summaryrefslogtreecommitdiffstats
path: root/src/spdk/dpdk/drivers/net/e1000/igb_rxtx.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/spdk/dpdk/drivers/net/e1000/igb_rxtx.c
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/spdk/dpdk/drivers/net/e1000/igb_rxtx.c')
-rw-r--r--src/spdk/dpdk/drivers/net/e1000/igb_rxtx.c2952
1 files changed, 2952 insertions, 0 deletions
diff --git a/src/spdk/dpdk/drivers/net/e1000/igb_rxtx.c b/src/spdk/dpdk/drivers/net/e1000/igb_rxtx.c
new file mode 100644
index 00000000..b955068a
--- /dev/null
+++ b/src/spdk/dpdk/drivers/net/e1000/igb_rxtx.c
@@ -0,0 +1,2952 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2010-2016 Intel Corporation
+ */
+
+#include <sys/queue.h>
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_memory.h>
+#include <rte_memcpy.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_eal.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_atomic.h>
+#include <rte_branch_prediction.h>
+#include <rte_mempool.h>
+#include <rte_malloc.h>
+#include <rte_mbuf.h>
+#include <rte_ether.h>
+#include <rte_ethdev_driver.h>
+#include <rte_prefetch.h>
+#include <rte_udp.h>
+#include <rte_tcp.h>
+#include <rte_sctp.h>
+#include <rte_net.h>
+#include <rte_string_fns.h>
+
+#include "e1000_logs.h"
+#include "base/e1000_api.h"
+#include "e1000_ethdev.h"
+
+#ifdef RTE_LIBRTE_IEEE1588
+#define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
+#else
+#define IGB_TX_IEEE1588_TMST 0
+#endif
+/* Bit Mask to indicate what bits required for building TX context */
+#define IGB_TX_OFFLOAD_MASK ( \
+ PKT_TX_VLAN_PKT | \
+ PKT_TX_IP_CKSUM | \
+ PKT_TX_L4_MASK | \
+ PKT_TX_TCP_SEG | \
+ IGB_TX_IEEE1588_TMST)
+
+#define IGB_TX_OFFLOAD_NOTSUP_MASK \
+ (PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK)
+
+/**
+ * Structure associated with each descriptor of the RX ring of a RX queue.
+ */
+struct igb_rx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
+};
+
+/**
+ * Structure associated with each descriptor of the TX ring of a TX queue.
+ */
+struct igb_tx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
+ uint16_t next_id; /**< Index of next descriptor in ring. */
+ uint16_t last_id; /**< Index of last scattered descriptor. */
+};
+
+/**
+ * rx queue flags
+ */
+enum igb_rxq_flags {
+ IGB_RXQ_FLAG_LB_BSWAP_VLAN = 0x01,
+};
+
+/**
+ * Structure associated with each RX queue.
+ */
+struct igb_rx_queue {
+ struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
+ volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
+ uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
+ volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
+ volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
+ struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
+ struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
+ struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
+ uint16_t nb_rx_desc; /**< number of RX descriptors. */
+ uint16_t rx_tail; /**< current value of RDT register. */
+ uint16_t nb_rx_hold; /**< number of held free RX desc. */
+ uint16_t rx_free_thresh; /**< max free RX desc to hold. */
+ uint16_t queue_id; /**< RX queue index. */
+ uint16_t reg_idx; /**< RX queue register index. */
+ uint16_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
+ uint8_t drop_en; /**< If not 0, set SRRCTL.Drop_En. */
+ uint32_t flags; /**< RX flags. */
+ uint64_t offloads; /**< offloads of DEV_RX_OFFLOAD_* */
+};
+
+/**
+ * Hardware context number
+ */
+enum igb_advctx_num {
+ IGB_CTX_0 = 0, /**< CTX0 */
+ IGB_CTX_1 = 1, /**< CTX1 */
+ IGB_CTX_NUM = 2, /**< CTX_NUM */
+};
+
+/** Offload features */
+union igb_tx_offload {
+ uint64_t data;
+ struct {
+ uint64_t l3_len:9; /**< L3 (IP) Header Length. */
+ uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
+ uint64_t vlan_tci:16; /**< VLAN Tag Control Identifier(CPU order). */
+ uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
+ uint64_t tso_segsz:16; /**< TCP TSO segment size. */
+
+ /* uint64_t unused:8; */
+ };
+};
+
+/*
+ * Compare mask for igb_tx_offload.data,
+ * should be in sync with igb_tx_offload layout.
+ * */
+#define TX_MACIP_LEN_CMP_MASK 0x000000000000FFFFULL /**< L2L3 header mask. */
+#define TX_VLAN_CMP_MASK 0x00000000FFFF0000ULL /**< Vlan mask. */
+#define TX_TCP_LEN_CMP_MASK 0x000000FF00000000ULL /**< TCP header mask. */
+#define TX_TSO_MSS_CMP_MASK 0x00FFFF0000000000ULL /**< TSO segsz mask. */
+/** Mac + IP + TCP + Mss mask. */
+#define TX_TSO_CMP_MASK \
+ (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
+
+/**
+ * Strucutre to check if new context need be built
+ */
+struct igb_advctx_info {
+ uint64_t flags; /**< ol_flags related to context build. */
+ /** tx offload: vlan, tso, l2-l3-l4 lengths. */
+ union igb_tx_offload tx_offload;
+ /** compare mask for tx offload. */
+ union igb_tx_offload tx_offload_mask;
+};
+
+/**
+ * Structure associated with each TX queue.
+ */
+struct igb_tx_queue {
+ volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
+ uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
+ struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */
+ volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
+ uint32_t txd_type; /**< Device-specific TXD type */
+ uint16_t nb_tx_desc; /**< number of TX descriptors. */
+ uint16_t tx_tail; /**< Current value of TDT register. */
+ uint16_t tx_head;
+ /**< Index of first used TX descriptor. */
+ uint16_t queue_id; /**< TX queue index. */
+ uint16_t reg_idx; /**< TX queue register index. */
+ uint16_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ uint32_t ctx_curr;
+ /**< Current used hardware descriptor. */
+ uint32_t ctx_start;
+ /**< Start context position for transmit queue. */
+ struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
+ /**< Hardware context history.*/
+ uint64_t offloads; /**< offloads of DEV_TX_OFFLOAD_* */
+};
+
+#if 1
+#define RTE_PMD_USE_PREFETCH
+#endif
+
+#ifdef RTE_PMD_USE_PREFETCH
+#define rte_igb_prefetch(p) rte_prefetch0(p)
+#else
+#define rte_igb_prefetch(p) do {} while(0)
+#endif
+
+#ifdef RTE_PMD_PACKET_PREFETCH
+#define rte_packet_prefetch(p) rte_prefetch1(p)
+#else
+#define rte_packet_prefetch(p) do {} while(0)
+#endif
+
+/*
+ * Macro for VMDq feature for 1 GbE NIC.
+ */
+#define E1000_VMOLR_SIZE (8)
+#define IGB_TSO_MAX_HDRLEN (512)
+#define IGB_TSO_MAX_MSS (9216)
+
+/*********************************************************************
+ *
+ * TX function
+ *
+ **********************************************************************/
+
+/*
+ *There're some limitations in hardware for TCP segmentation offload. We
+ *should check whether the parameters are valid.
+ */
+static inline uint64_t
+check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
+{
+ if (!(ol_req & PKT_TX_TCP_SEG))
+ return ol_req;
+ if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
+ ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
+ ol_req &= ~PKT_TX_TCP_SEG;
+ ol_req |= PKT_TX_TCP_CKSUM;
+ }
+ return ol_req;
+}
+
+/*
+ * Advanced context descriptor are almost same between igb/ixgbe
+ * This is a separate function, looking for optimization opportunity here
+ * Rework required to go with the pre-defined values.
+ */
+
+static inline void
+igbe_set_xmit_ctx(struct igb_tx_queue* txq,
+ volatile struct e1000_adv_tx_context_desc *ctx_txd,
+ uint64_t ol_flags, union igb_tx_offload tx_offload)
+{
+ uint32_t type_tucmd_mlhl;
+ uint32_t mss_l4len_idx;
+ uint32_t ctx_idx, ctx_curr;
+ uint32_t vlan_macip_lens;
+ union igb_tx_offload tx_offload_mask;
+
+ ctx_curr = txq->ctx_curr;
+ ctx_idx = ctx_curr + txq->ctx_start;
+
+ tx_offload_mask.data = 0;
+ type_tucmd_mlhl = 0;
+
+ /* Specify which HW CTX to upload. */
+ mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
+
+ if (ol_flags & PKT_TX_VLAN_PKT)
+ tx_offload_mask.data |= TX_VLAN_CMP_MASK;
+
+ /* check if TCP segmentation required for this packet */
+ if (ol_flags & PKT_TX_TCP_SEG) {
+ /* implies IP cksum in IPv4 */
+ if (ol_flags & PKT_TX_IP_CKSUM)
+ type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
+ E1000_ADVTXD_TUCMD_L4T_TCP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ else
+ type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
+ E1000_ADVTXD_TUCMD_L4T_TCP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+
+ tx_offload_mask.data |= TX_TSO_CMP_MASK;
+ mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
+ mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
+ } else { /* no TSO, check if hardware checksum is needed */
+ if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
+ tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
+
+ if (ol_flags & PKT_TX_IP_CKSUM)
+ type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
+
+ switch (ol_flags & PKT_TX_L4_MASK) {
+ case PKT_TX_UDP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ break;
+ case PKT_TX_TCP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ break;
+ case PKT_TX_SCTP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ break;
+ default:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ break;
+ }
+ }
+
+ txq->ctx_cache[ctx_curr].flags = ol_flags;
+ txq->ctx_cache[ctx_curr].tx_offload.data =
+ tx_offload_mask.data & tx_offload.data;
+ txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
+
+ ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
+ vlan_macip_lens = (uint32_t)tx_offload.data;
+ ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
+ ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
+ ctx_txd->seqnum_seed = 0;
+}
+
+/*
+ * Check which hardware context can be used. Use the existing match
+ * or create a new context descriptor.
+ */
+static inline uint32_t
+what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
+ union igb_tx_offload tx_offload)
+{
+ /* If match with the current context */
+ if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
+ (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
+ (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
+ return txq->ctx_curr;
+ }
+
+ /* If match with the second context */
+ txq->ctx_curr ^= 1;
+ if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
+ (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
+ (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
+ return txq->ctx_curr;
+ }
+
+ /* Mismatch, use the previous context */
+ return IGB_CTX_NUM;
+}
+
+static inline uint32_t
+tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
+{
+ static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
+ static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
+ uint32_t tmp;
+
+ tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
+ tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
+ tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
+ return tmp;
+}
+
+static inline uint32_t
+tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
+{
+ uint32_t cmdtype;
+ static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
+ static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
+ cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
+ cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
+ return cmdtype;
+}
+
+uint16_t
+eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct igb_tx_queue *txq;
+ struct igb_tx_entry *sw_ring;
+ struct igb_tx_entry *txe, *txn;
+ volatile union e1000_adv_tx_desc *txr;
+ volatile union e1000_adv_tx_desc *txd;
+ struct rte_mbuf *tx_pkt;
+ struct rte_mbuf *m_seg;
+ uint64_t buf_dma_addr;
+ uint32_t olinfo_status;
+ uint32_t cmd_type_len;
+ uint32_t pkt_len;
+ uint16_t slen;
+ uint64_t ol_flags;
+ uint16_t tx_end;
+ uint16_t tx_id;
+ uint16_t tx_last;
+ uint16_t nb_tx;
+ uint64_t tx_ol_req;
+ uint32_t new_ctx = 0;
+ uint32_t ctx = 0;
+ union igb_tx_offload tx_offload = {0};
+
+ txq = tx_queue;
+ sw_ring = txq->sw_ring;
+ txr = txq->tx_ring;
+ tx_id = txq->tx_tail;
+ txe = &sw_ring[tx_id];
+
+ for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+ tx_pkt = *tx_pkts++;
+ pkt_len = tx_pkt->pkt_len;
+
+ RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
+
+ /*
+ * The number of descriptors that must be allocated for a
+ * packet is the number of segments of that packet, plus 1
+ * Context Descriptor for the VLAN Tag Identifier, if any.
+ * Determine the last TX descriptor to allocate in the TX ring
+ * for the packet, starting from the current position (tx_id)
+ * in the ring.
+ */
+ tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
+
+ ol_flags = tx_pkt->ol_flags;
+ tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
+
+ /* If a Context Descriptor need be built . */
+ if (tx_ol_req) {
+ tx_offload.l2_len = tx_pkt->l2_len;
+ tx_offload.l3_len = tx_pkt->l3_len;
+ tx_offload.l4_len = tx_pkt->l4_len;
+ tx_offload.vlan_tci = tx_pkt->vlan_tci;
+ tx_offload.tso_segsz = tx_pkt->tso_segsz;
+ tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
+
+ ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
+ /* Only allocate context descriptor if required*/
+ new_ctx = (ctx == IGB_CTX_NUM);
+ ctx = txq->ctx_curr + txq->ctx_start;
+ tx_last = (uint16_t) (tx_last + new_ctx);
+ }
+ if (tx_last >= txq->nb_tx_desc)
+ tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
+
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
+ " tx_first=%u tx_last=%u",
+ (unsigned) txq->port_id,
+ (unsigned) txq->queue_id,
+ (unsigned) pkt_len,
+ (unsigned) tx_id,
+ (unsigned) tx_last);
+
+ /*
+ * Check if there are enough free descriptors in the TX ring
+ * to transmit the next packet.
+ * This operation is based on the two following rules:
+ *
+ * 1- Only check that the last needed TX descriptor can be
+ * allocated (by construction, if that descriptor is free,
+ * all intermediate ones are also free).
+ *
+ * For this purpose, the index of the last TX descriptor
+ * used for a packet (the "last descriptor" of a packet)
+ * is recorded in the TX entries (the last one included)
+ * that are associated with all TX descriptors allocated
+ * for that packet.
+ *
+ * 2- Avoid to allocate the last free TX descriptor of the
+ * ring, in order to never set the TDT register with the
+ * same value stored in parallel by the NIC in the TDH
+ * register, which makes the TX engine of the NIC enter
+ * in a deadlock situation.
+ *
+ * By extension, avoid to allocate a free descriptor that
+ * belongs to the last set of free descriptors allocated
+ * to the same packet previously transmitted.
+ */
+
+ /*
+ * The "last descriptor" of the previously sent packet, if any,
+ * which used the last descriptor to allocate.
+ */
+ tx_end = sw_ring[tx_last].last_id;
+
+ /*
+ * The next descriptor following that "last descriptor" in the
+ * ring.
+ */
+ tx_end = sw_ring[tx_end].next_id;
+
+ /*
+ * The "last descriptor" associated with that next descriptor.
+ */
+ tx_end = sw_ring[tx_end].last_id;
+
+ /*
+ * Check that this descriptor is free.
+ */
+ if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
+ if (nb_tx == 0)
+ return 0;
+ goto end_of_tx;
+ }
+
+ /*
+ * Set common flags of all TX Data Descriptors.
+ *
+ * The following bits must be set in all Data Descriptors:
+ * - E1000_ADVTXD_DTYP_DATA
+ * - E1000_ADVTXD_DCMD_DEXT
+ *
+ * The following bits must be set in the first Data Descriptor
+ * and are ignored in the other ones:
+ * - E1000_ADVTXD_DCMD_IFCS
+ * - E1000_ADVTXD_MAC_1588
+ * - E1000_ADVTXD_DCMD_VLE
+ *
+ * The following bits must only be set in the last Data
+ * Descriptor:
+ * - E1000_TXD_CMD_EOP
+ *
+ * The following bits can be set in any Data Descriptor, but
+ * are only set in the last Data Descriptor:
+ * - E1000_TXD_CMD_RS
+ */
+ cmd_type_len = txq->txd_type |
+ E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
+ if (tx_ol_req & PKT_TX_TCP_SEG)
+ pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
+ olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
+#if defined(RTE_LIBRTE_IEEE1588)
+ if (ol_flags & PKT_TX_IEEE1588_TMST)
+ cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
+#endif
+ if (tx_ol_req) {
+ /* Setup TX Advanced context descriptor if required */
+ if (new_ctx) {
+ volatile struct e1000_adv_tx_context_desc *
+ ctx_txd;
+
+ ctx_txd = (volatile struct
+ e1000_adv_tx_context_desc *)
+ &txr[tx_id];
+
+ txn = &sw_ring[txe->next_id];
+ RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+
+ if (txe->mbuf != NULL) {
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = NULL;
+ }
+
+ igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
+
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ }
+
+ /* Setup the TX Advanced Data Descriptor */
+ cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
+ olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
+ olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
+ }
+
+ m_seg = tx_pkt;
+ do {
+ txn = &sw_ring[txe->next_id];
+ txd = &txr[tx_id];
+
+ if (txe->mbuf != NULL)
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = m_seg;
+
+ /*
+ * Set up transmit descriptor.
+ */
+ slen = (uint16_t) m_seg->data_len;
+ buf_dma_addr = rte_mbuf_data_iova(m_seg);
+ txd->read.buffer_addr =
+ rte_cpu_to_le_64(buf_dma_addr);
+ txd->read.cmd_type_len =
+ rte_cpu_to_le_32(cmd_type_len | slen);
+ txd->read.olinfo_status =
+ rte_cpu_to_le_32(olinfo_status);
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ m_seg = m_seg->next;
+ } while (m_seg != NULL);
+
+ /*
+ * The last packet data descriptor needs End Of Packet (EOP)
+ * and Report Status (RS).
+ */
+ txd->read.cmd_type_len |=
+ rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
+ }
+ end_of_tx:
+ rte_wmb();
+
+ /*
+ * Set the Transmit Descriptor Tail (TDT).
+ */
+ E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
+ (unsigned) txq->port_id, (unsigned) txq->queue_id,
+ (unsigned) tx_id, (unsigned) nb_tx);
+ txq->tx_tail = tx_id;
+
+ return nb_tx;
+}
+
+/*********************************************************************
+ *
+ * TX prep functions
+ *
+ **********************************************************************/
+uint16_t
+eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ int i, ret;
+ struct rte_mbuf *m;
+
+ for (i = 0; i < nb_pkts; i++) {
+ m = tx_pkts[i];
+
+ /* Check some limitations for TSO in hardware */
+ if (m->ol_flags & PKT_TX_TCP_SEG)
+ if ((m->tso_segsz > IGB_TSO_MAX_MSS) ||
+ (m->l2_len + m->l3_len + m->l4_len >
+ IGB_TSO_MAX_HDRLEN)) {
+ rte_errno = -EINVAL;
+ return i;
+ }
+
+ if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) {
+ rte_errno = -ENOTSUP;
+ return i;
+ }
+
+#ifdef RTE_LIBRTE_ETHDEV_DEBUG
+ ret = rte_validate_tx_offload(m);
+ if (ret != 0) {
+ rte_errno = ret;
+ return i;
+ }
+#endif
+ ret = rte_net_intel_cksum_prepare(m);
+ if (ret != 0) {
+ rte_errno = ret;
+ return i;
+ }
+ }
+
+ return i;
+}
+
+/*********************************************************************
+ *
+ * RX functions
+ *
+ **********************************************************************/
+#define IGB_PACKET_TYPE_IPV4 0X01
+#define IGB_PACKET_TYPE_IPV4_TCP 0X11
+#define IGB_PACKET_TYPE_IPV4_UDP 0X21
+#define IGB_PACKET_TYPE_IPV4_SCTP 0X41
+#define IGB_PACKET_TYPE_IPV4_EXT 0X03
+#define IGB_PACKET_TYPE_IPV4_EXT_SCTP 0X43
+#define IGB_PACKET_TYPE_IPV6 0X04
+#define IGB_PACKET_TYPE_IPV6_TCP 0X14
+#define IGB_PACKET_TYPE_IPV6_UDP 0X24
+#define IGB_PACKET_TYPE_IPV6_EXT 0X0C
+#define IGB_PACKET_TYPE_IPV6_EXT_TCP 0X1C
+#define IGB_PACKET_TYPE_IPV6_EXT_UDP 0X2C
+#define IGB_PACKET_TYPE_IPV4_IPV6 0X05
+#define IGB_PACKET_TYPE_IPV4_IPV6_TCP 0X15
+#define IGB_PACKET_TYPE_IPV4_IPV6_UDP 0X25
+#define IGB_PACKET_TYPE_IPV4_IPV6_EXT 0X0D
+#define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
+#define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
+#define IGB_PACKET_TYPE_MAX 0X80
+#define IGB_PACKET_TYPE_MASK 0X7F
+#define IGB_PACKET_TYPE_SHIFT 0X04
+static inline uint32_t
+igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
+{
+ static const uint32_t
+ ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
+ [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4,
+ [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4_EXT,
+ [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV6,
+ [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6,
+ [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV6_EXT,
+ [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT,
+ [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
+ [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
+ [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
+ [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
+ [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
+ [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
+ [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
+ [IGB_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
+ [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
+ [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
+ [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
+ [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
+ RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
+ };
+ if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
+ return RTE_PTYPE_UNKNOWN;
+
+ pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
+
+ return ptype_table[pkt_info];
+}
+
+static inline uint64_t
+rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
+{
+ uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ? 0 : PKT_RX_RSS_HASH;
+
+#if defined(RTE_LIBRTE_IEEE1588)
+ static uint32_t ip_pkt_etqf_map[8] = {
+ 0, 0, 0, PKT_RX_IEEE1588_PTP,
+ 0, 0, 0, 0,
+ };
+
+ struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
+
+ /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
+ if (hw->mac.type == e1000_i210)
+ pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
+ else
+ pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
+#else
+ RTE_SET_USED(rxq);
+#endif
+
+ return pkt_flags;
+}
+
+static inline uint64_t
+rx_desc_status_to_pkt_flags(uint32_t rx_status)
+{
+ uint64_t pkt_flags;
+
+ /* Check if VLAN present */
+ pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
+ PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
+
+#if defined(RTE_LIBRTE_IEEE1588)
+ if (rx_status & E1000_RXD_STAT_TMST)
+ pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
+#endif
+ return pkt_flags;
+}
+
+static inline uint64_t
+rx_desc_error_to_pkt_flags(uint32_t rx_status)
+{
+ /*
+ * Bit 30: IPE, IPv4 checksum error
+ * Bit 29: L4I, L4I integrity error
+ */
+
+ static uint64_t error_to_pkt_flags_map[4] = {
+ PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
+ PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
+ PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
+ PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
+ };
+ return error_to_pkt_flags_map[(rx_status >>
+ E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
+}
+
+uint16_t
+eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct igb_rx_queue *rxq;
+ volatile union e1000_adv_rx_desc *rx_ring;
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_entry *sw_ring;
+ struct igb_rx_entry *rxe;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ union e1000_adv_rx_desc rxd;
+ uint64_t dma_addr;
+ uint32_t staterr;
+ uint32_t hlen_type_rss;
+ uint16_t pkt_len;
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint64_t pkt_flags;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rxq = rx_queue;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+ while (nb_rx < nb_pkts) {
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ staterr = rxdp->wb.upper.status_error;
+ if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * End of packet.
+ *
+ * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
+ * likely to be invalid and to be dropped by the various
+ * validation checks performed by the network stack.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy do not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+ "staterr=0x%x pkt_len=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) staterr,
+ (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
+
+ nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u", (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_igb_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_igb_prefetch(&rx_ring[rx_id]);
+ rte_igb_prefetch(&sw_ring[rx_id]);
+ }
+
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma_addr =
+ rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
+ rxdp->read.hdr_addr = 0;
+ rxdp->read.pkt_addr = dma_addr;
+
+ /*
+ * Initialize the returned mbuf.
+ * 1) setup generic mbuf fields:
+ * - number of segments,
+ * - next segment,
+ * - packet length,
+ * - RX port identifier.
+ * 2) integrate hardware offload data, if any:
+ * - RSS flag & hash,
+ * - IP checksum flag,
+ * - VLAN TCI, if any,
+ * - error flags.
+ */
+ pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
+ rxq->crc_len);
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+ rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
+ rxm->nb_segs = 1;
+ rxm->next = NULL;
+ rxm->pkt_len = pkt_len;
+ rxm->data_len = pkt_len;
+ rxm->port = rxq->port_id;
+
+ rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
+ hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
+
+ /*
+ * The vlan_tci field is only valid when PKT_RX_VLAN is
+ * set in the pkt_flags field and must be in CPU byte order.
+ */
+ if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
+ (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
+ rxm->vlan_tci = rte_be_to_cpu_16(rxd.wb.upper.vlan);
+ } else {
+ rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
+ }
+ pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
+ pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
+ pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
+ rxm->ol_flags = pkt_flags;
+ rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
+ lo_dword.hs_rss.pkt_info);
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = rxm;
+ }
+ rxq->rx_tail = rx_id;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return nb_rx;
+}
+
+uint16_t
+eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct igb_rx_queue *rxq;
+ volatile union e1000_adv_rx_desc *rx_ring;
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_entry *sw_ring;
+ struct igb_rx_entry *rxe;
+ struct rte_mbuf *first_seg;
+ struct rte_mbuf *last_seg;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ union e1000_adv_rx_desc rxd;
+ uint64_t dma; /* Physical address of mbuf data buffer */
+ uint32_t staterr;
+ uint32_t hlen_type_rss;
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint16_t data_len;
+ uint64_t pkt_flags;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rxq = rx_queue;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+
+ /*
+ * Retrieve RX context of current packet, if any.
+ */
+ first_seg = rxq->pkt_first_seg;
+ last_seg = rxq->pkt_last_seg;
+
+ while (nb_rx < nb_pkts) {
+ next_desc:
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ staterr = rxdp->wb.upper.status_error;
+ if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * Descriptor done.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy does not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+ "staterr=0x%x data_len=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) staterr,
+ (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
+
+ nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u", (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_igb_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_igb_prefetch(&rx_ring[rx_id]);
+ rte_igb_prefetch(&sw_ring[rx_id]);
+ }
+
+ /*
+ * Update RX descriptor with the physical address of the new
+ * data buffer of the new allocated mbuf.
+ */
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
+ rxdp->read.pkt_addr = dma;
+ rxdp->read.hdr_addr = 0;
+
+ /*
+ * Set data length & data buffer address of mbuf.
+ */
+ data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
+ rxm->data_len = data_len;
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+
+ /*
+ * If this is the first buffer of the received packet,
+ * set the pointer to the first mbuf of the packet and
+ * initialize its context.
+ * Otherwise, update the total length and the number of segments
+ * of the current scattered packet, and update the pointer to
+ * the last mbuf of the current packet.
+ */
+ if (first_seg == NULL) {
+ first_seg = rxm;
+ first_seg->pkt_len = data_len;
+ first_seg->nb_segs = 1;
+ } else {
+ first_seg->pkt_len += data_len;
+ first_seg->nb_segs++;
+ last_seg->next = rxm;
+ }
+
+ /*
+ * If this is not the last buffer of the received packet,
+ * update the pointer to the last mbuf of the current scattered
+ * packet and continue to parse the RX ring.
+ */
+ if (! (staterr & E1000_RXD_STAT_EOP)) {
+ last_seg = rxm;
+ goto next_desc;
+ }
+
+ /*
+ * This is the last buffer of the received packet.
+ * If the CRC is not stripped by the hardware:
+ * - Subtract the CRC length from the total packet length.
+ * - If the last buffer only contains the whole CRC or a part
+ * of it, free the mbuf associated to the last buffer.
+ * If part of the CRC is also contained in the previous
+ * mbuf, subtract the length of that CRC part from the
+ * data length of the previous mbuf.
+ */
+ rxm->next = NULL;
+ if (unlikely(rxq->crc_len > 0)) {
+ first_seg->pkt_len -= ETHER_CRC_LEN;
+ if (data_len <= ETHER_CRC_LEN) {
+ rte_pktmbuf_free_seg(rxm);
+ first_seg->nb_segs--;
+ last_seg->data_len = (uint16_t)
+ (last_seg->data_len -
+ (ETHER_CRC_LEN - data_len));
+ last_seg->next = NULL;
+ } else
+ rxm->data_len =
+ (uint16_t) (data_len - ETHER_CRC_LEN);
+ }
+
+ /*
+ * Initialize the first mbuf of the returned packet:
+ * - RX port identifier,
+ * - hardware offload data, if any:
+ * - RSS flag & hash,
+ * - IP checksum flag,
+ * - VLAN TCI, if any,
+ * - error flags.
+ */
+ first_seg->port = rxq->port_id;
+ first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
+
+ /*
+ * The vlan_tci field is only valid when PKT_RX_VLAN is
+ * set in the pkt_flags field and must be in CPU byte order.
+ */
+ if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
+ (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
+ first_seg->vlan_tci =
+ rte_be_to_cpu_16(rxd.wb.upper.vlan);
+ } else {
+ first_seg->vlan_tci =
+ rte_le_to_cpu_16(rxd.wb.upper.vlan);
+ }
+ hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
+ pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
+ pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
+ pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
+ first_seg->ol_flags = pkt_flags;
+ first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
+ lower.lo_dword.hs_rss.pkt_info);
+
+ /* Prefetch data of first segment, if configured to do so. */
+ rte_packet_prefetch((char *)first_seg->buf_addr +
+ first_seg->data_off);
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = first_seg;
+
+ /*
+ * Setup receipt context for a new packet.
+ */
+ first_seg = NULL;
+ }
+
+ /*
+ * Record index of the next RX descriptor to probe.
+ */
+ rxq->rx_tail = rx_id;
+
+ /*
+ * Save receive context.
+ */
+ rxq->pkt_first_seg = first_seg;
+ rxq->pkt_last_seg = last_seg;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return nb_rx;
+}
+
+/*
+ * Maximum number of Ring Descriptors.
+ *
+ * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
+ * desscriptors should meet the following condition:
+ * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
+ */
+
+static void
+igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
+{
+ unsigned i;
+
+ if (txq->sw_ring != NULL) {
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ if (txq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+ txq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+igb_tx_queue_release(struct igb_tx_queue *txq)
+{
+ if (txq != NULL) {
+ igb_tx_queue_release_mbufs(txq);
+ rte_free(txq->sw_ring);
+ rte_free(txq);
+ }
+}
+
+void
+eth_igb_tx_queue_release(void *txq)
+{
+ igb_tx_queue_release(txq);
+}
+
+static int
+igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt)
+{
+ struct igb_tx_entry *sw_ring;
+ volatile union e1000_adv_tx_desc *txr;
+ uint16_t tx_first; /* First segment analyzed. */
+ uint16_t tx_id; /* Current segment being processed. */
+ uint16_t tx_last; /* Last segment in the current packet. */
+ uint16_t tx_next; /* First segment of the next packet. */
+ int count;
+
+ if (txq != NULL) {
+ count = 0;
+ sw_ring = txq->sw_ring;
+ txr = txq->tx_ring;
+
+ /*
+ * tx_tail is the last sent packet on the sw_ring. Goto the end
+ * of that packet (the last segment in the packet chain) and
+ * then the next segment will be the start of the oldest segment
+ * in the sw_ring. This is the first packet that will be
+ * attempted to be freed.
+ */
+
+ /* Get last segment in most recently added packet. */
+ tx_first = sw_ring[txq->tx_tail].last_id;
+
+ /* Get the next segment, which is the oldest segment in ring. */
+ tx_first = sw_ring[tx_first].next_id;
+
+ /* Set the current index to the first. */
+ tx_id = tx_first;
+
+ /*
+ * Loop through each packet. For each packet, verify that an
+ * mbuf exists and that the last segment is free. If so, free
+ * it and move on.
+ */
+ while (1) {
+ tx_last = sw_ring[tx_id].last_id;
+
+ if (sw_ring[tx_last].mbuf) {
+ if (txr[tx_last].wb.status &
+ E1000_TXD_STAT_DD) {
+ /*
+ * Increment the number of packets
+ * freed.
+ */
+ count++;
+
+ /* Get the start of the next packet. */
+ tx_next = sw_ring[tx_last].next_id;
+
+ /*
+ * Loop through all segments in a
+ * packet.
+ */
+ do {
+ rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
+ sw_ring[tx_id].mbuf = NULL;
+ sw_ring[tx_id].last_id = tx_id;
+
+ /* Move to next segemnt. */
+ tx_id = sw_ring[tx_id].next_id;
+
+ } while (tx_id != tx_next);
+
+ if (unlikely(count == (int)free_cnt))
+ break;
+ } else
+ /*
+ * mbuf still in use, nothing left to
+ * free.
+ */
+ break;
+ } else {
+ /*
+ * There are multiple reasons to be here:
+ * 1) All the packets on the ring have been
+ * freed - tx_id is equal to tx_first
+ * and some packets have been freed.
+ * - Done, exit
+ * 2) Interfaces has not sent a rings worth of
+ * packets yet, so the segment after tail is
+ * still empty. Or a previous call to this
+ * function freed some of the segments but
+ * not all so there is a hole in the list.
+ * Hopefully this is a rare case.
+ * - Walk the list and find the next mbuf. If
+ * there isn't one, then done.
+ */
+ if (likely((tx_id == tx_first) && (count != 0)))
+ break;
+
+ /*
+ * Walk the list and find the next mbuf, if any.
+ */
+ do {
+ /* Move to next segemnt. */
+ tx_id = sw_ring[tx_id].next_id;
+
+ if (sw_ring[tx_id].mbuf)
+ break;
+
+ } while (tx_id != tx_first);
+
+ /*
+ * Determine why previous loop bailed. If there
+ * is not an mbuf, done.
+ */
+ if (sw_ring[tx_id].mbuf == NULL)
+ break;
+ }
+ }
+ } else
+ count = -ENODEV;
+
+ return count;
+}
+
+int
+eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt)
+{
+ return igb_tx_done_cleanup(txq, free_cnt);
+}
+
+static void
+igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
+{
+ txq->tx_head = 0;
+ txq->tx_tail = 0;
+ txq->ctx_curr = 0;
+ memset((void*)&txq->ctx_cache, 0,
+ IGB_CTX_NUM * sizeof(struct igb_advctx_info));
+}
+
+static void
+igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
+{
+ static const union e1000_adv_tx_desc zeroed_desc = {{0}};
+ struct igb_tx_entry *txe = txq->sw_ring;
+ uint16_t i, prev;
+ struct e1000_hw *hw;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ /* Zero out HW ring memory */
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ txq->tx_ring[i] = zeroed_desc;
+ }
+
+ /* Initialize ring entries */
+ prev = (uint16_t)(txq->nb_tx_desc - 1);
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
+
+ txd->wb.status = E1000_TXD_STAT_DD;
+ txe[i].mbuf = NULL;
+ txe[i].last_id = i;
+ txe[prev].next_id = i;
+ prev = i;
+ }
+
+ txq->txd_type = E1000_ADVTXD_DTYP_DATA;
+ /* 82575 specific, each tx queue will use 2 hw contexts */
+ if (hw->mac.type == e1000_82575)
+ txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
+
+ igb_reset_tx_queue_stat(txq);
+}
+
+uint64_t
+igb_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
+{
+ uint64_t rx_offload_capa;
+
+ RTE_SET_USED(dev);
+ rx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
+ DEV_TX_OFFLOAD_IPV4_CKSUM |
+ DEV_TX_OFFLOAD_UDP_CKSUM |
+ DEV_TX_OFFLOAD_TCP_CKSUM |
+ DEV_TX_OFFLOAD_SCTP_CKSUM |
+ DEV_TX_OFFLOAD_TCP_TSO |
+ DEV_TX_OFFLOAD_MULTI_SEGS;
+
+ return rx_offload_capa;
+}
+
+uint64_t
+igb_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
+{
+ uint64_t rx_queue_offload_capa;
+
+ rx_queue_offload_capa = igb_get_tx_port_offloads_capa(dev);
+
+ return rx_queue_offload_capa;
+}
+
+int
+eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_txconf *tx_conf)
+{
+ const struct rte_memzone *tz;
+ struct igb_tx_queue *txq;
+ struct e1000_hw *hw;
+ uint32_t size;
+ uint64_t offloads;
+
+ offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of transmit descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of E1000_ALIGN.
+ */
+ if (nb_desc % IGB_TXD_ALIGN != 0 ||
+ (nb_desc > E1000_MAX_RING_DESC) ||
+ (nb_desc < E1000_MIN_RING_DESC)) {
+ return -EINVAL;
+ }
+
+ /*
+ * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
+ * driver.
+ */
+ if (tx_conf->tx_free_thresh != 0)
+ PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not "
+ "used for the 1G driver.");
+ if (tx_conf->tx_rs_thresh != 0)
+ PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not "
+ "used for the 1G driver.");
+ if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576)
+ PMD_INIT_LOG(INFO, "To improve 1G driver performance, "
+ "consider setting the TX WTHRESH value to 4, 8, "
+ "or 16.");
+
+ /* Free memory prior to re-allocation if needed */
+ if (dev->data->tx_queues[queue_idx] != NULL) {
+ igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
+ dev->data->tx_queues[queue_idx] = NULL;
+ }
+
+ /* First allocate the tx queue data structure */
+ txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
+ RTE_CACHE_LINE_SIZE);
+ if (txq == NULL)
+ return -ENOMEM;
+
+ /*
+ * Allocate TX ring hardware descriptors. A memzone large enough to
+ * handle the maximum ring size is allocated in order to allow for
+ * resizing in later calls to the queue setup function.
+ */
+ size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
+ tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
+ E1000_ALIGN, socket_id);
+ if (tz == NULL) {
+ igb_tx_queue_release(txq);
+ return -ENOMEM;
+ }
+
+ txq->nb_tx_desc = nb_desc;
+ txq->pthresh = tx_conf->tx_thresh.pthresh;
+ txq->hthresh = tx_conf->tx_thresh.hthresh;
+ txq->wthresh = tx_conf->tx_thresh.wthresh;
+ if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
+ txq->wthresh = 1;
+ txq->queue_id = queue_idx;
+ txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
+ queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
+ txq->port_id = dev->data->port_id;
+
+ txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
+ txq->tx_ring_phys_addr = tz->iova;
+
+ txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
+ /* Allocate software ring */
+ txq->sw_ring = rte_zmalloc("txq->sw_ring",
+ sizeof(struct igb_tx_entry) * nb_desc,
+ RTE_CACHE_LINE_SIZE);
+ if (txq->sw_ring == NULL) {
+ igb_tx_queue_release(txq);
+ return -ENOMEM;
+ }
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+ txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
+
+ igb_reset_tx_queue(txq, dev);
+ dev->tx_pkt_burst = eth_igb_xmit_pkts;
+ dev->tx_pkt_prepare = &eth_igb_prep_pkts;
+ dev->data->tx_queues[queue_idx] = txq;
+ txq->offloads = offloads;
+
+ return 0;
+}
+
+static void
+igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
+{
+ unsigned i;
+
+ if (rxq->sw_ring != NULL) {
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ if (rxq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+ rxq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+igb_rx_queue_release(struct igb_rx_queue *rxq)
+{
+ if (rxq != NULL) {
+ igb_rx_queue_release_mbufs(rxq);
+ rte_free(rxq->sw_ring);
+ rte_free(rxq);
+ }
+}
+
+void
+eth_igb_rx_queue_release(void *rxq)
+{
+ igb_rx_queue_release(rxq);
+}
+
+static void
+igb_reset_rx_queue(struct igb_rx_queue *rxq)
+{
+ static const union e1000_adv_rx_desc zeroed_desc = {{0}};
+ unsigned i;
+
+ /* Zero out HW ring memory */
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ rxq->rx_ring[i] = zeroed_desc;
+ }
+
+ rxq->rx_tail = 0;
+ rxq->pkt_first_seg = NULL;
+ rxq->pkt_last_seg = NULL;
+}
+
+uint64_t
+igb_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
+{
+ uint64_t rx_offload_capa;
+
+ RTE_SET_USED(dev);
+ rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
+ DEV_RX_OFFLOAD_VLAN_FILTER |
+ DEV_RX_OFFLOAD_IPV4_CKSUM |
+ DEV_RX_OFFLOAD_UDP_CKSUM |
+ DEV_RX_OFFLOAD_TCP_CKSUM |
+ DEV_RX_OFFLOAD_JUMBO_FRAME |
+ DEV_RX_OFFLOAD_CRC_STRIP |
+ DEV_RX_OFFLOAD_KEEP_CRC |
+ DEV_RX_OFFLOAD_SCATTER;
+
+ return rx_offload_capa;
+}
+
+uint64_t
+igb_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint64_t rx_queue_offload_capa;
+
+ switch (hw->mac.type) {
+ case e1000_vfadapt_i350:
+ /*
+ * As only one Rx queue can be used, let per queue offloading
+ * capability be same to per port queue offloading capability
+ * for better convenience.
+ */
+ rx_queue_offload_capa = igb_get_rx_port_offloads_capa(dev);
+ break;
+ default:
+ rx_queue_offload_capa = 0;
+ }
+ return rx_queue_offload_capa;
+}
+
+int
+eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_rxconf *rx_conf,
+ struct rte_mempool *mp)
+{
+ const struct rte_memzone *rz;
+ struct igb_rx_queue *rxq;
+ struct e1000_hw *hw;
+ unsigned int size;
+ uint64_t offloads;
+
+ offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of receive descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of E1000_ALIGN.
+ */
+ if (nb_desc % IGB_RXD_ALIGN != 0 ||
+ (nb_desc > E1000_MAX_RING_DESC) ||
+ (nb_desc < E1000_MIN_RING_DESC)) {
+ return -EINVAL;
+ }
+
+ /* Free memory prior to re-allocation if needed */
+ if (dev->data->rx_queues[queue_idx] != NULL) {
+ igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
+ dev->data->rx_queues[queue_idx] = NULL;
+ }
+
+ /* First allocate the RX queue data structure. */
+ rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
+ RTE_CACHE_LINE_SIZE);
+ if (rxq == NULL)
+ return -ENOMEM;
+ rxq->offloads = offloads;
+ rxq->mb_pool = mp;
+ rxq->nb_rx_desc = nb_desc;
+ rxq->pthresh = rx_conf->rx_thresh.pthresh;
+ rxq->hthresh = rx_conf->rx_thresh.hthresh;
+ rxq->wthresh = rx_conf->rx_thresh.wthresh;
+ if (rxq->wthresh > 0 &&
+ (hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350))
+ rxq->wthresh = 1;
+ rxq->drop_en = rx_conf->rx_drop_en;
+ rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+ rxq->queue_id = queue_idx;
+ rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
+ queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
+ rxq->port_id = dev->data->port_id;
+ if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads))
+ rxq->crc_len = ETHER_CRC_LEN;
+ else
+ rxq->crc_len = 0;
+
+ /*
+ * Allocate RX ring hardware descriptors. A memzone large enough to
+ * handle the maximum ring size is allocated in order to allow for
+ * resizing in later calls to the queue setup function.
+ */
+ size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
+ rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
+ E1000_ALIGN, socket_id);
+ if (rz == NULL) {
+ igb_rx_queue_release(rxq);
+ return -ENOMEM;
+ }
+ rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
+ rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
+ rxq->rx_ring_phys_addr = rz->iova;
+ rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
+
+ /* Allocate software ring. */
+ rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
+ sizeof(struct igb_rx_entry) * nb_desc,
+ RTE_CACHE_LINE_SIZE);
+ if (rxq->sw_ring == NULL) {
+ igb_rx_queue_release(rxq);
+ return -ENOMEM;
+ }
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+ rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
+
+ dev->data->rx_queues[queue_idx] = rxq;
+ igb_reset_rx_queue(rxq);
+
+ return 0;
+}
+
+uint32_t
+eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+#define IGB_RXQ_SCAN_INTERVAL 4
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_queue *rxq;
+ uint32_t desc = 0;
+
+ rxq = dev->data->rx_queues[rx_queue_id];
+ rxdp = &(rxq->rx_ring[rxq->rx_tail]);
+
+ while ((desc < rxq->nb_rx_desc) &&
+ (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
+ desc += IGB_RXQ_SCAN_INTERVAL;
+ rxdp += IGB_RXQ_SCAN_INTERVAL;
+ if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
+ rxdp = &(rxq->rx_ring[rxq->rx_tail +
+ desc - rxq->nb_rx_desc]);
+ }
+
+ return desc;
+}
+
+int
+eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
+{
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_queue *rxq = rx_queue;
+ uint32_t desc;
+
+ if (unlikely(offset >= rxq->nb_rx_desc))
+ return 0;
+ desc = rxq->rx_tail + offset;
+ if (desc >= rxq->nb_rx_desc)
+ desc -= rxq->nb_rx_desc;
+
+ rxdp = &rxq->rx_ring[desc];
+ return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
+}
+
+int
+eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset)
+{
+ struct igb_rx_queue *rxq = rx_queue;
+ volatile uint32_t *status;
+ uint32_t desc;
+
+ if (unlikely(offset >= rxq->nb_rx_desc))
+ return -EINVAL;
+
+ if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
+ return RTE_ETH_RX_DESC_UNAVAIL;
+
+ desc = rxq->rx_tail + offset;
+ if (desc >= rxq->nb_rx_desc)
+ desc -= rxq->nb_rx_desc;
+
+ status = &rxq->rx_ring[desc].wb.upper.status_error;
+ if (*status & rte_cpu_to_le_32(E1000_RXD_STAT_DD))
+ return RTE_ETH_RX_DESC_DONE;
+
+ return RTE_ETH_RX_DESC_AVAIL;
+}
+
+int
+eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset)
+{
+ struct igb_tx_queue *txq = tx_queue;
+ volatile uint32_t *status;
+ uint32_t desc;
+
+ if (unlikely(offset >= txq->nb_tx_desc))
+ return -EINVAL;
+
+ desc = txq->tx_tail + offset;
+ if (desc >= txq->nb_tx_desc)
+ desc -= txq->nb_tx_desc;
+
+ status = &txq->tx_ring[desc].wb.status;
+ if (*status & rte_cpu_to_le_32(E1000_TXD_STAT_DD))
+ return RTE_ETH_TX_DESC_DONE;
+
+ return RTE_ETH_TX_DESC_FULL;
+}
+
+void
+igb_dev_clear_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+ struct igb_tx_queue *txq;
+ struct igb_rx_queue *rxq;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ txq = dev->data->tx_queues[i];
+ if (txq != NULL) {
+ igb_tx_queue_release_mbufs(txq);
+ igb_reset_tx_queue(txq, dev);
+ }
+ }
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ if (rxq != NULL) {
+ igb_rx_queue_release_mbufs(rxq);
+ igb_reset_rx_queue(rxq);
+ }
+ }
+}
+
+void
+igb_dev_free_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ eth_igb_rx_queue_release(dev->data->rx_queues[i]);
+ dev->data->rx_queues[i] = NULL;
+ }
+ dev->data->nb_rx_queues = 0;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ eth_igb_tx_queue_release(dev->data->tx_queues[i]);
+ dev->data->tx_queues[i] = NULL;
+ }
+ dev->data->nb_tx_queues = 0;
+}
+
+/**
+ * Receive Side Scaling (RSS).
+ * See section 7.1.1.7 in the following document:
+ * "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
+ *
+ * Principles:
+ * The source and destination IP addresses of the IP header and the source and
+ * destination ports of TCP/UDP headers, if any, of received packets are hashed
+ * against a configurable random key to compute a 32-bit RSS hash result.
+ * The seven (7) LSBs of the 32-bit hash result are used as an index into a
+ * 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
+ * RSS output index which is used as the RX queue index where to store the
+ * received packets.
+ * The following output is supplied in the RX write-back descriptor:
+ * - 32-bit result of the Microsoft RSS hash function,
+ * - 4-bit RSS type field.
+ */
+
+/*
+ * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
+ * Used as the default key.
+ */
+static uint8_t rss_intel_key[40] = {
+ 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
+ 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
+ 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
+ 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
+ 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
+};
+
+static void
+igb_rss_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ uint32_t mrqc;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ mrqc = E1000_READ_REG(hw, E1000_MRQC);
+ mrqc &= ~E1000_MRQC_ENABLE_MASK;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+}
+
+static void
+igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
+{
+ uint8_t *hash_key;
+ uint32_t rss_key;
+ uint32_t mrqc;
+ uint64_t rss_hf;
+ uint16_t i;
+
+ hash_key = rss_conf->rss_key;
+ if (hash_key != NULL) {
+ /* Fill in RSS hash key */
+ for (i = 0; i < 10; i++) {
+ rss_key = hash_key[(i * 4)];
+ rss_key |= hash_key[(i * 4) + 1] << 8;
+ rss_key |= hash_key[(i * 4) + 2] << 16;
+ rss_key |= hash_key[(i * 4) + 3] << 24;
+ E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
+ }
+ }
+
+ /* Set configured hashing protocols in MRQC register */
+ rss_hf = rss_conf->rss_hf;
+ mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
+ if (rss_hf & ETH_RSS_IPV4)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
+ if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
+ if (rss_hf & ETH_RSS_IPV6)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
+ if (rss_hf & ETH_RSS_IPV6_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
+ if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
+ if (rss_hf & ETH_RSS_IPV6_TCP_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
+ if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
+ if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
+ if (rss_hf & ETH_RSS_IPV6_UDP_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+}
+
+int
+eth_igb_rss_hash_update(struct rte_eth_dev *dev,
+ struct rte_eth_rss_conf *rss_conf)
+{
+ struct e1000_hw *hw;
+ uint32_t mrqc;
+ uint64_t rss_hf;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Before changing anything, first check that the update RSS operation
+ * does not attempt to disable RSS, if RSS was enabled at
+ * initialization time, or does not attempt to enable RSS, if RSS was
+ * disabled at initialization time.
+ */
+ rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
+ mrqc = E1000_READ_REG(hw, E1000_MRQC);
+ if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
+ if (rss_hf != 0) /* Enable RSS */
+ return -(EINVAL);
+ return 0; /* Nothing to do */
+ }
+ /* RSS enabled */
+ if (rss_hf == 0) /* Disable RSS */
+ return -(EINVAL);
+ igb_hw_rss_hash_set(hw, rss_conf);
+ return 0;
+}
+
+int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
+ struct rte_eth_rss_conf *rss_conf)
+{
+ struct e1000_hw *hw;
+ uint8_t *hash_key;
+ uint32_t rss_key;
+ uint32_t mrqc;
+ uint64_t rss_hf;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ hash_key = rss_conf->rss_key;
+ if (hash_key != NULL) {
+ /* Return RSS hash key */
+ for (i = 0; i < 10; i++) {
+ rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
+ hash_key[(i * 4)] = rss_key & 0x000000FF;
+ hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
+ hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
+ hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
+ }
+ }
+
+ /* Get RSS functions configured in MRQC register */
+ mrqc = E1000_READ_REG(hw, E1000_MRQC);
+ if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
+ rss_conf->rss_hf = 0;
+ return 0;
+ }
+ rss_hf = 0;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
+ rss_hf |= ETH_RSS_IPV4;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
+ rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
+ rss_hf |= ETH_RSS_IPV6;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
+ rss_hf |= ETH_RSS_IPV6_EX;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
+ rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
+ rss_hf |= ETH_RSS_IPV6_TCP_EX;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
+ rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
+ rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
+ rss_hf |= ETH_RSS_IPV6_UDP_EX;
+ rss_conf->rss_hf = rss_hf;
+ return 0;
+}
+
+static void
+igb_rss_configure(struct rte_eth_dev *dev)
+{
+ struct rte_eth_rss_conf rss_conf;
+ struct e1000_hw *hw;
+ uint32_t shift;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* Fill in redirection table. */
+ shift = (hw->mac.type == e1000_82575) ? 6 : 0;
+ for (i = 0; i < 128; i++) {
+ union e1000_reta {
+ uint32_t dword;
+ uint8_t bytes[4];
+ } reta;
+ uint8_t q_idx;
+
+ q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
+ i % dev->data->nb_rx_queues : 0);
+ reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
+ if ((i & 3) == 3)
+ E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
+ }
+
+ /*
+ * Configure the RSS key and the RSS protocols used to compute
+ * the RSS hash of input packets.
+ */
+ rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
+ if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
+ igb_rss_disable(dev);
+ return;
+ }
+ if (rss_conf.rss_key == NULL)
+ rss_conf.rss_key = rss_intel_key; /* Default hash key */
+ igb_hw_rss_hash_set(hw, &rss_conf);
+}
+
+/*
+ * Check if the mac type support VMDq or not.
+ * Return 1 if it supports, otherwise, return 0.
+ */
+static int
+igb_is_vmdq_supported(const struct rte_eth_dev *dev)
+{
+ const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ switch (hw->mac.type) {
+ case e1000_82576:
+ case e1000_82580:
+ case e1000_i350:
+ return 1;
+ case e1000_82540:
+ case e1000_82541:
+ case e1000_82542:
+ case e1000_82543:
+ case e1000_82544:
+ case e1000_82545:
+ case e1000_82546:
+ case e1000_82547:
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ case e1000_i210:
+ case e1000_i211:
+ default:
+ PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
+ return 0;
+ }
+}
+
+static int
+igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
+{
+ struct rte_eth_vmdq_rx_conf *cfg;
+ struct e1000_hw *hw;
+ uint32_t mrqc, vt_ctl, vmolr, rctl;
+ int i;
+
+ PMD_INIT_FUNC_TRACE();
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
+
+ /* Check if mac type can support VMDq, return value of 0 means NOT support */
+ if (igb_is_vmdq_supported(dev) == 0)
+ return -1;
+
+ igb_rss_disable(dev);
+
+ /* RCTL: eanble VLAN filter */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ /* MRQC: enable vmdq */
+ mrqc = E1000_READ_REG(hw, E1000_MRQC);
+ mrqc |= E1000_MRQC_ENABLE_VMDQ;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+
+ /* VTCTL: pool selection according to VLAN tag */
+ vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
+ if (cfg->enable_default_pool)
+ vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
+ vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
+ E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
+
+ for (i = 0; i < E1000_VMOLR_SIZE; i++) {
+ vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
+ vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
+ E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
+ E1000_VMOLR_MPME);
+
+ if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
+ vmolr |= E1000_VMOLR_AUPE;
+ if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
+ vmolr |= E1000_VMOLR_ROMPE;
+ if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
+ vmolr |= E1000_VMOLR_ROPE;
+ if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
+ vmolr |= E1000_VMOLR_BAM;
+ if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
+ vmolr |= E1000_VMOLR_MPME;
+
+ E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
+ }
+
+ /*
+ * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
+ * Both 82576 and 82580 support it
+ */
+ if (hw->mac.type != e1000_i350) {
+ for (i = 0; i < E1000_VMOLR_SIZE; i++) {
+ vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
+ vmolr |= E1000_VMOLR_STRVLAN;
+ E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
+ }
+ }
+
+ /* VFTA - enable all vlan filters */
+ for (i = 0; i < IGB_VFTA_SIZE; i++)
+ E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
+
+ /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
+ if (hw->mac.type != e1000_82580)
+ E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
+
+ /*
+ * RAH/RAL - allow pools to read specific mac addresses
+ * In this case, all pools should be able to read from mac addr 0
+ */
+ E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
+ E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
+
+ /* VLVF: set up filters for vlan tags as configured */
+ for (i = 0; i < cfg->nb_pool_maps; i++) {
+ /* set vlan id in VF register and set the valid bit */
+ E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
+ (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
+ ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
+ E1000_VLVF_POOLSEL_MASK)));
+ }
+
+ E1000_WRITE_FLUSH(hw);
+
+ return 0;
+}
+
+
+/*********************************************************************
+ *
+ * Enable receive unit.
+ *
+ **********************************************************************/
+
+static int
+igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
+{
+ struct igb_rx_entry *rxe = rxq->sw_ring;
+ uint64_t dma_addr;
+ unsigned i;
+
+ /* Initialize software ring entries. */
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ volatile union e1000_adv_rx_desc *rxd;
+ struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
+
+ if (mbuf == NULL) {
+ PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
+ "queue_id=%hu", rxq->queue_id);
+ return -ENOMEM;
+ }
+ dma_addr =
+ rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
+ rxd = &rxq->rx_ring[i];
+ rxd->read.hdr_addr = 0;
+ rxd->read.pkt_addr = dma_addr;
+ rxe[i].mbuf = mbuf;
+ }
+
+ return 0;
+}
+
+#define E1000_MRQC_DEF_Q_SHIFT (3)
+static int
+igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t mrqc;
+
+ if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
+ /*
+ * SRIOV active scheme
+ * FIXME if support RSS together with VMDq & SRIOV
+ */
+ mrqc = E1000_MRQC_ENABLE_VMDQ;
+ /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
+ mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+ } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
+ /*
+ * SRIOV inactive scheme
+ */
+ switch (dev->data->dev_conf.rxmode.mq_mode) {
+ case ETH_MQ_RX_RSS:
+ igb_rss_configure(dev);
+ break;
+ case ETH_MQ_RX_VMDQ_ONLY:
+ /*Configure general VMDQ only RX parameters*/
+ igb_vmdq_rx_hw_configure(dev);
+ break;
+ case ETH_MQ_RX_NONE:
+ /* if mq_mode is none, disable rss mode.*/
+ default:
+ igb_rss_disable(dev);
+ break;
+ }
+ }
+
+ return 0;
+}
+
+int
+eth_igb_rx_init(struct rte_eth_dev *dev)
+{
+ struct rte_eth_rxmode *rxmode;
+ struct e1000_hw *hw;
+ struct igb_rx_queue *rxq;
+ uint32_t rctl;
+ uint32_t rxcsum;
+ uint32_t srrctl;
+ uint16_t buf_size;
+ uint16_t rctl_bsize;
+ uint16_t i;
+ int ret;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ srrctl = 0;
+
+ /*
+ * Make sure receives are disabled while setting
+ * up the descriptor ring.
+ */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+ rxmode = &dev->data->dev_conf.rxmode;
+
+ /*
+ * Configure support of jumbo frames, if any.
+ */
+ if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
+ rctl |= E1000_RCTL_LPE;
+
+ /*
+ * Set maximum packet length by default, and might be updated
+ * together with enabling/disabling dual VLAN.
+ */
+ E1000_WRITE_REG(hw, E1000_RLPML,
+ dev->data->dev_conf.rxmode.max_rx_pkt_len +
+ VLAN_TAG_SIZE);
+ } else
+ rctl &= ~E1000_RCTL_LPE;
+
+ /* Configure and enable each RX queue. */
+ rctl_bsize = 0;
+ dev->rx_pkt_burst = eth_igb_recv_pkts;
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint64_t bus_addr;
+ uint32_t rxdctl;
+
+ rxq = dev->data->rx_queues[i];
+
+ rxq->flags = 0;
+ /*
+ * i350 and i354 vlan packets have vlan tags byte swapped.
+ */
+ if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i354) {
+ rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
+ PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
+ } else {
+ PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
+ }
+
+ /* Allocate buffers for descriptor rings and set up queue */
+ ret = igb_alloc_rx_queue_mbufs(rxq);
+ if (ret)
+ return ret;
+
+ /*
+ * Reset crc_len in case it was changed after queue setup by a
+ * call to configure
+ */
+ if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads))
+ rxq->crc_len = ETHER_CRC_LEN;
+ else
+ rxq->crc_len = 0;
+
+ bus_addr = rxq->rx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
+ rxq->nb_rx_desc *
+ sizeof(union e1000_adv_rx_desc));
+ E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
+
+ srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
+
+ /*
+ * Configure RX buffer size.
+ */
+ buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
+ RTE_PKTMBUF_HEADROOM);
+ if (buf_size >= 1024) {
+ /*
+ * Configure the BSIZEPACKET field of the SRRCTL
+ * register of the queue.
+ * Value is in 1 KB resolution, from 1 KB to 127 KB.
+ * If this field is equal to 0b, then RCTL.BSIZE
+ * determines the RX packet buffer size.
+ */
+ srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
+ E1000_SRRCTL_BSIZEPKT_MASK);
+ buf_size = (uint16_t) ((srrctl &
+ E1000_SRRCTL_BSIZEPKT_MASK) <<
+ E1000_SRRCTL_BSIZEPKT_SHIFT);
+
+ /* It adds dual VLAN length for supporting dual VLAN */
+ if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
+ 2 * VLAN_TAG_SIZE) > buf_size){
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG,
+ "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+ } else {
+ /*
+ * Use BSIZE field of the device RCTL register.
+ */
+ if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
+ rctl_bsize = buf_size;
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ /* Set if packets are dropped when no descriptors available */
+ if (rxq->drop_en)
+ srrctl |= E1000_SRRCTL_DROP_EN;
+
+ E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
+
+ /* Enable this RX queue. */
+ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
+ rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
+ rxdctl &= 0xFFF00000;
+ rxdctl |= (rxq->pthresh & 0x1F);
+ rxdctl |= ((rxq->hthresh & 0x1F) << 8);
+ rxdctl |= ((rxq->wthresh & 0x1F) << 16);
+ E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
+ }
+
+ if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ /*
+ * Setup BSIZE field of RCTL register, if needed.
+ * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
+ * register, since the code above configures the SRRCTL register of
+ * the RX queue in such a case.
+ * All configurable sizes are:
+ * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
+ * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
+ * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
+ * 2048: rctl |= E1000_RCTL_SZ_2048;
+ * 1024: rctl |= E1000_RCTL_SZ_1024;
+ * 512: rctl |= E1000_RCTL_SZ_512;
+ * 256: rctl |= E1000_RCTL_SZ_256;
+ */
+ if (rctl_bsize > 0) {
+ if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
+ rctl |= E1000_RCTL_SZ_512;
+ else /* 256 <= buf_size < 512 - use 256 */
+ rctl |= E1000_RCTL_SZ_256;
+ }
+
+ /*
+ * Configure RSS if device configured with multiple RX queues.
+ */
+ igb_dev_mq_rx_configure(dev);
+
+ /* Update the rctl since igb_dev_mq_rx_configure may change its value */
+ rctl |= E1000_READ_REG(hw, E1000_RCTL);
+
+ /*
+ * Setup the Checksum Register.
+ * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
+ */
+ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+ rxcsum |= E1000_RXCSUM_PCSD;
+
+ /* Enable both L3/L4 rx checksum offload */
+ if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
+ rxcsum |= E1000_RXCSUM_IPOFL;
+ else
+ rxcsum &= ~E1000_RXCSUM_IPOFL;
+ if (rxmode->offloads &
+ (DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM))
+ rxcsum |= E1000_RXCSUM_TUOFL;
+ else
+ rxcsum &= ~E1000_RXCSUM_TUOFL;
+ if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
+ rxcsum |= E1000_RXCSUM_CRCOFL;
+ else
+ rxcsum &= ~E1000_RXCSUM_CRCOFL;
+
+ E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+
+ /* Setup the Receive Control Register. */
+ if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads)) {
+ rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
+
+ /* clear STRCRC bit in all queues */
+ if (hw->mac.type == e1000_i350 ||
+ hw->mac.type == e1000_i210 ||
+ hw->mac.type == e1000_i211 ||
+ hw->mac.type == e1000_i354) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ uint32_t dvmolr = E1000_READ_REG(hw,
+ E1000_DVMOLR(rxq->reg_idx));
+ dvmolr &= ~E1000_DVMOLR_STRCRC;
+ E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
+ }
+ }
+ } else {
+ rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
+
+ /* set STRCRC bit in all queues */
+ if (hw->mac.type == e1000_i350 ||
+ hw->mac.type == e1000_i210 ||
+ hw->mac.type == e1000_i211 ||
+ hw->mac.type == e1000_i354) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ uint32_t dvmolr = E1000_READ_REG(hw,
+ E1000_DVMOLR(rxq->reg_idx));
+ dvmolr |= E1000_DVMOLR_STRCRC;
+ E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
+ }
+ }
+ }
+
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+ E1000_RCTL_RDMTS_HALF |
+ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+ /* Make sure VLAN Filters are off. */
+ if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
+ rctl &= ~E1000_RCTL_VFE;
+ /* Don't store bad packets. */
+ rctl &= ~E1000_RCTL_SBP;
+
+ /* Enable Receives. */
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ /*
+ * Setup the HW Rx Head and Tail Descriptor Pointers.
+ * This needs to be done after enable.
+ */
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
+ E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
+ }
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Enable transmit unit.
+ *
+ **********************************************************************/
+void
+eth_igb_tx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct igb_tx_queue *txq;
+ uint32_t tctl;
+ uint32_t txdctl;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* Setup the Base and Length of the Tx Descriptor Rings. */
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ uint64_t bus_addr;
+ txq = dev->data->tx_queues[i];
+ bus_addr = txq->tx_ring_phys_addr;
+
+ E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
+ txq->nb_tx_desc *
+ sizeof(union e1000_adv_tx_desc));
+ E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers. */
+ E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
+ E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
+
+ /* Setup Transmit threshold registers. */
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
+ txdctl |= txq->pthresh & 0x1F;
+ txdctl |= ((txq->hthresh & 0x1F) << 8);
+ txdctl |= ((txq->wthresh & 0x1F) << 16);
+ txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
+ }
+
+ /* Program the Transmit Control Register. */
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+ e1000_config_collision_dist(hw);
+
+ /* This write will effectively turn on the transmit unit. */
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+}
+
+/*********************************************************************
+ *
+ * Enable VF receive unit.
+ *
+ **********************************************************************/
+int
+eth_igbvf_rx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct igb_rx_queue *rxq;
+ uint32_t srrctl;
+ uint16_t buf_size;
+ uint16_t rctl_bsize;
+ uint16_t i;
+ int ret;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* setup MTU */
+ e1000_rlpml_set_vf(hw,
+ (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
+ VLAN_TAG_SIZE));
+
+ /* Configure and enable each RX queue. */
+ rctl_bsize = 0;
+ dev->rx_pkt_burst = eth_igb_recv_pkts;
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint64_t bus_addr;
+ uint32_t rxdctl;
+
+ rxq = dev->data->rx_queues[i];
+
+ rxq->flags = 0;
+ /*
+ * i350VF LB vlan packets have vlan tags byte swapped.
+ */
+ if (hw->mac.type == e1000_vfadapt_i350) {
+ rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
+ PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
+ } else {
+ PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
+ }
+
+ /* Allocate buffers for descriptor rings and set up queue */
+ ret = igb_alloc_rx_queue_mbufs(rxq);
+ if (ret)
+ return ret;
+
+ bus_addr = rxq->rx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_RDLEN(i),
+ rxq->nb_rx_desc *
+ sizeof(union e1000_adv_rx_desc));
+ E1000_WRITE_REG(hw, E1000_RDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
+
+ srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
+
+ /*
+ * Configure RX buffer size.
+ */
+ buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
+ RTE_PKTMBUF_HEADROOM);
+ if (buf_size >= 1024) {
+ /*
+ * Configure the BSIZEPACKET field of the SRRCTL
+ * register of the queue.
+ * Value is in 1 KB resolution, from 1 KB to 127 KB.
+ * If this field is equal to 0b, then RCTL.BSIZE
+ * determines the RX packet buffer size.
+ */
+ srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
+ E1000_SRRCTL_BSIZEPKT_MASK);
+ buf_size = (uint16_t) ((srrctl &
+ E1000_SRRCTL_BSIZEPKT_MASK) <<
+ E1000_SRRCTL_BSIZEPKT_SHIFT);
+
+ /* It adds dual VLAN length for supporting dual VLAN */
+ if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
+ 2 * VLAN_TAG_SIZE) > buf_size){
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG,
+ "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+ } else {
+ /*
+ * Use BSIZE field of the device RCTL register.
+ */
+ if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
+ rctl_bsize = buf_size;
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ /* Set if packets are dropped when no descriptors available */
+ if (rxq->drop_en)
+ srrctl |= E1000_SRRCTL_DROP_EN;
+
+ E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
+
+ /* Enable this RX queue. */
+ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
+ rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
+ rxdctl &= 0xFFF00000;
+ rxdctl |= (rxq->pthresh & 0x1F);
+ rxdctl |= ((rxq->hthresh & 0x1F) << 8);
+ if (hw->mac.type == e1000_vfadapt) {
+ /*
+ * Workaround of 82576 VF Erratum
+ * force set WTHRESH to 1
+ * to avoid Write-Back not triggered sometimes
+ */
+ rxdctl |= 0x10000;
+ PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
+ }
+ else
+ rxdctl |= ((rxq->wthresh & 0x1F) << 16);
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
+ }
+
+ if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ /*
+ * Setup the HW Rx Head and Tail Descriptor Pointers.
+ * This needs to be done after enable.
+ */
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+ E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
+ }
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Enable VF transmit unit.
+ *
+ **********************************************************************/
+void
+eth_igbvf_tx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct igb_tx_queue *txq;
+ uint32_t txdctl;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* Setup the Base and Length of the Tx Descriptor Rings. */
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ uint64_t bus_addr;
+
+ txq = dev->data->tx_queues[i];
+ bus_addr = txq->tx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_TDLEN(i),
+ txq->nb_tx_desc *
+ sizeof(union e1000_adv_tx_desc));
+ E1000_WRITE_REG(hw, E1000_TDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers. */
+ E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+ E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+ /* Setup Transmit threshold registers. */
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
+ txdctl |= txq->pthresh & 0x1F;
+ txdctl |= ((txq->hthresh & 0x1F) << 8);
+ if (hw->mac.type == e1000_82576) {
+ /*
+ * Workaround of 82576 VF Erratum
+ * force set WTHRESH to 1
+ * to avoid Write-Back not triggered sometimes
+ */
+ txdctl |= 0x10000;
+ PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
+ }
+ else
+ txdctl |= ((txq->wthresh & 0x1F) << 16);
+ txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
+ }
+
+}
+
+void
+igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
+ struct rte_eth_rxq_info *qinfo)
+{
+ struct igb_rx_queue *rxq;
+
+ rxq = dev->data->rx_queues[queue_id];
+
+ qinfo->mp = rxq->mb_pool;
+ qinfo->scattered_rx = dev->data->scattered_rx;
+ qinfo->nb_desc = rxq->nb_rx_desc;
+
+ qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
+ qinfo->conf.rx_drop_en = rxq->drop_en;
+ qinfo->conf.offloads = rxq->offloads;
+}
+
+void
+igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
+ struct rte_eth_txq_info *qinfo)
+{
+ struct igb_tx_queue *txq;
+
+ txq = dev->data->tx_queues[queue_id];
+
+ qinfo->nb_desc = txq->nb_tx_desc;
+
+ qinfo->conf.tx_thresh.pthresh = txq->pthresh;
+ qinfo->conf.tx_thresh.hthresh = txq->hthresh;
+ qinfo->conf.tx_thresh.wthresh = txq->wthresh;
+ qinfo->conf.offloads = txq->offloads;
+}
+
+int
+igb_rss_conf_init(struct igb_rte_flow_rss_conf *out,
+ const struct rte_flow_action_rss *in)
+{
+ if (in->key_len > RTE_DIM(out->key) ||
+ in->queue_num > RTE_DIM(out->queue))
+ return -EINVAL;
+ out->conf = (struct rte_flow_action_rss){
+ .func = in->func,
+ .level = in->level,
+ .types = in->types,
+ .key_len = in->key_len,
+ .queue_num = in->queue_num,
+ .key = memcpy(out->key, in->key, in->key_len),
+ .queue = memcpy(out->queue, in->queue,
+ sizeof(*in->queue) * in->queue_num),
+ };
+ return 0;
+}
+
+int
+igb_action_rss_same(const struct rte_flow_action_rss *comp,
+ const struct rte_flow_action_rss *with)
+{
+ return (comp->func == with->func &&
+ comp->level == with->level &&
+ comp->types == with->types &&
+ comp->key_len == with->key_len &&
+ comp->queue_num == with->queue_num &&
+ !memcmp(comp->key, with->key, with->key_len) &&
+ !memcmp(comp->queue, with->queue,
+ sizeof(*with->queue) * with->queue_num));
+}
+
+int
+igb_config_rss_filter(struct rte_eth_dev *dev,
+ struct igb_rte_flow_rss_conf *conf, bool add)
+{
+ uint32_t shift;
+ uint16_t i, j;
+ struct rte_eth_rss_conf rss_conf = {
+ .rss_key = conf->conf.key_len ?
+ (void *)(uintptr_t)conf->conf.key : NULL,
+ .rss_key_len = conf->conf.key_len,
+ .rss_hf = conf->conf.types,
+ };
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ if (!add) {
+ if (igb_action_rss_same(&filter_info->rss_info.conf,
+ &conf->conf)) {
+ igb_rss_disable(dev);
+ memset(&filter_info->rss_info, 0,
+ sizeof(struct igb_rte_flow_rss_conf));
+ return 0;
+ }
+ return -EINVAL;
+ }
+
+ if (filter_info->rss_info.conf.queue_num)
+ return -EINVAL;
+
+ /* Fill in redirection table. */
+ shift = (hw->mac.type == e1000_82575) ? 6 : 0;
+ for (i = 0, j = 0; i < 128; i++, j++) {
+ union e1000_reta {
+ uint32_t dword;
+ uint8_t bytes[4];
+ } reta;
+ uint8_t q_idx;
+
+ if (j == conf->conf.queue_num)
+ j = 0;
+ q_idx = conf->conf.queue[j];
+ reta.bytes[i & 3] = (uint8_t)(q_idx << shift);
+ if ((i & 3) == 3)
+ E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
+ }
+
+ /* Configure the RSS key and the RSS protocols used to compute
+ * the RSS hash of input packets.
+ */
+ if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
+ igb_rss_disable(dev);
+ return 0;
+ }
+ if (rss_conf.rss_key == NULL)
+ rss_conf.rss_key = rss_intel_key; /* Default hash key */
+ igb_hw_rss_hash_set(hw, &rss_conf);
+
+ if (igb_rss_conf_init(&filter_info->rss_info, &conf->conf))
+ return -EINVAL;
+
+ return 0;
+}