diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/rocksdb/util/xxhash.cc | |
parent | Initial commit. (diff) | |
download | ceph-483eb2f56657e8e7f419ab1a4fab8dce9ade8609.tar.xz ceph-483eb2f56657e8e7f419ab1a4fab8dce9ade8609.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/rocksdb/util/xxhash.cc')
-rw-r--r-- | src/rocksdb/util/xxhash.cc | 1074 |
1 files changed, 1074 insertions, 0 deletions
diff --git a/src/rocksdb/util/xxhash.cc b/src/rocksdb/util/xxhash.cc new file mode 100644 index 00000000..2ec95a63 --- /dev/null +++ b/src/rocksdb/util/xxhash.cc @@ -0,0 +1,1074 @@ +/* +xxHash - Fast Hash algorithm +Copyright (C) 2012-2014, Yann Collet. +BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + +* Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. +* Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +You can contact the author at : +- xxHash source repository : http://code.google.com/p/xxhash/ +*/ + + +//************************************** +// Tuning parameters +//************************************** +/*!XXH_FORCE_MEMORY_ACCESS : + * By default, access to unaligned memory is controlled by `memcpy()`, which is + * safe and portable. Unfortunately, on some target/compiler combinations, the + * generated assembly is sub-optimal. The below switch allow to select different + * access method for improved performance. Method 0 (default) : use `memcpy()`. + * Safe and portable. Method 1 : `__packed` statement. It depends on compiler + * extension (ie, not portable). This method is safe if your compiler supports + * it, and *generally* as fast or faster than `memcpy`. Method 2 : direct + * access. This method doesn't depend on compiler but violate C standard. It can + * generate buggy code on targets which do not support unaligned memory + * accesses. But in some circumstances, it's the only known way to get the most + * performance (ie GCC + ARMv6) See http://stackoverflow.com/a/32095106/646947 + * for details. Prefer these methods in priority order (0 > 1 > 2) + */ + +#include "util/util.h" + +#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line \ + for example */ +#if defined(__GNUC__) && \ + (defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \ + defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \ + defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__)) +#define XXH_FORCE_MEMORY_ACCESS 2 +#elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ + (defined(__GNUC__) && \ + (defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \ + defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \ + defined(__ARM_ARCH_7S__))) +#define XXH_FORCE_MEMORY_ACCESS 1 +#endif +#endif + +// Unaligned memory access is automatically enabled for "common" CPU, such as x86. +// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected. +// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance. +// You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32). +#if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) +# define XXH_USE_UNALIGNED_ACCESS 1 +#endif + +// XXH_ACCEPT_NULL_INPUT_POINTER : +// If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. +// When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. +// This option has a very small performance cost (only measurable on small inputs). +// By default, this option is disabled. To enable it, uncomment below define : +//#define XXH_ACCEPT_NULL_INPUT_POINTER 1 + +// XXH_FORCE_NATIVE_FORMAT : +// By default, xxHash library provides endian-independent Hash values, based on little-endian convention. +// Results are therefore identical for little-endian and big-endian CPU. +// This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. +// Should endian-independence be of no importance for your application, you may set the #define below to 1. +// It will improve speed for Big-endian CPU. +// This option has no impact on Little_Endian CPU. +#define XXH_FORCE_NATIVE_FORMAT 0 + +/*!XXH_FORCE_ALIGN_CHECK : + * This is a minor performance trick, only useful with lots of very small keys. + * It means : check for aligned/unaligned input. + * The check costs one initial branch per hash; + * set it to 0 when the input is guaranteed to be aligned, + * or when alignment doesn't matter for performance. + */ +#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ +#if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || \ + defined(_M_X64) +#define XXH_FORCE_ALIGN_CHECK 0 +#else +#define XXH_FORCE_ALIGN_CHECK 1 +#endif +#endif + +//************************************** +// Compiler Specific Options +//************************************** +// Disable some Visual warning messages +#ifdef _MSC_VER // Visual Studio +# pragma warning(disable : 4127) // disable: C4127: conditional expression is constant +# pragma warning(disable : 4804) // disable: C4804: 'operation' : unsafe use of type 'bool' in operation (static assert line 313) +#endif + +#ifdef _MSC_VER // Visual Studio +# define FORCE_INLINE static __forceinline +#else +# ifdef __GNUC__ +# define FORCE_INLINE static inline __attribute__((always_inline)) +# else +# define FORCE_INLINE static inline +# endif +#endif + + +//************************************** +// Includes & Memory related functions +//************************************** +#include "xxhash.h" +// Modify the local functions below should you wish to use some other memory related routines +// for malloc(), free() +#include <stdlib.h> +FORCE_INLINE void* XXH_malloc(size_t s) { return malloc(s); } +FORCE_INLINE void XXH_free (void* p) { free(p); } +// for memcpy() +#include <string.h> +FORCE_INLINE void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } +#include <assert.h> /* assert */ + +namespace rocksdb { +//************************************** +// Basic Types +//************************************** +#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99 +# include <stdint.h> + typedef uint8_t BYTE; + typedef uint16_t U16; + typedef uint32_t U32; + typedef int32_t S32; + typedef uint64_t U64; +#else + typedef unsigned char BYTE; + typedef unsigned short U16; + typedef unsigned int U32; + typedef signed int S32; + typedef unsigned long long U64; +#endif + +#if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS) +# define _PACKED __attribute__ ((packed)) +#else +# define _PACKED +#endif + +#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) +# ifdef __IBMC__ +# pragma pack(1) +# else +# pragma pack(push, 1) +# endif +#endif + +typedef struct _U32_S { U32 v; } _PACKED U32_S; + +#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) +# pragma pack(pop) +#endif + +#define A32(x) (((U32_S *)(x))->v) + +#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2)) + +/* Force direct memory access. Only works on CPU which support unaligned memory + * access in hardware */ +static U32 XXH_read32(const void* memPtr) { return *(const U32*)memPtr; } + +#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1)) + +/* __pack instructions are safer, but compiler specific, hence potentially + * problematic for some compilers */ +/* currently only defined for gcc and icc */ +typedef union { + U32 u32; +} __attribute__((packed)) unalign; +static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } + +#else + +/* portable and safe solution. Generally efficient. + * see : http://stackoverflow.com/a/32095106/646947 + */ +static U32 XXH_read32(const void* memPtr) { + U32 val; + memcpy(&val, memPtr, sizeof(val)); + return val; +} + +#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ + +//*************************************** +// Compiler-specific Functions and Macros +//*************************************** +#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) + +// Note : although _rotl exists for minGW (GCC under windows), performance seems poor +#if defined(_MSC_VER) +# define XXH_rotl32(x,r) _rotl(x,r) +#define XXH_rotl64(x, r) _rotl64(x, r) +#else +# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) +#define XXH_rotl64(x, r) ((x << r) | (x >> (64 - r))) +#endif + +#if defined(_MSC_VER) // Visual Studio +# define XXH_swap32 _byteswap_ulong +#elif GCC_VERSION >= 403 +# define XXH_swap32 __builtin_bswap32 +#else +static inline U32 XXH_swap32 (U32 x) { + return ((x << 24) & 0xff000000 ) | + ((x << 8) & 0x00ff0000 ) | + ((x >> 8) & 0x0000ff00 ) | + ((x >> 24) & 0x000000ff );} +#endif + + +//************************************** +// Constants +//************************************** +#define PRIME32_1 2654435761U +#define PRIME32_2 2246822519U +#define PRIME32_3 3266489917U +#define PRIME32_4 668265263U +#define PRIME32_5 374761393U + + +//************************************** +// Architecture Macros +//************************************** +typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; +#ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch + static const int one = 1; +# define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one)) +#endif + + +//************************************** +// Macros +//************************************** +#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations + + +//**************************** +// Memory reads +//**************************** +typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; + +FORCE_INLINE U32 XXH_readLE32_align(const U32* ptr, XXH_endianess endian, XXH_alignment align) +{ + if (align==XXH_unaligned) + return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr)); + else + return endian==XXH_littleEndian ? *ptr : XXH_swap32(*ptr); +} + +FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, + XXH_alignment align) { + if (align == XXH_unaligned) + return endian == XXH_littleEndian ? XXH_read32(ptr) + : XXH_swap32(XXH_read32(ptr)); + else + return endian == XXH_littleEndian ? *(const U32*)ptr + : XXH_swap32(*(const U32*)ptr); +} + +FORCE_INLINE U32 XXH_readLE32(const U32* ptr, XXH_endianess endian) { + return XXH_readLE32_align(ptr, endian, XXH_unaligned); +} + +//**************************** +// Simple Hash Functions +//**************************** +#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) + +FORCE_INLINE U32 XXH32_endian_align(const void* input, int len, U32 seed, XXH_endianess endian, XXH_alignment align) +{ + const BYTE* p = (const BYTE*)input; + const BYTE* const bEnd = p + len; + U32 h32; + +#ifdef XXH_ACCEPT_NULL_INPUT_POINTER + if (p==NULL) { len=0; p=(const BYTE*)(size_t)16; } +#endif + + if (len>=16) + { + const BYTE* const limit = bEnd - 16; + U32 v1 = seed + PRIME32_1 + PRIME32_2; + U32 v2 = seed + PRIME32_2; + U32 v3 = seed + 0; + U32 v4 = seed - PRIME32_1; + + do + { + v1 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4; + v2 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4; + v3 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4; + v4 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4; + } while (p<=limit); + + h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); + } + else + { + h32 = seed + PRIME32_5; + } + + h32 += (U32) len; + + while (p<=bEnd-4) + { + h32 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_3; + h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; + p+=4; + } + + while (p<bEnd) + { + h32 += (*p) * PRIME32_5; + h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; + p++; + } + + h32 ^= h32 >> 15; + h32 *= PRIME32_2; + h32 ^= h32 >> 13; + h32 *= PRIME32_3; + h32 ^= h32 >> 16; + + return h32; +} + + +U32 XXH32(const void* input, int len, U32 seed) +{ +#if 0 + // Simple version, good for code maintenance, but unfortunately slow for small inputs + void* state = XXH32_init(seed); + XXH32_update(state, input, len); + return XXH32_digest(state); +#else + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + +# if !defined(XXH_USE_UNALIGNED_ACCESS) + if ((((size_t)input) & 3)) // Input is aligned, let's leverage the speed advantage + { + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); + else + return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); + } +# endif + + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); + else + return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); +#endif +} + + +//**************************** +// Advanced Hash Functions +//**************************** + +struct XXH_state32_t +{ + U64 total_len; + U32 seed; + U32 v1; + U32 v2; + U32 v3; + U32 v4; + int memsize; + char memory[16]; +}; + + +int XXH32_sizeofState() +{ + XXH_STATIC_ASSERT(XXH32_SIZEOFSTATE >= sizeof(struct XXH_state32_t)); // A compilation error here means XXH32_SIZEOFSTATE is not large enough + return sizeof(struct XXH_state32_t); +} + + +XXH_errorcode XXH32_resetState(void* state_in, U32 seed) +{ + struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; + state->seed = seed; + state->v1 = seed + PRIME32_1 + PRIME32_2; + state->v2 = seed + PRIME32_2; + state->v3 = seed + 0; + state->v4 = seed - PRIME32_1; + state->total_len = 0; + state->memsize = 0; + return XXH_OK; +} + + +void* XXH32_init (U32 seed) +{ + void* state = XXH_malloc (sizeof(struct XXH_state32_t)); + XXH32_resetState(state, seed); + return state; +} + + +FORCE_INLINE XXH_errorcode XXH32_update_endian (void* state_in, const void* input, int len, XXH_endianess endian) +{ + struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; + const BYTE* p = (const BYTE*)input; + const BYTE* const bEnd = p + len; + +#ifdef XXH_ACCEPT_NULL_INPUT_POINTER + if (input==NULL) return XXH_ERROR; +#endif + + state->total_len += len; + + if (state->memsize + len < 16) // fill in tmp buffer + { + XXH_memcpy(state->memory + state->memsize, input, len); + state->memsize += len; + return XXH_OK; + } + + if (state->memsize) // some data left from previous update + { + XXH_memcpy(state->memory + state->memsize, input, 16-state->memsize); + { + const U32* p32 = (const U32*)state->memory; + state->v1 += XXH_readLE32(p32, endian) * PRIME32_2; state->v1 = XXH_rotl32(state->v1, 13); state->v1 *= PRIME32_1; p32++; + state->v2 += XXH_readLE32(p32, endian) * PRIME32_2; state->v2 = XXH_rotl32(state->v2, 13); state->v2 *= PRIME32_1; p32++; + state->v3 += XXH_readLE32(p32, endian) * PRIME32_2; state->v3 = XXH_rotl32(state->v3, 13); state->v3 *= PRIME32_1; p32++; + state->v4 += XXH_readLE32(p32, endian) * PRIME32_2; state->v4 = XXH_rotl32(state->v4, 13); state->v4 *= PRIME32_1; p32++; + } + p += 16-state->memsize; + state->memsize = 0; + } + + if (p <= bEnd-16) + { + const BYTE* const limit = bEnd - 16; + U32 v1 = state->v1; + U32 v2 = state->v2; + U32 v3 = state->v3; + U32 v4 = state->v4; + + do + { + v1 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4; + v2 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4; + v3 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4; + v4 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4; + } while (p<=limit); + + state->v1 = v1; + state->v2 = v2; + state->v3 = v3; + state->v4 = v4; + } + + if (p < bEnd) + { + XXH_memcpy(state->memory, p, bEnd-p); + state->memsize = (int)(bEnd-p); + } + + return XXH_OK; +} + +XXH_errorcode XXH32_update (void* state_in, const void* input, int len) +{ + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH32_update_endian(state_in, input, len, XXH_littleEndian); + else + return XXH32_update_endian(state_in, input, len, XXH_bigEndian); +} + + + +FORCE_INLINE U32 XXH32_intermediateDigest_endian (void* state_in, XXH_endianess endian) +{ + struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; + const BYTE * p = (const BYTE*)state->memory; + BYTE* bEnd = (BYTE*)state->memory + state->memsize; + U32 h32; + + if (state->total_len >= 16) + { + h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); + } + else + { + h32 = state->seed + PRIME32_5; + } + + h32 += (U32) state->total_len; + + while (p<=bEnd-4) + { + h32 += XXH_readLE32((const U32*)p, endian) * PRIME32_3; + h32 = XXH_rotl32(h32, 17) * PRIME32_4; + p+=4; + } + + while (p<bEnd) + { + h32 += (*p) * PRIME32_5; + h32 = XXH_rotl32(h32, 11) * PRIME32_1; + p++; + } + + h32 ^= h32 >> 15; + h32 *= PRIME32_2; + h32 ^= h32 >> 13; + h32 *= PRIME32_3; + h32 ^= h32 >> 16; + + return h32; +} + + +U32 XXH32_intermediateDigest (void* state_in) +{ + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH32_intermediateDigest_endian(state_in, XXH_littleEndian); + else + return XXH32_intermediateDigest_endian(state_in, XXH_bigEndian); +} + + +U32 XXH32_digest (void* state_in) +{ + U32 h32 = XXH32_intermediateDigest(state_in); + + XXH_free(state_in); + + return h32; +} + +/* ******************************************************************* + * 64-bit hash functions + *********************************************************************/ + + #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) + + /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ + static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } + + #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) + + /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ + /* currently only defined for gcc and icc */ + typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64; + static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; } + + #else + + /* portable and safe solution. Generally efficient. + * see : http://stackoverflow.com/a/32095106/646947 + */ + + static U64 XXH_read64(const void* memPtr) + { + U64 val; + memcpy(&val, memPtr, sizeof(val)); + return val; + } +#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ + +#if defined(_MSC_VER) /* Visual Studio */ +#define XXH_swap64 _byteswap_uint64 +#elif XXH_GCC_VERSION >= 403 +#define XXH_swap64 __builtin_bswap64 +#else +static U64 XXH_swap64(U64 x) { + return ((x << 56) & 0xff00000000000000ULL) | + ((x << 40) & 0x00ff000000000000ULL) | + ((x << 24) & 0x0000ff0000000000ULL) | + ((x << 8) & 0x000000ff00000000ULL) | + ((x >> 8) & 0x00000000ff000000ULL) | + ((x >> 24) & 0x0000000000ff0000ULL) | + ((x >> 40) & 0x000000000000ff00ULL) | + ((x >> 56) & 0x00000000000000ffULL); +} +#endif + +FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, + XXH_alignment align) { + if (align == XXH_unaligned) + return endian == XXH_littleEndian ? XXH_read64(ptr) + : XXH_swap64(XXH_read64(ptr)); + else + return endian == XXH_littleEndian ? *(const U64*)ptr + : XXH_swap64(*(const U64*)ptr); +} + +FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) { + return XXH_readLE64_align(ptr, endian, XXH_unaligned); +} + +static U64 XXH_readBE64(const void* ptr) { + return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); +} + +/*====== xxh64 ======*/ + +static const U64 PRIME64_1 = + 11400714785074694791ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 + */ +static const U64 PRIME64_2 = + 14029467366897019727ULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 + */ +static const U64 PRIME64_3 = + 1609587929392839161ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 + */ +static const U64 PRIME64_4 = + 9650029242287828579ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 + */ +static const U64 PRIME64_5 = + 2870177450012600261ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 + */ + +static U64 XXH64_round(U64 acc, U64 input) { + acc += input * PRIME64_2; + acc = XXH_rotl64(acc, 31); + acc *= PRIME64_1; + return acc; +} + +static U64 XXH64_mergeRound(U64 acc, U64 val) { + val = XXH64_round(0, val); + acc ^= val; + acc = acc * PRIME64_1 + PRIME64_4; + return acc; +} + +static U64 XXH64_avalanche(U64 h64) { + h64 ^= h64 >> 33; + h64 *= PRIME64_2; + h64 ^= h64 >> 29; + h64 *= PRIME64_3; + h64 ^= h64 >> 32; + return h64; +} + +#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) + +static U64 XXH64_finalize(U64 h64, const void* ptr, size_t len, + XXH_endianess endian, XXH_alignment align) { + const BYTE* p = (const BYTE*)ptr; + +#define PROCESS1_64 \ + h64 ^= (*p++) * PRIME64_5; \ + h64 = XXH_rotl64(h64, 11) * PRIME64_1; + +#define PROCESS4_64 \ + h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; \ + p += 4; \ + h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; + +#define PROCESS8_64 \ + { \ + U64 const k1 = XXH64_round(0, XXH_get64bits(p)); \ + p += 8; \ + h64 ^= k1; \ + h64 = XXH_rotl64(h64, 27) * PRIME64_1 + PRIME64_4; \ + } + + switch (len & 31) { + case 24: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 16: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 8: + PROCESS8_64; + return XXH64_avalanche(h64); + + case 28: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 20: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 12: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 4: + PROCESS4_64; + return XXH64_avalanche(h64); + + case 25: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 17: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 9: + PROCESS8_64; + PROCESS1_64; + return XXH64_avalanche(h64); + + case 29: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 21: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 13: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 5: + PROCESS4_64; + PROCESS1_64; + return XXH64_avalanche(h64); + + case 26: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 18: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 10: + PROCESS8_64; + PROCESS1_64; + PROCESS1_64; + return XXH64_avalanche(h64); + + case 30: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 22: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 14: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 6: + PROCESS4_64; + PROCESS1_64; + PROCESS1_64; + return XXH64_avalanche(h64); + + case 27: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 19: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 11: + PROCESS8_64; + PROCESS1_64; + PROCESS1_64; + PROCESS1_64; + return XXH64_avalanche(h64); + + case 31: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 23: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 15: + PROCESS8_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 7: + PROCESS4_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 3: + PROCESS1_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 2: + PROCESS1_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 1: + PROCESS1_64; + FALLTHROUGH_INTENDED; + /* fallthrough */ + case 0: + return XXH64_avalanche(h64); + } + + /* impossible to reach */ + assert(0); + return 0; /* unreachable, but some compilers complain without it */ +} + +FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, + XXH_endianess endian, XXH_alignment align) { + const BYTE* p = (const BYTE*)input; + const BYTE* bEnd = p + len; + U64 h64; + +#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ + (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) + if (p == NULL) { + len = 0; + bEnd = p = (const BYTE*)(size_t)32; + } +#endif + + if (len >= 32) { + const BYTE* const limit = bEnd - 32; + U64 v1 = seed + PRIME64_1 + PRIME64_2; + U64 v2 = seed + PRIME64_2; + U64 v3 = seed + 0; + U64 v4 = seed - PRIME64_1; + + do { + v1 = XXH64_round(v1, XXH_get64bits(p)); + p += 8; + v2 = XXH64_round(v2, XXH_get64bits(p)); + p += 8; + v3 = XXH64_round(v3, XXH_get64bits(p)); + p += 8; + v4 = XXH64_round(v4, XXH_get64bits(p)); + p += 8; + } while (p <= limit); + + h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + + XXH_rotl64(v4, 18); + h64 = XXH64_mergeRound(h64, v1); + h64 = XXH64_mergeRound(h64, v2); + h64 = XXH64_mergeRound(h64, v3); + h64 = XXH64_mergeRound(h64, v4); + + } else { + h64 = seed + PRIME64_5; + } + + h64 += (U64)len; + + return XXH64_finalize(h64, p, len, endian, align); +} + +unsigned long long XXH64(const void* input, size_t len, + unsigned long long seed) { +#if 0 + /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ + XXH64_state_t state; + XXH64_reset(&state, seed); + XXH64_update(&state, input, len); + return XXH64_digest(&state); +#else + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + + if (XXH_FORCE_ALIGN_CHECK) { + if ((((size_t)input) & 7) == + 0) { /* Input is aligned, let's leverage the speed advantage */ + if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH64_endian_align(input, len, seed, XXH_littleEndian, + XXH_aligned); + else + return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); + } + } + + if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH64_endian_align(input, len, seed, XXH_littleEndian, + XXH_unaligned); + else + return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); +#endif +} + +/*====== Hash Streaming ======*/ + +XXH64_state_t* XXH64_createState(void) { + return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); +} +XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) { + XXH_free(statePtr); + return XXH_OK; +} + +void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) { + memcpy(dstState, srcState, sizeof(*dstState)); +} + +XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) { + XXH64_state_t state; /* using a local state to memcpy() in order to avoid + strict-aliasing warnings */ + memset(&state, 0, sizeof(state)); + state.v1 = seed + PRIME64_1 + PRIME64_2; + state.v2 = seed + PRIME64_2; + state.v3 = seed + 0; + state.v4 = seed - PRIME64_1; + /* do not write into reserved, planned to be removed in a future version */ + memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); + return XXH_OK; +} + +FORCE_INLINE XXH_errorcode XXH64_update_endian(XXH64_state_t* state, + const void* input, size_t len, + XXH_endianess endian) { + if (input == NULL) +#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ + (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) + return XXH_OK; +#else + return XXH_ERROR; +#endif + + { + const BYTE* p = (const BYTE*)input; + const BYTE* const bEnd = p + len; + + state->total_len += len; + + if (state->memsize + len < 32) { /* fill in tmp buffer */ + XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); + state->memsize += (U32)len; + return XXH_OK; + } + + if (state->memsize) { /* tmp buffer is full */ + XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, + 32 - state->memsize); + state->v1 = + XXH64_round(state->v1, XXH_readLE64(state->mem64 + 0, endian)); + state->v2 = + XXH64_round(state->v2, XXH_readLE64(state->mem64 + 1, endian)); + state->v3 = + XXH64_round(state->v3, XXH_readLE64(state->mem64 + 2, endian)); + state->v4 = + XXH64_round(state->v4, XXH_readLE64(state->mem64 + 3, endian)); + p += 32 - state->memsize; + state->memsize = 0; + } + + if (p + 32 <= bEnd) { + const BYTE* const limit = bEnd - 32; + U64 v1 = state->v1; + U64 v2 = state->v2; + U64 v3 = state->v3; + U64 v4 = state->v4; + + do { + v1 = XXH64_round(v1, XXH_readLE64(p, endian)); + p += 8; + v2 = XXH64_round(v2, XXH_readLE64(p, endian)); + p += 8; + v3 = XXH64_round(v3, XXH_readLE64(p, endian)); + p += 8; + v4 = XXH64_round(v4, XXH_readLE64(p, endian)); + p += 8; + } while (p <= limit); + + state->v1 = v1; + state->v2 = v2; + state->v3 = v3; + state->v4 = v4; + } + + if (p < bEnd) { + XXH_memcpy(state->mem64, p, (size_t)(bEnd - p)); + state->memsize = (unsigned)(bEnd - p); + } + } + + return XXH_OK; +} + +XXH_errorcode XXH64_update(XXH64_state_t* state_in, const void* input, + size_t len) { + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + + if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH64_update_endian(state_in, input, len, XXH_littleEndian); + else + return XXH64_update_endian(state_in, input, len, XXH_bigEndian); +} + +FORCE_INLINE U64 XXH64_digest_endian(const XXH64_state_t* state, + XXH_endianess endian) { + U64 h64; + + if (state->total_len >= 32) { + U64 const v1 = state->v1; + U64 const v2 = state->v2; + U64 const v3 = state->v3; + U64 const v4 = state->v4; + + h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + + XXH_rotl64(v4, 18); + h64 = XXH64_mergeRound(h64, v1); + h64 = XXH64_mergeRound(h64, v2); + h64 = XXH64_mergeRound(h64, v3); + h64 = XXH64_mergeRound(h64, v4); + } else { + h64 = state->v3 /*seed*/ + PRIME64_5; + } + + h64 += (U64)state->total_len; + + return XXH64_finalize(h64, state->mem64, (size_t)state->total_len, endian, + XXH_aligned); +} + +unsigned long long XXH64_digest(const XXH64_state_t* state_in) { + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + + if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH64_digest_endian(state_in, XXH_littleEndian); + else + return XXH64_digest_endian(state_in, XXH_bigEndian); +} + +/*====== Canonical representation ======*/ + +void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) { + XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); + if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); + memcpy(dst, &hash, sizeof(*dst)); +} + +XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) { + return XXH_readBE64(src); +} +} // namespace rocksdb |