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(cosh(Real(0.5))), tol);
+ a = 0.5;
+ a = tanh(a);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(tanh(Real(0.5))), tol);
+ // fmod, need to check all the sign permutations:
+ a = 4;
+ b = 2;
+ a = fmod(a, b);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(fmod(Real(4), Real(2))), tol);
+ a = 4;
+ b = fmod(a, b);
+ BOOST_CHECK_CLOSE_FRACTION(b, Real(fmod(Real(4), Real(2))), tol);
+ a = 4;
+ b = 2;
+ a = fmod(-a, b);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(fmod(-Real(4), Real(2))), tol);
+ a = 4;
+ b = fmod(-a, b);
+ BOOST_CHECK_CLOSE_FRACTION(b, Real(-fmod(Real(4), Real(2))), tol);
+ a = 4;
+ b = 2;
+ a = fmod(a, -b);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(fmod(Real(4), -Real(2))), tol);
+ a = 4;
+ b = fmod(a, -b);
+ BOOST_CHECK_CLOSE_FRACTION(b, Real(fmod(Real(4), -Real(2))), tol);
+ a = 4;
+ b = 2;
+ a = fmod(-a, -b);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(fmod(-Real(4), -Real(2))), tol);
+ a = 4;
+ b = fmod(-a, -b);
+ BOOST_CHECK_CLOSE_FRACTION(b, Real(fmod(-Real(4), -Real(2))), tol);
+ // modf:
+ a = 5;
+ a /= 2;
+ b = modf(a, &c);
+ BOOST_CHECK_EQUAL(b + c, a);
+ BOOST_CHECK_EQUAL(b > 0, a > 0);
+ BOOST_CHECK_EQUAL(c > 0, a > 0);
+ a = -a;
+ b = modf(a, &c);
+ BOOST_CHECK_EQUAL(b + c, a);
+ BOOST_CHECK_EQUAL(b > 0, a > 0);
+ BOOST_CHECK_EQUAL(c > 0, a > 0);
+ b = modf(a, &c);
+ c = 0;
+ modf(a, &c);
+ BOOST_CHECK_EQUAL(b + c, a);
+ BOOST_CHECK_EQUAL(b > 0, a > 0);
+ BOOST_CHECK_EQUAL(c > 0, a > 0);
+ a = -a;
+ b = modf(a, &c);
+ c = 0;
+ modf(a, &c);
+ BOOST_CHECK_EQUAL(b + c, a);
+ BOOST_CHECK_EQUAL(b > 0, a > 0);
+ BOOST_CHECK_EQUAL(c > 0, a > 0);
+
+ if (std::numeric_limits<Real>::has_infinity)
+ {
+ a = std::numeric_limits<Real>::infinity();
+ b = modf(a, &c);
+ BOOST_CHECK_EQUAL(a, c);
+ BOOST_CHECK_EQUAL(b, 0);
+ a = -std::numeric_limits<Real>::infinity();
+ b = modf(a, &c);
+ BOOST_CHECK_EQUAL(a, c);
+ BOOST_CHECK_EQUAL(b, 0);
+ }
+ if (std::numeric_limits<Real>::has_quiet_NaN)
+ {
+ a = std::numeric_limits<Real>::quiet_NaN();
+ b = modf(a, &c);
+ BOOST_CHECK((boost::math::isnan)(b));
+ BOOST_CHECK((boost::math::isnan)(c));
+ }
+
+ a = 4;
+ b = 2;
+ a = atan2(a, b);
+ BOOST_CHECK_CLOSE_FRACTION(a, Real(atan2(Real(4), Real(2))), tol);
+ a = 4;
+ b = atan2(a, b);
+ BOOST_CHECK_CLOSE_FRACTION(b, Real(atan2(Real(4), Real(2))), tol);
+
+ // fma:
+ a = 2;
+ b = 4;
+ c = 6;
+ BOOST_CHECK_EQUAL(fma(a, b, c), 14);
+ BOOST_CHECK_EQUAL(fma(a, 4, c), 14);
+ BOOST_CHECK_EQUAL(fma(a, b, 6), 14);
+ BOOST_CHECK_EQUAL(fma(a, 4, 6), 14);
+ BOOST_CHECK_EQUAL(fma(a + 0, b, c), 14);
+ BOOST_CHECK_EQUAL(fma(a - 0, 4, c), 14);
+ BOOST_CHECK_EQUAL(fma(a * 1, b, 6), 14);
+ BOOST_CHECK_EQUAL(fma(a / 1, 4, 6), 14);
+ BOOST_CHECK_EQUAL(fma(2, b, c), 14);
+ BOOST_CHECK_EQUAL(fma(2, b, 6), 14);
+ BOOST_CHECK_EQUAL(fma(2, b * 1, c), 14);
+ BOOST_CHECK_EQUAL(fma(2, b + 0, 6), 14);
+ BOOST_CHECK_EQUAL(fma(2, 4, c), 14);
+ BOOST_CHECK_EQUAL(fma(2, 4, c + 0), 14);
+
+ // Default construct, for consistency with native floats, default constructed values are zero:
+ Real zero;
+ BOOST_CHECK_EQUAL(zero, 0);
+
+ //
+ // Complex number functions on scalars:
+ //
+ a = 40;
+ BOOST_CHECK_EQUAL(Real(arg(a)), 0);
+ BOOST_CHECK_EQUAL(Real(arg(a + 0)), 0);
+ a - 20;
+ BOOST_CHECK_EQUAL(Real(arg(a)), 0);
+ BOOST_CHECK_EQUAL(Real(arg(a - 20)), 0);
+}
+
+template <class T, class U>
+void compare_NaNs(const T& a, const U& b)
+{
+ BOOST_CHECK_EQUAL(a == b, false);
+ BOOST_CHECK_EQUAL(a != b, true);
+ BOOST_CHECK_EQUAL(a <= b, false);
+ BOOST_CHECK_EQUAL(a >= b, false);
+ BOOST_CHECK_EQUAL(a > b, false);
+ BOOST_CHECK_EQUAL(a < b, false);
+ //
+ // Again where LHS may be an expression template:
+ //
+ BOOST_CHECK_EQUAL(1 * a == b, false);
+ BOOST_CHECK_EQUAL(1 * a != b, true);
+ BOOST_CHECK_EQUAL(1 * a <= b, false);
+ BOOST_CHECK_EQUAL(1 * a >= b, false);
+ BOOST_CHECK_EQUAL(1 * a > b, false);
+ BOOST_CHECK_EQUAL(1 * a < b, false);
+ //
+ // Again where RHS may be an expression template:
+ //
+ BOOST_CHECK_EQUAL(a == b * 1, false);
+ BOOST_CHECK_EQUAL(a != b * 1, true);
+ BOOST_CHECK_EQUAL(a <= b * 1, false);
+ BOOST_CHECK_EQUAL(a >= b * 1, false);
+ BOOST_CHECK_EQUAL(a > b * 1, false);
+ BOOST_CHECK_EQUAL(a < b * 1, false);
+ //
+ // Again where LHS and RHS may be an expression templates:
+ //
+ BOOST_CHECK_EQUAL(1 * a == b * 1, false);
+ BOOST_CHECK_EQUAL(1 * a != b * 1, true);
+ BOOST_CHECK_EQUAL(1 * a <= b * 1, false);
+ BOOST_CHECK_EQUAL(1 * a >= b * 1, false);
+ BOOST_CHECK_EQUAL(1 * a > b * 1, false);
+ BOOST_CHECK_EQUAL(1 * a < b * 1, false);
+}
+
+template <class Real, class T>
+void test_float_ops(const T&) {}
+
+template <class Real>
+void test_float_ops(const boost::mpl::int_<boost::multiprecision::number_kind_floating_point>&)
+{
+ BOOST_CHECK_EQUAL(abs(Real(2)), 2);
+ BOOST_CHECK_EQUAL(abs(Real(-2)), 2);
+ BOOST_CHECK_EQUAL(fabs(Real(2)), 2);
+ BOOST_CHECK_EQUAL(fabs(Real(-2)), 2);
+ BOOST_CHECK_EQUAL(floor(Real(5) / 2), 2);
+ BOOST_CHECK_EQUAL(ceil(Real(5) / 2), 3);
+ BOOST_CHECK_EQUAL(floor(Real(-5) / 2), -3);
+ BOOST_CHECK_EQUAL(ceil(Real(-5) / 2), -2);
+ BOOST_CHECK_EQUAL(trunc(Real(5) / 2), 2);
+ BOOST_CHECK_EQUAL(trunc(Real(-5) / 2), -2);
+ //
+ // ldexp and frexp, these pretty much have to be implemented by each backend:
+ //
+ typedef typename Real::backend_type::exponent_type e_type;
+ BOOST_CHECK_EQUAL(ldexp(Real(2), 5), 64);
+ BOOST_CHECK_EQUAL(ldexp(Real(2), -5), Real(2) / 32);
+ Real v(512);
+ e_type exponent;
+ Real r = frexp(v, &exponent);
+ BOOST_CHECK_EQUAL(r, 0.5);
+ BOOST_CHECK_EQUAL(exponent, 10);
+ BOOST_CHECK_EQUAL(v, 512);
+ v = 1 / v;
+ r = frexp(v, &exponent);
+ BOOST_CHECK_EQUAL(r, 0.5);
+ BOOST_CHECK_EQUAL(exponent, -8);
+ BOOST_CHECK_EQUAL(ldexp(Real(2), e_type(5)), 64);
+ BOOST_CHECK_EQUAL(ldexp(Real(2), e_type(-5)), Real(2) / 32);
+ v = 512;
+ e_type exp2;
+ r = frexp(v, &exp2);
+ BOOST_CHECK_EQUAL(r, 0.5);
+ BOOST_CHECK_EQUAL(exp2, 10);
+ BOOST_CHECK_EQUAL(v, 512);
+ v = 1 / v;
+ r = frexp(v, &exp2);
+ BOOST_CHECK_EQUAL(r, 0.5);
+ BOOST_CHECK_EQUAL(exp2, -8);
+ //
+ // scalbn and logb, these are the same as ldexp and frexp unless the radix is
+ // something other than 2:
+ //
+ if (std::numeric_limits<Real>::is_specialized && std::numeric_limits<Real>::radix)
+ {
+ BOOST_CHECK_EQUAL(scalbn(Real(2), 5), 2 * pow(double(std::numeric_limits<Real>::radix), 5));
+ BOOST_CHECK_EQUAL(scalbn(Real(2), -5), Real(2) / pow(double(std::numeric_limits<Real>::radix), 5));
+ v = 512;
+ exponent = ilogb(v);
+ r = scalbn(v, -exponent);
+ BOOST_CHECK(r >= 1);
+ BOOST_CHECK(r < std::numeric_limits<Real>::radix);
+ BOOST_CHECK_EQUAL(exponent, logb(v));
+ BOOST_CHECK_EQUAL(v, scalbn(r, exponent));
+ v = 1 / v;
+ exponent = ilogb(v);
+ r = scalbn(v, -exponent);
+ BOOST_CHECK(r >= 1);
+ BOOST_CHECK(r < std::numeric_limits<Real>::radix);
+ BOOST_CHECK_EQUAL(exponent, logb(v));
+ BOOST_CHECK_EQUAL(v, scalbn(r, exponent));
+ }
+ //
+ // pow and exponent:
+ //
+ v = 3.25;
+ r = pow(v, 0);
+ BOOST_CHECK_EQUAL(r, 1);
+ r = pow(v, 1);
+ BOOST_CHECK_EQUAL(r, 3.25);
+ r = pow(v, 2);
+ BOOST_CHECK_EQUAL(r, boost::math::pow<2>(3.25));
+ r = pow(v, 3);
+ BOOST_CHECK_EQUAL(r, boost::math::pow<3>(3.25));
+ r = pow(v, 4);
+ BOOST_CHECK_EQUAL(r, boost::math::pow<4>(3.25));
+ r = pow(v, 5);
+ BOOST_CHECK_EQUAL(r, boost::math::pow<5>(3.25));
+ r = pow(v, 6);
+ BOOST_CHECK_EQUAL(r, boost::math::pow<6>(3.25));
+ r = pow(v, 25);
+ BOOST_CHECK_EQUAL(r, boost::math::pow<25>(Real(3.25)));
+
+#ifndef BOOST_NO_EXCEPTIONS
+ //
+ // Things that are expected errors:
+ //
+ BOOST_CHECK_THROW(Real("3.14L"), std::runtime_error);
+ if (std::numeric_limits<Real>::is_specialized)
+ {
+ if (std::numeric_limits<Real>::has_infinity)
+ {
+ BOOST_CHECK((boost::math::isinf)(Real(20) / 0u));
+ }
+ else
+ {
+ BOOST_CHECK_THROW(r = Real(Real(20) / 0u), std::overflow_error);
+ }
+ }
+#endif
+ //
+ // Comparisons of NaN's should always fail:
+ //
+ if (std::numeric_limits<Real>::has_quiet_NaN)
+ {
+ r = v = std::numeric_limits<Real>::quiet_NaN();
+ compare_NaNs(r, v);
+ v = 0;
+ compare_NaNs(r, v);
+ r.swap(v);
+ compare_NaNs(r, v);
+ //
+ // Conmpare NaN to int:
+ //
+ compare_NaNs(v, 0);
+ compare_NaNs(0, v);
+ //
+ // Compare to floats:
+ //
+ compare_NaNs(v, 0.5);
+ compare_NaNs(0.5, v);
+ if (std::numeric_limits<double>::has_quiet_NaN)
+ {
+ compare_NaNs(r, std::numeric_limits<double>::quiet_NaN());
+ compare_NaNs(std::numeric_limits<double>::quiet_NaN(), r);
+ }
+ }
+
+ //
+ // Operations involving NaN's as one argument:
+ //
+ if (std::numeric_limits<Real>::has_quiet_NaN)
+ {
+ v = 20.25;
+ r = std::numeric_limits<Real>::quiet_NaN();
+ BOOST_CHECK((boost::math::isnan)(v + r));
+ BOOST_CHECK((boost::math::isnan)(r + v));
+ BOOST_CHECK((boost::math::isnan)(r - v));
+ BOOST_CHECK((boost::math::isnan)(v - r));
+ BOOST_CHECK((boost::math::isnan)(r * v));
+ BOOST_CHECK((boost::math::isnan)(v * r));
+ BOOST_CHECK((boost::math::isnan)(r / v));
+ BOOST_CHECK((boost::math::isnan)(v / r));
+ Real t = v;
+ BOOST_CHECK((boost::math::isnan)(t += r));
+ t = r;
+ BOOST_CHECK((boost::math::isnan)(t += v));
+ t = r;
+ BOOST_CHECK((boost::math::isnan)(t -= v));
+ t = v;
+ BOOST_CHECK((boost::math::isnan)(t -= r));
+ t = r;
+ BOOST_CHECK((boost::math::isnan)(t *= v));
+ t = v;
+ BOOST_CHECK((boost::math::isnan)(t *= r));
+ t = r;
+ BOOST_CHECK((boost::math::isnan)(t /= v));
+ t = v;
+ BOOST_CHECK((boost::math::isnan)(t /= r));
+ }
+ //
+ // Operations involving infinities as one argument:
+ //
+ if (std::numeric_limits<Real>::has_infinity)
+ {
+ v = 20.25;
+ r = std::numeric_limits<Real>::infinity();
+ BOOST_CHECK((boost::math::isinf)(v + r));
+ BOOST_CHECK((boost::math::isinf)(r + v));
+ BOOST_CHECK((boost::math::isinf)(r - v));
+ BOOST_CHECK((boost::math::isinf)(v - r));
+ BOOST_CHECK_LT(v - r, 0);
+ BOOST_CHECK((boost::math::isinf)(r * v));
+ BOOST_CHECK((boost::math::isinf)(v * r));
+ BOOST_CHECK((boost::math::isinf)(r / v));
+ BOOST_CHECK_EQUAL(v / r, 0);
+ Real t = v;
+ BOOST_CHECK((boost::math::isinf)(t += r));
+ t = r;
+ BOOST_CHECK((boost::math::isinf)(t += v));
+ t = r;
+ BOOST_CHECK((boost::math::isinf)(t -= v));
+ t = v;
+ BOOST_CHECK((boost::math::isinf)(t -= r));
+ t = v;
+ BOOST_CHECK(t -= r < 0);
+ t = r;
+ BOOST_CHECK((boost::math::isinf)(t *= v));
+ t = v;
+ BOOST_CHECK((boost::math::isinf)(t *= r));
+ t = r;
+ BOOST_CHECK((boost::math::isinf)(t /= v));
+ t = v;
+ BOOST_CHECK((t /= r) == 0);
+ }
+ //
+ // Operations that should produce NaN as a result:
+ //
+ if (std::numeric_limits<Real>::has_quiet_NaN)
+ {
+ v = r = 0;
+ Real t = v / r;
+ BOOST_CHECK((boost::math::isnan)(t));
+ v /= r;
+ BOOST_CHECK((boost::math::isnan)(v));
+ t = v / 0;
+ BOOST_CHECK((boost::math::isnan)(v));
+ if (std::numeric_limits<Real>::has_infinity)
+ {
+ v = 0;
+ r = std::numeric_limits<Real>::infinity();
+ t = v * r;
+ if (!boost::multiprecision::is_interval_number<Real>::value)
+ {
+ BOOST_CHECK((boost::math::isnan)(t));
+ t = r * 0;
+ BOOST_CHECK((boost::math::isnan)(t));
+ }
+ v = r;
+ t = r / v;
+ BOOST_CHECK((boost::math::isnan)(t));
+ }
+ }
+
+ test_float_funcs<Real>(boost::mpl::bool_<std::numeric_limits<Real>::is_specialized>());
+}
+
+template <class T>
+struct lexical_cast_target_type
+{
+ typedef typename boost::mpl::if_<
+ boost::is_signed<T>,
+ boost::intmax_t,
+ typename boost::mpl::if_<
+ boost::is_unsigned<T>,
+ boost::uintmax_t,
+ T>::type>::type type;
+};
+
+template <class Real, class Num>
+void test_negative_mixed_minmax(boost::mpl::true_ const&)
+{
+ if (!std::numeric_limits<Real>::is_bounded || (std::numeric_limits<Real>::digits >= std::numeric_limits<Num>::digits))
+ {
+ Real mx1((std::numeric_limits<Num>::max)() - 1);
+ ++mx1;
+ Real mx2((std::numeric_limits<Num>::max)());
+ BOOST_CHECK_EQUAL(mx1, mx2);
+ mx1 = (std::numeric_limits<Num>::max)() - 1;
+ ++mx1;
+ mx2 = (std::numeric_limits<Num>::max)();
+ BOOST_CHECK_EQUAL(mx1, mx2);
+
+ if (!std::numeric_limits<Real>::is_bounded || (std::numeric_limits<Real>::digits > std::numeric_limits<Num>::digits))
+ {
+ Real mx3((std::numeric_limits<Num>::min)() + 1);
+ --mx3;
+ Real mx4((std::numeric_limits<Num>::min)());
+ BOOST_CHECK_EQUAL(mx3, mx4);
+ mx3 = (std::numeric_limits<Num>::min)() + 1;
+ --mx3;
+ mx4 = (std::numeric_limits<Num>::min)();
+ BOOST_CHECK_EQUAL(mx3, mx4);
+ }
+ }
+}
+template <class Real, class Num>
+void test_negative_mixed_minmax(boost::mpl::false_ const&)
+{
+}
+
+template <class Real, class Num>
+void test_negative_mixed_numeric_limits(boost::mpl::true_ const&)
+{
+ typedef typename lexical_cast_target_type<Num>::type target_type;
+#if defined(TEST_MPFR)
+ Num tol = 10 * std::numeric_limits<Num>::epsilon();
+#else
+ Num tol = 0;
+#endif
+ static const int left_shift = std::numeric_limits<Num>::digits - 1;
+ Num n1 = -static_cast<Num>(1uLL << ((left_shift < 63) && (left_shift > 0) ? left_shift : 10));
+ Num n2 = -1;
+ Num n3 = 0;
+ Num n4 = -20;
+ std::ios_base::fmtflags f = boost::is_floating_point<Num>::value ? std::ios_base::scientific : std::ios_base::fmtflags(0);
+ int digits_to_print = boost::is_floating_point<Num>::value && std::numeric_limits<Num>::is_specialized
+ ? std::numeric_limits<Num>::digits10 + 5
+ : 0;
+ if (std::numeric_limits<target_type>::digits <= std::numeric_limits<Real>::digits)
+ {
+ BOOST_CHECK_CLOSE(n1, checked_lexical_cast<target_type>(Real(n1).str(digits_to_print, f)), tol);
+ }
+ BOOST_CHECK_CLOSE(n2, checked_lexical_cast<target_type>(Real(n2).str(digits_to_print, f)), 0);
+ BOOST_CHECK_CLOSE(n3, checked_lexical_cast<target_type>(Real(n3).str(digits_to_print, f)), 0);
+ BOOST_CHECK_CLOSE(n4, checked_lexical_cast<target_type>(Real(n4).str(digits_to_print, f)), 0);
+}
+
+template <class Real, class Num>
+void test_negative_mixed_numeric_limits(boost::mpl::false_ const&) {}
+
+template <class Real, class Num>
+void test_negative_mixed(boost::mpl::true_ const&)
+{
+ typedef typename boost::mpl::if_<
+ boost::is_convertible<Num, Real>,
+ typename boost::mpl::if_c<boost::is_integral<Num>::value && (sizeof(Num) < sizeof(int)), int, Num>::type,
+ Real>::type cast_type;
+ typedef typename boost::mpl::if_<
+ boost::is_convertible<Num, Real>,
+ Num,
+ Real>::type simple_cast_type;
+ std::cout << "Testing mixed arithmetic with type: " << typeid(Real).name() << " and " << typeid(Num).name() << std::endl;
+ static const int left_shift = std::numeric_limits<Num>::digits - 1;
+ Num n1 = -static_cast<Num>(1uLL << ((left_shift < 63) && (left_shift > 0) ? left_shift : 10));
+ Num n2 = -1;
+ Num n3 = 0;
+ Num n4 = -20;
+ Num n5 = -8;
+
+ test_comparisons<Real>(n1, n2, boost::is_convertible<Num, Real>());
+ test_comparisons<Real>(n1, n3, boost::is_convertible<Num, Real>());
+ test_comparisons<Real>(n3, n1, boost::is_convertible<Num, Real>());
+ test_comparisons<Real>(n2, n1, boost::is_convertible<Num, Real>());
+ test_comparisons<Real>(n1, n1, boost::is_convertible<Num, Real>());
+ test_comparisons<Real>(n3, n3, boost::is_convertible<Num, Real>());
+
+ // Default construct:
+ BOOST_CHECK_EQUAL(Real(n1), static_cast<cast_type>(n1));
+ BOOST_CHECK_EQUAL(Real(n2), static_cast<cast_type>(n2));
+ BOOST_CHECK_EQUAL(Real(n3), static_cast<cast_type>(n3));
+ BOOST_CHECK_EQUAL(Real(n4), static_cast<cast_type>(n4));
+ BOOST_CHECK_EQUAL(static_cast<cast_type>(n1), Real(n1));
+ BOOST_CHECK_EQUAL(static_cast<cast_type>(n2), Real(n2));
+ BOOST_CHECK_EQUAL(static_cast<cast_type>(n3), Real(n3));
+ BOOST_CHECK_EQUAL(static_cast<cast_type>(n4), Real(n4));
+ BOOST_CHECK_EQUAL(Real(n1).template convert_to<Num>(), n1);
+ BOOST_CHECK_EQUAL(Real(n2).template convert_to<Num>(), n2);
+ BOOST_CHECK_EQUAL(Real(n3).template convert_to<Num>(), n3);
+ BOOST_CHECK_EQUAL(Real(n4).template convert_to<Num>(), n4);
+#ifndef BOOST_MP_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n1)), n1);
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n2)), n2);
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n3)), n3);
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n4)), n4);
+#endif
+ // Conversions when source is an expression template:
+ BOOST_CHECK_EQUAL((Real(n1) + 0).template convert_to<Num>(), n1);
+ BOOST_CHECK_EQUAL((Real(n2) + 0).template convert_to<Num>(), n2);
+ BOOST_CHECK_EQUAL((Real(n3) + 0).template convert_to<Num>(), n3);
+ BOOST_CHECK_EQUAL((Real(n4) + 0).template convert_to<Num>(), n4);
+#ifndef BOOST_MP_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
+ BOOST_CHECK_EQUAL(static_cast<Num>((Real(n1) + 0)), n1);
+ BOOST_CHECK_EQUAL(static_cast<Num>((Real(n2) + 0)), n2);
+ BOOST_CHECK_EQUAL(static_cast<Num>((Real(n3) + 0)), n3);
+ BOOST_CHECK_EQUAL(static_cast<Num>((Real(n4) + 0)), n4);
+#endif
+ test_negative_mixed_numeric_limits<Real, Num>(boost::mpl::bool_<std::numeric_limits<Real>::is_specialized>());
+ // Assignment:
+ Real r(0);
+ BOOST_CHECK(r != static_cast<cast_type>(n1));
+ r = static_cast<simple_cast_type>(n1);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n1));
+ r = static_cast<simple_cast_type>(n2);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n2));
+ r = static_cast<simple_cast_type>(n3);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n3));
+ r = static_cast<simple_cast_type>(n4);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4));
+ // Addition:
+ r = static_cast<simple_cast_type>(n2);
+ BOOST_CHECK_EQUAL(r + static_cast<simple_cast_type>(n4), static_cast<cast_type>(n2 + n4));
+ BOOST_CHECK_EQUAL(Real(r + static_cast<simple_cast_type>(n4)), static_cast<cast_type>(n2 + n4));
+ r += static_cast<simple_cast_type>(n4);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n2 + n4));
+ // subtraction:
+ r = static_cast<simple_cast_type>(n4);
+ BOOST_CHECK_EQUAL(r - static_cast<simple_cast_type>(n5), static_cast<cast_type>(n4 - n5));
+ BOOST_CHECK_EQUAL(Real(r - static_cast<simple_cast_type>(n5)), static_cast<cast_type>(n4 - n5));
+ r -= static_cast<simple_cast_type>(n5);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4 - n5));
+ // Multiplication:
+ r = static_cast<simple_cast_type>(n2);
+ BOOST_CHECK_EQUAL(r * static_cast<simple_cast_type>(n4), static_cast<cast_type>(n2 * n4));
+ BOOST_CHECK_EQUAL(Real(r * static_cast<simple_cast_type>(n4)), static_cast<cast_type>(n2 * n4));
+ r *= static_cast<simple_cast_type>(n4);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n2 * n4));
+ // Division:
+ r = static_cast<simple_cast_type>(n1);
+ BOOST_CHECK_EQUAL(r / static_cast<simple_cast_type>(n5), static_cast<cast_type>(n1 / n5));
+ BOOST_CHECK_EQUAL(Real(r / static_cast<simple_cast_type>(n5)), static_cast<cast_type>(n1 / n5));
+ r /= static_cast<simple_cast_type>(n5);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n1 / n5));
+ //
+ // Extra cases for full coverage:
+ //
+ r = Real(n4) + static_cast<simple_cast_type>(n5);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4 + n5));
+ r = static_cast<simple_cast_type>(n4) + Real(n5);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4 + n5));
+ r = Real(n4) - static_cast<simple_cast_type>(n5);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4 - n5));
+ r = static_cast<simple_cast_type>(n4) - Real(n5);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4 - n5));
+ r = static_cast<simple_cast_type>(n4) * Real(n5);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4 * n5));
+ r = static_cast<cast_type>(Num(4) * n4) / Real(4);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4));
+
+ Real a, b, c;
+ a = 20;
+ b = 30;
+ c = -a + b;
+ BOOST_CHECK_EQUAL(c, 10);
+ c = b + -a;
+ BOOST_CHECK_EQUAL(c, 10);
+ n4 = 30;
+ c = -a + static_cast<cast_type>(n4);
+ BOOST_CHECK_EQUAL(c, 10);
+ c = static_cast<cast_type>(n4) + -a;
+ BOOST_CHECK_EQUAL(c, 10);
+ c = -a + -b;
+ BOOST_CHECK_EQUAL(c, -50);
+ n4 = 4;
+ c = -(a + b) + static_cast<cast_type>(n4);
+ BOOST_CHECK_EQUAL(c, -50 + 4);
+ n4 = 50;
+ c = (a + b) - static_cast<cast_type>(n4);
+ BOOST_CHECK_EQUAL(c, 0);
+ c = (a + b) - static_cast<cast_type>(n4);
+ BOOST_CHECK_EQUAL(c, 0);
+ c = a - -(b + static_cast<cast_type>(n4));
+ BOOST_CHECK_EQUAL(c, 20 - -(30 + 50));
+ c = -(b + static_cast<cast_type>(n4)) - a;
+ BOOST_CHECK_EQUAL(c, -(30 + 50) - 20);
+ c = a - -b;
+ BOOST_CHECK_EQUAL(c, 50);
+ c = -a - b;
+ BOOST_CHECK_EQUAL(c, -50);
+ c = -a - static_cast<cast_type>(n4);
+ BOOST_CHECK_EQUAL(c, -20 - 50);
+ c = static_cast<cast_type>(n4) - -a;
+ BOOST_CHECK_EQUAL(c, 50 + 20);
+ c = -(a + b) - Real(n4);
+ BOOST_CHECK_EQUAL(c, -(20 + 30) - 50);
+ c = static_cast<cast_type>(n4) - (a + b);
+ BOOST_CHECK_EQUAL(c, 0);
+ c = (a + b) * static_cast<cast_type>(n4);
+ BOOST_CHECK_EQUAL(c, 50 * 50);
+ c = static_cast<cast_type>(n4) * (a + b);
+ BOOST_CHECK_EQUAL(c, 50 * 50);
+ c = a * -(b + static_cast<cast_type>(n4));
+ BOOST_CHECK_EQUAL(c, 20 * -(30 + 50));
+ c = -(b + static_cast<cast_type>(n4)) * a;
+ BOOST_CHECK_EQUAL(c, 20 * -(30 + 50));
+ c = a * -b;
+ BOOST_CHECK_EQUAL(c, 20 * -30);
+ c = -a * b;
+ BOOST_CHECK_EQUAL(c, 20 * -30);
+ c = -a * static_cast<cast_type>(n4);
+ BOOST_CHECK_EQUAL(c, -20 * 50);
+ c = static_cast<cast_type>(n4) * -a;
+ BOOST_CHECK_EQUAL(c, -20 * 50);
+ c = -(a + b) + a;
+ BOOST_CHECK(-50 + 20);
+ c = static_cast<cast_type>(n4) - (a + b);
+ BOOST_CHECK_EQUAL(c, 0);
+ Real d = 10;
+ c = (a + b) / d;
+ BOOST_CHECK_EQUAL(c, 5);
+ c = (a + b) / (d + 0);
+ BOOST_CHECK_EQUAL(c, 5);
+ c = (a + b) / static_cast<cast_type>(n4);
+ BOOST_CHECK_EQUAL(c, 1);
+ c = static_cast<cast_type>(n4) / (a + b);
+ BOOST_CHECK_EQUAL(c, 1);
+ d = 50;
+ c = d / -(a + b);
+ BOOST_CHECK_EQUAL(c, -1);
+ c = -(a + b) / d;
+ BOOST_CHECK_EQUAL(c, -1);
+ d = 2;
+ c = a / -d;
+ BOOST_CHECK_EQUAL(c, 20 / -2);
+ c = -a / d;
+ BOOST_CHECK_EQUAL(c, 20 / -2);
+ d = 50;
+ c = -d / static_cast<cast_type>(n4);
+ BOOST_CHECK_EQUAL(c, -1);
+ c = static_cast<cast_type>(n4) / -d;
+ BOOST_CHECK_EQUAL(c, -1);
+ c = static_cast<cast_type>(n4) + a;
+ BOOST_CHECK_EQUAL(c, 70);
+ c = static_cast<cast_type>(n4) - a;
+ BOOST_CHECK_EQUAL(c, 30);
+ c = static_cast<cast_type>(n4) * a;
+ BOOST_CHECK_EQUAL(c, 50 * 20);
+
+ n1 = -2;
+ n2 = -3;
+ n3 = -4;
+ a = static_cast<cast_type>(n1);
+ b = static_cast<cast_type>(n2);
+ c = static_cast<cast_type>(n3);
+ d = a + b * c;
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+ d = static_cast<cast_type>(n1) + b * c;
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+ d = a + static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+ d = a + b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+ d = static_cast<cast_type>(n1) + static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+ d = static_cast<cast_type>(n1) + b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+ a += static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(a, -2 + -3 * -4);
+ a = static_cast<cast_type>(n1);
+ a += b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(a, -2 + -3 * -4);
+ a = static_cast<cast_type>(n1);
+
+ d = b * c + a;
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+ d = b * c + static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+ d = static_cast<cast_type>(n2) * c + a;
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+ d = b * static_cast<cast_type>(n3) + a;
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+ d = static_cast<cast_type>(n2) * c + static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+ d = b * static_cast<cast_type>(n3) + static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, -2 + -3 * -4);
+
+ a = -20;
+ d = a - b * c;
+ BOOST_CHECK_EQUAL(d, -20 - -3 * -4);
+ n1 = -20;
+ d = static_cast<cast_type>(n1) - b * c;
+ BOOST_CHECK_EQUAL(d, -20 - -3 * -4);
+ d = a - static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(d, -20 - -3 * -4);
+ d = a - b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(d, -20 - -3 * -4);
+ d = static_cast<cast_type>(n1) - static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(d, -20 - -3 * -4);
+ d = static_cast<cast_type>(n1) - b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(d, -20 - -3 * -4);
+ a -= static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(a, -20 - -3 * -4);
+ a = static_cast<cast_type>(n1);
+ a -= b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(a, -20 - -3 * -4);
+
+ a = -2;
+ d = b * c - a;
+ BOOST_CHECK_EQUAL(d, -3 * -4 - -2);
+ n1 = -2;
+ d = b * c - static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, -3 * -4 - -2);
+ d = static_cast<cast_type>(n2) * c - a;
+ BOOST_CHECK_EQUAL(d, -3 * -4 - -2);
+ d = b * static_cast<cast_type>(n3) - a;
+ BOOST_CHECK_EQUAL(d, -3 * -4 - -2);
+ d = static_cast<cast_type>(n2) * c - static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, -3 * -4 - -2);
+ d = b * static_cast<cast_type>(n3) - static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, -3 * -4 - -2);
+ //
+ // Conversion from min and max values:
+ //
+ test_negative_mixed_minmax<Real, Num>(boost::mpl::bool_ < std::numeric_limits<Real>::is_integer && std::numeric_limits<Num>::is_integer > ());
+}
+
+template <class Real, class Num>
+void test_negative_mixed(boost::mpl::false_ const&)
+{
+}
+
+template <class Real, class Num>
+void test_mixed(const boost::mpl::false_&)
+{
+}
+
+template <class Real>
+inline bool check_is_nan(const Real& val, const boost::mpl::true_&)
+{
+ return (boost::math::isnan)(val);
+}
+template <class Real>
+inline bool check_is_nan(const Real&, const boost::mpl::false_&)
+{
+ return false;
+}
+template <class Real>
+inline Real negate_value(const Real& val, const boost::mpl::true_&)
+{
+ return -val;
+}
+template <class Real>
+inline Real negate_value(const Real& val, const boost::mpl::false_&)
+{
+ return val;
+}
+
+template <class Real, class Num>
+void test_mixed_numeric_limits(const boost::mpl::true_&)
+{
+ typedef typename lexical_cast_target_type<Num>::type target_type;
+#if defined(TEST_MPFR)
+ Num tol = 10 * std::numeric_limits<Num>::epsilon();
+#else
+ Num tol = 0;
+#endif
+
+ Real d;
+ if (std::numeric_limits<Real>::has_infinity && std::numeric_limits<Num>::has_infinity)
+ {
+ d = static_cast<Real>(std::numeric_limits<Num>::infinity());
+ BOOST_CHECK_GT(d, (std::numeric_limits<Real>::max)());
+ d = static_cast<Real>(negate_value(std::numeric_limits<Num>::infinity(), boost::mpl::bool_<std::numeric_limits<Num>::is_signed>()));
+ BOOST_CHECK_LT(d, negate_value((std::numeric_limits<Real>::max)(), boost::mpl::bool_<std::numeric_limits<Real>::is_signed>()));
+ }
+ if (std::numeric_limits<Real>::has_quiet_NaN && std::numeric_limits<Num>::has_quiet_NaN)
+ {
+ d = static_cast<Real>(std::numeric_limits<Num>::quiet_NaN());
+ BOOST_CHECK(check_is_nan(d, boost::mpl::bool_<std::numeric_limits<Real>::has_quiet_NaN>()));
+ d = static_cast<Real>(negate_value(std::numeric_limits<Num>::quiet_NaN(), boost::mpl::bool_<std::numeric_limits<Num>::is_signed>()));
+ BOOST_CHECK(check_is_nan(d, boost::mpl::bool_<std::numeric_limits<Real>::has_quiet_NaN>()));
+ }
+
+ static const int left_shift = std::numeric_limits<Num>::digits - 1;
+ Num n1 = static_cast<Num>(1uLL << ((left_shift < 63) && (left_shift > 0) ? left_shift : 10));
+ Num n2 = 1;
+ Num n3 = 0;
+ Num n4 = 20;
+
+ std::ios_base::fmtflags f = boost::is_floating_point<Num>::value ? std::ios_base::scientific : std::ios_base::fmtflags(0);
+ int digits_to_print = boost::is_floating_point<Num>::value && std::numeric_limits<Num>::is_specialized
+ ? std::numeric_limits<Num>::digits10 + 5
+ : 0;
+ if (std::numeric_limits<target_type>::digits <= std::numeric_limits<Real>::digits)
+ {
+ BOOST_CHECK_CLOSE(n1, checked_lexical_cast<target_type>(Real(n1).str(digits_to_print, f)), tol);
+ }
+ BOOST_CHECK_CLOSE(n2, checked_lexical_cast<target_type>(Real(n2).str(digits_to_print, f)), 0);
+ BOOST_CHECK_CLOSE(n3, checked_lexical_cast<target_type>(Real(n3).str(digits_to_print, f)), 0);
+ BOOST_CHECK_CLOSE(n4, checked_lexical_cast<target_type>(Real(n4).str(digits_to_print, f)), 0);
+}
+template <class Real, class Num>
+void test_mixed_numeric_limits(const boost::mpl::false_&)
+{
+}
+
+template <class Real, class Num>
+void test_mixed(const boost::mpl::true_&)
+{
+ typedef typename boost::mpl::if_<
+ boost::is_convertible<Num, Real>,
+ typename boost::mpl::if_c<boost::is_integral<Num>::value && (sizeof(Num) < sizeof(int)), int, Num>::type,
+ Real>::type cast_type;
+ typedef typename boost::mpl::if_<
+ boost::is_convertible<Num, Real>,
+ Num,
+ Real>::type simple_cast_type;
+
+ if (std::numeric_limits<Real>::is_specialized && std::numeric_limits<Real>::is_bounded && std::numeric_limits<Real>::digits < std::numeric_limits<Num>::digits)
+ return;
+
+ std::cout << "Testing mixed arithmetic with type: " << typeid(Real).name() << " and " << typeid(Num).name() << std::endl;
+ static const int left_shift = std::numeric_limits<Num>::digits - 1;
+ Num n1 = static_cast<Num>(1uLL << ((left_shift < 63) && (left_shift > 0) ? left_shift : 10));
+ Num n2 = 1;
+ Num n3 = 0;
+ Num n4 = 20;
+ Num n5 = 8;
+
+ test_comparisons<Real>(n1, n2, boost::is_convertible<Num, Real>());
+ test_comparisons<Real>(n1, n3, boost::is_convertible<Num, Real>());
+ test_comparisons<Real>(n1, n1, boost::is_convertible<Num, Real>());
+ test_comparisons<Real>(n3, n1, boost::is_convertible<Num, Real>());
+ test_comparisons<Real>(n2, n1, boost::is_convertible<Num, Real>());
+ test_comparisons<Real>(n3, n3, boost::is_convertible<Num, Real>());
+
+ // Default construct:
+ BOOST_CHECK_EQUAL(Real(n1), static_cast<cast_type>(n1));
+ BOOST_CHECK_EQUAL(Real(n2), static_cast<cast_type>(n2));
+ BOOST_CHECK_EQUAL(Real(n3), static_cast<cast_type>(n3));
+ BOOST_CHECK_EQUAL(Real(n4), static_cast<cast_type>(n4));
+ BOOST_CHECK_EQUAL(Real(n1).template convert_to<Num>(), n1);
+ BOOST_CHECK_EQUAL(Real(n2).template convert_to<Num>(), n2);
+ BOOST_CHECK_EQUAL(Real(n3).template convert_to<Num>(), n3);
+ BOOST_CHECK_EQUAL(Real(n4).template convert_to<Num>(), n4);
+#ifndef BOOST_MP_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n1)), n1);
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n2)), n2);
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n3)), n3);
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n4)), n4);
+#endif
+ // Again with expression templates:
+ BOOST_CHECK_EQUAL((Real(n1) + 0).template convert_to<Num>(), n1);
+ BOOST_CHECK_EQUAL((Real(n2) + 0).template convert_to<Num>(), n2);
+ BOOST_CHECK_EQUAL((Real(n3) + 0).template convert_to<Num>(), n3);
+ BOOST_CHECK_EQUAL((Real(n4) + 0).template convert_to<Num>(), n4);
+#ifndef BOOST_MP_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n1) + 0), n1);
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n2) + 0), n2);
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n3) + 0), n3);
+ BOOST_CHECK_EQUAL(static_cast<Num>(Real(n4) + 0), n4);
+#endif
+ BOOST_CHECK_EQUAL(static_cast<cast_type>(n1), Real(n1));
+ BOOST_CHECK_EQUAL(static_cast<cast_type>(n2), Real(n2));
+ BOOST_CHECK_EQUAL(static_cast<cast_type>(n3), Real(n3));
+ BOOST_CHECK_EQUAL(static_cast<cast_type>(n4), Real(n4));
+ // Assignment:
+ Real r(0);
+ BOOST_CHECK(r != static_cast<cast_type>(n1));
+ r = static_cast<simple_cast_type>(n1);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n1));
+ r = static_cast<simple_cast_type>(n2);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n2));
+ r = static_cast<simple_cast_type>(n3);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n3));
+ r = static_cast<simple_cast_type>(n4);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4));
+ // Addition:
+ r = static_cast<simple_cast_type>(n2);
+ BOOST_CHECK_EQUAL(r + static_cast<simple_cast_type>(n4), static_cast<cast_type>(n2 + n4));
+ BOOST_CHECK_EQUAL(Real(r + static_cast<simple_cast_type>(n4)), static_cast<cast_type>(n2 + n4));
+ r += static_cast<simple_cast_type>(n4);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n2 + n4));
+ // subtraction:
+ r = static_cast<simple_cast_type>(n4);
+ BOOST_CHECK_EQUAL(r - static_cast<simple_cast_type>(n5), static_cast<cast_type>(n4 - n5));
+ BOOST_CHECK_EQUAL(Real(r - static_cast<simple_cast_type>(n5)), static_cast<cast_type>(n4 - n5));
+ r -= static_cast<simple_cast_type>(n5);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4 - n5));
+ // Multiplication:
+ r = static_cast<simple_cast_type>(n2);
+ BOOST_CHECK_EQUAL(r * static_cast<simple_cast_type>(n4), static_cast<cast_type>(n2 * n4));
+ BOOST_CHECK_EQUAL(Real(r * static_cast<simple_cast_type>(n4)), static_cast<cast_type>(n2 * n4));
+ r *= static_cast<simple_cast_type>(n4);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n2 * n4));
+ // Division:
+ r = static_cast<simple_cast_type>(n1);
+ BOOST_CHECK_EQUAL(r / static_cast<simple_cast_type>(n5), static_cast<cast_type>(n1 / n5));
+ BOOST_CHECK_EQUAL(Real(r / static_cast<simple_cast_type>(n5)), static_cast<cast_type>(n1 / n5));
+ r /= static_cast<simple_cast_type>(n5);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n1 / n5));
+ //
+ // special cases for full coverage:
+ //
+ r = static_cast<simple_cast_type>(n5) + Real(n4);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4 + n5));
+ r = static_cast<simple_cast_type>(n4) - Real(n5);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4 - n5));
+ r = static_cast<simple_cast_type>(n4) * Real(n5);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4 * n5));
+ r = static_cast<cast_type>(Num(4) * n4) / Real(4);
+ BOOST_CHECK_EQUAL(r, static_cast<cast_type>(n4));
+
+ typedef boost::mpl::bool_<
+ (!std::numeric_limits<Num>::is_specialized || std::numeric_limits<Num>::is_signed) && (!std::numeric_limits<Real>::is_specialized || std::numeric_limits<Real>::is_signed)>
+ signed_tag;
+
+ test_negative_mixed<Real, Num>(signed_tag());
+
+ n1 = 2;
+ n2 = 3;
+ n3 = 4;
+ Real a(n1), b(n2), c(n3), d;
+ d = a + b * c;
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+ d = static_cast<cast_type>(n1) + b * c;
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+ d = a + static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+ d = a + b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+ d = static_cast<cast_type>(n1) + static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+ d = static_cast<cast_type>(n1) + b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+ a += static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(a, 2 + 3 * 4);
+ a = static_cast<cast_type>(n1);
+ a += b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(a, 2 + 3 * 4);
+ a = static_cast<cast_type>(n1);
+
+ d = b * c + a;
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+ d = b * c + static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+ d = static_cast<cast_type>(n2) * c + a;
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+ d = b * static_cast<cast_type>(n3) + a;
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+ d = static_cast<cast_type>(n2) * c + static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+ d = b * static_cast<cast_type>(n3) + static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, 2 + 3 * 4);
+
+ a = 20;
+ d = a - b * c;
+ BOOST_CHECK_EQUAL(d, 20 - 3 * 4);
+ n1 = 20;
+ d = static_cast<cast_type>(n1) - b * c;
+ BOOST_CHECK_EQUAL(d, 20 - 3 * 4);
+ d = a - static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(d, 20 - 3 * 4);
+ d = a - b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(d, 20 - 3 * 4);
+ d = static_cast<cast_type>(n1) - static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(d, 20 - 3 * 4);
+ d = static_cast<cast_type>(n1) - b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(d, 20 - 3 * 4);
+ a -= static_cast<cast_type>(n2) * c;
+ BOOST_CHECK_EQUAL(a, 20 - 3 * 4);
+ a = static_cast<cast_type>(n1);
+ a -= b * static_cast<cast_type>(n3);
+ BOOST_CHECK_EQUAL(a, 20 - 3 * 4);
+
+ a = 2;
+ d = b * c - a;
+ BOOST_CHECK_EQUAL(d, 3 * 4 - 2);
+ n1 = 2;
+ d = b * c - static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, 3 * 4 - 2);
+ d = static_cast<cast_type>(n2) * c - a;
+ BOOST_CHECK_EQUAL(d, 3 * 4 - 2);
+ d = b * static_cast<cast_type>(n3) - a;
+ BOOST_CHECK_EQUAL(d, 3 * 4 - a);
+ d = static_cast<cast_type>(n2) * c - static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, 3 * 4 - 2);
+ d = b * static_cast<cast_type>(n3) - static_cast<cast_type>(n1);
+ BOOST_CHECK_EQUAL(d, 3 * 4 - 2);
+
+ test_mixed_numeric_limits<Real, Num>(boost::mpl::bool_<std::numeric_limits<Real>::is_specialized>());
+}
+
+template <class Real>
+typename boost::enable_if_c<boost::multiprecision::number_category<Real>::value == boost::multiprecision::number_kind_complex>::type test_members(Real)
+{
+ //
+ // Test sign and zero functions:
+ //
+ Real a = 20;
+ Real b = 30;
+ BOOST_CHECK(!a.is_zero());
+ a = -20;
+ BOOST_CHECK(!a.is_zero());
+ a = 0;
+ BOOST_CHECK(a.is_zero());
+
+ a = 20;
+ b = 30;
+ a.swap(b);
+ BOOST_CHECK_EQUAL(a, 30);
+ BOOST_CHECK_EQUAL(b, 20);
+
+ Real c(2, 3);
+
+ BOOST_CHECK_EQUAL(a.real(), 30);
+ BOOST_CHECK_EQUAL(a.imag(), 0);
+ BOOST_CHECK_EQUAL(c.real(), 2);
+ BOOST_CHECK_EQUAL(c.imag(), 3);
+
+ //
+ // try some more 2-argument constructors:
+ //
+ {
+ Real d(40.5, 2);
+ BOOST_CHECK_EQUAL(d.real(), 40.5);
+ BOOST_CHECK_EQUAL(d.imag(), 2);
+ }
+ {
+ Real d("40.5", "2");
+ BOOST_CHECK_EQUAL(d.real(), 40.5);
+ BOOST_CHECK_EQUAL(d.imag(), 2);
+ }
+ {
+ Real d("40.5", std::string("2"));
+ BOOST_CHECK_EQUAL(d.real(), 40.5);
+ BOOST_CHECK_EQUAL(d.imag(), 2);
+ }
+#ifndef BOOST_NO_CXX17_HDR_STRING_VIEW
+ {
+ std::string sx("40.550"), sy("222");
+ std::string_view vx(sx.c_str(), 4), vy(sy.c_str(), 1);
+ Real d(vx, vy);
+ BOOST_CHECK_EQUAL(d.real(), 40.5);
+ BOOST_CHECK_EQUAL(d.imag(), 2);
+ }
+#endif
+ {
+ typename Real::value_type x(40.5), y(2);
+ Real d(x, y);
+ BOOST_CHECK_EQUAL(d.real(), 40.5);
+ BOOST_CHECK_EQUAL(d.imag(), 2);
+ }
+#ifdef TEST_MPC
+ {
+ typename Real::value_type x(40.5), y(2);
+ Real d(x.backend().data(), y.backend().data());
+ BOOST_CHECK_EQUAL(d.real(), 40.5);
+ BOOST_CHECK_EQUAL(d.imag(), 2);
+ }
+#endif
+ {
+ typename Real::value_type x(40.5);
+ Real d(x, 2);
+ BOOST_CHECK_EQUAL(d.real(), 40.5);
+ BOOST_CHECK_EQUAL(d.imag(), 2);
+ }
+ {
+ typename Real::value_type x(40.5);
+ Real d(2, x);
+ BOOST_CHECK_EQUAL(d.imag(), 40.5);
+ BOOST_CHECK_EQUAL(d.real(), 2);
+ }
+ {
+ typename Real::value_type x(real(a) * real(b) + imag(a) * imag(b)), y(imag(a) * real(b) - real(a) * imag(b));
+ Real d(real(a) * real(b) + imag(a) * imag(b), imag(a) * real(b) - real(a) * imag(b));
+ Real e(x, y);
+ BOOST_CHECK_EQUAL(d, e);
+ }
+ //
+ // real and imag setters:
+ //
+ c.real(4);
+ BOOST_CHECK_EQUAL(real(c), 4);
+ c.imag(-55);
+ BOOST_CHECK_EQUAL(imag(c), -55);
+ typename Real::value_type z(20);
+ c.real(z);
+ BOOST_CHECK_EQUAL(real(c), 20);
+ c.real(21L);
+ BOOST_CHECK_EQUAL(real(c), 21);
+ c.real(22L);
+ BOOST_CHECK_EQUAL(real(c), 22);
+ c.real(23UL);
+ BOOST_CHECK_EQUAL(real(c), 23);
+ c.real(24U);
+ BOOST_CHECK_EQUAL(real(c), 24);
+ c.real(25.0f);
+ BOOST_CHECK_EQUAL(real(c), 25);
+ c.real(26.0);
+ BOOST_CHECK_EQUAL(real(c), 26);
+ c.real(27.0L);
+ BOOST_CHECK_EQUAL(real(c), 27);
+#if defined(BOOST_HAS_LONG_LONG)
+ c.real(28LL);
+ BOOST_CHECK_EQUAL(real(c), 28);
+ c.real(29ULL);
+ BOOST_CHECK_EQUAL(real(c), 29);
+#endif
+ c.imag(z);
+ BOOST_CHECK_EQUAL(imag(c), 20);
+ c.imag(21L);
+ BOOST_CHECK_EQUAL(imag(c), 21);
+ c.imag(22L);
+ BOOST_CHECK_EQUAL(imag(c), 22);
+ c.imag(23UL);
+ BOOST_CHECK_EQUAL(imag(c), 23);
+ c.imag(24U);
+ BOOST_CHECK_EQUAL(imag(c), 24);
+ c.imag(25.0f);
+ BOOST_CHECK_EQUAL(imag(c), 25);
+ c.imag(26.0);
+ BOOST_CHECK_EQUAL(imag(c), 26);
+ c.imag(27.0L);
+ BOOST_CHECK_EQUAL(imag(c), 27);
+#if defined(BOOST_HAS_LONG_LONG)
+ c.imag(28LL);
+ BOOST_CHECK_EQUAL(imag(c), 28);
+ c.imag(29ULL);
+ BOOST_CHECK_EQUAL(imag(c), 29);
+#endif
+
+ c.real(2).imag(3);
+
+ BOOST_CHECK_EQUAL(real(a), 30);
+ BOOST_CHECK_EQUAL(imag(a), 0);
+ BOOST_CHECK_EQUAL(real(c), 2);
+ BOOST_CHECK_EQUAL(imag(c), 3);
+ BOOST_CHECK_EQUAL(real(a + 0), 30);
+ BOOST_CHECK_EQUAL(imag(a + 0), 0);
+ BOOST_CHECK_EQUAL(real(c + 0), 2);
+ BOOST_CHECK_EQUAL(imag(c + 0), 3);
+
+ // string construction:
+ a = Real("2");
+ BOOST_CHECK_EQUAL(real(a), 2);
+ BOOST_CHECK_EQUAL(imag(a), 0);
+ a = Real("(2)");
+ BOOST_CHECK_EQUAL(real(a), 2);
+ BOOST_CHECK_EQUAL(imag(a), 0);
+ a = Real("(,2)");
+ BOOST_CHECK_EQUAL(real(a), 0);
+ BOOST_CHECK_EQUAL(imag(a), 2);
+ a = Real("(2,3)");
+ BOOST_CHECK_EQUAL(real(a), 2);
+ BOOST_CHECK_EQUAL(imag(a), 3);
+
+ typedef typename boost::multiprecision::component_type<Real>::type real_type;
+
+ real_type r(3);
+ real_type tol = std::numeric_limits<real_type>::epsilon() * 30;
+
+ a = r;
+ BOOST_CHECK_EQUAL(real(a), 3);
+ BOOST_CHECK_EQUAL(imag(a), 0);
+
+ a += r;
+ BOOST_CHECK_EQUAL(real(a), 6);
+ BOOST_CHECK_EQUAL(imag(a), 0);
+
+ a *= r;
+ BOOST_CHECK_EQUAL(real(a), 18);
+ BOOST_CHECK_EQUAL(imag(a), 0);
+
+ a = a / r;
+ BOOST_CHECK_EQUAL(real(a), 6);
+ BOOST_CHECK_EQUAL(imag(a), 0);
+ a = a - r;
+ BOOST_CHECK_EQUAL(real(a), 3);
+ BOOST_CHECK_EQUAL(imag(a), 0);
+ a = r + a;
+ BOOST_CHECK_EQUAL(real(a), 6);
+ BOOST_CHECK_EQUAL(imag(a), 0);
+
+ r = abs(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("3.60555127546398929311922126747049594625129657384524621271045305622716694829301044520461908201849071767351418202406"), r, tol);
+ r = arg(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.98279372324732906798571061101466601449687745363162855676142508831798807154979603538970653437281731110816513970201"), r, tol);
+ r = norm(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(13), r, tol);
+ a = conj(c);
+ BOOST_CHECK_EQUAL(real(a), 2);
+ BOOST_CHECK_EQUAL(imag(a), -3);
+ a = proj(c);
+ BOOST_CHECK_EQUAL(real(a), 2);
+ BOOST_CHECK_EQUAL(imag(a), 3);
+ a = polar(real_type(3), real_type(-10));
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-2.517214587229357356776591843472194503559790495399505640507861193146377760598812305202801138281266416782353163216"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.63206333266810944021424298555413184505092903874867167472255203785027162892148027712122702168494964847488147271478"), imag(a), tol);
+ a = polar(real_type(3) + 0, real_type(-10));
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-2.517214587229357356776591843472194503559790495399505640507861193146377760598812305202801138281266416782353163216"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.63206333266810944021424298555413184505092903874867167472255203785027162892148027712122702168494964847488147271478"), imag(a), tol);
+ a = polar(real_type(3), real_type(-10) + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-2.517214587229357356776591843472194503559790495399505640507861193146377760598812305202801138281266416782353163216"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.63206333266810944021424298555413184505092903874867167472255203785027162892148027712122702168494964847488147271478"), imag(a), tol);
+ a = polar(real_type(3) + 0, real_type(-10) + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-2.517214587229357356776591843472194503559790495399505640507861193146377760598812305202801138281266416782353163216"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.63206333266810944021424298555413184505092903874867167472255203785027162892148027712122702168494964847488147271478"), imag(a), tol);
+ a = polar(3, real_type(-10));
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-2.517214587229357356776591843472194503559790495399505640507861193146377760598812305202801138281266416782353163216"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.63206333266810944021424298555413184505092903874867167472255203785027162892148027712122702168494964847488147271478"), imag(a), tol);
+ a = polar(3.0, real_type(-10) + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-2.517214587229357356776591843472194503559790495399505640507861193146377760598812305202801138281266416782353163216"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.63206333266810944021424298555413184505092903874867167472255203785027162892148027712122702168494964847488147271478"), imag(a), tol);
+
+ a = polar(real_type(3));
+ BOOST_CHECK_EQUAL(3, real(a));
+ BOOST_CHECK_EQUAL(0, imag(a));
+ a = polar(real_type(3) + 0);
+ BOOST_CHECK_EQUAL(3, real(a));
+ BOOST_CHECK_EQUAL(0, imag(a));
+
+ r = abs(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("3.60555127546398929311922126747049594625129657384524621271045305622716694829301044520461908201849071767351418202406"), r, tol);
+ r = arg(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.98279372324732906798571061101466601449687745363162855676142508831798807154979603538970653437281731110816513970201"), r, tol);
+ r = norm(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(13), r, tol);
+ a = conj(c + 0);
+ BOOST_CHECK_EQUAL(real(a), 2);
+ BOOST_CHECK_EQUAL(imag(a), -3);
+ a = proj(c + 0);
+ BOOST_CHECK_EQUAL(real(a), 2);
+ BOOST_CHECK_EQUAL(imag(a), 3);
+
+ a = exp(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-7.3151100949011025174865361510507893218698794489446322367845159660828327860599907104337742108443234172141249777"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.0427436562359044141015039404625521939183300604422348975424523449538886779880818796291971422701951470533151185"), imag(a), tol);
+
+ a = log(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.282474678730768368026743720782659302402633972380103558209522755331732333662205089699787331720244744384629096046"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.9827937232473290679857106110146660144968774536316285567614250883179880715497960353897065343728173111081651397020"), imag(a), tol);
+
+ a = log10(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.556971676153418384603252578971164215414864594193534135900595487498776545815097120403823727129449829836488977743"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.426821890855466638944275673291166123449562356934437957244904971730668088711719757900679614536803436424488603794"), imag(a), tol);
+
+ a = exp(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-7.3151100949011025174865361510507893218698794489446322367845159660828327860599907104337742108443234172141249777"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.0427436562359044141015039404625521939183300604422348975424523449538886779880818796291971422701951470533151185"), imag(a), tol);
+
+ a = log(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.282474678730768368026743720782659302402633972380103558209522755331732333662205089699787331720244744384629096046"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.9827937232473290679857106110146660144968774536316285567614250883179880715497960353897065343728173111081651397020"), imag(a), tol);
+
+ a = log10(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.556971676153418384603252578971164215414864594193534135900595487498776545815097120403823727129449829836488977743"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.426821890855466638944275673291166123449562356934437957244904971730668088711719757900679614536803436424488603794"), imag(a), tol);
+
+ // Powers where one arg is an integer.
+ b = Real(5, -2);
+ a = pow(c, b);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-3053.8558566606567369633610140423321260211388217942246293871310470377722279440084474789529228008638668934381183"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("3097.9975862915005132449772136982559285192410496951232473245540634244845290672745578327467396750607773968246915"), imag(a), tol);
+ a = pow(c, 3);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(-46), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(9), imag(a), tol);
+ a = pow(3, c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-8.8931513442797186948734782808862447235385767991868219480917324534839621090167050538805196124711247247992169338"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-1.3826999557878897572499699021550296885662132089951379549068064961882821777067532977546360861176011175070188118"), imag(a), tol * 3);
+ a = pow(c + 0, b);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-3053.8558566606567369633610140423321260211388217942246293871310470377722279440084474789529228008638668934381183"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("3097.9975862915005132449772136982559285192410496951232473245540634244845290672745578327467396750607773968246915"), imag(a), tol);
+ a = pow(c + 0, 3);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(-46), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(9), imag(a), tol);
+ a = pow(3, c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-8.8931513442797186948734782808862447235385767991868219480917324534839621090167050538805196124711247247992169338"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-1.3826999557878897572499699021550296885662132089951379549068064961882821777067532977546360861176011175070188118"), imag(a), tol * 3);
+
+ r = 3;
+ // Powers where one arg is a real_type.
+ a = pow(c, r);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(-46), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(9), imag(a), tol);
+ a = pow(r, c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-8.8931513442797186948734782808862447235385767991868219480917324534839621090167050538805196124711247247992169338"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-1.3826999557878897572499699021550296885662132089951379549068064961882821777067532977546360861176011175070188118"), imag(a), tol * 3);
+ a = pow(c + 0, r);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(-46), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(9), imag(a), tol);
+ a = pow(r, c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-8.8931513442797186948734782808862447235385767991868219480917324534839621090167050538805196124711247247992169338"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-1.3826999557878897572499699021550296885662132089951379549068064961882821777067532977546360861176011175070188118"), imag(a), tol * 3);
+ a = pow(c, r + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(-46), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(9), imag(a), tol);
+ a = pow(r + 0, c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-8.8931513442797186948734782808862447235385767991868219480917324534839621090167050538805196124711247247992169338"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-1.3826999557878897572499699021550296885662132089951379549068064961882821777067532977546360861176011175070188118"), imag(a), tol * 3);
+
+ // Powers where one arg is an float.
+ a = pow(c, 3.0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(-46), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(9), imag(a), tol);
+ a = pow(3.0, c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-8.8931513442797186948734782808862447235385767991868219480917324534839621090167050538805196124711247247992169338"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-1.3826999557878897572499699021550296885662132089951379549068064961882821777067532977546360861176011175070188118"), imag(a), tol * 3);
+ a = pow(c + 0, 3.0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(-46), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type(9), imag(a), tol);
+ a = pow(3.0, c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-8.8931513442797186948734782808862447235385767991868219480917324534839621090167050538805196124711247247992169338"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-1.3826999557878897572499699021550296885662132089951379549068064961882821777067532977546360861176011175070188118"), imag(a), tol * 3);
+
+ a = sqrt(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.674149228035540040448039300849051821674708677883920366727287836003399240343274891876712629708287692163156802065"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.8959774761298381247157337552900434410433241995549314932449006989874470582160955817053273057885402621549320588976"), imag(a), tol);
+ a = sin(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("9.154499146911429573467299544609832559158860568765182977899828142590020335321896403936690014669532606510294425039"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-4.168906959966564350754813058853754843573565604758055889965478710592666260138453299795649308385497563475115931624"), imag(a), tol);
+ a = cos(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-4.1896256909688072301325550196159737286219454041279210357407905058369727912162626993926269783331491034500484583"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-9.1092278937553365979791972627788621213326202389201695649104967309554222940748568716960841549279996556547993373"), imag(a), tol);
+ a = tan(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-0.0037640256415042482927512211303226908396306202016580864328644932511249097100916559688254811519914564480500042311"), real(a), tol * 5);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.0032386273536098014463585978219272598077897241071003399272426939850671219193120708438426543945017427085738411"), imag(a), tol);
+ a = asin(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.5706527843210994007102838796856696501828032450960401365302732598209740064262509342420347149436326252483895113827"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.983387029916535432347076902894039565014248302909345356125267430944752731616095111727103650117987412058949254132"), imag(a), tol);
+ a = acos(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.000143542473797218521037811954081791915781454591512773957199036332934196716853565071982697727425908742684531873"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-1.983387029916535432347076902894039565014248302909345356125267430944752731616095111727103650117987412058949254132"), imag(a), tol);
+ a = atan(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.409921049596575522530619384460420782588207051908724814771070766475530084440199227135813201495737846771570458568"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.2290726829685387662958818029420027678625253049770656169479919704951963414344907622560676377741902308144912055002"), imag(a), tol);
+ a = sqrt(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.674149228035540040448039300849051821674708677883920366727287836003399240343274891876712629708287692163156802065"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.8959774761298381247157337552900434410433241995549314932449006989874470582160955817053273057885402621549320588976"), imag(a), tol);
+ a = sin(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("9.154499146911429573467299544609832559158860568765182977899828142590020335321896403936690014669532606510294425039"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-4.168906959966564350754813058853754843573565604758055889965478710592666260138453299795649308385497563475115931624"), imag(a), tol);
+ a = cos(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-4.1896256909688072301325550196159737286219454041279210357407905058369727912162626993926269783331491034500484583"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-9.1092278937553365979791972627788621213326202389201695649104967309554222940748568716960841549279996556547993373"), imag(a), tol);
+ a = tan(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-0.0037640256415042482927512211303226908396306202016580864328644932511249097100916559688254811519914564480500042311"), real(a), tol * 5);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.0032386273536098014463585978219272598077897241071003399272426939850671219193120708438426543945017427085738411"), imag(a), tol);
+ a = asin(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.5706527843210994007102838796856696501828032450960401365302732598209740064262509342420347149436326252483895113827"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.983387029916535432347076902894039565014248302909345356125267430944752731616095111727103650117987412058949254132"), imag(a), tol);
+ a = acos(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.000143542473797218521037811954081791915781454591512773957199036332934196716853565071982697727425908742684531873"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-1.983387029916535432347076902894039565014248302909345356125267430944752731616095111727103650117987412058949254132"), imag(a), tol);
+ a = atan(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.409921049596575522530619384460420782588207051908724814771070766475530084440199227135813201495737846771570458568"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.2290726829685387662958818029420027678625253049770656169479919704951963414344907622560676377741902308144912055002"), imag(a), tol);
+
+ a = sinh(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-3.5905645899857799520125654477948167931949136757293015099986213974178826801534614215227593814301490087307920223"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.53092108624851980526704009066067655967277345095149103008706855371803528753067068552935673000832252607835087747"), imag(a), tol);
+ a = cosh(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-3.7245455049153225654739707032559725286749657732153307267858945686649501059065292889110148294141744084833329553"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.51182256998738460883446384980187563424555660949074386745538379123585339045741119409984041226187262097496424111"), imag(a), tol);
+ a = tanh(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.965385879022133124278480269394560685879729650005757773636908240066639772853967550095754361348005358178253777920"), real(a), tol * 5);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-0.00988437503832249372031403430350121097961813353467039031861010606115560355679254344335582852193041894874685555114"), imag(a), tol);
+ a = asinh(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.968637925793096291788665095245498189520731012682010573842811017352748255492485345887875752070076230641308014923"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.9646585044076027920454110594995323555197773725073316527132580297155508786089335572049608301897631767195194427315"), imag(a), tol);
+ a = acosh(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.983387029916535432347076902894039565014248302909345356125267430944752731616095111727103650117987412058949254132"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.000143542473797218521037811954081791915781454591512773957199036332934196716853565071982697727425908742684531873"), imag(a), tol);
+ a = atanh(c);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.1469466662255297520474327851547159424423449403442452953891851939502023996823900422792744078835711416939934387775"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.338972522294493561124193575909144241084316172544492778582005751793809271060233646663717270678614587712809117131"), imag(a), tol);
+ a = sinh(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-3.5905645899857799520125654477948167931949136757293015099986213974178826801534614215227593814301490087307920223"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.53092108624851980526704009066067655967277345095149103008706855371803528753067068552935673000832252607835087747"), imag(a), tol);
+ a = cosh(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-3.7245455049153225654739707032559725286749657732153307267858945686649501059065292889110148294141744084833329553"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.51182256998738460883446384980187563424555660949074386745538379123585339045741119409984041226187262097496424111"), imag(a), tol);
+ a = tanh(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.965385879022133124278480269394560685879729650005757773636908240066639772853967550095754361348005358178253777920"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("-0.00988437503832249372031403430350121097961813353467039031861010606115560355679254344335582852193041894874685555114"), imag(a), tol);
+ a = asinh(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.968637925793096291788665095245498189520731012682010573842811017352748255492485345887875752070076230641308014923"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.9646585044076027920454110594995323555197773725073316527132580297155508786089335572049608301897631767195194427315"), imag(a), tol);
+ a = acosh(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.983387029916535432347076902894039565014248302909345356125267430944752731616095111727103650117987412058949254132"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.000143542473797218521037811954081791915781454591512773957199036332934196716853565071982697727425908742684531873"), imag(a), tol);
+ a = atanh(c + 0);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("0.1469466662255297520474327851547159424423449403442452953891851939502023996823900422792744078835711416939934387775"), real(a), tol);
+ BOOST_CHECK_CLOSE_FRACTION(real_type("1.338972522294493561124193575909144241084316172544492778582005751793809271060233646663717270678614587712809117131"), imag(a), tol);
+}
+
+template <class Real>
+typename boost::enable_if_c<boost::multiprecision::number_category<Real>::value != boost::multiprecision::number_kind_complex>::type test_members(Real)
+{
+ //
+ // Test sign and zero functions:
+ //
+ Real a = 20;
+ Real b = 30;
+ BOOST_CHECK(a.sign() > 0);
+ BOOST_CHECK(!a.is_zero());
+ if (std::numeric_limits<Real>::is_signed)
+ {
+ a = -20;
+ BOOST_CHECK(a.sign() < 0);
+ BOOST_CHECK(!a.is_zero());
+ }
+ a = 0;
+ BOOST_CHECK_EQUAL(a.sign(), 0);
+ BOOST_CHECK(a.is_zero());
+
+ a = 20;
+ b = 30;
+ a.swap(b);
+ BOOST_CHECK_EQUAL(a, 30);
+ BOOST_CHECK_EQUAL(b, 20);
+ //
+ // Test complex number functions which are also overloaded for scalar type:
+ //
+ BOOST_CHECK_EQUAL(real(a), a);
+ BOOST_CHECK_EQUAL(imag(a), 0);
+ BOOST_CHECK_EQUAL(real(a + 0), a);
+ BOOST_CHECK_EQUAL(imag(a + 2), 0);
+ BOOST_CHECK_EQUAL(norm(a), a * a);
+ BOOST_CHECK_EQUAL(norm(a * 1), a * a);
+ BOOST_CHECK_EQUAL(conj(a), a);
+ BOOST_CHECK_EQUAL(conj(a * 1), a);
+ BOOST_CHECK_EQUAL(proj(a), a);
+ BOOST_CHECK_EQUAL(proj(a * 1), a);
+ BOOST_CHECK_EQUAL(a.real(), a);
+ BOOST_CHECK_EQUAL(a.imag(), 0);
+ a.real(55);
+ BOOST_CHECK_EQUAL(a, 55);
+}
+
+template <class Real>
+void test_members(boost::rational<Real>)
+{
+}
+
+template <class Real>
+void test_signed_ops(const boost::mpl::true_&)
+{
+ Real a(8);
+ Real b(64);
+ Real c(500);
+ Real d(1024);
+ Real ac;
+ BOOST_CHECK_EQUAL(-a, -8);
+ ac = a;
+ ac = ac - b;
+ BOOST_CHECK_EQUAL(ac, 8 - 64);
+ ac = a;
+ ac -= a + b;
+ BOOST_CHECK_EQUAL(ac, -64);
+ ac = a;
+ ac -= b - a;
+ BOOST_CHECK_EQUAL(ac, 16 - 64);
+ ac = -a;
+ BOOST_CHECK_EQUAL(ac, -8);
+ ac = a;
+ ac -= -a;
+ BOOST_CHECK_EQUAL(ac, 16);
+ ac = a;
+ ac += -a;
+ BOOST_CHECK_EQUAL(ac, 0);
+ ac = b;
+ ac /= -a;
+ BOOST_CHECK_EQUAL(ac, -8);
+ ac = a;
+ ac *= -a;
+ BOOST_CHECK_EQUAL(ac, -64);
+ ac = a + -b;
+ BOOST_CHECK_EQUAL(ac, 8 - 64);
+ ac = -a + b;
+ BOOST_CHECK_EQUAL(ac, -8 + 64);
+ ac = -a + -b;
+ BOOST_CHECK_EQUAL(ac, -72);
+ ac = a + -+-b; // lots of unary operators!!
+ BOOST_CHECK_EQUAL(ac, 72);
+ test_conditional(Real(-a), -a);
+}
+template <class Real>
+void test_signed_ops(const boost::mpl::false_&)
+{
+}
+
+template <class Real>
+void test_basic_conditionals(Real a, Real b)
+{
+ if (a)
+ {
+ BOOST_ERROR("Unexpected non-zero result");
+ }
+ if (!a)
+ {
+ }
+ else
+ {
+ BOOST_ERROR("Unexpected zero result");
+ }
+ b = 2;
+ if (!b)
+ {
+ BOOST_ERROR("Unexpected zero result");
+ }
+ if (b)
+ {
+ }
+ else
+ {
+ BOOST_ERROR("Unexpected non-zero result");
+ }
+ if (a && b)
+ {
+ BOOST_ERROR("Unexpected zero result");
+ }
+ if (!(a || b))
+ {
+ BOOST_ERROR("Unexpected zero result");
+ }
+ if (a + b)
+ {
+ }
+ else
+ {
+ BOOST_ERROR("Unexpected zero result");
+ }
+ if (b - 2)
+ {
+ BOOST_ERROR("Unexpected non-zero result");
+ }
+}
+
+template <class T>
+typename boost::enable_if_c<boost::multiprecision::number_category<T>::value == boost::multiprecision::number_kind_complex>::type
+test_relationals(T a, T b)
+{
+ BOOST_CHECK_EQUAL((a == b), false);
+ BOOST_CHECK_EQUAL((a != b), true);
+
+ BOOST_CHECK_EQUAL((a + b == b), false);
+ BOOST_CHECK_EQUAL((a + b != b), true);
+
+ BOOST_CHECK_EQUAL((a == b + a), false);
+ BOOST_CHECK_EQUAL((a != b + a), true);
+
+ BOOST_CHECK_EQUAL((a + b == b + a), true);
+ BOOST_CHECK_EQUAL((a + b != b + a), false);
+
+ BOOST_CHECK_EQUAL((8 == b + a), false);
+ BOOST_CHECK_EQUAL((8 != b + a), true);
+ BOOST_CHECK_EQUAL((800 == b + a), false);
+ BOOST_CHECK_EQUAL((800 != b + a), true);
+ BOOST_CHECK_EQUAL((72 == b + a), true);
+ BOOST_CHECK_EQUAL((72 != b + a), false);
+
+ BOOST_CHECK_EQUAL((b + a == 8), false);
+ BOOST_CHECK_EQUAL((b + a != 8), true);
+ BOOST_CHECK_EQUAL((b + a == 800), false);
+ BOOST_CHECK_EQUAL((b + a != 800), true);
+ BOOST_CHECK_EQUAL((b + a == 72), true);
+ BOOST_CHECK_EQUAL((b + a != 72), false);
+}
+
+template <class T>
+typename boost::disable_if_c<boost::multiprecision::number_category<T>::value == boost::multiprecision::number_kind_complex>::type
+test_relationals(T a, T b)
+{
+ BOOST_CHECK_EQUAL((a == b), false);
+ BOOST_CHECK_EQUAL((a != b), true);
+ BOOST_CHECK_EQUAL((a <= b), true);
+ BOOST_CHECK_EQUAL((a < b), true);
+ BOOST_CHECK_EQUAL((a >= b), false);
+ BOOST_CHECK_EQUAL((a > b), false);
+
+ BOOST_CHECK_EQUAL((a + b == b), false);
+ BOOST_CHECK_EQUAL((a + b != b), true);
+ BOOST_CHECK_EQUAL((a + b >= b), true);
+ BOOST_CHECK_EQUAL((a + b > b), true);
+ BOOST_CHECK_EQUAL((a + b <= b), false);
+ BOOST_CHECK_EQUAL((a + b < b), false);
+
+ BOOST_CHECK_EQUAL((a == b + a), false);
+ BOOST_CHECK_EQUAL((a != b + a), true);
+ BOOST_CHECK_EQUAL((a <= b + a), true);
+ BOOST_CHECK_EQUAL((a < b + a), true);
+ BOOST_CHECK_EQUAL((a >= b + a), false);
+ BOOST_CHECK_EQUAL((a > b + a), false);
+
+ BOOST_CHECK_EQUAL((a + b == b + a), true);
+ BOOST_CHECK_EQUAL((a + b != b + a), false);
+ BOOST_CHECK_EQUAL((a + b <= b + a), true);
+ BOOST_CHECK_EQUAL((a + b < b + a), false);
+ BOOST_CHECK_EQUAL((a + b >= b + a), true);
+ BOOST_CHECK_EQUAL((a + b > b + a), false);
+
+ BOOST_CHECK_EQUAL((8 == b + a), false);
+ BOOST_CHECK_EQUAL((8 != b + a), true);
+ BOOST_CHECK_EQUAL((8 <= b + a), true);
+ BOOST_CHECK_EQUAL((8 < b + a), true);
+ BOOST_CHECK_EQUAL((8 >= b + a), false);
+ BOOST_CHECK_EQUAL((8 > b + a), false);
+ BOOST_CHECK_EQUAL((800 == b + a), false);
+ BOOST_CHECK_EQUAL((800 != b + a), true);
+ BOOST_CHECK_EQUAL((800 >= b + a), true);
+ BOOST_CHECK_EQUAL((800 > b + a), true);
+ BOOST_CHECK_EQUAL((800 <= b + a), false);
+ BOOST_CHECK_EQUAL((800 < b + a), false);
+ BOOST_CHECK_EQUAL((72 == b + a), true);
+ BOOST_CHECK_EQUAL((72 != b + a), false);
+ BOOST_CHECK_EQUAL((72 <= b + a), true);
+ BOOST_CHECK_EQUAL((72 < b + a), false);
+ BOOST_CHECK_EQUAL((72 >= b + a), true);
+ BOOST_CHECK_EQUAL((72 > b + a), false);
+
+ BOOST_CHECK_EQUAL((b + a == 8), false);
+ BOOST_CHECK_EQUAL((b + a != 8), true);
+ BOOST_CHECK_EQUAL((b + a >= 8), true);
+ BOOST_CHECK_EQUAL((b + a > 8), true);
+ BOOST_CHECK_EQUAL((b + a <= 8), false);
+ BOOST_CHECK_EQUAL((b + a < 8), false);
+ BOOST_CHECK_EQUAL((b + a == 800), false);
+ BOOST_CHECK_EQUAL((b + a != 800), true);
+ BOOST_CHECK_EQUAL((b + a <= 800), true);
+ BOOST_CHECK_EQUAL((b + a < 800), true);
+ BOOST_CHECK_EQUAL((b + a >= 800), false);
+ BOOST_CHECK_EQUAL((b + a > 800), false);
+ BOOST_CHECK_EQUAL((b + a == 72), true);
+ BOOST_CHECK_EQUAL((b + a != 72), false);
+ BOOST_CHECK_EQUAL((b + a >= 72), true);
+ BOOST_CHECK_EQUAL((b + a > 72), false);
+ BOOST_CHECK_EQUAL((b + a <= 72), true);
+ BOOST_CHECK_EQUAL((b + a < 72), false);
+
+ T c;
+ //
+ // min and max overloads:
+ //
+#if !defined(min) && !defined(max)
+// using std::max;
+// using std::min;
+// This works, but still causes complaints from inspect.exe, so use brackets to prevent macrosubstitution,
+// and to explicitly specify type T seems necessary, for reasons unclear.
+ a = 2;
+ b = 5;
+ c = 6;
+ BOOST_CHECK_EQUAL( (std::min<T>)(a, b), a);
+ BOOST_CHECK_EQUAL( (std::min<T>)(b, a), a);
+ BOOST_CHECK_EQUAL( (std::max<T>)(a, b), b);
+ BOOST_CHECK_EQUAL( (std::max<T>)(b, a), b);
+ BOOST_CHECK_EQUAL( (std::min<T>)(a, b + c), a);
+ BOOST_CHECK_EQUAL( (std::min<T>)(b + c, a), a);
+ BOOST_CHECK_EQUAL( (std::min<T>)(a, c - b), 1);
+ BOOST_CHECK_EQUAL( (std::min<T>)(c - b, a), 1);
+ BOOST_CHECK_EQUAL( (std::max<T>)(a, b + c), 11);
+ BOOST_CHECK_EQUAL( (std::max<T>)(b + c, a), 11);
+ BOOST_CHECK_EQUAL( (std::max<T>)(a, c - b), a);
+ BOOST_CHECK_EQUAL( (std::max<T>)(c - b, a), a);
+ BOOST_CHECK_EQUAL( (std::min<T>)(a + b, b + c), 7);
+ BOOST_CHECK_EQUAL( (std::min<T>)(b + c, a + b), 7);
+ BOOST_CHECK_EQUAL( (std::max<T>)(a + b, b + c), 11);
+ BOOST_CHECK_EQUAL( (std::max<T>)(b + c, a + b), 11);
+ BOOST_CHECK_EQUAL( (std::min<T>)(a + b, c - a), 4);
+ BOOST_CHECK_EQUAL( (std::min<T>)(c - a, a + b), 4);
+ BOOST_CHECK_EQUAL( (std::max<T>)(a + b, c - a), 7);
+ BOOST_CHECK_EQUAL( (std::max<T>)(c - a, a + b), 7);
+
+ long l1(2), l2(3), l3;
+ l3 = (std::min)(l1, l2) + (std::max)(l1, l2) + (std::max<long>)(l1, l2) + (std::min<long>)(l1, l2);
+ BOOST_CHECK_EQUAL(l3, 10);
+
+#endif
+}
+
+template <class T>
+const T& self(const T& a) { return a; }
+
+template <class Real>
+void test()
+{
+#if !defined(NO_MIXED_OPS) && !defined(SLOW_COMPILER)
+ boost::multiprecision::is_number<Real> tag;
+ test_mixed<Real, unsigned char>(tag);
+ test_mixed<Real, signed char>(tag);
+ test_mixed<Real, char>(tag);
+ test_mixed<Real, short>(tag);
+ test_mixed<Real, unsigned short>(tag);
+ test_mixed<Real, int>(tag);
+ test_mixed<Real, unsigned int>(tag);
+ test_mixed<Real, long>(tag);
+ test_mixed<Real, unsigned long>(tag);
+#ifdef BOOST_HAS_LONG_LONG
+ test_mixed<Real, long long>(tag);
+ test_mixed<Real, unsigned long long>(tag);
+#endif
+ test_mixed<Real, float>(tag);
+ test_mixed<Real, double>(tag);
+ test_mixed<Real, long double>(tag);
+
+ typedef typename related_type<Real>::type related_type;
+ boost::mpl::bool_<boost::multiprecision::is_number<Real>::value && !boost::is_same<related_type, Real>::value> tag2;
+
+ test_mixed<Real, related_type>(tag2);
+
+ boost::mpl::bool_<boost::multiprecision::is_number<Real>::value && (boost::multiprecision::number_category<Real>::value == boost::multiprecision::number_kind_complex)> complex_tag;
+ test_mixed<Real, std::complex<float> >(complex_tag);
+ test_mixed<Real, std::complex<double> >(complex_tag);
+ test_mixed<Real, std::complex<long double> >(complex_tag);
+
+#endif
+#ifndef MIXED_OPS_ONLY
+ //
+ // Integer only functions:
+ //
+ test_integer_ops<Real>(typename boost::multiprecision::number_category<Real>::type());
+ //
+ // Real number only functions:
+ //
+ test_float_ops<Real>(typename boost::multiprecision::number_category<Real>::type());
+ //
+ // Test basic arithmetic:
+ //
+ Real a(8);
+ Real b(64);
+ Real c(500);
+ Real d(1024);
+ BOOST_CHECK_EQUAL(a + b, 72);
+ a += b;
+ BOOST_CHECK_EQUAL(a, 72);
+ BOOST_CHECK_EQUAL(a - b, 8);
+ a -= b;
+ BOOST_CHECK_EQUAL(a, 8);
+ BOOST_CHECK_EQUAL(a * b, 8 * 64L);
+ a *= b;
+ BOOST_CHECK_EQUAL(a, 8 * 64L);
+ BOOST_CHECK_EQUAL(a / b, 8);
+ a /= b;
+ BOOST_CHECK_EQUAL(a, 8);
+ Real ac(a);
+ BOOST_CHECK_EQUAL(ac, a);
+ ac = a * c;
+ BOOST_CHECK_EQUAL(ac, 8 * 500L);
+ ac = 8 * 500L;
+ ac = ac + b + c;
+ BOOST_CHECK_EQUAL(ac, 8 * 500L + 64 + 500);
+ ac = a;
+ ac = b + c + ac;
+ BOOST_CHECK_EQUAL(ac, 8 + 64 + 500);
+ ac = ac - b + c;
+ BOOST_CHECK_EQUAL(ac, 8 + 64 + 500 - 64 + 500);
+ ac = a;
+ ac = b + c - ac;
+ BOOST_CHECK_EQUAL(ac, -8 + 64 + 500);
+ ac = a;
+ ac = ac * b;
+ BOOST_CHECK_EQUAL(ac, 8 * 64);
+ ac = a;
+ ac *= b * ac;
+ BOOST_CHECK_EQUAL(ac, 8 * 8 * 64);
+ ac = b;
+ ac = ac / a;
+ BOOST_CHECK_EQUAL(ac, 64 / 8);
+ ac = b;
+ ac /= ac / a;
+ BOOST_CHECK_EQUAL(ac, 64 / (64 / 8));
+ ac = a;
+ ac = b + ac * a;
+ BOOST_CHECK_EQUAL(ac, 64 * 2);
+ ac = a;
+ ac = b - ac * a;
+ BOOST_CHECK_EQUAL(ac, 0);
+ ac = a;
+ ac = b * (ac + a);
+ BOOST_CHECK_EQUAL(ac, 64 * (16));
+ ac = a;
+ ac = b / (ac * 1);
+ BOOST_CHECK_EQUAL(ac, 64 / 8);
+ ac = a;
+ ac = ac + b;
+ BOOST_CHECK_EQUAL(ac, 8 + 64);
+ ac = a;
+ ac = a + ac;
+ BOOST_CHECK_EQUAL(ac, 16);
+ ac = a;
+ ac = a - ac;
+ BOOST_CHECK_EQUAL(ac, 0);
+ ac = a;
+ ac += a + b;
+ BOOST_CHECK_EQUAL(ac, 80);
+ ac = a;
+ ac += b + a;
+ BOOST_CHECK_EQUAL(ac, 80);
+ ac = +a;
+ BOOST_CHECK_EQUAL(ac, 8);
+ ac = 8;
+ ac = a * ac;
+ BOOST_CHECK_EQUAL(ac, 8 * 8);
+ ac = a;
+ ac = a;
+ ac += +a;
+ BOOST_CHECK_EQUAL(ac, 16);
+ ac = a;
+ ac += b - a;
+ BOOST_CHECK_EQUAL(ac, 8 + 64 - 8);
+ ac = a;
+ ac += b * c;
+ BOOST_CHECK_EQUAL(ac, 8 + 64 * 500);
+ ac = a;
+ ac = a;
+ ac -= +a;
+ BOOST_CHECK_EQUAL(ac, 0);
+ ac = a;
+ if (std::numeric_limits<Real>::is_signed || is_twos_complement_integer<Real>::value)
+ {
+ ac = a;
+ ac -= c - b;
+ BOOST_CHECK_EQUAL(ac, 8 - (500 - 64));
+ ac = a;
+ ac -= b * c;
+ BOOST_CHECK_EQUAL(ac, 8 - 500 * 64);
+ }
+ ac = a;
+ ac += ac * b;
+ BOOST_CHECK_EQUAL(ac, 8 + 8 * 64);
+ if (std::numeric_limits<Real>::is_signed || is_twos_complement_integer<Real>::value)
+ {
+ ac = a;
+ ac -= ac * b;
+ BOOST_CHECK_EQUAL(ac, 8 - 8 * 64);
+ }
+ ac = a * 8;
+ ac *= +a;
+ BOOST_CHECK_EQUAL(ac, 64 * 8);
+ ac = a;
+ ac *= b * c;
+ BOOST_CHECK_EQUAL(ac, 8 * 64 * 500);
+ ac = a;
+ ac *= b / a;
+ BOOST_CHECK_EQUAL(ac, 8 * 64 / 8);
+ ac = a;
+ ac *= b + c;
+ BOOST_CHECK_EQUAL(ac, 8 * (64 + 500));
+ ac = b;
+ ac /= +a;
+ BOOST_CHECK_EQUAL(ac, 8);
+ ac = b;
+ ac /= b / a;
+ BOOST_CHECK_EQUAL(ac, 64 / (64 / 8));
+ ac = b;
+ ac /= a + Real(0);
+ BOOST_CHECK_EQUAL(ac, 8);
+ //
+ // simple tests with immediate values, these calls can be optimised in many backends:
+ //
+ ac = a + b;
+ BOOST_CHECK_EQUAL(ac, 72);
+ ac = a + +b;
+ BOOST_CHECK_EQUAL(ac, 72);
+ ac = +a + b;
+ BOOST_CHECK_EQUAL(ac, 72);
+ ac = +a + +b;
+ BOOST_CHECK_EQUAL(ac, 72);
+ ac = a;
+ ac = b / ac;
+ BOOST_CHECK_EQUAL(ac, b / a);
+ //
+ // Comparisons:
+ //
+ test_relationals(a, b);
+ test_members(a);
+ //
+ // Use in Boolean context:
+ //
+ a = 0;
+ b = 2;
+ test_basic_conditionals(a, b);
+ //
+ // Test iostreams:
+ //
+ std::stringstream ss;
+ a = 20;
+ b = 2;
+ ss << a;
+ ss >> c;
+ BOOST_CHECK_EQUAL(a, c);
+ ss.clear();
+ ss << a + b;
+ ss >> c;
+ BOOST_CHECK_EQUAL(c, 22);
+ BOOST_CHECK_EQUAL(c, a + b);
+ //
+ // More cases for complete code coverage:
+ //
+ a = 20;
+ b = 30;
+ swap(a, b);
+ BOOST_CHECK_EQUAL(a, 30);
+ BOOST_CHECK_EQUAL(b, 20);
+ a = 20;
+ b = 30;
+ std::swap(a, b);
+ BOOST_CHECK_EQUAL(a, 30);
+ BOOST_CHECK_EQUAL(b, 20);
+ a = 20;
+ b = 30;
+ a = a + b * 2;
+ BOOST_CHECK_EQUAL(a, 20 + 30 * 2);
+ a = 100;
+ a = a - b * 2;
+ BOOST_CHECK_EQUAL(a, 100 - 30 * 2);
+ a = 20;
+ a = a * (b + 2);
+ BOOST_CHECK_EQUAL(a, 20 * (32));
+ a = 20;
+ a = (b + 2) * a;
+ BOOST_CHECK_EQUAL(a, 20 * (32));
+ a = 90;
+ b = 2;
+ a = a / (b + 0);
+ BOOST_CHECK_EQUAL(a, 45);
+ a = 20;
+ b = 30;
+ c = (a * b) + 22;
+ BOOST_CHECK_EQUAL(c, 20 * 30 + 22);
+ c = 22 + (a * b);
+ BOOST_CHECK_EQUAL(c, 20 * 30 + 22);
+ c = 10;
+ ac = a + b * c;
+ BOOST_CHECK_EQUAL(ac, 20 + 30 * 10);
+ ac = b * c + a;
+ BOOST_CHECK_EQUAL(ac, 20 + 30 * 10);
+ a = a + b * c;
+ BOOST_CHECK_EQUAL(a, 20 + 30 * 10);
+ a = 20;
+ b = a + b * c;
+ BOOST_CHECK_EQUAL(b, 20 + 30 * 10);
+ b = 30;
+ c = a + b * c;
+ BOOST_CHECK_EQUAL(c, 20 + 30 * 10);
+ c = 10;
+ c = a + b / c;
+ BOOST_CHECK_EQUAL(c, 20 + 30 / 10);
+
+ //
+ // Test conditionals:
+ //
+ a = 20;
+ test_conditional(a, +a);
+ test_conditional(a, (a + 0));
+
+ test_signed_ops<Real>(boost::mpl::bool_<std::numeric_limits<Real>::is_signed>());
+ //
+ // Test hashing:
+ //
+ boost::hash<Real> hasher;
+ std::size_t s = hasher(a);
+ BOOST_CHECK_NE(s, 0);
+#ifndef BOOST_NO_CXX11_HDR_FUNCTIONAL
+ std::hash<Real> hasher2;
+ s = hasher2(a);
+ BOOST_CHECK_NE(s, 0);
+#endif
+
+ //
+ // Test move:
+ //
+#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
+ Real m(static_cast<Real&&>(a));
+ BOOST_CHECK_EQUAL(m, 20);
+ // Move from already moved from object:
+ Real m2(static_cast<Real&&>(a));
+ // assign from moved from object
+ // (may result in "a" being left in valid state as implementation artifact):
+ c = static_cast<Real&&>(a);
+ // assignment to moved-from objects:
+ c = static_cast<Real&&>(m);
+ BOOST_CHECK_EQUAL(c, 20);
+ m2 = c;
+ BOOST_CHECK_EQUAL(c, 20);
+ // Destructor of "a" checks destruction of moved-from-object...
+ Real m3(static_cast<Real&&>(a));
+#endif
+#ifndef BOOST_MP_NOT_TESTING_NUMBER
+ //
+ // string and string_view:
+ //
+ {
+ std::string s1("2");
+ Real x(s1);
+ BOOST_CHECK_EQUAL(x, 2);
+ s1 = "3";
+ x.assign(s1);
+ BOOST_CHECK_EQUAL(x, 3);
+#ifndef BOOST_NO_CXX17_HDR_STRING_VIEW
+ s1 = "20";
+ std::string_view v(s1.c_str(), 1);
+ Real y(v);
+ BOOST_CHECK_EQUAL(y, 2);
+ std::string_view v2(s1.c_str(), 2);
+ y.assign(v2);
+ BOOST_CHECK_EQUAL(y, 20);
+#endif
+ }
+#endif
+ //
+ // Bug cases, self assignment first:
+ //
+ a = 20;
+ a = self(a);
+ BOOST_CHECK_EQUAL(a, 20);
+
+ a = 2;
+ a = a * a * a;
+ BOOST_CHECK_EQUAL(a, 8);
+ a = 2;
+ a = a + a + a;
+ BOOST_CHECK_EQUAL(a, 6);
+ a = 2;
+ a = a - a + a;
+ BOOST_CHECK_EQUAL(a, 2);
+ a = 2;
+ a = a + a - a;
+ BOOST_CHECK_EQUAL(a, 2);
+ a = 2;
+ a = a * a - a;
+ BOOST_CHECK_EQUAL(a, 2);
+ a = 2;
+ a = a + a * a;
+ BOOST_CHECK_EQUAL(a, 6);
+ a = 2;
+ a = (a + a) * a;
+ BOOST_CHECK_EQUAL(a, 8);
+#endif
+}