diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/rocksdb/util/concurrent_arena.h | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/rocksdb/util/concurrent_arena.h')
-rw-r--r-- | src/rocksdb/util/concurrent_arena.h | 215 |
1 files changed, 215 insertions, 0 deletions
diff --git a/src/rocksdb/util/concurrent_arena.h b/src/rocksdb/util/concurrent_arena.h new file mode 100644 index 00000000..a6191100 --- /dev/null +++ b/src/rocksdb/util/concurrent_arena.h @@ -0,0 +1,215 @@ +// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. +// This source code is licensed under both the GPLv2 (found in the +// COPYING file in the root directory) and Apache 2.0 License +// (found in the LICENSE.Apache file in the root directory). +// +// Copyright (c) 2011 The LevelDB Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. See the AUTHORS file for names of contributors. + +#pragma once +#include <atomic> +#include <memory> +#include <utility> +#include "port/likely.h" +#include "util/allocator.h" +#include "util/arena.h" +#include "util/core_local.h" +#include "util/mutexlock.h" +#include "util/thread_local.h" + +// Only generate field unused warning for padding array, or build under +// GCC 4.8.1 will fail. +#ifdef __clang__ +#define ROCKSDB_FIELD_UNUSED __attribute__((__unused__)) +#else +#define ROCKSDB_FIELD_UNUSED +#endif // __clang__ + +namespace rocksdb { + +class Logger; + +// ConcurrentArena wraps an Arena. It makes it thread safe using a fast +// inlined spinlock, and adds small per-core allocation caches to avoid +// contention for small allocations. To avoid any memory waste from the +// per-core shards, they are kept small, they are lazily instantiated +// only if ConcurrentArena actually notices concurrent use, and they +// adjust their size so that there is no fragmentation waste when the +// shard blocks are allocated from the underlying main arena. +class ConcurrentArena : public Allocator { + public: + // block_size and huge_page_size are the same as for Arena (and are + // in fact just passed to the constructor of arena_. The core-local + // shards compute their shard_block_size as a fraction of block_size + // that varies according to the hardware concurrency level. + explicit ConcurrentArena(size_t block_size = Arena::kMinBlockSize, + AllocTracker* tracker = nullptr, + size_t huge_page_size = 0); + + char* Allocate(size_t bytes) override { + return AllocateImpl(bytes, false /*force_arena*/, + [=]() { return arena_.Allocate(bytes); }); + } + + char* AllocateAligned(size_t bytes, size_t huge_page_size = 0, + Logger* logger = nullptr) override { + size_t rounded_up = ((bytes - 1) | (sizeof(void*) - 1)) + 1; + assert(rounded_up >= bytes && rounded_up < bytes + sizeof(void*) && + (rounded_up % sizeof(void*)) == 0); + + return AllocateImpl(rounded_up, huge_page_size != 0 /*force_arena*/, [=]() { + return arena_.AllocateAligned(rounded_up, huge_page_size, logger); + }); + } + + size_t ApproximateMemoryUsage() const { + std::unique_lock<SpinMutex> lock(arena_mutex_, std::defer_lock); + lock.lock(); + return arena_.ApproximateMemoryUsage() - ShardAllocatedAndUnused(); + } + + size_t MemoryAllocatedBytes() const { + return memory_allocated_bytes_.load(std::memory_order_relaxed); + } + + size_t AllocatedAndUnused() const { + return arena_allocated_and_unused_.load(std::memory_order_relaxed) + + ShardAllocatedAndUnused(); + } + + size_t IrregularBlockNum() const { + return irregular_block_num_.load(std::memory_order_relaxed); + } + + size_t BlockSize() const override { return arena_.BlockSize(); } + + private: + struct Shard { + char padding[40] ROCKSDB_FIELD_UNUSED; + mutable SpinMutex mutex; + char* free_begin_; + std::atomic<size_t> allocated_and_unused_; + + Shard() : free_begin_(nullptr), allocated_and_unused_(0) {} + }; + +#ifdef ROCKSDB_SUPPORT_THREAD_LOCAL + static __thread size_t tls_cpuid; +#else + enum ZeroFirstEnum : size_t { tls_cpuid = 0 }; +#endif + + char padding0[56] ROCKSDB_FIELD_UNUSED; + + size_t shard_block_size_; + + CoreLocalArray<Shard> shards_; + + Arena arena_; + mutable SpinMutex arena_mutex_; + std::atomic<size_t> arena_allocated_and_unused_; + std::atomic<size_t> memory_allocated_bytes_; + std::atomic<size_t> irregular_block_num_; + + char padding1[56] ROCKSDB_FIELD_UNUSED; + + Shard* Repick(); + + size_t ShardAllocatedAndUnused() const { + size_t total = 0; + for (size_t i = 0; i < shards_.Size(); ++i) { + total += shards_.AccessAtCore(i)->allocated_and_unused_.load( + std::memory_order_relaxed); + } + return total; + } + + template <typename Func> + char* AllocateImpl(size_t bytes, bool force_arena, const Func& func) { + size_t cpu; + + // Go directly to the arena if the allocation is too large, or if + // we've never needed to Repick() and the arena mutex is available + // with no waiting. This keeps the fragmentation penalty of + // concurrency zero unless it might actually confer an advantage. + std::unique_lock<SpinMutex> arena_lock(arena_mutex_, std::defer_lock); + if (bytes > shard_block_size_ / 4 || force_arena || + ((cpu = tls_cpuid) == 0 && + !shards_.AccessAtCore(0)->allocated_and_unused_.load( + std::memory_order_relaxed) && + arena_lock.try_lock())) { + if (!arena_lock.owns_lock()) { + arena_lock.lock(); + } + auto rv = func(); + Fixup(); + return rv; + } + + // pick a shard from which to allocate + Shard* s = shards_.AccessAtCore(cpu & (shards_.Size() - 1)); + if (!s->mutex.try_lock()) { + s = Repick(); + s->mutex.lock(); + } + std::unique_lock<SpinMutex> lock(s->mutex, std::adopt_lock); + + size_t avail = s->allocated_and_unused_.load(std::memory_order_relaxed); + if (avail < bytes) { + // reload + std::lock_guard<SpinMutex> reload_lock(arena_mutex_); + + // If the arena's current block is within a factor of 2 of the right + // size, we adjust our request to avoid arena waste. + auto exact = arena_allocated_and_unused_.load(std::memory_order_relaxed); + assert(exact == arena_.AllocatedAndUnused()); + + if (exact >= bytes && arena_.IsInInlineBlock()) { + // If we haven't exhausted arena's inline block yet, allocate from arena + // directly. This ensures that we'll do the first few small allocations + // without allocating any blocks. + // In particular this prevents empty memtables from using + // disproportionately large amount of memory: a memtable allocates on + // the order of 1 KB of memory when created; we wouldn't want to + // allocate a full arena block (typically a few megabytes) for that, + // especially if there are thousands of empty memtables. + auto rv = func(); + Fixup(); + return rv; + } + + avail = exact >= shard_block_size_ / 2 && exact < shard_block_size_ * 2 + ? exact + : shard_block_size_; + s->free_begin_ = arena_.AllocateAligned(avail); + Fixup(); + } + s->allocated_and_unused_.store(avail - bytes, std::memory_order_relaxed); + + char* rv; + if ((bytes % sizeof(void*)) == 0) { + // aligned allocation from the beginning + rv = s->free_begin_; + s->free_begin_ += bytes; + } else { + // unaligned from the end + rv = s->free_begin_ + avail - bytes; + } + return rv; + } + + void Fixup() { + arena_allocated_and_unused_.store(arena_.AllocatedAndUnused(), + std::memory_order_relaxed); + memory_allocated_bytes_.store(arena_.MemoryAllocatedBytes(), + std::memory_order_relaxed); + irregular_block_num_.store(arena_.IrregularBlockNum(), + std::memory_order_relaxed); + } + + ConcurrentArena(const ConcurrentArena&) = delete; + ConcurrentArena& operator=(const ConcurrentArena&) = delete; +}; + +} // namespace rocksdb |