diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/seastar/dpdk/lib/librte_acl/acl_bld.c | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/seastar/dpdk/lib/librte_acl/acl_bld.c')
-rw-r--r-- | src/seastar/dpdk/lib/librte_acl/acl_bld.c | 1598 |
1 files changed, 1598 insertions, 0 deletions
diff --git a/src/seastar/dpdk/lib/librte_acl/acl_bld.c b/src/seastar/dpdk/lib/librte_acl/acl_bld.c new file mode 100644 index 00000000..0768cd3b --- /dev/null +++ b/src/seastar/dpdk/lib/librte_acl/acl_bld.c @@ -0,0 +1,1598 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include <rte_acl.h> +#include "tb_mem.h" +#include "acl.h" + +#define ACL_POOL_ALIGN 8 +#define ACL_POOL_ALLOC_MIN 0x800000 + +/* number of pointers per alloc */ +#define ACL_PTR_ALLOC 32 + +/* macros for dividing rule sets heuristics */ +#define NODE_MAX 0x4000 +#define NODE_MIN 0x800 + +/* TALLY are statistics per field */ +enum { + TALLY_0 = 0, /* number of rules that are 0% or more wild. */ + TALLY_25, /* number of rules that are 25% or more wild. */ + TALLY_50, + TALLY_75, + TALLY_100, + TALLY_DEACTIVATED, /* deactivated fields (100% wild in all rules). */ + TALLY_DEPTH, + /* number of rules that are 100% wild for this field and higher. */ + TALLY_NUM +}; + +static const uint32_t wild_limits[TALLY_DEACTIVATED] = {0, 25, 50, 75, 100}; + +enum { + ACL_INTERSECT_NONE = 0, + ACL_INTERSECT_A = 1, /* set A is a superset of A and B intersect */ + ACL_INTERSECT_B = 2, /* set B is a superset of A and B intersect */ + ACL_INTERSECT = 4, /* sets A and B intersect */ +}; + +enum { + ACL_PRIORITY_EQUAL = 0, + ACL_PRIORITY_NODE_A = 1, + ACL_PRIORITY_NODE_B = 2, + ACL_PRIORITY_MIXED = 3 +}; + + +struct acl_mem_block { + uint32_t block_size; + void *mem_ptr; +}; + +#define MEM_BLOCK_NUM 16 + +/* Single ACL rule, build representation.*/ +struct rte_acl_build_rule { + struct rte_acl_build_rule *next; + struct rte_acl_config *config; + /**< configuration for each field in the rule. */ + const struct rte_acl_rule *f; + uint32_t *wildness; +}; + +/* Context for build phase */ +struct acl_build_context { + const struct rte_acl_ctx *acx; + struct rte_acl_build_rule *build_rules; + struct rte_acl_config cfg; + int32_t node_max; + int32_t cur_node_max; + uint32_t node; + uint32_t num_nodes; + uint32_t category_mask; + uint32_t num_rules; + uint32_t node_id; + uint32_t src_mask; + uint32_t num_build_rules; + uint32_t num_tries; + struct tb_mem_pool pool; + struct rte_acl_trie tries[RTE_ACL_MAX_TRIES]; + struct rte_acl_bld_trie bld_tries[RTE_ACL_MAX_TRIES]; + uint32_t data_indexes[RTE_ACL_MAX_TRIES][RTE_ACL_MAX_FIELDS]; + + /* memory free lists for nodes and blocks used for node ptrs */ + struct acl_mem_block blocks[MEM_BLOCK_NUM]; + struct rte_acl_node *node_free_list; +}; + +static int acl_merge_trie(struct acl_build_context *context, + struct rte_acl_node *node_a, struct rte_acl_node *node_b, + uint32_t level, struct rte_acl_node **node_c); + +static void +acl_deref_ptr(struct acl_build_context *context, + struct rte_acl_node *node, int index); + +static void * +acl_build_alloc(struct acl_build_context *context, size_t n, size_t s) +{ + uint32_t m; + void *p; + size_t alloc_size = n * s; + + /* + * look for memory in free lists + */ + for (m = 0; m < RTE_DIM(context->blocks); m++) { + if (context->blocks[m].block_size == + alloc_size && context->blocks[m].mem_ptr != NULL) { + p = context->blocks[m].mem_ptr; + context->blocks[m].mem_ptr = *((void **)p); + memset(p, 0, alloc_size); + return p; + } + } + + /* + * return allocation from memory pool + */ + p = tb_alloc(&context->pool, alloc_size); + return p; +} + +/* + * Free memory blocks (kept in context for reuse). + */ +static void +acl_build_free(struct acl_build_context *context, size_t s, void *p) +{ + uint32_t n; + + for (n = 0; n < RTE_DIM(context->blocks); n++) { + if (context->blocks[n].block_size == s) { + *((void **)p) = context->blocks[n].mem_ptr; + context->blocks[n].mem_ptr = p; + return; + } + } + for (n = 0; n < RTE_DIM(context->blocks); n++) { + if (context->blocks[n].block_size == 0) { + context->blocks[n].block_size = s; + *((void **)p) = NULL; + context->blocks[n].mem_ptr = p; + return; + } + } +} + +/* + * Allocate and initialize a new node. + */ +static struct rte_acl_node * +acl_alloc_node(struct acl_build_context *context, int level) +{ + struct rte_acl_node *node; + + if (context->node_free_list != NULL) { + node = context->node_free_list; + context->node_free_list = node->next; + memset(node, 0, sizeof(struct rte_acl_node)); + } else { + node = acl_build_alloc(context, sizeof(struct rte_acl_node), 1); + } + + if (node != NULL) { + node->num_ptrs = 0; + node->level = level; + node->node_type = RTE_ACL_NODE_UNDEFINED; + node->node_index = RTE_ACL_NODE_UNDEFINED; + context->num_nodes++; + node->id = context->node_id++; + } + return node; +} + +/* + * Dereference all nodes to which this node points + */ +static void +acl_free_node(struct acl_build_context *context, + struct rte_acl_node *node) +{ + uint32_t n; + + if (node->prev != NULL) + node->prev->next = NULL; + for (n = 0; n < node->num_ptrs; n++) + acl_deref_ptr(context, node, n); + + /* free mrt if this is a match node */ + if (node->mrt != NULL) { + acl_build_free(context, sizeof(struct rte_acl_match_results), + node->mrt); + node->mrt = NULL; + } + + /* free transitions to other nodes */ + if (node->ptrs != NULL) { + acl_build_free(context, + node->max_ptrs * sizeof(struct rte_acl_ptr_set), + node->ptrs); + node->ptrs = NULL; + } + + /* put it on the free list */ + context->num_nodes--; + node->next = context->node_free_list; + context->node_free_list = node; +} + + +/* + * Include src bitset in dst bitset + */ +static void +acl_include(struct rte_acl_bitset *dst, struct rte_acl_bitset *src, bits_t mask) +{ + uint32_t n; + + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) + dst->bits[n] = (dst->bits[n] & mask) | src->bits[n]; +} + +/* + * Set dst to bits of src1 that are not in src2 + */ +static int +acl_exclude(struct rte_acl_bitset *dst, + struct rte_acl_bitset *src1, + struct rte_acl_bitset *src2) +{ + uint32_t n; + bits_t all_bits = 0; + + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) { + dst->bits[n] = src1->bits[n] & ~src2->bits[n]; + all_bits |= dst->bits[n]; + } + return all_bits != 0; +} + +/* + * Add a pointer (ptr) to a node. + */ +static int +acl_add_ptr(struct acl_build_context *context, + struct rte_acl_node *node, + struct rte_acl_node *ptr, + struct rte_acl_bitset *bits) +{ + uint32_t n, num_ptrs; + struct rte_acl_ptr_set *ptrs = NULL; + + /* + * If there's already a pointer to the same node, just add to the bitset + */ + for (n = 0; n < node->num_ptrs; n++) { + if (node->ptrs[n].ptr != NULL) { + if (node->ptrs[n].ptr == ptr) { + acl_include(&node->ptrs[n].values, bits, -1); + acl_include(&node->values, bits, -1); + return 0; + } + } + } + + /* if there's no room for another pointer, make room */ + if (node->num_ptrs >= node->max_ptrs) { + /* add room for more pointers */ + num_ptrs = node->max_ptrs + ACL_PTR_ALLOC; + ptrs = acl_build_alloc(context, num_ptrs, sizeof(*ptrs)); + + /* copy current points to new memory allocation */ + if (node->ptrs != NULL) { + memcpy(ptrs, node->ptrs, + node->num_ptrs * sizeof(*ptrs)); + acl_build_free(context, node->max_ptrs * sizeof(*ptrs), + node->ptrs); + } + node->ptrs = ptrs; + node->max_ptrs = num_ptrs; + } + + /* Find available ptr and add a new pointer to this node */ + for (n = node->min_add; n < node->max_ptrs; n++) { + if (node->ptrs[n].ptr == NULL) { + node->ptrs[n].ptr = ptr; + acl_include(&node->ptrs[n].values, bits, 0); + acl_include(&node->values, bits, -1); + if (ptr != NULL) + ptr->ref_count++; + if (node->num_ptrs <= n) + node->num_ptrs = n + 1; + return 0; + } + } + + return 0; +} + +/* + * Add a pointer for a range of values + */ +static int +acl_add_ptr_range(struct acl_build_context *context, + struct rte_acl_node *root, + struct rte_acl_node *node, + uint8_t low, + uint8_t high) +{ + uint32_t n; + struct rte_acl_bitset bitset; + + /* clear the bitset values */ + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) + bitset.bits[n] = 0; + + /* for each bit in range, add bit to set */ + for (n = 0; n < UINT8_MAX + 1; n++) + if (n >= low && n <= high) + bitset.bits[n / (sizeof(bits_t) * 8)] |= + 1 << (n % (sizeof(bits_t) * 8)); + + return acl_add_ptr(context, root, node, &bitset); +} + +/* + * Generate a bitset from a byte value and mask. + */ +static int +acl_gen_mask(struct rte_acl_bitset *bitset, uint32_t value, uint32_t mask) +{ + int range = 0; + uint32_t n; + + /* clear the bitset values */ + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) + bitset->bits[n] = 0; + + /* for each bit in value/mask, add bit to set */ + for (n = 0; n < UINT8_MAX + 1; n++) { + if ((n & mask) == value) { + range++; + bitset->bits[n / (sizeof(bits_t) * 8)] |= + 1 << (n % (sizeof(bits_t) * 8)); + } + } + return range; +} + +/* + * Determine how A and B intersect. + * Determine if A and/or B are supersets of the intersection. + */ +static int +acl_intersect_type(const struct rte_acl_bitset *a_bits, + const struct rte_acl_bitset *b_bits, + struct rte_acl_bitset *intersect) +{ + uint32_t n; + bits_t intersect_bits = 0; + bits_t a_superset = 0; + bits_t b_superset = 0; + + /* + * calculate and store intersection and check if A and/or B have + * bits outside the intersection (superset) + */ + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) { + intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n]; + a_superset |= a_bits->bits[n] ^ intersect->bits[n]; + b_superset |= b_bits->bits[n] ^ intersect->bits[n]; + intersect_bits |= intersect->bits[n]; + } + + n = (intersect_bits == 0 ? ACL_INTERSECT_NONE : ACL_INTERSECT) | + (b_superset == 0 ? 0 : ACL_INTERSECT_B) | + (a_superset == 0 ? 0 : ACL_INTERSECT_A); + + return n; +} + +/* + * Duplicate a node + */ +static struct rte_acl_node * +acl_dup_node(struct acl_build_context *context, struct rte_acl_node *node) +{ + uint32_t n; + struct rte_acl_node *next; + + next = acl_alloc_node(context, node->level); + + /* allocate the pointers */ + if (node->num_ptrs > 0) { + next->ptrs = acl_build_alloc(context, + node->max_ptrs, + sizeof(struct rte_acl_ptr_set)); + next->max_ptrs = node->max_ptrs; + } + + /* copy over the pointers */ + for (n = 0; n < node->num_ptrs; n++) { + if (node->ptrs[n].ptr != NULL) { + next->ptrs[n].ptr = node->ptrs[n].ptr; + next->ptrs[n].ptr->ref_count++; + acl_include(&next->ptrs[n].values, + &node->ptrs[n].values, -1); + } + } + + next->num_ptrs = node->num_ptrs; + + /* copy over node's match results */ + if (node->match_flag == 0) + next->match_flag = 0; + else { + next->match_flag = -1; + next->mrt = acl_build_alloc(context, 1, sizeof(*next->mrt)); + memcpy(next->mrt, node->mrt, sizeof(*next->mrt)); + } + + /* copy over node's bitset */ + acl_include(&next->values, &node->values, -1); + + node->next = next; + next->prev = node; + + return next; +} + +/* + * Dereference a pointer from a node + */ +static void +acl_deref_ptr(struct acl_build_context *context, + struct rte_acl_node *node, int index) +{ + struct rte_acl_node *ref_node; + + /* De-reference the node at the specified pointer */ + if (node != NULL && node->ptrs[index].ptr != NULL) { + ref_node = node->ptrs[index].ptr; + ref_node->ref_count--; + if (ref_node->ref_count == 0) + acl_free_node(context, ref_node); + } +} + +/* + * acl_exclude rte_acl_bitset from src and copy remaining pointer to dst + */ +static int +acl_copy_ptr(struct acl_build_context *context, + struct rte_acl_node *dst, + struct rte_acl_node *src, + int index, + struct rte_acl_bitset *b_bits) +{ + int rc; + struct rte_acl_bitset bits; + + if (b_bits != NULL) + if (!acl_exclude(&bits, &src->ptrs[index].values, b_bits)) + return 0; + + rc = acl_add_ptr(context, dst, src->ptrs[index].ptr, &bits); + if (rc < 0) + return rc; + return 1; +} + +/* + * Fill in gaps in ptrs list with the ptr at the end of the list + */ +static void +acl_compact_node_ptrs(struct rte_acl_node *node_a) +{ + uint32_t n; + int min_add = node_a->min_add; + + while (node_a->num_ptrs > 0 && + node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL) + node_a->num_ptrs--; + + for (n = min_add; n + 1 < node_a->num_ptrs; n++) { + + /* if this entry is empty */ + if (node_a->ptrs[n].ptr == NULL) { + + /* move the last pointer to this entry */ + acl_include(&node_a->ptrs[n].values, + &node_a->ptrs[node_a->num_ptrs - 1].values, + 0); + node_a->ptrs[n].ptr = + node_a->ptrs[node_a->num_ptrs - 1].ptr; + + /* + * mark the end as empty and adjust the number + * of used pointer enum_tries + */ + node_a->ptrs[node_a->num_ptrs - 1].ptr = NULL; + while (node_a->num_ptrs > 0 && + node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL) + node_a->num_ptrs--; + } + } +} + +static int +acl_resolve_leaf(struct acl_build_context *context, + struct rte_acl_node *node_a, + struct rte_acl_node *node_b, + struct rte_acl_node **node_c) +{ + uint32_t n; + int combined_priority = ACL_PRIORITY_EQUAL; + + for (n = 0; n < context->cfg.num_categories; n++) { + if (node_a->mrt->priority[n] != node_b->mrt->priority[n]) { + combined_priority |= (node_a->mrt->priority[n] > + node_b->mrt->priority[n]) ? + ACL_PRIORITY_NODE_A : ACL_PRIORITY_NODE_B; + } + } + + /* + * if node a is higher or equal priority for all categories, + * then return node_a. + */ + if (combined_priority == ACL_PRIORITY_NODE_A || + combined_priority == ACL_PRIORITY_EQUAL) { + *node_c = node_a; + return 0; + } + + /* + * if node b is higher or equal priority for all categories, + * then return node_b. + */ + if (combined_priority == ACL_PRIORITY_NODE_B) { + *node_c = node_b; + return 0; + } + + /* + * mixed priorities - create a new node with the highest priority + * for each category. + */ + + /* force new duplication. */ + node_a->next = NULL; + + *node_c = acl_dup_node(context, node_a); + for (n = 0; n < context->cfg.num_categories; n++) { + if ((*node_c)->mrt->priority[n] < node_b->mrt->priority[n]) { + (*node_c)->mrt->priority[n] = node_b->mrt->priority[n]; + (*node_c)->mrt->results[n] = node_b->mrt->results[n]; + } + } + return 0; +} + +/* + * Merge nodes A and B together, + * returns a node that is the path for the intersection + * + * If match node (leaf on trie) + * For each category + * return node = highest priority result + * + * Create C as a duplicate of A to point to child intersections + * If any pointers in C intersect with any in B + * For each intersection + * merge children + * remove intersection from C pointer + * add a pointer from C to child intersection node + * Compact the pointers in A and B + * Copy any B pointers that are outside of the intersection to C + * If C has no references to the B trie + * free C and return A + * Else If C has no references to the A trie + * free C and return B + * Else + * return C + */ +static int +acl_merge_trie(struct acl_build_context *context, + struct rte_acl_node *node_a, struct rte_acl_node *node_b, + uint32_t level, struct rte_acl_node **return_c) +{ + uint32_t n, m, ptrs_c, ptrs_b; + uint32_t min_add_c, min_add_b; + int node_intersect_type; + struct rte_acl_bitset node_intersect; + struct rte_acl_node *node_c; + struct rte_acl_node *node_a_next; + int node_b_refs; + int node_a_refs; + + node_c = node_a; + node_a_next = node_a->next; + min_add_c = 0; + min_add_b = 0; + node_a_refs = node_a->num_ptrs; + node_b_refs = 0; + node_intersect_type = 0; + + /* Resolve leaf nodes (matches) */ + if (node_a->match_flag != 0) { + acl_resolve_leaf(context, node_a, node_b, return_c); + return 0; + } + + /* + * Create node C as a copy of node A, and do: C = merge(A,B); + * If node A can be used instead (A==C), then later we'll + * destroy C and return A. + */ + if (level > 0) + node_c = acl_dup_node(context, node_a); + + /* + * If the two node transitions intersect then merge the transitions. + * Check intersection for entire node (all pointers) + */ + node_intersect_type = acl_intersect_type(&node_c->values, + &node_b->values, + &node_intersect); + + if (node_intersect_type & ACL_INTERSECT) { + + min_add_b = node_b->min_add; + node_b->min_add = node_b->num_ptrs; + ptrs_b = node_b->num_ptrs; + + min_add_c = node_c->min_add; + node_c->min_add = node_c->num_ptrs; + ptrs_c = node_c->num_ptrs; + + for (n = 0; n < ptrs_c; n++) { + if (node_c->ptrs[n].ptr == NULL) { + node_a_refs--; + continue; + } + node_c->ptrs[n].ptr->next = NULL; + for (m = 0; m < ptrs_b; m++) { + + struct rte_acl_bitset child_intersect; + int child_intersect_type; + struct rte_acl_node *child_node_c = NULL; + + if (node_b->ptrs[m].ptr == NULL || + node_c->ptrs[n].ptr == + node_b->ptrs[m].ptr) + continue; + + child_intersect_type = acl_intersect_type( + &node_c->ptrs[n].values, + &node_b->ptrs[m].values, + &child_intersect); + + if ((child_intersect_type & ACL_INTERSECT) != + 0) { + if (acl_merge_trie(context, + node_c->ptrs[n].ptr, + node_b->ptrs[m].ptr, + level + 1, + &child_node_c)) + return 1; + + if (child_node_c != NULL && + child_node_c != + node_c->ptrs[n].ptr) { + + node_b_refs++; + + /* + * Added link from C to + * child_C for all transitions + * in the intersection. + */ + acl_add_ptr(context, node_c, + child_node_c, + &child_intersect); + + /* + * inc refs if pointer is not + * to node b. + */ + node_a_refs += (child_node_c != + node_b->ptrs[m].ptr); + + /* + * Remove intersection from C + * pointer. + */ + if (!acl_exclude( + &node_c->ptrs[n].values, + &node_c->ptrs[n].values, + &child_intersect)) { + acl_deref_ptr(context, + node_c, n); + node_c->ptrs[n].ptr = + NULL; + node_a_refs--; + } + } + } + } + } + + /* Compact pointers */ + node_c->min_add = min_add_c; + acl_compact_node_ptrs(node_c); + node_b->min_add = min_add_b; + acl_compact_node_ptrs(node_b); + } + + /* + * Copy pointers outside of the intersection from B to C + */ + if ((node_intersect_type & ACL_INTERSECT_B) != 0) { + node_b_refs++; + for (m = 0; m < node_b->num_ptrs; m++) + if (node_b->ptrs[m].ptr != NULL) + acl_copy_ptr(context, node_c, + node_b, m, &node_intersect); + } + + /* + * Free node C if top of trie is contained in A or B + * if node C is a duplicate of node A && + * node C was not an existing duplicate + */ + if (node_c != node_a && node_c != node_a_next) { + + /* + * if the intersection has no references to the + * B side, then it is contained in A + */ + if (node_b_refs == 0) { + acl_free_node(context, node_c); + node_c = node_a; + } else { + /* + * if the intersection has no references to the + * A side, then it is contained in B. + */ + if (node_a_refs == 0) { + acl_free_node(context, node_c); + node_c = node_b; + } + } + } + + if (return_c != NULL) + *return_c = node_c; + + if (level == 0) + acl_free_node(context, node_b); + + return 0; +} + +/* + * Reset current runtime fields before next build: + * - free allocated RT memory. + * - reset all RT related fields to zero. + */ +static void +acl_build_reset(struct rte_acl_ctx *ctx) +{ + rte_free(ctx->mem); + memset(&ctx->num_categories, 0, + sizeof(*ctx) - offsetof(struct rte_acl_ctx, num_categories)); +} + +static void +acl_gen_range(struct acl_build_context *context, + const uint8_t *hi, const uint8_t *lo, int size, int level, + struct rte_acl_node *root, struct rte_acl_node *end) +{ + struct rte_acl_node *node, *prev; + uint32_t n; + + prev = root; + for (n = size - 1; n > 0; n--) { + node = acl_alloc_node(context, level++); + acl_add_ptr_range(context, prev, node, lo[n], hi[n]); + prev = node; + } + acl_add_ptr_range(context, prev, end, lo[0], hi[0]); +} + +static struct rte_acl_node * +acl_gen_range_trie(struct acl_build_context *context, + const void *min, const void *max, + int size, int level, struct rte_acl_node **pend) +{ + int32_t n; + struct rte_acl_node *root; + const uint8_t *lo = min; + const uint8_t *hi = max; + + *pend = acl_alloc_node(context, level+size); + root = acl_alloc_node(context, level++); + + if (lo[size - 1] == hi[size - 1]) { + acl_gen_range(context, hi, lo, size, level, root, *pend); + } else { + uint8_t limit_lo[64]; + uint8_t limit_hi[64]; + uint8_t hi_ff = UINT8_MAX; + uint8_t lo_00 = 0; + + memset(limit_lo, 0, RTE_DIM(limit_lo)); + memset(limit_hi, UINT8_MAX, RTE_DIM(limit_hi)); + + for (n = size - 2; n >= 0; n--) { + hi_ff = (uint8_t)(hi_ff & hi[n]); + lo_00 = (uint8_t)(lo_00 | lo[n]); + } + + if (hi_ff != UINT8_MAX) { + limit_lo[size - 1] = hi[size - 1]; + acl_gen_range(context, hi, limit_lo, size, level, + root, *pend); + } + + if (lo_00 != 0) { + limit_hi[size - 1] = lo[size - 1]; + acl_gen_range(context, limit_hi, lo, size, level, + root, *pend); + } + + if (hi[size - 1] - lo[size - 1] > 1 || + lo_00 == 0 || + hi_ff == UINT8_MAX) { + limit_lo[size-1] = (uint8_t)(lo[size-1] + (lo_00 != 0)); + limit_hi[size-1] = (uint8_t)(hi[size-1] - + (hi_ff != UINT8_MAX)); + acl_gen_range(context, limit_hi, limit_lo, size, + level, root, *pend); + } + } + return root; +} + +static struct rte_acl_node * +acl_gen_mask_trie(struct acl_build_context *context, + const void *value, const void *mask, + int size, int level, struct rte_acl_node **pend) +{ + int32_t n; + struct rte_acl_node *root; + struct rte_acl_node *node, *prev; + struct rte_acl_bitset bits; + const uint8_t *val = value; + const uint8_t *msk = mask; + + root = acl_alloc_node(context, level++); + prev = root; + + for (n = size - 1; n >= 0; n--) { + node = acl_alloc_node(context, level++); + acl_gen_mask(&bits, val[n] & msk[n], msk[n]); + acl_add_ptr(context, prev, node, &bits); + prev = node; + } + + *pend = prev; + return root; +} + +static struct rte_acl_node * +build_trie(struct acl_build_context *context, struct rte_acl_build_rule *head, + struct rte_acl_build_rule **last, uint32_t *count) +{ + uint32_t n, m; + int field_index, node_count; + struct rte_acl_node *trie; + struct rte_acl_build_rule *prev, *rule; + struct rte_acl_node *end, *merge, *root, *end_prev; + const struct rte_acl_field *fld; + + prev = head; + rule = head; + *last = prev; + + trie = acl_alloc_node(context, 0); + + while (rule != NULL) { + + root = acl_alloc_node(context, 0); + + root->ref_count = 1; + end = root; + + for (n = 0; n < rule->config->num_fields; n++) { + + field_index = rule->config->defs[n].field_index; + fld = rule->f->field + field_index; + end_prev = end; + + /* build a mini-trie for this field */ + switch (rule->config->defs[n].type) { + + case RTE_ACL_FIELD_TYPE_BITMASK: + merge = acl_gen_mask_trie(context, + &fld->value, + &fld->mask_range, + rule->config->defs[n].size, + end->level + 1, + &end); + break; + + case RTE_ACL_FIELD_TYPE_MASK: + { + /* + * set msb for the size of the field and + * all higher bits. + */ + uint64_t mask; + mask = RTE_ACL_MASKLEN_TO_BITMASK( + fld->mask_range.u32, + rule->config->defs[n].size); + + /* gen a mini-trie for this field */ + merge = acl_gen_mask_trie(context, + &fld->value, + (char *)&mask, + rule->config->defs[n].size, + end->level + 1, + &end); + } + break; + + case RTE_ACL_FIELD_TYPE_RANGE: + merge = acl_gen_range_trie(context, + &rule->f->field[field_index].value, + &rule->f->field[field_index].mask_range, + rule->config->defs[n].size, + end->level + 1, + &end); + break; + + default: + RTE_LOG(ERR, ACL, + "Error in rule[%u] type - %hhu\n", + rule->f->data.userdata, + rule->config->defs[n].type); + return NULL; + } + + /* merge this field on to the end of the rule */ + if (acl_merge_trie(context, end_prev, merge, 0, + NULL) != 0) { + return NULL; + } + } + + end->match_flag = ++context->num_build_rules; + + /* + * Setup the results for this rule. + * The result and priority of each category. + */ + if (end->mrt == NULL) + end->mrt = acl_build_alloc(context, 1, + sizeof(*end->mrt)); + + for (m = context->cfg.num_categories; 0 != m--; ) { + if (rule->f->data.category_mask & (1 << m)) { + end->mrt->results[m] = rule->f->data.userdata; + end->mrt->priority[m] = rule->f->data.priority; + } else { + end->mrt->results[m] = 0; + end->mrt->priority[m] = 0; + } + } + + node_count = context->num_nodes; + (*count)++; + + /* merge this rule into the trie */ + if (acl_merge_trie(context, trie, root, 0, NULL)) + return NULL; + + node_count = context->num_nodes - node_count; + if (node_count > context->cur_node_max) { + *last = prev; + return trie; + } + + prev = rule; + rule = rule->next; + } + + *last = NULL; + return trie; +} + +static void +acl_calc_wildness(struct rte_acl_build_rule *head, + const struct rte_acl_config *config) +{ + uint32_t n; + struct rte_acl_build_rule *rule; + + for (rule = head; rule != NULL; rule = rule->next) { + + for (n = 0; n < config->num_fields; n++) { + + double wild = 0; + uint32_t bit_len = CHAR_BIT * config->defs[n].size; + uint64_t msk_val = RTE_LEN2MASK(bit_len, + typeof(msk_val)); + double size = bit_len; + int field_index = config->defs[n].field_index; + const struct rte_acl_field *fld = rule->f->field + + field_index; + + switch (rule->config->defs[n].type) { + case RTE_ACL_FIELD_TYPE_BITMASK: + wild = (size - __builtin_popcountll( + fld->mask_range.u64 & msk_val)) / + size; + break; + + case RTE_ACL_FIELD_TYPE_MASK: + wild = (size - fld->mask_range.u32) / size; + break; + + case RTE_ACL_FIELD_TYPE_RANGE: + wild = (fld->mask_range.u64 & msk_val) - + (fld->value.u64 & msk_val); + wild = wild / msk_val; + break; + } + + rule->wildness[field_index] = (uint32_t)(wild * 100); + } + } +} + +static void +acl_rule_stats(struct rte_acl_build_rule *head, struct rte_acl_config *config) +{ + struct rte_acl_build_rule *rule; + uint32_t n, m, fields_deactivated = 0; + uint32_t start = 0, deactivate = 0; + int tally[RTE_ACL_MAX_LEVELS][TALLY_NUM]; + + memset(tally, 0, sizeof(tally)); + + for (rule = head; rule != NULL; rule = rule->next) { + + for (n = 0; n < config->num_fields; n++) { + uint32_t field_index = config->defs[n].field_index; + + tally[n][TALLY_0]++; + for (m = 1; m < RTE_DIM(wild_limits); m++) { + if (rule->wildness[field_index] >= + wild_limits[m]) + tally[n][m]++; + } + } + + for (n = config->num_fields - 1; n > 0; n--) { + uint32_t field_index = config->defs[n].field_index; + + if (rule->wildness[field_index] == 100) + tally[n][TALLY_DEPTH]++; + else + break; + } + } + + /* + * Look for any field that is always wild and drop it from the config + * Only deactivate if all fields for a given input loop are deactivated. + */ + for (n = 1; n < config->num_fields; n++) { + if (config->defs[n].input_index != + config->defs[n - 1].input_index) { + for (m = start; m < n; m++) + tally[m][TALLY_DEACTIVATED] = deactivate; + fields_deactivated += deactivate; + start = n; + deactivate = 1; + } + + /* if the field is not always completely wild */ + if (tally[n][TALLY_100] != tally[n][TALLY_0]) + deactivate = 0; + } + + for (m = start; m < n; m++) + tally[m][TALLY_DEACTIVATED] = deactivate; + + fields_deactivated += deactivate; + + /* remove deactivated fields */ + if (fields_deactivated) { + uint32_t k, l = 0; + + for (k = 0; k < config->num_fields; k++) { + if (tally[k][TALLY_DEACTIVATED] == 0) { + memmove(&tally[l][0], &tally[k][0], + TALLY_NUM * sizeof(tally[0][0])); + memmove(&config->defs[l++], + &config->defs[k], + sizeof(struct rte_acl_field_def)); + } + } + config->num_fields = l; + } +} + +static int +rule_cmp_wildness(struct rte_acl_build_rule *r1, struct rte_acl_build_rule *r2) +{ + uint32_t n; + + for (n = 1; n < r1->config->num_fields; n++) { + int field_index = r1->config->defs[n].field_index; + + if (r1->wildness[field_index] != r2->wildness[field_index]) + return r1->wildness[field_index] - + r2->wildness[field_index]; + } + return 0; +} + +/* + * Split the rte_acl_build_rule list into two lists. + */ +static void +rule_list_split(struct rte_acl_build_rule *source, + struct rte_acl_build_rule **list_a, + struct rte_acl_build_rule **list_b) +{ + struct rte_acl_build_rule *fast; + struct rte_acl_build_rule *slow; + + if (source == NULL || source->next == NULL) { + /* length < 2 cases */ + *list_a = source; + *list_b = NULL; + } else { + slow = source; + fast = source->next; + /* Advance 'fast' two nodes, and advance 'slow' one node */ + while (fast != NULL) { + fast = fast->next; + if (fast != NULL) { + slow = slow->next; + fast = fast->next; + } + } + /* 'slow' is before the midpoint in the list, so split it in two + at that point. */ + *list_a = source; + *list_b = slow->next; + slow->next = NULL; + } +} + +/* + * Merge two sorted lists. + */ +static struct rte_acl_build_rule * +rule_list_sorted_merge(struct rte_acl_build_rule *a, + struct rte_acl_build_rule *b) +{ + struct rte_acl_build_rule *result = NULL; + struct rte_acl_build_rule **last_next = &result; + + while (1) { + if (a == NULL) { + *last_next = b; + break; + } else if (b == NULL) { + *last_next = a; + break; + } + if (rule_cmp_wildness(a, b) >= 0) { + *last_next = a; + last_next = &a->next; + a = a->next; + } else { + *last_next = b; + last_next = &b->next; + b = b->next; + } + } + return result; +} + +/* + * Sort list of rules based on the rules wildness. + * Use recursive mergesort algorithm. + */ +static struct rte_acl_build_rule * +sort_rules(struct rte_acl_build_rule *head) +{ + struct rte_acl_build_rule *a; + struct rte_acl_build_rule *b; + + /* Base case -- length 0 or 1 */ + if (head == NULL || head->next == NULL) + return head; + + /* Split head into 'a' and 'b' sublists */ + rule_list_split(head, &a, &b); + + /* Recursively sort the sublists */ + a = sort_rules(a); + b = sort_rules(b); + + /* answer = merge the two sorted lists together */ + return rule_list_sorted_merge(a, b); +} + +static uint32_t +acl_build_index(const struct rte_acl_config *config, uint32_t *data_index) +{ + uint32_t n, m; + int32_t last_header; + + m = 0; + last_header = -1; + + for (n = 0; n < config->num_fields; n++) { + if (last_header != config->defs[n].input_index) { + last_header = config->defs[n].input_index; + data_index[m++] = config->defs[n].offset; + } + } + + return m; +} + +static struct rte_acl_build_rule * +build_one_trie(struct acl_build_context *context, + struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES], + uint32_t n, int32_t node_max) +{ + struct rte_acl_build_rule *last; + struct rte_acl_config *config; + + config = rule_sets[n]->config; + + acl_rule_stats(rule_sets[n], config); + rule_sets[n] = sort_rules(rule_sets[n]); + + context->tries[n].type = RTE_ACL_FULL_TRIE; + context->tries[n].count = 0; + + context->tries[n].num_data_indexes = acl_build_index(config, + context->data_indexes[n]); + context->tries[n].data_index = context->data_indexes[n]; + + context->cur_node_max = node_max; + + context->bld_tries[n].trie = build_trie(context, rule_sets[n], + &last, &context->tries[n].count); + + return last; +} + +static int +acl_build_tries(struct acl_build_context *context, + struct rte_acl_build_rule *head) +{ + uint32_t n, num_tries; + struct rte_acl_config *config; + struct rte_acl_build_rule *last; + struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES]; + + config = head->config; + rule_sets[0] = head; + + /* initialize tries */ + for (n = 0; n < RTE_DIM(context->tries); n++) { + context->tries[n].type = RTE_ACL_UNUSED_TRIE; + context->bld_tries[n].trie = NULL; + context->tries[n].count = 0; + } + + context->tries[0].type = RTE_ACL_FULL_TRIE; + + /* calc wildness of each field of each rule */ + acl_calc_wildness(head, config); + + for (n = 0;; n = num_tries) { + + num_tries = n + 1; + + last = build_one_trie(context, rule_sets, n, context->node_max); + if (context->bld_tries[n].trie == NULL) { + RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n); + return -ENOMEM; + } + + /* Build of the last trie completed. */ + if (last == NULL) + break; + + if (num_tries == RTE_DIM(context->tries)) { + RTE_LOG(ERR, ACL, + "Exceeded max number of tries: %u\n", + num_tries); + return -ENOMEM; + } + + /* Trie is getting too big, split remaining rule set. */ + rule_sets[num_tries] = last->next; + last->next = NULL; + acl_free_node(context, context->bld_tries[n].trie); + + /* Create a new copy of config for remaining rules. */ + config = acl_build_alloc(context, 1, sizeof(*config)); + memcpy(config, rule_sets[n]->config, sizeof(*config)); + + /* Make remaining rules use new config. */ + for (head = rule_sets[num_tries]; head != NULL; + head = head->next) + head->config = config; + + /* + * Rebuild the trie for the reduced rule-set. + * Don't try to split it any further. + */ + last = build_one_trie(context, rule_sets, n, INT32_MAX); + if (context->bld_tries[n].trie == NULL || last != NULL) { + RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n); + return -ENOMEM; + } + + } + + context->num_tries = num_tries; + return 0; +} + +static void +acl_build_log(const struct acl_build_context *ctx) +{ + uint32_t n; + + RTE_LOG(DEBUG, ACL, "Build phase for ACL \"%s\":\n" + "node limit for tree split: %u\n" + "nodes created: %u\n" + "memory consumed: %zu\n", + ctx->acx->name, + ctx->node_max, + ctx->num_nodes, + ctx->pool.alloc); + + for (n = 0; n < RTE_DIM(ctx->tries); n++) { + if (ctx->tries[n].count != 0) + RTE_LOG(DEBUG, ACL, + "trie %u: number of rules: %u, indexes: %u\n", + n, ctx->tries[n].count, + ctx->tries[n].num_data_indexes); + } +} + +static int +acl_build_rules(struct acl_build_context *bcx) +{ + struct rte_acl_build_rule *br, *head; + const struct rte_acl_rule *rule; + uint32_t *wp; + uint32_t fn, i, n, num; + size_t ofs, sz; + + fn = bcx->cfg.num_fields; + n = bcx->acx->num_rules; + ofs = n * sizeof(*br); + sz = ofs + n * fn * sizeof(*wp); + + br = tb_alloc(&bcx->pool, sz); + + wp = (uint32_t *)((uintptr_t)br + ofs); + num = 0; + head = NULL; + + for (i = 0; i != n; i++) { + rule = (const struct rte_acl_rule *) + ((uintptr_t)bcx->acx->rules + bcx->acx->rule_sz * i); + if ((rule->data.category_mask & bcx->category_mask) != 0) { + br[num].next = head; + br[num].config = &bcx->cfg; + br[num].f = rule; + br[num].wildness = wp; + wp += fn; + head = br + num; + num++; + } + } + + bcx->num_rules = num; + bcx->build_rules = head; + + return 0; +} + +/* + * Copy data_indexes for each trie into RT location. + */ +static void +acl_set_data_indexes(struct rte_acl_ctx *ctx) +{ + uint32_t i, n, ofs; + + ofs = 0; + for (i = 0; i != ctx->num_tries; i++) { + n = ctx->trie[i].num_data_indexes; + memcpy(ctx->data_indexes + ofs, ctx->trie[i].data_index, + n * sizeof(ctx->data_indexes[0])); + ctx->trie[i].data_index = ctx->data_indexes + ofs; + ofs += RTE_ACL_MAX_FIELDS; + } +} + +/* + * Internal routine, performs 'build' phase of trie generation: + * - setups build context. + * - analizes given set of rules. + * - builds internal tree(s). + */ +static int +acl_bld(struct acl_build_context *bcx, struct rte_acl_ctx *ctx, + const struct rte_acl_config *cfg, uint32_t node_max) +{ + int32_t rc; + + /* setup build context. */ + memset(bcx, 0, sizeof(*bcx)); + bcx->acx = ctx; + bcx->pool.alignment = ACL_POOL_ALIGN; + bcx->pool.min_alloc = ACL_POOL_ALLOC_MIN; + bcx->cfg = *cfg; + bcx->category_mask = RTE_LEN2MASK(bcx->cfg.num_categories, + typeof(bcx->category_mask)); + bcx->node_max = node_max; + + rc = sigsetjmp(bcx->pool.fail, 0); + + /* build phase runs out of memory. */ + if (rc != 0) { + RTE_LOG(ERR, ACL, + "ACL context: %s, %s() failed with error code: %d\n", + bcx->acx->name, __func__, rc); + return rc; + } + + /* Create a build rules copy. */ + rc = acl_build_rules(bcx); + if (rc != 0) + return rc; + + /* No rules to build for that context+config */ + if (bcx->build_rules == NULL) { + rc = -EINVAL; + } else { + /* build internal trie representation. */ + rc = acl_build_tries(bcx, bcx->build_rules); + } + return rc; +} + +/* + * Check that parameters for acl_build() are valid. + */ +static int +acl_check_bld_param(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg) +{ + static const size_t field_sizes[] = { + sizeof(uint8_t), sizeof(uint16_t), + sizeof(uint32_t), sizeof(uint64_t), + }; + + uint32_t i, j; + + if (ctx == NULL || cfg == NULL || cfg->num_categories == 0 || + cfg->num_categories > RTE_ACL_MAX_CATEGORIES || + cfg->num_fields == 0 || + cfg->num_fields > RTE_ACL_MAX_FIELDS) + return -EINVAL; + + for (i = 0; i != cfg->num_fields; i++) { + if (cfg->defs[i].type > RTE_ACL_FIELD_TYPE_BITMASK) { + RTE_LOG(ERR, ACL, + "ACL context: %s, invalid type: %hhu for %u-th field\n", + ctx->name, cfg->defs[i].type, i); + return -EINVAL; + } + for (j = 0; + j != RTE_DIM(field_sizes) && + cfg->defs[i].size != field_sizes[j]; + j++) + ; + + if (j == RTE_DIM(field_sizes)) { + RTE_LOG(ERR, ACL, + "ACL context: %s, invalid size: %hhu for %u-th field\n", + ctx->name, cfg->defs[i].size, i); + return -EINVAL; + } + } + + return 0; +} + +int +rte_acl_build(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg) +{ + int32_t rc; + uint32_t n; + size_t max_size; + struct acl_build_context bcx; + + rc = acl_check_bld_param(ctx, cfg); + if (rc != 0) + return rc; + + acl_build_reset(ctx); + + if (cfg->max_size == 0) { + n = NODE_MIN; + max_size = SIZE_MAX; + } else { + n = NODE_MAX; + max_size = cfg->max_size; + } + + for (rc = -ERANGE; n >= NODE_MIN && rc == -ERANGE; n /= 2) { + + /* perform build phase. */ + rc = acl_bld(&bcx, ctx, cfg, n); + + if (rc == 0) { + /* allocate and fill run-time structures. */ + rc = rte_acl_gen(ctx, bcx.tries, bcx.bld_tries, + bcx.num_tries, bcx.cfg.num_categories, + RTE_ACL_MAX_FIELDS * RTE_DIM(bcx.tries) * + sizeof(ctx->data_indexes[0]), max_size); + if (rc == 0) { + /* set data indexes. */ + acl_set_data_indexes(ctx); + + /* copy in build config. */ + ctx->config = *cfg; + } + } + + acl_build_log(&bcx); + + /* cleanup after build. */ + tb_free_pool(&bcx.pool); + } + + return rc; +} |