summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/compaction_picker_universal.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/rocksdb/db/compaction_picker_universal.cc
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/rocksdb/db/compaction_picker_universal.cc')
-rw-r--r--src/rocksdb/db/compaction_picker_universal.cc907
1 files changed, 907 insertions, 0 deletions
diff --git a/src/rocksdb/db/compaction_picker_universal.cc b/src/rocksdb/db/compaction_picker_universal.cc
new file mode 100644
index 00000000..92911785
--- /dev/null
+++ b/src/rocksdb/db/compaction_picker_universal.cc
@@ -0,0 +1,907 @@
+// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
+// This source code is licensed under both the GPLv2 (found in the
+// COPYING file in the root directory) and Apache 2.0 License
+// (found in the LICENSE.Apache file in the root directory).
+//
+// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file. See the AUTHORS file for names of contributors.
+
+#include "db/compaction_picker_universal.h"
+#ifndef ROCKSDB_LITE
+
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS
+#endif
+
+#include <inttypes.h>
+#include <limits>
+#include <queue>
+#include <string>
+#include <utility>
+#include "db/column_family.h"
+#include "monitoring/statistics.h"
+#include "util/filename.h"
+#include "util/log_buffer.h"
+#include "util/random.h"
+#include "util/string_util.h"
+#include "util/sync_point.h"
+
+namespace rocksdb {
+namespace {
+// Used in universal compaction when trivial move is enabled.
+// This structure is used for the construction of min heap
+// that contains the file meta data, the level of the file
+// and the index of the file in that level
+
+struct InputFileInfo {
+ InputFileInfo() : f(nullptr), level(0), index(0) {}
+
+ FileMetaData* f;
+ size_t level;
+ size_t index;
+};
+
+// Used in universal compaction when trivial move is enabled.
+// This comparator is used for the construction of min heap
+// based on the smallest key of the file.
+struct SmallestKeyHeapComparator {
+ explicit SmallestKeyHeapComparator(const Comparator* ucmp) { ucmp_ = ucmp; }
+
+ bool operator()(InputFileInfo i1, InputFileInfo i2) const {
+ return (ucmp_->Compare(i1.f->smallest.user_key(),
+ i2.f->smallest.user_key()) > 0);
+ }
+
+ private:
+ const Comparator* ucmp_;
+};
+
+typedef std::priority_queue<InputFileInfo, std::vector<InputFileInfo>,
+ SmallestKeyHeapComparator>
+ SmallestKeyHeap;
+
+// This function creates the heap that is used to find if the files are
+// overlapping during universal compaction when the allow_trivial_move
+// is set.
+SmallestKeyHeap create_level_heap(Compaction* c, const Comparator* ucmp) {
+ SmallestKeyHeap smallest_key_priority_q =
+ SmallestKeyHeap(SmallestKeyHeapComparator(ucmp));
+
+ InputFileInfo input_file;
+
+ for (size_t l = 0; l < c->num_input_levels(); l++) {
+ if (c->num_input_files(l) != 0) {
+ if (l == 0 && c->start_level() == 0) {
+ for (size_t i = 0; i < c->num_input_files(0); i++) {
+ input_file.f = c->input(0, i);
+ input_file.level = 0;
+ input_file.index = i;
+ smallest_key_priority_q.push(std::move(input_file));
+ }
+ } else {
+ input_file.f = c->input(l, 0);
+ input_file.level = l;
+ input_file.index = 0;
+ smallest_key_priority_q.push(std::move(input_file));
+ }
+ }
+ }
+ return smallest_key_priority_q;
+}
+
+#ifndef NDEBUG
+// smallest_seqno and largest_seqno are set iff. `files` is not empty.
+void GetSmallestLargestSeqno(const std::vector<FileMetaData*>& files,
+ SequenceNumber* smallest_seqno,
+ SequenceNumber* largest_seqno) {
+ bool is_first = true;
+ for (FileMetaData* f : files) {
+ assert(f->fd.smallest_seqno <= f->fd.largest_seqno);
+ if (is_first) {
+ is_first = false;
+ *smallest_seqno = f->fd.smallest_seqno;
+ *largest_seqno = f->fd.largest_seqno;
+ } else {
+ if (f->fd.smallest_seqno < *smallest_seqno) {
+ *smallest_seqno = f->fd.smallest_seqno;
+ }
+ if (f->fd.largest_seqno > *largest_seqno) {
+ *largest_seqno = f->fd.largest_seqno;
+ }
+ }
+ }
+}
+#endif
+} // namespace
+
+// Algorithm that checks to see if there are any overlapping
+// files in the input
+bool UniversalCompactionPicker::IsInputFilesNonOverlapping(Compaction* c) {
+ auto comparator = icmp_->user_comparator();
+ int first_iter = 1;
+
+ InputFileInfo prev, curr, next;
+
+ SmallestKeyHeap smallest_key_priority_q =
+ create_level_heap(c, icmp_->user_comparator());
+
+ while (!smallest_key_priority_q.empty()) {
+ curr = smallest_key_priority_q.top();
+ smallest_key_priority_q.pop();
+
+ if (first_iter) {
+ prev = curr;
+ first_iter = 0;
+ } else {
+ if (comparator->Compare(prev.f->largest.user_key(),
+ curr.f->smallest.user_key()) >= 0) {
+ // found overlapping files, return false
+ return false;
+ }
+ assert(comparator->Compare(curr.f->largest.user_key(),
+ prev.f->largest.user_key()) > 0);
+ prev = curr;
+ }
+
+ next.f = nullptr;
+
+ if (curr.level != 0 && curr.index < c->num_input_files(curr.level) - 1) {
+ next.f = c->input(curr.level, curr.index + 1);
+ next.level = curr.level;
+ next.index = curr.index + 1;
+ }
+
+ if (next.f) {
+ smallest_key_priority_q.push(std::move(next));
+ }
+ }
+ return true;
+}
+
+bool UniversalCompactionPicker::NeedsCompaction(
+ const VersionStorageInfo* vstorage) const {
+ const int kLevel0 = 0;
+ if (vstorage->CompactionScore(kLevel0) >= 1) {
+ return true;
+ }
+ if (!vstorage->FilesMarkedForCompaction().empty()) {
+ return true;
+ }
+ return false;
+}
+
+void UniversalCompactionPicker::SortedRun::Dump(char* out_buf,
+ size_t out_buf_size,
+ bool print_path) const {
+ if (level == 0) {
+ assert(file != nullptr);
+ if (file->fd.GetPathId() == 0 || !print_path) {
+ snprintf(out_buf, out_buf_size, "file %" PRIu64, file->fd.GetNumber());
+ } else {
+ snprintf(out_buf, out_buf_size, "file %" PRIu64
+ "(path "
+ "%" PRIu32 ")",
+ file->fd.GetNumber(), file->fd.GetPathId());
+ }
+ } else {
+ snprintf(out_buf, out_buf_size, "level %d", level);
+ }
+}
+
+void UniversalCompactionPicker::SortedRun::DumpSizeInfo(
+ char* out_buf, size_t out_buf_size, size_t sorted_run_count) const {
+ if (level == 0) {
+ assert(file != nullptr);
+ snprintf(out_buf, out_buf_size,
+ "file %" PRIu64 "[%" ROCKSDB_PRIszt
+ "] "
+ "with size %" PRIu64 " (compensated size %" PRIu64 ")",
+ file->fd.GetNumber(), sorted_run_count, file->fd.GetFileSize(),
+ file->compensated_file_size);
+ } else {
+ snprintf(out_buf, out_buf_size,
+ "level %d[%" ROCKSDB_PRIszt
+ "] "
+ "with size %" PRIu64 " (compensated size %" PRIu64 ")",
+ level, sorted_run_count, size, compensated_file_size);
+ }
+}
+
+std::vector<UniversalCompactionPicker::SortedRun>
+UniversalCompactionPicker::CalculateSortedRuns(
+ const VersionStorageInfo& vstorage, const ImmutableCFOptions& /*ioptions*/,
+ const MutableCFOptions& mutable_cf_options) {
+ std::vector<UniversalCompactionPicker::SortedRun> ret;
+ for (FileMetaData* f : vstorage.LevelFiles(0)) {
+ ret.emplace_back(0, f, f->fd.GetFileSize(), f->compensated_file_size,
+ f->being_compacted);
+ }
+ for (int level = 1; level < vstorage.num_levels(); level++) {
+ uint64_t total_compensated_size = 0U;
+ uint64_t total_size = 0U;
+ bool being_compacted = false;
+ bool is_first = true;
+ for (FileMetaData* f : vstorage.LevelFiles(level)) {
+ total_compensated_size += f->compensated_file_size;
+ total_size += f->fd.GetFileSize();
+ if (mutable_cf_options.compaction_options_universal.allow_trivial_move ==
+ true) {
+ if (f->being_compacted) {
+ being_compacted = f->being_compacted;
+ }
+ } else {
+ // Compaction always includes all files for a non-zero level, so for a
+ // non-zero level, all the files should share the same being_compacted
+ // value.
+ // This assumption is only valid when
+ // mutable_cf_options.compaction_options_universal.allow_trivial_move is
+ // false
+ assert(is_first || f->being_compacted == being_compacted);
+ }
+ if (is_first) {
+ being_compacted = f->being_compacted;
+ is_first = false;
+ }
+ }
+ if (total_compensated_size > 0) {
+ ret.emplace_back(level, nullptr, total_size, total_compensated_size,
+ being_compacted);
+ }
+ }
+ return ret;
+}
+
+// Universal style of compaction. Pick files that are contiguous in
+// time-range to compact.
+Compaction* UniversalCompactionPicker::PickCompaction(
+ const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
+ VersionStorageInfo* vstorage, LogBuffer* log_buffer) {
+ const int kLevel0 = 0;
+ double score = vstorage->CompactionScore(kLevel0);
+ std::vector<SortedRun> sorted_runs =
+ CalculateSortedRuns(*vstorage, ioptions_, mutable_cf_options);
+
+ if (sorted_runs.size() == 0 ||
+ (vstorage->FilesMarkedForCompaction().empty() &&
+ sorted_runs.size() < (unsigned int)mutable_cf_options
+ .level0_file_num_compaction_trigger)) {
+ ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: nothing to do\n",
+ cf_name.c_str());
+ TEST_SYNC_POINT_CALLBACK("UniversalCompactionPicker::PickCompaction:Return",
+ nullptr);
+ return nullptr;
+ }
+ VersionStorageInfo::LevelSummaryStorage tmp;
+ ROCKS_LOG_BUFFER_MAX_SZ(
+ log_buffer, 3072,
+ "[%s] Universal: sorted runs files(%" ROCKSDB_PRIszt "): %s\n",
+ cf_name.c_str(), sorted_runs.size(), vstorage->LevelSummary(&tmp));
+
+ // Check for size amplification first.
+ Compaction* c = nullptr;
+ if (sorted_runs.size() >=
+ static_cast<size_t>(
+ mutable_cf_options.level0_file_num_compaction_trigger)) {
+ if ((c = PickCompactionToReduceSizeAmp(cf_name, mutable_cf_options,
+ vstorage, score, sorted_runs,
+ log_buffer)) != nullptr) {
+ ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: compacting for size amp\n",
+ cf_name.c_str());
+ } else {
+ // Size amplification is within limits. Try reducing read
+ // amplification while maintaining file size ratios.
+ unsigned int ratio =
+ mutable_cf_options.compaction_options_universal.size_ratio;
+
+ if ((c = PickCompactionToReduceSortedRuns(
+ cf_name, mutable_cf_options, vstorage, score, ratio, UINT_MAX,
+ sorted_runs, log_buffer)) != nullptr) {
+ ROCKS_LOG_BUFFER(log_buffer,
+ "[%s] Universal: compacting for size ratio\n",
+ cf_name.c_str());
+ } else {
+ // Size amplification and file size ratios are within configured limits.
+ // If max read amplification is exceeding configured limits, then force
+ // compaction without looking at filesize ratios and try to reduce
+ // the number of files to fewer than level0_file_num_compaction_trigger.
+ // This is guaranteed by NeedsCompaction()
+ assert(sorted_runs.size() >=
+ static_cast<size_t>(
+ mutable_cf_options.level0_file_num_compaction_trigger));
+ // Get the total number of sorted runs that are not being compacted
+ int num_sr_not_compacted = 0;
+ for (size_t i = 0; i < sorted_runs.size(); i++) {
+ if (sorted_runs[i].being_compacted == false) {
+ num_sr_not_compacted++;
+ }
+ }
+
+ // The number of sorted runs that are not being compacted is greater
+ // than the maximum allowed number of sorted runs
+ if (num_sr_not_compacted >
+ mutable_cf_options.level0_file_num_compaction_trigger) {
+ unsigned int num_files =
+ num_sr_not_compacted -
+ mutable_cf_options.level0_file_num_compaction_trigger + 1;
+ if ((c = PickCompactionToReduceSortedRuns(
+ cf_name, mutable_cf_options, vstorage, score, UINT_MAX,
+ num_files, sorted_runs, log_buffer)) != nullptr) {
+ ROCKS_LOG_BUFFER(log_buffer,
+ "[%s] Universal: compacting for file num -- %u\n",
+ cf_name.c_str(), num_files);
+ }
+ }
+ }
+ }
+ }
+
+ if (c == nullptr) {
+ if ((c = PickDeleteTriggeredCompaction(cf_name, mutable_cf_options,
+ vstorage, score, sorted_runs,
+ log_buffer)) != nullptr) {
+ ROCKS_LOG_BUFFER(log_buffer,
+ "[%s] Universal: delete triggered compaction\n",
+ cf_name.c_str());
+ }
+ }
+
+ if (c == nullptr) {
+ TEST_SYNC_POINT_CALLBACK("UniversalCompactionPicker::PickCompaction:Return",
+ nullptr);
+ return nullptr;
+ }
+
+ if (mutable_cf_options.compaction_options_universal.allow_trivial_move ==
+ true) {
+ c->set_is_trivial_move(IsInputFilesNonOverlapping(c));
+ }
+
+// validate that all the chosen files of L0 are non overlapping in time
+#ifndef NDEBUG
+ SequenceNumber prev_smallest_seqno = 0U;
+ bool is_first = true;
+
+ size_t level_index = 0U;
+ if (c->start_level() == 0) {
+ for (auto f : *c->inputs(0)) {
+ assert(f->fd.smallest_seqno <= f->fd.largest_seqno);
+ if (is_first) {
+ is_first = false;
+ }
+ prev_smallest_seqno = f->fd.smallest_seqno;
+ }
+ level_index = 1U;
+ }
+ for (; level_index < c->num_input_levels(); level_index++) {
+ if (c->num_input_files(level_index) != 0) {
+ SequenceNumber smallest_seqno = 0U;
+ SequenceNumber largest_seqno = 0U;
+ GetSmallestLargestSeqno(*(c->inputs(level_index)), &smallest_seqno,
+ &largest_seqno);
+ if (is_first) {
+ is_first = false;
+ } else if (prev_smallest_seqno > 0) {
+ // A level is considered as the bottommost level if there are
+ // no files in higher levels or if files in higher levels do
+ // not overlap with the files being compacted. Sequence numbers
+ // of files in bottommost level can be set to 0 to help
+ // compression. As a result, the following assert may not hold
+ // if the prev_smallest_seqno is 0.
+ assert(prev_smallest_seqno > largest_seqno);
+ }
+ prev_smallest_seqno = smallest_seqno;
+ }
+ }
+#endif
+ // update statistics
+ RecordInHistogram(ioptions_.statistics, NUM_FILES_IN_SINGLE_COMPACTION,
+ c->inputs(0)->size());
+
+ RegisterCompaction(c);
+ vstorage->ComputeCompactionScore(ioptions_, mutable_cf_options);
+
+ TEST_SYNC_POINT_CALLBACK("UniversalCompactionPicker::PickCompaction:Return",
+ c);
+ return c;
+}
+
+uint32_t UniversalCompactionPicker::GetPathId(
+ const ImmutableCFOptions& ioptions,
+ const MutableCFOptions& mutable_cf_options, uint64_t file_size) {
+ // Two conditions need to be satisfied:
+ // (1) the target path needs to be able to hold the file's size
+ // (2) Total size left in this and previous paths need to be not
+ // smaller than expected future file size before this new file is
+ // compacted, which is estimated based on size_ratio.
+ // For example, if now we are compacting files of size (1, 1, 2, 4, 8),
+ // we will make sure the target file, probably with size of 16, will be
+ // placed in a path so that eventually when new files are generated and
+ // compacted to (1, 1, 2, 4, 8, 16), all those files can be stored in or
+ // before the path we chose.
+ //
+ // TODO(sdong): now the case of multiple column families is not
+ // considered in this algorithm. So the target size can be violated in
+ // that case. We need to improve it.
+ uint64_t accumulated_size = 0;
+ uint64_t future_size =
+ file_size *
+ (100 - mutable_cf_options.compaction_options_universal.size_ratio) / 100;
+ uint32_t p = 0;
+ assert(!ioptions.cf_paths.empty());
+ for (; p < ioptions.cf_paths.size() - 1; p++) {
+ uint64_t target_size = ioptions.cf_paths[p].target_size;
+ if (target_size > file_size &&
+ accumulated_size + (target_size - file_size) > future_size) {
+ return p;
+ }
+ accumulated_size += target_size;
+ }
+ return p;
+}
+
+//
+// Consider compaction files based on their size differences with
+// the next file in time order.
+//
+Compaction* UniversalCompactionPicker::PickCompactionToReduceSortedRuns(
+ const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
+ VersionStorageInfo* vstorage, double score, unsigned int ratio,
+ unsigned int max_number_of_files_to_compact,
+ const std::vector<SortedRun>& sorted_runs, LogBuffer* log_buffer) {
+ unsigned int min_merge_width =
+ mutable_cf_options.compaction_options_universal.min_merge_width;
+ unsigned int max_merge_width =
+ mutable_cf_options.compaction_options_universal.max_merge_width;
+
+ const SortedRun* sr = nullptr;
+ bool done = false;
+ size_t start_index = 0;
+ unsigned int candidate_count = 0;
+
+ unsigned int max_files_to_compact =
+ std::min(max_merge_width, max_number_of_files_to_compact);
+ min_merge_width = std::max(min_merge_width, 2U);
+
+ // Caller checks the size before executing this function. This invariant is
+ // important because otherwise we may have a possible integer underflow when
+ // dealing with unsigned types.
+ assert(sorted_runs.size() > 0);
+
+ // Considers a candidate file only if it is smaller than the
+ // total size accumulated so far.
+ for (size_t loop = 0; loop < sorted_runs.size(); loop++) {
+ candidate_count = 0;
+
+ // Skip files that are already being compacted
+ for (sr = nullptr; loop < sorted_runs.size(); loop++) {
+ sr = &sorted_runs[loop];
+
+ if (!sr->being_compacted) {
+ candidate_count = 1;
+ break;
+ }
+ char file_num_buf[kFormatFileNumberBufSize];
+ sr->Dump(file_num_buf, sizeof(file_num_buf));
+ ROCKS_LOG_BUFFER(log_buffer,
+ "[%s] Universal: %s"
+ "[%d] being compacted, skipping",
+ cf_name.c_str(), file_num_buf, loop);
+
+ sr = nullptr;
+ }
+
+ // This file is not being compacted. Consider it as the
+ // first candidate to be compacted.
+ uint64_t candidate_size = sr != nullptr ? sr->compensated_file_size : 0;
+ if (sr != nullptr) {
+ char file_num_buf[kFormatFileNumberBufSize];
+ sr->Dump(file_num_buf, sizeof(file_num_buf), true);
+ ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: Possible candidate %s[%d].",
+ cf_name.c_str(), file_num_buf, loop);
+ }
+
+ // Check if the succeeding files need compaction.
+ for (size_t i = loop + 1;
+ candidate_count < max_files_to_compact && i < sorted_runs.size();
+ i++) {
+ const SortedRun* succeeding_sr = &sorted_runs[i];
+ if (succeeding_sr->being_compacted) {
+ break;
+ }
+ // Pick files if the total/last candidate file size (increased by the
+ // specified ratio) is still larger than the next candidate file.
+ // candidate_size is the total size of files picked so far with the
+ // default kCompactionStopStyleTotalSize; with
+ // kCompactionStopStyleSimilarSize, it's simply the size of the last
+ // picked file.
+ double sz = candidate_size * (100.0 + ratio) / 100.0;
+ if (sz < static_cast<double>(succeeding_sr->size)) {
+ break;
+ }
+ if (mutable_cf_options.compaction_options_universal.stop_style ==
+ kCompactionStopStyleSimilarSize) {
+ // Similar-size stopping rule: also check the last picked file isn't
+ // far larger than the next candidate file.
+ sz = (succeeding_sr->size * (100.0 + ratio)) / 100.0;
+ if (sz < static_cast<double>(candidate_size)) {
+ // If the small file we've encountered begins a run of similar-size
+ // files, we'll pick them up on a future iteration of the outer
+ // loop. If it's some lonely straggler, it'll eventually get picked
+ // by the last-resort read amp strategy which disregards size ratios.
+ break;
+ }
+ candidate_size = succeeding_sr->compensated_file_size;
+ } else { // default kCompactionStopStyleTotalSize
+ candidate_size += succeeding_sr->compensated_file_size;
+ }
+ candidate_count++;
+ }
+
+ // Found a series of consecutive files that need compaction.
+ if (candidate_count >= (unsigned int)min_merge_width) {
+ start_index = loop;
+ done = true;
+ break;
+ } else {
+ for (size_t i = loop;
+ i < loop + candidate_count && i < sorted_runs.size(); i++) {
+ const SortedRun* skipping_sr = &sorted_runs[i];
+ char file_num_buf[256];
+ skipping_sr->DumpSizeInfo(file_num_buf, sizeof(file_num_buf), loop);
+ ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: Skipping %s",
+ cf_name.c_str(), file_num_buf);
+ }
+ }
+ }
+ if (!done || candidate_count <= 1) {
+ return nullptr;
+ }
+ size_t first_index_after = start_index + candidate_count;
+ // Compression is enabled if files compacted earlier already reached
+ // size ratio of compression.
+ bool enable_compression = true;
+ int ratio_to_compress =
+ mutable_cf_options.compaction_options_universal.compression_size_percent;
+ if (ratio_to_compress >= 0) {
+ uint64_t total_size = 0;
+ for (auto& sorted_run : sorted_runs) {
+ total_size += sorted_run.compensated_file_size;
+ }
+
+ uint64_t older_file_size = 0;
+ for (size_t i = sorted_runs.size() - 1; i >= first_index_after; i--) {
+ older_file_size += sorted_runs[i].size;
+ if (older_file_size * 100L >= total_size * (long)ratio_to_compress) {
+ enable_compression = false;
+ break;
+ }
+ }
+ }
+
+ uint64_t estimated_total_size = 0;
+ for (unsigned int i = 0; i < first_index_after; i++) {
+ estimated_total_size += sorted_runs[i].size;
+ }
+ uint32_t path_id =
+ GetPathId(ioptions_, mutable_cf_options, estimated_total_size);
+ int start_level = sorted_runs[start_index].level;
+ int output_level;
+ if (first_index_after == sorted_runs.size()) {
+ output_level = vstorage->num_levels() - 1;
+ } else if (sorted_runs[first_index_after].level == 0) {
+ output_level = 0;
+ } else {
+ output_level = sorted_runs[first_index_after].level - 1;
+ }
+
+ // last level is reserved for the files ingested behind
+ if (ioptions_.allow_ingest_behind &&
+ (output_level == vstorage->num_levels() - 1)) {
+ assert(output_level > 1);
+ output_level--;
+ }
+
+ std::vector<CompactionInputFiles> inputs(vstorage->num_levels());
+ for (size_t i = 0; i < inputs.size(); ++i) {
+ inputs[i].level = start_level + static_cast<int>(i);
+ }
+ for (size_t i = start_index; i < first_index_after; i++) {
+ auto& picking_sr = sorted_runs[i];
+ if (picking_sr.level == 0) {
+ FileMetaData* picking_file = picking_sr.file;
+ inputs[0].files.push_back(picking_file);
+ } else {
+ auto& files = inputs[picking_sr.level - start_level].files;
+ for (auto* f : vstorage->LevelFiles(picking_sr.level)) {
+ files.push_back(f);
+ }
+ }
+ char file_num_buf[256];
+ picking_sr.DumpSizeInfo(file_num_buf, sizeof(file_num_buf), i);
+ ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: Picking %s", cf_name.c_str(),
+ file_num_buf);
+ }
+
+ CompactionReason compaction_reason;
+ if (max_number_of_files_to_compact == UINT_MAX) {
+ compaction_reason = CompactionReason::kUniversalSizeRatio;
+ } else {
+ compaction_reason = CompactionReason::kUniversalSortedRunNum;
+ }
+ return new Compaction(
+ vstorage, ioptions_, mutable_cf_options, std::move(inputs), output_level,
+ MaxFileSizeForLevel(mutable_cf_options, output_level,
+ kCompactionStyleUniversal),
+ LLONG_MAX, path_id,
+ GetCompressionType(ioptions_, vstorage, mutable_cf_options, start_level,
+ 1, enable_compression),
+ GetCompressionOptions(ioptions_, vstorage, start_level,
+ enable_compression),
+ /* max_subcompactions */ 0, /* grandparents */ {}, /* is manual */ false,
+ score, false /* deletion_compaction */, compaction_reason);
+}
+
+// Look at overall size amplification. If size amplification
+// exceeeds the configured value, then do a compaction
+// of the candidate files all the way upto the earliest
+// base file (overrides configured values of file-size ratios,
+// min_merge_width and max_merge_width).
+//
+Compaction* UniversalCompactionPicker::PickCompactionToReduceSizeAmp(
+ const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
+ VersionStorageInfo* vstorage, double score,
+ const std::vector<SortedRun>& sorted_runs, LogBuffer* log_buffer) {
+ // percentage flexibility while reducing size amplification
+ uint64_t ratio = mutable_cf_options.compaction_options_universal
+ .max_size_amplification_percent;
+
+ unsigned int candidate_count = 0;
+ uint64_t candidate_size = 0;
+ size_t start_index = 0;
+ const SortedRun* sr = nullptr;
+
+ if (sorted_runs.back().being_compacted) {
+ return nullptr;
+ }
+
+ // Skip files that are already being compacted
+ for (size_t loop = 0; loop < sorted_runs.size() - 1; loop++) {
+ sr = &sorted_runs[loop];
+ if (!sr->being_compacted) {
+ start_index = loop; // Consider this as the first candidate.
+ break;
+ }
+ char file_num_buf[kFormatFileNumberBufSize];
+ sr->Dump(file_num_buf, sizeof(file_num_buf), true);
+ ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: skipping %s[%d] compacted %s",
+ cf_name.c_str(), file_num_buf, loop,
+ " cannot be a candidate to reduce size amp.\n");
+ sr = nullptr;
+ }
+
+ if (sr == nullptr) {
+ return nullptr; // no candidate files
+ }
+ {
+ char file_num_buf[kFormatFileNumberBufSize];
+ sr->Dump(file_num_buf, sizeof(file_num_buf), true);
+ ROCKS_LOG_BUFFER(
+ log_buffer,
+ "[%s] Universal: First candidate %s[%" ROCKSDB_PRIszt "] %s",
+ cf_name.c_str(), file_num_buf, start_index, " to reduce size amp.\n");
+ }
+
+ // keep adding up all the remaining files
+ for (size_t loop = start_index; loop < sorted_runs.size() - 1; loop++) {
+ sr = &sorted_runs[loop];
+ if (sr->being_compacted) {
+ char file_num_buf[kFormatFileNumberBufSize];
+ sr->Dump(file_num_buf, sizeof(file_num_buf), true);
+ ROCKS_LOG_BUFFER(
+ log_buffer, "[%s] Universal: Possible candidate %s[%d] %s",
+ cf_name.c_str(), file_num_buf, start_index,
+ " is already being compacted. No size amp reduction possible.\n");
+ return nullptr;
+ }
+ candidate_size += sr->compensated_file_size;
+ candidate_count++;
+ }
+ if (candidate_count == 0) {
+ return nullptr;
+ }
+
+ // size of earliest file
+ uint64_t earliest_file_size = sorted_runs.back().size;
+
+ // size amplification = percentage of additional size
+ if (candidate_size * 100 < ratio * earliest_file_size) {
+ ROCKS_LOG_BUFFER(
+ log_buffer,
+ "[%s] Universal: size amp not needed. newer-files-total-size %" PRIu64
+ " earliest-file-size %" PRIu64,
+ cf_name.c_str(), candidate_size, earliest_file_size);
+ return nullptr;
+ } else {
+ ROCKS_LOG_BUFFER(
+ log_buffer,
+ "[%s] Universal: size amp needed. newer-files-total-size %" PRIu64
+ " earliest-file-size %" PRIu64,
+ cf_name.c_str(), candidate_size, earliest_file_size);
+ }
+ assert(start_index < sorted_runs.size() - 1);
+
+ // Estimate total file size
+ uint64_t estimated_total_size = 0;
+ for (size_t loop = start_index; loop < sorted_runs.size(); loop++) {
+ estimated_total_size += sorted_runs[loop].size;
+ }
+ uint32_t path_id =
+ GetPathId(ioptions_, mutable_cf_options, estimated_total_size);
+ int start_level = sorted_runs[start_index].level;
+
+ std::vector<CompactionInputFiles> inputs(vstorage->num_levels());
+ for (size_t i = 0; i < inputs.size(); ++i) {
+ inputs[i].level = start_level + static_cast<int>(i);
+ }
+ // We always compact all the files, so always compress.
+ for (size_t loop = start_index; loop < sorted_runs.size(); loop++) {
+ auto& picking_sr = sorted_runs[loop];
+ if (picking_sr.level == 0) {
+ FileMetaData* f = picking_sr.file;
+ inputs[0].files.push_back(f);
+ } else {
+ auto& files = inputs[picking_sr.level - start_level].files;
+ for (auto* f : vstorage->LevelFiles(picking_sr.level)) {
+ files.push_back(f);
+ }
+ }
+ char file_num_buf[256];
+ picking_sr.DumpSizeInfo(file_num_buf, sizeof(file_num_buf), loop);
+ ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: size amp picking %s",
+ cf_name.c_str(), file_num_buf);
+ }
+
+ // output files at the bottom most level, unless it's reserved
+ int output_level = vstorage->num_levels() - 1;
+ // last level is reserved for the files ingested behind
+ if (ioptions_.allow_ingest_behind) {
+ assert(output_level > 1);
+ output_level--;
+ }
+
+ return new Compaction(
+ vstorage, ioptions_, mutable_cf_options, std::move(inputs), output_level,
+ MaxFileSizeForLevel(mutable_cf_options, output_level,
+ kCompactionStyleUniversal),
+ /* max_grandparent_overlap_bytes */ LLONG_MAX, path_id,
+ GetCompressionType(ioptions_, vstorage, mutable_cf_options, output_level,
+ 1),
+ GetCompressionOptions(ioptions_, vstorage, output_level),
+ /* max_subcompactions */ 0, /* grandparents */ {}, /* is manual */ false,
+ score, false /* deletion_compaction */,
+ CompactionReason::kUniversalSizeAmplification);
+}
+
+// Pick files marked for compaction. Typically, files are marked by
+// CompactOnDeleteCollector due to the presence of tombstones.
+Compaction* UniversalCompactionPicker::PickDeleteTriggeredCompaction(
+ const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
+ VersionStorageInfo* vstorage, double score,
+ const std::vector<SortedRun>& /*sorted_runs*/, LogBuffer* /*log_buffer*/) {
+ CompactionInputFiles start_level_inputs;
+ int output_level;
+ std::vector<CompactionInputFiles> inputs;
+
+ if (vstorage->num_levels() == 1) {
+ // This is single level universal. Since we're basically trying to reclaim
+ // space by processing files marked for compaction due to high tombstone
+ // density, let's do the same thing as compaction to reduce size amp which
+ // has the same goals.
+ bool compact = false;
+
+ start_level_inputs.level = 0;
+ start_level_inputs.files.clear();
+ output_level = 0;
+ for (FileMetaData* f : vstorage->LevelFiles(0)) {
+ if (f->marked_for_compaction) {
+ compact = true;
+ }
+ if (compact) {
+ start_level_inputs.files.push_back(f);
+ }
+ }
+ if (start_level_inputs.size() <= 1) {
+ // If only the last file in L0 is marked for compaction, ignore it
+ return nullptr;
+ }
+ inputs.push_back(start_level_inputs);
+ } else {
+ int start_level;
+
+ // For multi-level universal, the strategy is to make this look more like
+ // leveled. We pick one of the files marked for compaction and compact with
+ // overlapping files in the adjacent level.
+ PickFilesMarkedForCompaction(cf_name, vstorage, &start_level, &output_level,
+ &start_level_inputs);
+ if (start_level_inputs.empty()) {
+ return nullptr;
+ }
+
+ // Pick the first non-empty level after the start_level
+ for (output_level = start_level + 1; output_level < vstorage->num_levels();
+ output_level++) {
+ if (vstorage->NumLevelFiles(output_level) != 0) {
+ break;
+ }
+ }
+
+ // If all higher levels are empty, pick the highest level as output level
+ if (output_level == vstorage->num_levels()) {
+ if (start_level == 0) {
+ output_level = vstorage->num_levels() - 1;
+ } else {
+ // If start level is non-zero and all higher levels are empty, this
+ // compaction will translate into a trivial move. Since the idea is
+ // to reclaim space and trivial move doesn't help with that, we
+ // skip compaction in this case and return nullptr
+ return nullptr;
+ }
+ }
+ if (ioptions_.allow_ingest_behind &&
+ output_level == vstorage->num_levels() - 1) {
+ assert(output_level > 1);
+ output_level--;
+ }
+
+ if (output_level != 0) {
+ if (start_level == 0) {
+ if (!GetOverlappingL0Files(vstorage, &start_level_inputs, output_level,
+ nullptr)) {
+ return nullptr;
+ }
+ }
+
+ CompactionInputFiles output_level_inputs;
+ int parent_index = -1;
+
+ output_level_inputs.level = output_level;
+ if (!SetupOtherInputs(cf_name, mutable_cf_options, vstorage,
+ &start_level_inputs, &output_level_inputs,
+ &parent_index, -1)) {
+ return nullptr;
+ }
+ inputs.push_back(start_level_inputs);
+ if (!output_level_inputs.empty()) {
+ inputs.push_back(output_level_inputs);
+ }
+ if (FilesRangeOverlapWithCompaction(inputs, output_level)) {
+ return nullptr;
+ }
+ } else {
+ inputs.push_back(start_level_inputs);
+ }
+ }
+
+ uint64_t estimated_total_size = 0;
+ // Use size of the output level as estimated file size
+ for (FileMetaData* f : vstorage->LevelFiles(output_level)) {
+ estimated_total_size += f->fd.GetFileSize();
+ }
+ uint32_t path_id =
+ GetPathId(ioptions_, mutable_cf_options, estimated_total_size);
+ return new Compaction(
+ vstorage, ioptions_, mutable_cf_options, std::move(inputs), output_level,
+ MaxFileSizeForLevel(mutable_cf_options, output_level,
+ kCompactionStyleUniversal),
+ /* max_grandparent_overlap_bytes */ LLONG_MAX, path_id,
+ GetCompressionType(ioptions_, vstorage, mutable_cf_options, output_level,
+ 1),
+ GetCompressionOptions(ioptions_, vstorage, output_level),
+ /* max_subcompactions */ 0, /* grandparents */ {}, /* is manual */ true,
+ score, false /* deletion_compaction */,
+ CompactionReason::kFilesMarkedForCompaction);
+}
+} // namespace rocksdb
+
+#endif // !ROCKSDB_LITE