summaryrefslogtreecommitdiffstats
path: root/src/seastar/dpdk/lib/librte_acl/acl_bld.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/seastar/dpdk/lib/librte_acl/acl_bld.c
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/seastar/dpdk/lib/librte_acl/acl_bld.c')
-rw-r--r--src/seastar/dpdk/lib/librte_acl/acl_bld.c1598
1 files changed, 1598 insertions, 0 deletions
diff --git a/src/seastar/dpdk/lib/librte_acl/acl_bld.c b/src/seastar/dpdk/lib/librte_acl/acl_bld.c
new file mode 100644
index 00000000..0768cd3b
--- /dev/null
+++ b/src/seastar/dpdk/lib/librte_acl/acl_bld.c
@@ -0,0 +1,1598 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <rte_acl.h>
+#include "tb_mem.h"
+#include "acl.h"
+
+#define ACL_POOL_ALIGN 8
+#define ACL_POOL_ALLOC_MIN 0x800000
+
+/* number of pointers per alloc */
+#define ACL_PTR_ALLOC 32
+
+/* macros for dividing rule sets heuristics */
+#define NODE_MAX 0x4000
+#define NODE_MIN 0x800
+
+/* TALLY are statistics per field */
+enum {
+ TALLY_0 = 0, /* number of rules that are 0% or more wild. */
+ TALLY_25, /* number of rules that are 25% or more wild. */
+ TALLY_50,
+ TALLY_75,
+ TALLY_100,
+ TALLY_DEACTIVATED, /* deactivated fields (100% wild in all rules). */
+ TALLY_DEPTH,
+ /* number of rules that are 100% wild for this field and higher. */
+ TALLY_NUM
+};
+
+static const uint32_t wild_limits[TALLY_DEACTIVATED] = {0, 25, 50, 75, 100};
+
+enum {
+ ACL_INTERSECT_NONE = 0,
+ ACL_INTERSECT_A = 1, /* set A is a superset of A and B intersect */
+ ACL_INTERSECT_B = 2, /* set B is a superset of A and B intersect */
+ ACL_INTERSECT = 4, /* sets A and B intersect */
+};
+
+enum {
+ ACL_PRIORITY_EQUAL = 0,
+ ACL_PRIORITY_NODE_A = 1,
+ ACL_PRIORITY_NODE_B = 2,
+ ACL_PRIORITY_MIXED = 3
+};
+
+
+struct acl_mem_block {
+ uint32_t block_size;
+ void *mem_ptr;
+};
+
+#define MEM_BLOCK_NUM 16
+
+/* Single ACL rule, build representation.*/
+struct rte_acl_build_rule {
+ struct rte_acl_build_rule *next;
+ struct rte_acl_config *config;
+ /**< configuration for each field in the rule. */
+ const struct rte_acl_rule *f;
+ uint32_t *wildness;
+};
+
+/* Context for build phase */
+struct acl_build_context {
+ const struct rte_acl_ctx *acx;
+ struct rte_acl_build_rule *build_rules;
+ struct rte_acl_config cfg;
+ int32_t node_max;
+ int32_t cur_node_max;
+ uint32_t node;
+ uint32_t num_nodes;
+ uint32_t category_mask;
+ uint32_t num_rules;
+ uint32_t node_id;
+ uint32_t src_mask;
+ uint32_t num_build_rules;
+ uint32_t num_tries;
+ struct tb_mem_pool pool;
+ struct rte_acl_trie tries[RTE_ACL_MAX_TRIES];
+ struct rte_acl_bld_trie bld_tries[RTE_ACL_MAX_TRIES];
+ uint32_t data_indexes[RTE_ACL_MAX_TRIES][RTE_ACL_MAX_FIELDS];
+
+ /* memory free lists for nodes and blocks used for node ptrs */
+ struct acl_mem_block blocks[MEM_BLOCK_NUM];
+ struct rte_acl_node *node_free_list;
+};
+
+static int acl_merge_trie(struct acl_build_context *context,
+ struct rte_acl_node *node_a, struct rte_acl_node *node_b,
+ uint32_t level, struct rte_acl_node **node_c);
+
+static void
+acl_deref_ptr(struct acl_build_context *context,
+ struct rte_acl_node *node, int index);
+
+static void *
+acl_build_alloc(struct acl_build_context *context, size_t n, size_t s)
+{
+ uint32_t m;
+ void *p;
+ size_t alloc_size = n * s;
+
+ /*
+ * look for memory in free lists
+ */
+ for (m = 0; m < RTE_DIM(context->blocks); m++) {
+ if (context->blocks[m].block_size ==
+ alloc_size && context->blocks[m].mem_ptr != NULL) {
+ p = context->blocks[m].mem_ptr;
+ context->blocks[m].mem_ptr = *((void **)p);
+ memset(p, 0, alloc_size);
+ return p;
+ }
+ }
+
+ /*
+ * return allocation from memory pool
+ */
+ p = tb_alloc(&context->pool, alloc_size);
+ return p;
+}
+
+/*
+ * Free memory blocks (kept in context for reuse).
+ */
+static void
+acl_build_free(struct acl_build_context *context, size_t s, void *p)
+{
+ uint32_t n;
+
+ for (n = 0; n < RTE_DIM(context->blocks); n++) {
+ if (context->blocks[n].block_size == s) {
+ *((void **)p) = context->blocks[n].mem_ptr;
+ context->blocks[n].mem_ptr = p;
+ return;
+ }
+ }
+ for (n = 0; n < RTE_DIM(context->blocks); n++) {
+ if (context->blocks[n].block_size == 0) {
+ context->blocks[n].block_size = s;
+ *((void **)p) = NULL;
+ context->blocks[n].mem_ptr = p;
+ return;
+ }
+ }
+}
+
+/*
+ * Allocate and initialize a new node.
+ */
+static struct rte_acl_node *
+acl_alloc_node(struct acl_build_context *context, int level)
+{
+ struct rte_acl_node *node;
+
+ if (context->node_free_list != NULL) {
+ node = context->node_free_list;
+ context->node_free_list = node->next;
+ memset(node, 0, sizeof(struct rte_acl_node));
+ } else {
+ node = acl_build_alloc(context, sizeof(struct rte_acl_node), 1);
+ }
+
+ if (node != NULL) {
+ node->num_ptrs = 0;
+ node->level = level;
+ node->node_type = RTE_ACL_NODE_UNDEFINED;
+ node->node_index = RTE_ACL_NODE_UNDEFINED;
+ context->num_nodes++;
+ node->id = context->node_id++;
+ }
+ return node;
+}
+
+/*
+ * Dereference all nodes to which this node points
+ */
+static void
+acl_free_node(struct acl_build_context *context,
+ struct rte_acl_node *node)
+{
+ uint32_t n;
+
+ if (node->prev != NULL)
+ node->prev->next = NULL;
+ for (n = 0; n < node->num_ptrs; n++)
+ acl_deref_ptr(context, node, n);
+
+ /* free mrt if this is a match node */
+ if (node->mrt != NULL) {
+ acl_build_free(context, sizeof(struct rte_acl_match_results),
+ node->mrt);
+ node->mrt = NULL;
+ }
+
+ /* free transitions to other nodes */
+ if (node->ptrs != NULL) {
+ acl_build_free(context,
+ node->max_ptrs * sizeof(struct rte_acl_ptr_set),
+ node->ptrs);
+ node->ptrs = NULL;
+ }
+
+ /* put it on the free list */
+ context->num_nodes--;
+ node->next = context->node_free_list;
+ context->node_free_list = node;
+}
+
+
+/*
+ * Include src bitset in dst bitset
+ */
+static void
+acl_include(struct rte_acl_bitset *dst, struct rte_acl_bitset *src, bits_t mask)
+{
+ uint32_t n;
+
+ for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
+ dst->bits[n] = (dst->bits[n] & mask) | src->bits[n];
+}
+
+/*
+ * Set dst to bits of src1 that are not in src2
+ */
+static int
+acl_exclude(struct rte_acl_bitset *dst,
+ struct rte_acl_bitset *src1,
+ struct rte_acl_bitset *src2)
+{
+ uint32_t n;
+ bits_t all_bits = 0;
+
+ for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
+ dst->bits[n] = src1->bits[n] & ~src2->bits[n];
+ all_bits |= dst->bits[n];
+ }
+ return all_bits != 0;
+}
+
+/*
+ * Add a pointer (ptr) to a node.
+ */
+static int
+acl_add_ptr(struct acl_build_context *context,
+ struct rte_acl_node *node,
+ struct rte_acl_node *ptr,
+ struct rte_acl_bitset *bits)
+{
+ uint32_t n, num_ptrs;
+ struct rte_acl_ptr_set *ptrs = NULL;
+
+ /*
+ * If there's already a pointer to the same node, just add to the bitset
+ */
+ for (n = 0; n < node->num_ptrs; n++) {
+ if (node->ptrs[n].ptr != NULL) {
+ if (node->ptrs[n].ptr == ptr) {
+ acl_include(&node->ptrs[n].values, bits, -1);
+ acl_include(&node->values, bits, -1);
+ return 0;
+ }
+ }
+ }
+
+ /* if there's no room for another pointer, make room */
+ if (node->num_ptrs >= node->max_ptrs) {
+ /* add room for more pointers */
+ num_ptrs = node->max_ptrs + ACL_PTR_ALLOC;
+ ptrs = acl_build_alloc(context, num_ptrs, sizeof(*ptrs));
+
+ /* copy current points to new memory allocation */
+ if (node->ptrs != NULL) {
+ memcpy(ptrs, node->ptrs,
+ node->num_ptrs * sizeof(*ptrs));
+ acl_build_free(context, node->max_ptrs * sizeof(*ptrs),
+ node->ptrs);
+ }
+ node->ptrs = ptrs;
+ node->max_ptrs = num_ptrs;
+ }
+
+ /* Find available ptr and add a new pointer to this node */
+ for (n = node->min_add; n < node->max_ptrs; n++) {
+ if (node->ptrs[n].ptr == NULL) {
+ node->ptrs[n].ptr = ptr;
+ acl_include(&node->ptrs[n].values, bits, 0);
+ acl_include(&node->values, bits, -1);
+ if (ptr != NULL)
+ ptr->ref_count++;
+ if (node->num_ptrs <= n)
+ node->num_ptrs = n + 1;
+ return 0;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Add a pointer for a range of values
+ */
+static int
+acl_add_ptr_range(struct acl_build_context *context,
+ struct rte_acl_node *root,
+ struct rte_acl_node *node,
+ uint8_t low,
+ uint8_t high)
+{
+ uint32_t n;
+ struct rte_acl_bitset bitset;
+
+ /* clear the bitset values */
+ for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
+ bitset.bits[n] = 0;
+
+ /* for each bit in range, add bit to set */
+ for (n = 0; n < UINT8_MAX + 1; n++)
+ if (n >= low && n <= high)
+ bitset.bits[n / (sizeof(bits_t) * 8)] |=
+ 1 << (n % (sizeof(bits_t) * 8));
+
+ return acl_add_ptr(context, root, node, &bitset);
+}
+
+/*
+ * Generate a bitset from a byte value and mask.
+ */
+static int
+acl_gen_mask(struct rte_acl_bitset *bitset, uint32_t value, uint32_t mask)
+{
+ int range = 0;
+ uint32_t n;
+
+ /* clear the bitset values */
+ for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
+ bitset->bits[n] = 0;
+
+ /* for each bit in value/mask, add bit to set */
+ for (n = 0; n < UINT8_MAX + 1; n++) {
+ if ((n & mask) == value) {
+ range++;
+ bitset->bits[n / (sizeof(bits_t) * 8)] |=
+ 1 << (n % (sizeof(bits_t) * 8));
+ }
+ }
+ return range;
+}
+
+/*
+ * Determine how A and B intersect.
+ * Determine if A and/or B are supersets of the intersection.
+ */
+static int
+acl_intersect_type(const struct rte_acl_bitset *a_bits,
+ const struct rte_acl_bitset *b_bits,
+ struct rte_acl_bitset *intersect)
+{
+ uint32_t n;
+ bits_t intersect_bits = 0;
+ bits_t a_superset = 0;
+ bits_t b_superset = 0;
+
+ /*
+ * calculate and store intersection and check if A and/or B have
+ * bits outside the intersection (superset)
+ */
+ for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
+ intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n];
+ a_superset |= a_bits->bits[n] ^ intersect->bits[n];
+ b_superset |= b_bits->bits[n] ^ intersect->bits[n];
+ intersect_bits |= intersect->bits[n];
+ }
+
+ n = (intersect_bits == 0 ? ACL_INTERSECT_NONE : ACL_INTERSECT) |
+ (b_superset == 0 ? 0 : ACL_INTERSECT_B) |
+ (a_superset == 0 ? 0 : ACL_INTERSECT_A);
+
+ return n;
+}
+
+/*
+ * Duplicate a node
+ */
+static struct rte_acl_node *
+acl_dup_node(struct acl_build_context *context, struct rte_acl_node *node)
+{
+ uint32_t n;
+ struct rte_acl_node *next;
+
+ next = acl_alloc_node(context, node->level);
+
+ /* allocate the pointers */
+ if (node->num_ptrs > 0) {
+ next->ptrs = acl_build_alloc(context,
+ node->max_ptrs,
+ sizeof(struct rte_acl_ptr_set));
+ next->max_ptrs = node->max_ptrs;
+ }
+
+ /* copy over the pointers */
+ for (n = 0; n < node->num_ptrs; n++) {
+ if (node->ptrs[n].ptr != NULL) {
+ next->ptrs[n].ptr = node->ptrs[n].ptr;
+ next->ptrs[n].ptr->ref_count++;
+ acl_include(&next->ptrs[n].values,
+ &node->ptrs[n].values, -1);
+ }
+ }
+
+ next->num_ptrs = node->num_ptrs;
+
+ /* copy over node's match results */
+ if (node->match_flag == 0)
+ next->match_flag = 0;
+ else {
+ next->match_flag = -1;
+ next->mrt = acl_build_alloc(context, 1, sizeof(*next->mrt));
+ memcpy(next->mrt, node->mrt, sizeof(*next->mrt));
+ }
+
+ /* copy over node's bitset */
+ acl_include(&next->values, &node->values, -1);
+
+ node->next = next;
+ next->prev = node;
+
+ return next;
+}
+
+/*
+ * Dereference a pointer from a node
+ */
+static void
+acl_deref_ptr(struct acl_build_context *context,
+ struct rte_acl_node *node, int index)
+{
+ struct rte_acl_node *ref_node;
+
+ /* De-reference the node at the specified pointer */
+ if (node != NULL && node->ptrs[index].ptr != NULL) {
+ ref_node = node->ptrs[index].ptr;
+ ref_node->ref_count--;
+ if (ref_node->ref_count == 0)
+ acl_free_node(context, ref_node);
+ }
+}
+
+/*
+ * acl_exclude rte_acl_bitset from src and copy remaining pointer to dst
+ */
+static int
+acl_copy_ptr(struct acl_build_context *context,
+ struct rte_acl_node *dst,
+ struct rte_acl_node *src,
+ int index,
+ struct rte_acl_bitset *b_bits)
+{
+ int rc;
+ struct rte_acl_bitset bits;
+
+ if (b_bits != NULL)
+ if (!acl_exclude(&bits, &src->ptrs[index].values, b_bits))
+ return 0;
+
+ rc = acl_add_ptr(context, dst, src->ptrs[index].ptr, &bits);
+ if (rc < 0)
+ return rc;
+ return 1;
+}
+
+/*
+ * Fill in gaps in ptrs list with the ptr at the end of the list
+ */
+static void
+acl_compact_node_ptrs(struct rte_acl_node *node_a)
+{
+ uint32_t n;
+ int min_add = node_a->min_add;
+
+ while (node_a->num_ptrs > 0 &&
+ node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL)
+ node_a->num_ptrs--;
+
+ for (n = min_add; n + 1 < node_a->num_ptrs; n++) {
+
+ /* if this entry is empty */
+ if (node_a->ptrs[n].ptr == NULL) {
+
+ /* move the last pointer to this entry */
+ acl_include(&node_a->ptrs[n].values,
+ &node_a->ptrs[node_a->num_ptrs - 1].values,
+ 0);
+ node_a->ptrs[n].ptr =
+ node_a->ptrs[node_a->num_ptrs - 1].ptr;
+
+ /*
+ * mark the end as empty and adjust the number
+ * of used pointer enum_tries
+ */
+ node_a->ptrs[node_a->num_ptrs - 1].ptr = NULL;
+ while (node_a->num_ptrs > 0 &&
+ node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL)
+ node_a->num_ptrs--;
+ }
+ }
+}
+
+static int
+acl_resolve_leaf(struct acl_build_context *context,
+ struct rte_acl_node *node_a,
+ struct rte_acl_node *node_b,
+ struct rte_acl_node **node_c)
+{
+ uint32_t n;
+ int combined_priority = ACL_PRIORITY_EQUAL;
+
+ for (n = 0; n < context->cfg.num_categories; n++) {
+ if (node_a->mrt->priority[n] != node_b->mrt->priority[n]) {
+ combined_priority |= (node_a->mrt->priority[n] >
+ node_b->mrt->priority[n]) ?
+ ACL_PRIORITY_NODE_A : ACL_PRIORITY_NODE_B;
+ }
+ }
+
+ /*
+ * if node a is higher or equal priority for all categories,
+ * then return node_a.
+ */
+ if (combined_priority == ACL_PRIORITY_NODE_A ||
+ combined_priority == ACL_PRIORITY_EQUAL) {
+ *node_c = node_a;
+ return 0;
+ }
+
+ /*
+ * if node b is higher or equal priority for all categories,
+ * then return node_b.
+ */
+ if (combined_priority == ACL_PRIORITY_NODE_B) {
+ *node_c = node_b;
+ return 0;
+ }
+
+ /*
+ * mixed priorities - create a new node with the highest priority
+ * for each category.
+ */
+
+ /* force new duplication. */
+ node_a->next = NULL;
+
+ *node_c = acl_dup_node(context, node_a);
+ for (n = 0; n < context->cfg.num_categories; n++) {
+ if ((*node_c)->mrt->priority[n] < node_b->mrt->priority[n]) {
+ (*node_c)->mrt->priority[n] = node_b->mrt->priority[n];
+ (*node_c)->mrt->results[n] = node_b->mrt->results[n];
+ }
+ }
+ return 0;
+}
+
+/*
+ * Merge nodes A and B together,
+ * returns a node that is the path for the intersection
+ *
+ * If match node (leaf on trie)
+ * For each category
+ * return node = highest priority result
+ *
+ * Create C as a duplicate of A to point to child intersections
+ * If any pointers in C intersect with any in B
+ * For each intersection
+ * merge children
+ * remove intersection from C pointer
+ * add a pointer from C to child intersection node
+ * Compact the pointers in A and B
+ * Copy any B pointers that are outside of the intersection to C
+ * If C has no references to the B trie
+ * free C and return A
+ * Else If C has no references to the A trie
+ * free C and return B
+ * Else
+ * return C
+ */
+static int
+acl_merge_trie(struct acl_build_context *context,
+ struct rte_acl_node *node_a, struct rte_acl_node *node_b,
+ uint32_t level, struct rte_acl_node **return_c)
+{
+ uint32_t n, m, ptrs_c, ptrs_b;
+ uint32_t min_add_c, min_add_b;
+ int node_intersect_type;
+ struct rte_acl_bitset node_intersect;
+ struct rte_acl_node *node_c;
+ struct rte_acl_node *node_a_next;
+ int node_b_refs;
+ int node_a_refs;
+
+ node_c = node_a;
+ node_a_next = node_a->next;
+ min_add_c = 0;
+ min_add_b = 0;
+ node_a_refs = node_a->num_ptrs;
+ node_b_refs = 0;
+ node_intersect_type = 0;
+
+ /* Resolve leaf nodes (matches) */
+ if (node_a->match_flag != 0) {
+ acl_resolve_leaf(context, node_a, node_b, return_c);
+ return 0;
+ }
+
+ /*
+ * Create node C as a copy of node A, and do: C = merge(A,B);
+ * If node A can be used instead (A==C), then later we'll
+ * destroy C and return A.
+ */
+ if (level > 0)
+ node_c = acl_dup_node(context, node_a);
+
+ /*
+ * If the two node transitions intersect then merge the transitions.
+ * Check intersection for entire node (all pointers)
+ */
+ node_intersect_type = acl_intersect_type(&node_c->values,
+ &node_b->values,
+ &node_intersect);
+
+ if (node_intersect_type & ACL_INTERSECT) {
+
+ min_add_b = node_b->min_add;
+ node_b->min_add = node_b->num_ptrs;
+ ptrs_b = node_b->num_ptrs;
+
+ min_add_c = node_c->min_add;
+ node_c->min_add = node_c->num_ptrs;
+ ptrs_c = node_c->num_ptrs;
+
+ for (n = 0; n < ptrs_c; n++) {
+ if (node_c->ptrs[n].ptr == NULL) {
+ node_a_refs--;
+ continue;
+ }
+ node_c->ptrs[n].ptr->next = NULL;
+ for (m = 0; m < ptrs_b; m++) {
+
+ struct rte_acl_bitset child_intersect;
+ int child_intersect_type;
+ struct rte_acl_node *child_node_c = NULL;
+
+ if (node_b->ptrs[m].ptr == NULL ||
+ node_c->ptrs[n].ptr ==
+ node_b->ptrs[m].ptr)
+ continue;
+
+ child_intersect_type = acl_intersect_type(
+ &node_c->ptrs[n].values,
+ &node_b->ptrs[m].values,
+ &child_intersect);
+
+ if ((child_intersect_type & ACL_INTERSECT) !=
+ 0) {
+ if (acl_merge_trie(context,
+ node_c->ptrs[n].ptr,
+ node_b->ptrs[m].ptr,
+ level + 1,
+ &child_node_c))
+ return 1;
+
+ if (child_node_c != NULL &&
+ child_node_c !=
+ node_c->ptrs[n].ptr) {
+
+ node_b_refs++;
+
+ /*
+ * Added link from C to
+ * child_C for all transitions
+ * in the intersection.
+ */
+ acl_add_ptr(context, node_c,
+ child_node_c,
+ &child_intersect);
+
+ /*
+ * inc refs if pointer is not
+ * to node b.
+ */
+ node_a_refs += (child_node_c !=
+ node_b->ptrs[m].ptr);
+
+ /*
+ * Remove intersection from C
+ * pointer.
+ */
+ if (!acl_exclude(
+ &node_c->ptrs[n].values,
+ &node_c->ptrs[n].values,
+ &child_intersect)) {
+ acl_deref_ptr(context,
+ node_c, n);
+ node_c->ptrs[n].ptr =
+ NULL;
+ node_a_refs--;
+ }
+ }
+ }
+ }
+ }
+
+ /* Compact pointers */
+ node_c->min_add = min_add_c;
+ acl_compact_node_ptrs(node_c);
+ node_b->min_add = min_add_b;
+ acl_compact_node_ptrs(node_b);
+ }
+
+ /*
+ * Copy pointers outside of the intersection from B to C
+ */
+ if ((node_intersect_type & ACL_INTERSECT_B) != 0) {
+ node_b_refs++;
+ for (m = 0; m < node_b->num_ptrs; m++)
+ if (node_b->ptrs[m].ptr != NULL)
+ acl_copy_ptr(context, node_c,
+ node_b, m, &node_intersect);
+ }
+
+ /*
+ * Free node C if top of trie is contained in A or B
+ * if node C is a duplicate of node A &&
+ * node C was not an existing duplicate
+ */
+ if (node_c != node_a && node_c != node_a_next) {
+
+ /*
+ * if the intersection has no references to the
+ * B side, then it is contained in A
+ */
+ if (node_b_refs == 0) {
+ acl_free_node(context, node_c);
+ node_c = node_a;
+ } else {
+ /*
+ * if the intersection has no references to the
+ * A side, then it is contained in B.
+ */
+ if (node_a_refs == 0) {
+ acl_free_node(context, node_c);
+ node_c = node_b;
+ }
+ }
+ }
+
+ if (return_c != NULL)
+ *return_c = node_c;
+
+ if (level == 0)
+ acl_free_node(context, node_b);
+
+ return 0;
+}
+
+/*
+ * Reset current runtime fields before next build:
+ * - free allocated RT memory.
+ * - reset all RT related fields to zero.
+ */
+static void
+acl_build_reset(struct rte_acl_ctx *ctx)
+{
+ rte_free(ctx->mem);
+ memset(&ctx->num_categories, 0,
+ sizeof(*ctx) - offsetof(struct rte_acl_ctx, num_categories));
+}
+
+static void
+acl_gen_range(struct acl_build_context *context,
+ const uint8_t *hi, const uint8_t *lo, int size, int level,
+ struct rte_acl_node *root, struct rte_acl_node *end)
+{
+ struct rte_acl_node *node, *prev;
+ uint32_t n;
+
+ prev = root;
+ for (n = size - 1; n > 0; n--) {
+ node = acl_alloc_node(context, level++);
+ acl_add_ptr_range(context, prev, node, lo[n], hi[n]);
+ prev = node;
+ }
+ acl_add_ptr_range(context, prev, end, lo[0], hi[0]);
+}
+
+static struct rte_acl_node *
+acl_gen_range_trie(struct acl_build_context *context,
+ const void *min, const void *max,
+ int size, int level, struct rte_acl_node **pend)
+{
+ int32_t n;
+ struct rte_acl_node *root;
+ const uint8_t *lo = min;
+ const uint8_t *hi = max;
+
+ *pend = acl_alloc_node(context, level+size);
+ root = acl_alloc_node(context, level++);
+
+ if (lo[size - 1] == hi[size - 1]) {
+ acl_gen_range(context, hi, lo, size, level, root, *pend);
+ } else {
+ uint8_t limit_lo[64];
+ uint8_t limit_hi[64];
+ uint8_t hi_ff = UINT8_MAX;
+ uint8_t lo_00 = 0;
+
+ memset(limit_lo, 0, RTE_DIM(limit_lo));
+ memset(limit_hi, UINT8_MAX, RTE_DIM(limit_hi));
+
+ for (n = size - 2; n >= 0; n--) {
+ hi_ff = (uint8_t)(hi_ff & hi[n]);
+ lo_00 = (uint8_t)(lo_00 | lo[n]);
+ }
+
+ if (hi_ff != UINT8_MAX) {
+ limit_lo[size - 1] = hi[size - 1];
+ acl_gen_range(context, hi, limit_lo, size, level,
+ root, *pend);
+ }
+
+ if (lo_00 != 0) {
+ limit_hi[size - 1] = lo[size - 1];
+ acl_gen_range(context, limit_hi, lo, size, level,
+ root, *pend);
+ }
+
+ if (hi[size - 1] - lo[size - 1] > 1 ||
+ lo_00 == 0 ||
+ hi_ff == UINT8_MAX) {
+ limit_lo[size-1] = (uint8_t)(lo[size-1] + (lo_00 != 0));
+ limit_hi[size-1] = (uint8_t)(hi[size-1] -
+ (hi_ff != UINT8_MAX));
+ acl_gen_range(context, limit_hi, limit_lo, size,
+ level, root, *pend);
+ }
+ }
+ return root;
+}
+
+static struct rte_acl_node *
+acl_gen_mask_trie(struct acl_build_context *context,
+ const void *value, const void *mask,
+ int size, int level, struct rte_acl_node **pend)
+{
+ int32_t n;
+ struct rte_acl_node *root;
+ struct rte_acl_node *node, *prev;
+ struct rte_acl_bitset bits;
+ const uint8_t *val = value;
+ const uint8_t *msk = mask;
+
+ root = acl_alloc_node(context, level++);
+ prev = root;
+
+ for (n = size - 1; n >= 0; n--) {
+ node = acl_alloc_node(context, level++);
+ acl_gen_mask(&bits, val[n] & msk[n], msk[n]);
+ acl_add_ptr(context, prev, node, &bits);
+ prev = node;
+ }
+
+ *pend = prev;
+ return root;
+}
+
+static struct rte_acl_node *
+build_trie(struct acl_build_context *context, struct rte_acl_build_rule *head,
+ struct rte_acl_build_rule **last, uint32_t *count)
+{
+ uint32_t n, m;
+ int field_index, node_count;
+ struct rte_acl_node *trie;
+ struct rte_acl_build_rule *prev, *rule;
+ struct rte_acl_node *end, *merge, *root, *end_prev;
+ const struct rte_acl_field *fld;
+
+ prev = head;
+ rule = head;
+ *last = prev;
+
+ trie = acl_alloc_node(context, 0);
+
+ while (rule != NULL) {
+
+ root = acl_alloc_node(context, 0);
+
+ root->ref_count = 1;
+ end = root;
+
+ for (n = 0; n < rule->config->num_fields; n++) {
+
+ field_index = rule->config->defs[n].field_index;
+ fld = rule->f->field + field_index;
+ end_prev = end;
+
+ /* build a mini-trie for this field */
+ switch (rule->config->defs[n].type) {
+
+ case RTE_ACL_FIELD_TYPE_BITMASK:
+ merge = acl_gen_mask_trie(context,
+ &fld->value,
+ &fld->mask_range,
+ rule->config->defs[n].size,
+ end->level + 1,
+ &end);
+ break;
+
+ case RTE_ACL_FIELD_TYPE_MASK:
+ {
+ /*
+ * set msb for the size of the field and
+ * all higher bits.
+ */
+ uint64_t mask;
+ mask = RTE_ACL_MASKLEN_TO_BITMASK(
+ fld->mask_range.u32,
+ rule->config->defs[n].size);
+
+ /* gen a mini-trie for this field */
+ merge = acl_gen_mask_trie(context,
+ &fld->value,
+ (char *)&mask,
+ rule->config->defs[n].size,
+ end->level + 1,
+ &end);
+ }
+ break;
+
+ case RTE_ACL_FIELD_TYPE_RANGE:
+ merge = acl_gen_range_trie(context,
+ &rule->f->field[field_index].value,
+ &rule->f->field[field_index].mask_range,
+ rule->config->defs[n].size,
+ end->level + 1,
+ &end);
+ break;
+
+ default:
+ RTE_LOG(ERR, ACL,
+ "Error in rule[%u] type - %hhu\n",
+ rule->f->data.userdata,
+ rule->config->defs[n].type);
+ return NULL;
+ }
+
+ /* merge this field on to the end of the rule */
+ if (acl_merge_trie(context, end_prev, merge, 0,
+ NULL) != 0) {
+ return NULL;
+ }
+ }
+
+ end->match_flag = ++context->num_build_rules;
+
+ /*
+ * Setup the results for this rule.
+ * The result and priority of each category.
+ */
+ if (end->mrt == NULL)
+ end->mrt = acl_build_alloc(context, 1,
+ sizeof(*end->mrt));
+
+ for (m = context->cfg.num_categories; 0 != m--; ) {
+ if (rule->f->data.category_mask & (1 << m)) {
+ end->mrt->results[m] = rule->f->data.userdata;
+ end->mrt->priority[m] = rule->f->data.priority;
+ } else {
+ end->mrt->results[m] = 0;
+ end->mrt->priority[m] = 0;
+ }
+ }
+
+ node_count = context->num_nodes;
+ (*count)++;
+
+ /* merge this rule into the trie */
+ if (acl_merge_trie(context, trie, root, 0, NULL))
+ return NULL;
+
+ node_count = context->num_nodes - node_count;
+ if (node_count > context->cur_node_max) {
+ *last = prev;
+ return trie;
+ }
+
+ prev = rule;
+ rule = rule->next;
+ }
+
+ *last = NULL;
+ return trie;
+}
+
+static void
+acl_calc_wildness(struct rte_acl_build_rule *head,
+ const struct rte_acl_config *config)
+{
+ uint32_t n;
+ struct rte_acl_build_rule *rule;
+
+ for (rule = head; rule != NULL; rule = rule->next) {
+
+ for (n = 0; n < config->num_fields; n++) {
+
+ double wild = 0;
+ uint32_t bit_len = CHAR_BIT * config->defs[n].size;
+ uint64_t msk_val = RTE_LEN2MASK(bit_len,
+ typeof(msk_val));
+ double size = bit_len;
+ int field_index = config->defs[n].field_index;
+ const struct rte_acl_field *fld = rule->f->field +
+ field_index;
+
+ switch (rule->config->defs[n].type) {
+ case RTE_ACL_FIELD_TYPE_BITMASK:
+ wild = (size - __builtin_popcountll(
+ fld->mask_range.u64 & msk_val)) /
+ size;
+ break;
+
+ case RTE_ACL_FIELD_TYPE_MASK:
+ wild = (size - fld->mask_range.u32) / size;
+ break;
+
+ case RTE_ACL_FIELD_TYPE_RANGE:
+ wild = (fld->mask_range.u64 & msk_val) -
+ (fld->value.u64 & msk_val);
+ wild = wild / msk_val;
+ break;
+ }
+
+ rule->wildness[field_index] = (uint32_t)(wild * 100);
+ }
+ }
+}
+
+static void
+acl_rule_stats(struct rte_acl_build_rule *head, struct rte_acl_config *config)
+{
+ struct rte_acl_build_rule *rule;
+ uint32_t n, m, fields_deactivated = 0;
+ uint32_t start = 0, deactivate = 0;
+ int tally[RTE_ACL_MAX_LEVELS][TALLY_NUM];
+
+ memset(tally, 0, sizeof(tally));
+
+ for (rule = head; rule != NULL; rule = rule->next) {
+
+ for (n = 0; n < config->num_fields; n++) {
+ uint32_t field_index = config->defs[n].field_index;
+
+ tally[n][TALLY_0]++;
+ for (m = 1; m < RTE_DIM(wild_limits); m++) {
+ if (rule->wildness[field_index] >=
+ wild_limits[m])
+ tally[n][m]++;
+ }
+ }
+
+ for (n = config->num_fields - 1; n > 0; n--) {
+ uint32_t field_index = config->defs[n].field_index;
+
+ if (rule->wildness[field_index] == 100)
+ tally[n][TALLY_DEPTH]++;
+ else
+ break;
+ }
+ }
+
+ /*
+ * Look for any field that is always wild and drop it from the config
+ * Only deactivate if all fields for a given input loop are deactivated.
+ */
+ for (n = 1; n < config->num_fields; n++) {
+ if (config->defs[n].input_index !=
+ config->defs[n - 1].input_index) {
+ for (m = start; m < n; m++)
+ tally[m][TALLY_DEACTIVATED] = deactivate;
+ fields_deactivated += deactivate;
+ start = n;
+ deactivate = 1;
+ }
+
+ /* if the field is not always completely wild */
+ if (tally[n][TALLY_100] != tally[n][TALLY_0])
+ deactivate = 0;
+ }
+
+ for (m = start; m < n; m++)
+ tally[m][TALLY_DEACTIVATED] = deactivate;
+
+ fields_deactivated += deactivate;
+
+ /* remove deactivated fields */
+ if (fields_deactivated) {
+ uint32_t k, l = 0;
+
+ for (k = 0; k < config->num_fields; k++) {
+ if (tally[k][TALLY_DEACTIVATED] == 0) {
+ memmove(&tally[l][0], &tally[k][0],
+ TALLY_NUM * sizeof(tally[0][0]));
+ memmove(&config->defs[l++],
+ &config->defs[k],
+ sizeof(struct rte_acl_field_def));
+ }
+ }
+ config->num_fields = l;
+ }
+}
+
+static int
+rule_cmp_wildness(struct rte_acl_build_rule *r1, struct rte_acl_build_rule *r2)
+{
+ uint32_t n;
+
+ for (n = 1; n < r1->config->num_fields; n++) {
+ int field_index = r1->config->defs[n].field_index;
+
+ if (r1->wildness[field_index] != r2->wildness[field_index])
+ return r1->wildness[field_index] -
+ r2->wildness[field_index];
+ }
+ return 0;
+}
+
+/*
+ * Split the rte_acl_build_rule list into two lists.
+ */
+static void
+rule_list_split(struct rte_acl_build_rule *source,
+ struct rte_acl_build_rule **list_a,
+ struct rte_acl_build_rule **list_b)
+{
+ struct rte_acl_build_rule *fast;
+ struct rte_acl_build_rule *slow;
+
+ if (source == NULL || source->next == NULL) {
+ /* length < 2 cases */
+ *list_a = source;
+ *list_b = NULL;
+ } else {
+ slow = source;
+ fast = source->next;
+ /* Advance 'fast' two nodes, and advance 'slow' one node */
+ while (fast != NULL) {
+ fast = fast->next;
+ if (fast != NULL) {
+ slow = slow->next;
+ fast = fast->next;
+ }
+ }
+ /* 'slow' is before the midpoint in the list, so split it in two
+ at that point. */
+ *list_a = source;
+ *list_b = slow->next;
+ slow->next = NULL;
+ }
+}
+
+/*
+ * Merge two sorted lists.
+ */
+static struct rte_acl_build_rule *
+rule_list_sorted_merge(struct rte_acl_build_rule *a,
+ struct rte_acl_build_rule *b)
+{
+ struct rte_acl_build_rule *result = NULL;
+ struct rte_acl_build_rule **last_next = &result;
+
+ while (1) {
+ if (a == NULL) {
+ *last_next = b;
+ break;
+ } else if (b == NULL) {
+ *last_next = a;
+ break;
+ }
+ if (rule_cmp_wildness(a, b) >= 0) {
+ *last_next = a;
+ last_next = &a->next;
+ a = a->next;
+ } else {
+ *last_next = b;
+ last_next = &b->next;
+ b = b->next;
+ }
+ }
+ return result;
+}
+
+/*
+ * Sort list of rules based on the rules wildness.
+ * Use recursive mergesort algorithm.
+ */
+static struct rte_acl_build_rule *
+sort_rules(struct rte_acl_build_rule *head)
+{
+ struct rte_acl_build_rule *a;
+ struct rte_acl_build_rule *b;
+
+ /* Base case -- length 0 or 1 */
+ if (head == NULL || head->next == NULL)
+ return head;
+
+ /* Split head into 'a' and 'b' sublists */
+ rule_list_split(head, &a, &b);
+
+ /* Recursively sort the sublists */
+ a = sort_rules(a);
+ b = sort_rules(b);
+
+ /* answer = merge the two sorted lists together */
+ return rule_list_sorted_merge(a, b);
+}
+
+static uint32_t
+acl_build_index(const struct rte_acl_config *config, uint32_t *data_index)
+{
+ uint32_t n, m;
+ int32_t last_header;
+
+ m = 0;
+ last_header = -1;
+
+ for (n = 0; n < config->num_fields; n++) {
+ if (last_header != config->defs[n].input_index) {
+ last_header = config->defs[n].input_index;
+ data_index[m++] = config->defs[n].offset;
+ }
+ }
+
+ return m;
+}
+
+static struct rte_acl_build_rule *
+build_one_trie(struct acl_build_context *context,
+ struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES],
+ uint32_t n, int32_t node_max)
+{
+ struct rte_acl_build_rule *last;
+ struct rte_acl_config *config;
+
+ config = rule_sets[n]->config;
+
+ acl_rule_stats(rule_sets[n], config);
+ rule_sets[n] = sort_rules(rule_sets[n]);
+
+ context->tries[n].type = RTE_ACL_FULL_TRIE;
+ context->tries[n].count = 0;
+
+ context->tries[n].num_data_indexes = acl_build_index(config,
+ context->data_indexes[n]);
+ context->tries[n].data_index = context->data_indexes[n];
+
+ context->cur_node_max = node_max;
+
+ context->bld_tries[n].trie = build_trie(context, rule_sets[n],
+ &last, &context->tries[n].count);
+
+ return last;
+}
+
+static int
+acl_build_tries(struct acl_build_context *context,
+ struct rte_acl_build_rule *head)
+{
+ uint32_t n, num_tries;
+ struct rte_acl_config *config;
+ struct rte_acl_build_rule *last;
+ struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES];
+
+ config = head->config;
+ rule_sets[0] = head;
+
+ /* initialize tries */
+ for (n = 0; n < RTE_DIM(context->tries); n++) {
+ context->tries[n].type = RTE_ACL_UNUSED_TRIE;
+ context->bld_tries[n].trie = NULL;
+ context->tries[n].count = 0;
+ }
+
+ context->tries[0].type = RTE_ACL_FULL_TRIE;
+
+ /* calc wildness of each field of each rule */
+ acl_calc_wildness(head, config);
+
+ for (n = 0;; n = num_tries) {
+
+ num_tries = n + 1;
+
+ last = build_one_trie(context, rule_sets, n, context->node_max);
+ if (context->bld_tries[n].trie == NULL) {
+ RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n);
+ return -ENOMEM;
+ }
+
+ /* Build of the last trie completed. */
+ if (last == NULL)
+ break;
+
+ if (num_tries == RTE_DIM(context->tries)) {
+ RTE_LOG(ERR, ACL,
+ "Exceeded max number of tries: %u\n",
+ num_tries);
+ return -ENOMEM;
+ }
+
+ /* Trie is getting too big, split remaining rule set. */
+ rule_sets[num_tries] = last->next;
+ last->next = NULL;
+ acl_free_node(context, context->bld_tries[n].trie);
+
+ /* Create a new copy of config for remaining rules. */
+ config = acl_build_alloc(context, 1, sizeof(*config));
+ memcpy(config, rule_sets[n]->config, sizeof(*config));
+
+ /* Make remaining rules use new config. */
+ for (head = rule_sets[num_tries]; head != NULL;
+ head = head->next)
+ head->config = config;
+
+ /*
+ * Rebuild the trie for the reduced rule-set.
+ * Don't try to split it any further.
+ */
+ last = build_one_trie(context, rule_sets, n, INT32_MAX);
+ if (context->bld_tries[n].trie == NULL || last != NULL) {
+ RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n);
+ return -ENOMEM;
+ }
+
+ }
+
+ context->num_tries = num_tries;
+ return 0;
+}
+
+static void
+acl_build_log(const struct acl_build_context *ctx)
+{
+ uint32_t n;
+
+ RTE_LOG(DEBUG, ACL, "Build phase for ACL \"%s\":\n"
+ "node limit for tree split: %u\n"
+ "nodes created: %u\n"
+ "memory consumed: %zu\n",
+ ctx->acx->name,
+ ctx->node_max,
+ ctx->num_nodes,
+ ctx->pool.alloc);
+
+ for (n = 0; n < RTE_DIM(ctx->tries); n++) {
+ if (ctx->tries[n].count != 0)
+ RTE_LOG(DEBUG, ACL,
+ "trie %u: number of rules: %u, indexes: %u\n",
+ n, ctx->tries[n].count,
+ ctx->tries[n].num_data_indexes);
+ }
+}
+
+static int
+acl_build_rules(struct acl_build_context *bcx)
+{
+ struct rte_acl_build_rule *br, *head;
+ const struct rte_acl_rule *rule;
+ uint32_t *wp;
+ uint32_t fn, i, n, num;
+ size_t ofs, sz;
+
+ fn = bcx->cfg.num_fields;
+ n = bcx->acx->num_rules;
+ ofs = n * sizeof(*br);
+ sz = ofs + n * fn * sizeof(*wp);
+
+ br = tb_alloc(&bcx->pool, sz);
+
+ wp = (uint32_t *)((uintptr_t)br + ofs);
+ num = 0;
+ head = NULL;
+
+ for (i = 0; i != n; i++) {
+ rule = (const struct rte_acl_rule *)
+ ((uintptr_t)bcx->acx->rules + bcx->acx->rule_sz * i);
+ if ((rule->data.category_mask & bcx->category_mask) != 0) {
+ br[num].next = head;
+ br[num].config = &bcx->cfg;
+ br[num].f = rule;
+ br[num].wildness = wp;
+ wp += fn;
+ head = br + num;
+ num++;
+ }
+ }
+
+ bcx->num_rules = num;
+ bcx->build_rules = head;
+
+ return 0;
+}
+
+/*
+ * Copy data_indexes for each trie into RT location.
+ */
+static void
+acl_set_data_indexes(struct rte_acl_ctx *ctx)
+{
+ uint32_t i, n, ofs;
+
+ ofs = 0;
+ for (i = 0; i != ctx->num_tries; i++) {
+ n = ctx->trie[i].num_data_indexes;
+ memcpy(ctx->data_indexes + ofs, ctx->trie[i].data_index,
+ n * sizeof(ctx->data_indexes[0]));
+ ctx->trie[i].data_index = ctx->data_indexes + ofs;
+ ofs += RTE_ACL_MAX_FIELDS;
+ }
+}
+
+/*
+ * Internal routine, performs 'build' phase of trie generation:
+ * - setups build context.
+ * - analizes given set of rules.
+ * - builds internal tree(s).
+ */
+static int
+acl_bld(struct acl_build_context *bcx, struct rte_acl_ctx *ctx,
+ const struct rte_acl_config *cfg, uint32_t node_max)
+{
+ int32_t rc;
+
+ /* setup build context. */
+ memset(bcx, 0, sizeof(*bcx));
+ bcx->acx = ctx;
+ bcx->pool.alignment = ACL_POOL_ALIGN;
+ bcx->pool.min_alloc = ACL_POOL_ALLOC_MIN;
+ bcx->cfg = *cfg;
+ bcx->category_mask = RTE_LEN2MASK(bcx->cfg.num_categories,
+ typeof(bcx->category_mask));
+ bcx->node_max = node_max;
+
+ rc = sigsetjmp(bcx->pool.fail, 0);
+
+ /* build phase runs out of memory. */
+ if (rc != 0) {
+ RTE_LOG(ERR, ACL,
+ "ACL context: %s, %s() failed with error code: %d\n",
+ bcx->acx->name, __func__, rc);
+ return rc;
+ }
+
+ /* Create a build rules copy. */
+ rc = acl_build_rules(bcx);
+ if (rc != 0)
+ return rc;
+
+ /* No rules to build for that context+config */
+ if (bcx->build_rules == NULL) {
+ rc = -EINVAL;
+ } else {
+ /* build internal trie representation. */
+ rc = acl_build_tries(bcx, bcx->build_rules);
+ }
+ return rc;
+}
+
+/*
+ * Check that parameters for acl_build() are valid.
+ */
+static int
+acl_check_bld_param(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg)
+{
+ static const size_t field_sizes[] = {
+ sizeof(uint8_t), sizeof(uint16_t),
+ sizeof(uint32_t), sizeof(uint64_t),
+ };
+
+ uint32_t i, j;
+
+ if (ctx == NULL || cfg == NULL || cfg->num_categories == 0 ||
+ cfg->num_categories > RTE_ACL_MAX_CATEGORIES ||
+ cfg->num_fields == 0 ||
+ cfg->num_fields > RTE_ACL_MAX_FIELDS)
+ return -EINVAL;
+
+ for (i = 0; i != cfg->num_fields; i++) {
+ if (cfg->defs[i].type > RTE_ACL_FIELD_TYPE_BITMASK) {
+ RTE_LOG(ERR, ACL,
+ "ACL context: %s, invalid type: %hhu for %u-th field\n",
+ ctx->name, cfg->defs[i].type, i);
+ return -EINVAL;
+ }
+ for (j = 0;
+ j != RTE_DIM(field_sizes) &&
+ cfg->defs[i].size != field_sizes[j];
+ j++)
+ ;
+
+ if (j == RTE_DIM(field_sizes)) {
+ RTE_LOG(ERR, ACL,
+ "ACL context: %s, invalid size: %hhu for %u-th field\n",
+ ctx->name, cfg->defs[i].size, i);
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+int
+rte_acl_build(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg)
+{
+ int32_t rc;
+ uint32_t n;
+ size_t max_size;
+ struct acl_build_context bcx;
+
+ rc = acl_check_bld_param(ctx, cfg);
+ if (rc != 0)
+ return rc;
+
+ acl_build_reset(ctx);
+
+ if (cfg->max_size == 0) {
+ n = NODE_MIN;
+ max_size = SIZE_MAX;
+ } else {
+ n = NODE_MAX;
+ max_size = cfg->max_size;
+ }
+
+ for (rc = -ERANGE; n >= NODE_MIN && rc == -ERANGE; n /= 2) {
+
+ /* perform build phase. */
+ rc = acl_bld(&bcx, ctx, cfg, n);
+
+ if (rc == 0) {
+ /* allocate and fill run-time structures. */
+ rc = rte_acl_gen(ctx, bcx.tries, bcx.bld_tries,
+ bcx.num_tries, bcx.cfg.num_categories,
+ RTE_ACL_MAX_FIELDS * RTE_DIM(bcx.tries) *
+ sizeof(ctx->data_indexes[0]), max_size);
+ if (rc == 0) {
+ /* set data indexes. */
+ acl_set_data_indexes(ctx);
+
+ /* copy in build config. */
+ ctx->config = *cfg;
+ }
+ }
+
+ acl_build_log(&bcx);
+
+ /* cleanup after build. */
+ tb_free_pool(&bcx.pool);
+ }
+
+ return rc;
+}