diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/spdk/lib/nvme/nvme_pcie.c | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/spdk/lib/nvme/nvme_pcie.c')
-rw-r--r-- | src/spdk/lib/nvme/nvme_pcie.c | 2142 |
1 files changed, 2142 insertions, 0 deletions
diff --git a/src/spdk/lib/nvme/nvme_pcie.c b/src/spdk/lib/nvme/nvme_pcie.c new file mode 100644 index 00000000..8042380c --- /dev/null +++ b/src/spdk/lib/nvme/nvme_pcie.c @@ -0,0 +1,2142 @@ +/*- + * BSD LICENSE + * + * Copyright (c) Intel Corporation. + * Copyright (c) 2017, IBM Corporation. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +/* + * NVMe over PCIe transport + */ + +#include "spdk/stdinc.h" +#include "spdk/env.h" +#include "spdk/likely.h" +#include "nvme_internal.h" +#include "nvme_uevent.h" + +/* + * Number of completion queue entries to process before ringing the + * completion queue doorbell. + */ +#define NVME_MIN_COMPLETIONS (1) +#define NVME_MAX_COMPLETIONS (128) + +#define NVME_ADMIN_ENTRIES (128) + +/* + * NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL + * segment. + */ +#define NVME_MAX_SGL_DESCRIPTORS (253) + +#define NVME_MAX_PRP_LIST_ENTRIES (506) + +struct nvme_pcie_enum_ctx { + spdk_nvme_probe_cb probe_cb; + void *cb_ctx; + struct spdk_pci_addr pci_addr; + bool has_pci_addr; +}; + +/* PCIe transport extensions for spdk_nvme_ctrlr */ +struct nvme_pcie_ctrlr { + struct spdk_nvme_ctrlr ctrlr; + + /** NVMe MMIO register space */ + volatile struct spdk_nvme_registers *regs; + + /** NVMe MMIO register size */ + uint64_t regs_size; + + /* BAR mapping address which contains controller memory buffer */ + void *cmb_bar_virt_addr; + + /* BAR physical address which contains controller memory buffer */ + uint64_t cmb_bar_phys_addr; + + /* Controller memory buffer size in Bytes */ + uint64_t cmb_size; + + /* Current offset of controller memory buffer, relative to start of BAR virt addr */ + uint64_t cmb_current_offset; + + /* Last valid offset into CMB, this differs if CMB memory registration occurs or not */ + uint64_t cmb_max_offset; + + void *cmb_mem_register_addr; + size_t cmb_mem_register_size; + + bool cmb_io_data_supported; + + /** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */ + uint32_t doorbell_stride_u32; + + /* Opaque handle to associated PCI device. */ + struct spdk_pci_device *devhandle; + + /* File descriptor returned from spdk_pci_device_claim(). Closed when ctrlr is detached. */ + int claim_fd; + + /* Flag to indicate the MMIO register has been remapped */ + bool is_remapped; +}; + +struct nvme_tracker { + TAILQ_ENTRY(nvme_tracker) tq_list; + + struct nvme_request *req; + uint16_t cid; + + uint16_t rsvd1: 15; + uint16_t active: 1; + + uint32_t rsvd2; + + uint64_t rsvd3; + + uint64_t prp_sgl_bus_addr; + + union { + uint64_t prp[NVME_MAX_PRP_LIST_ENTRIES]; + struct spdk_nvme_sgl_descriptor sgl[NVME_MAX_SGL_DESCRIPTORS]; + } u; +}; +/* + * struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary + * and so that there is no padding required to meet alignment requirements. + */ +SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K"); +SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned"); + +/* PCIe transport extensions for spdk_nvme_qpair */ +struct nvme_pcie_qpair { + /* Submission queue tail doorbell */ + volatile uint32_t *sq_tdbl; + + /* Completion queue head doorbell */ + volatile uint32_t *cq_hdbl; + + /* Submission queue shadow tail doorbell */ + volatile uint32_t *sq_shadow_tdbl; + + /* Completion queue shadow head doorbell */ + volatile uint32_t *cq_shadow_hdbl; + + /* Submission queue event index */ + volatile uint32_t *sq_eventidx; + + /* Completion queue event index */ + volatile uint32_t *cq_eventidx; + + /* Submission queue */ + struct spdk_nvme_cmd *cmd; + + /* Completion queue */ + struct spdk_nvme_cpl *cpl; + + TAILQ_HEAD(, nvme_tracker) free_tr; + TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr; + + /* Array of trackers indexed by command ID. */ + struct nvme_tracker *tr; + + uint16_t num_entries; + + uint16_t max_completions_cap; + + uint16_t sq_tail; + uint16_t cq_head; + uint16_t sq_head; + + uint8_t phase; + + bool is_enabled; + + /* + * Base qpair structure. + * This is located after the hot data in this structure so that the important parts of + * nvme_pcie_qpair are in the same cache line. + */ + struct spdk_nvme_qpair qpair; + + /* + * Fields below this point should not be touched on the normal I/O path. + */ + + bool sq_in_cmb; + + uint64_t cmd_bus_addr; + uint64_t cpl_bus_addr; +}; + +static int nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx, + struct spdk_pci_addr *pci_addr); +static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair); +static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair); + +__thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL; +static volatile uint16_t g_signal_lock; +static bool g_sigset = false; +static int hotplug_fd = -1; + +static void +nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx) +{ + void *map_address; + + if (!__sync_bool_compare_and_swap(&g_signal_lock, 0, 1)) { + return; + } + + assert(g_thread_mmio_ctrlr != NULL); + + if (!g_thread_mmio_ctrlr->is_remapped) { + map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size, + PROT_READ | PROT_WRITE, + MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0); + if (map_address == MAP_FAILED) { + SPDK_ERRLOG("mmap failed\n"); + g_signal_lock = 0; + return; + } + memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers)); + g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address; + g_thread_mmio_ctrlr->is_remapped = true; + } + g_signal_lock = 0; + return; +} + +static void +nvme_pcie_ctrlr_setup_signal(void) +{ + struct sigaction sa; + + sa.sa_sigaction = nvme_sigbus_fault_sighandler; + sigemptyset(&sa.sa_mask); + sa.sa_flags = SA_SIGINFO; + sigaction(SIGBUS, &sa, NULL); +} + +static int +_nvme_pcie_hotplug_monitor(void *cb_ctx, spdk_nvme_probe_cb probe_cb, + spdk_nvme_remove_cb remove_cb) +{ + struct spdk_nvme_ctrlr *ctrlr, *tmp; + struct spdk_uevent event; + struct spdk_pci_addr pci_addr; + union spdk_nvme_csts_register csts; + struct spdk_nvme_ctrlr_process *proc; + + while (spdk_get_uevent(hotplug_fd, &event) > 0) { + if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO || + event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) { + if (event.action == SPDK_NVME_UEVENT_ADD) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "add nvme address: %s\n", + event.traddr); + if (spdk_process_is_primary()) { + if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) { + nvme_pcie_ctrlr_attach(probe_cb, cb_ctx, &pci_addr); + } + } + } else if (event.action == SPDK_NVME_UEVENT_REMOVE) { + struct spdk_nvme_transport_id trid; + + memset(&trid, 0, sizeof(trid)); + trid.trtype = SPDK_NVME_TRANSPORT_PCIE; + snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr); + + ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid); + if (ctrlr == NULL) { + return 0; + } + SPDK_DEBUGLOG(SPDK_LOG_NVME, "remove nvme address: %s\n", + event.traddr); + + nvme_ctrlr_fail(ctrlr, true); + + /* get the user app to clean up and stop I/O */ + if (remove_cb) { + nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); + remove_cb(cb_ctx, ctrlr); + nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); + } + } + } + } + + /* This is a work around for vfio-attached device hot remove detection. */ + TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) { + /* NVMe controller BAR must be mapped to secondary process space before any access. */ + proc = spdk_nvme_ctrlr_get_current_process(ctrlr); + if (proc) { + csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr); + if (csts.raw == 0xffffffffU) { + nvme_ctrlr_fail(ctrlr, true); + if (remove_cb) { + nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); + remove_cb(cb_ctx, ctrlr); + nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); + } + } + } + } + return 0; +} + +static inline struct nvme_pcie_ctrlr * +nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr) +{ + assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE); + return SPDK_CONTAINEROF(ctrlr, struct nvme_pcie_ctrlr, ctrlr); +} + +static inline struct nvme_pcie_qpair * +nvme_pcie_qpair(struct spdk_nvme_qpair *qpair) +{ + assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE); + return SPDK_CONTAINEROF(qpair, struct nvme_pcie_qpair, qpair); +} + +static volatile void * +nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset) +{ + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); + + return (volatile void *)((uintptr_t)pctrlr->regs + offset); +} + +int +nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value) +{ + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); + + assert(offset <= sizeof(struct spdk_nvme_registers) - 4); + g_thread_mmio_ctrlr = pctrlr; + spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value); + g_thread_mmio_ctrlr = NULL; + return 0; +} + +int +nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value) +{ + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); + + assert(offset <= sizeof(struct spdk_nvme_registers) - 8); + g_thread_mmio_ctrlr = pctrlr; + spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value); + g_thread_mmio_ctrlr = NULL; + return 0; +} + +int +nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value) +{ + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); + + assert(offset <= sizeof(struct spdk_nvme_registers) - 4); + assert(value != NULL); + g_thread_mmio_ctrlr = pctrlr; + *value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset)); + g_thread_mmio_ctrlr = NULL; + if (~(*value) == 0) { + return -1; + } + + return 0; +} + +int +nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value) +{ + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); + + assert(offset <= sizeof(struct spdk_nvme_registers) - 8); + assert(value != NULL); + g_thread_mmio_ctrlr = pctrlr; + *value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset)); + g_thread_mmio_ctrlr = NULL; + if (~(*value) == 0) { + return -1; + } + + return 0; +} + +static int +nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value) +{ + return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq), + value); +} + +static int +nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value) +{ + return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq), + value); +} + +static int +nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa) +{ + return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw), + aqa->raw); +} + +static int +nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc) +{ + return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw), + &cmbloc->raw); +} + +static int +nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz) +{ + return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw), + &cmbsz->raw); +} + +uint32_t +nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) +{ + /* + * For commands requiring more than 2 PRP entries, one PRP will be + * embedded in the command (prp1), and the rest of the PRP entries + * will be in a list pointed to by the command (prp2). This means + * that real max number of PRP entries we support is 506+1, which + * results in a max xfer size of 506*ctrlr->page_size. + */ + return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size; +} + +uint16_t +nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) +{ + return NVME_MAX_SGL_DESCRIPTORS; +} + +static void +nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr) +{ + int rc; + void *addr; + uint32_t bir; + union spdk_nvme_cmbsz_register cmbsz; + union spdk_nvme_cmbloc_register cmbloc; + uint64_t size, unit_size, offset, bar_size, bar_phys_addr; + uint64_t mem_register_start, mem_register_end; + + if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) || + nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { + SPDK_ERRLOG("get registers failed\n"); + goto exit; + } + + if (!cmbsz.bits.sz) { + goto exit; + } + + bir = cmbloc.bits.bir; + /* Values 0 2 3 4 5 are valid for BAR */ + if (bir > 5 || bir == 1) { + goto exit; + } + + /* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */ + unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu); + /* controller memory buffer size in Bytes */ + size = unit_size * cmbsz.bits.sz; + /* controller memory buffer offset from BAR in Bytes */ + offset = unit_size * cmbloc.bits.ofst; + + rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr, + &bar_phys_addr, &bar_size); + if ((rc != 0) || addr == NULL) { + goto exit; + } + + if (offset > bar_size) { + goto exit; + } + + if (size > bar_size - offset) { + goto exit; + } + + pctrlr->cmb_bar_virt_addr = addr; + pctrlr->cmb_bar_phys_addr = bar_phys_addr; + pctrlr->cmb_size = size; + pctrlr->cmb_current_offset = offset; + pctrlr->cmb_max_offset = offset + size; + + if (!cmbsz.bits.sqs) { + pctrlr->ctrlr.opts.use_cmb_sqs = false; + } + + /* If only SQS is supported use legacy mapping */ + if (cmbsz.bits.sqs && !(cmbsz.bits.wds || cmbsz.bits.rds)) { + return; + } + + /* If CMB is less than 4MiB in size then abort CMB mapping */ + if (pctrlr->cmb_size < (1ULL << 22)) { + goto exit; + } + + mem_register_start = (((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + 0x1fffff) & ~(0x200000 - 1)); + mem_register_end = ((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + pctrlr->cmb_size); + mem_register_end &= ~(uint64_t)(0x200000 - 1); + pctrlr->cmb_mem_register_addr = (void *)mem_register_start; + pctrlr->cmb_mem_register_size = mem_register_end - mem_register_start; + + rc = spdk_mem_register(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size); + if (rc) { + SPDK_ERRLOG("spdk_mem_register() failed\n"); + goto exit; + } + pctrlr->cmb_current_offset = mem_register_start - ((uint64_t)pctrlr->cmb_bar_virt_addr); + pctrlr->cmb_max_offset = mem_register_end - ((uint64_t)pctrlr->cmb_bar_virt_addr); + pctrlr->cmb_io_data_supported = true; + + return; +exit: + pctrlr->cmb_bar_virt_addr = NULL; + pctrlr->ctrlr.opts.use_cmb_sqs = false; + return; +} + +static int +nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr) +{ + int rc = 0; + union spdk_nvme_cmbloc_register cmbloc; + void *addr = pctrlr->cmb_bar_virt_addr; + + if (addr) { + if (pctrlr->cmb_mem_register_addr) { + spdk_mem_unregister(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size); + } + + if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { + SPDK_ERRLOG("get_cmbloc() failed\n"); + return -EIO; + } + rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr); + } + return rc; +} + +static int +nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t length, uint64_t aligned, + uint64_t *offset) +{ + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); + uint64_t round_offset; + + round_offset = pctrlr->cmb_current_offset; + round_offset = (round_offset + (aligned - 1)) & ~(aligned - 1); + + /* CMB may only consume part of the BAR, calculate accordingly */ + if (round_offset + length > pctrlr->cmb_max_offset) { + SPDK_ERRLOG("Tried to allocate past valid CMB range!\n"); + return -1; + } + + *offset = round_offset; + pctrlr->cmb_current_offset = round_offset + length; + + return 0; +} + +void * +nvme_pcie_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size) +{ + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); + uint64_t offset; + + if (pctrlr->cmb_bar_virt_addr == NULL) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB not available\n"); + return NULL; + } + + if (!pctrlr->cmb_io_data_supported) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB doesn't support I/O data\n"); + return NULL; + } + + if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, size, 4, &offset) != 0) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "%zu-byte CMB allocation failed\n", size); + return NULL; + } + + return pctrlr->cmb_bar_virt_addr + offset; +} + +int +nvme_pcie_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size) +{ + /* + * Do nothing for now. + * TODO: Track free space so buffers may be reused. + */ + SPDK_ERRLOG("%s: no deallocation for CMB buffers yet!\n", + __func__); + return 0; +} + +static int +nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr) +{ + int rc; + void *addr; + uint64_t phys_addr, size; + + rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr, + &phys_addr, &size); + pctrlr->regs = (volatile struct spdk_nvme_registers *)addr; + if ((pctrlr->regs == NULL) || (rc != 0)) { + SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n", + rc, pctrlr->regs); + return -1; + } + + pctrlr->regs_size = size; + nvme_pcie_ctrlr_map_cmb(pctrlr); + + return 0; +} + +static int +nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr) +{ + int rc = 0; + void *addr = (void *)pctrlr->regs; + + if (pctrlr->ctrlr.is_removed) { + return rc; + } + + rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr); + if (rc != 0) { + SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc); + return -1; + } + + if (addr) { + /* NOTE: addr may have been remapped here. We're relying on DPDK to call + * munmap internally. + */ + rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr); + } + return rc; +} + +static int +nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr) +{ + struct nvme_pcie_qpair *pqpair; + int rc; + + pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); + if (pqpair == NULL) { + return -ENOMEM; + } + + pqpair->num_entries = NVME_ADMIN_ENTRIES; + + ctrlr->adminq = &pqpair->qpair; + + rc = nvme_qpair_init(ctrlr->adminq, + 0, /* qpair ID */ + ctrlr, + SPDK_NVME_QPRIO_URGENT, + NVME_ADMIN_ENTRIES); + if (rc != 0) { + return rc; + } + + return nvme_pcie_qpair_construct(ctrlr->adminq); +} + +/* This function must only be called while holding g_spdk_nvme_driver->lock */ +static int +pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev) +{ + struct spdk_nvme_transport_id trid = {}; + struct nvme_pcie_enum_ctx *enum_ctx = ctx; + struct spdk_nvme_ctrlr *ctrlr; + struct spdk_pci_addr pci_addr; + + pci_addr = spdk_pci_device_get_addr(pci_dev); + + trid.trtype = SPDK_NVME_TRANSPORT_PCIE; + spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr); + + /* Verify that this controller is not already attached */ + ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid); + if (ctrlr) { + if (spdk_process_is_primary()) { + /* Already attached */ + return 0; + } else { + return nvme_ctrlr_add_process(ctrlr, pci_dev); + } + } + + /* check whether user passes the pci_addr */ + if (enum_ctx->has_pci_addr && + (spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) { + return 1; + } + + return nvme_ctrlr_probe(&trid, pci_dev, + enum_ctx->probe_cb, enum_ctx->cb_ctx); +} + +int +nvme_pcie_ctrlr_scan(const struct spdk_nvme_transport_id *trid, + void *cb_ctx, + spdk_nvme_probe_cb probe_cb, + spdk_nvme_remove_cb remove_cb, + bool direct_connect) +{ + struct nvme_pcie_enum_ctx enum_ctx = {}; + + enum_ctx.probe_cb = probe_cb; + enum_ctx.cb_ctx = cb_ctx; + + if (strlen(trid->traddr) != 0) { + if (spdk_pci_addr_parse(&enum_ctx.pci_addr, trid->traddr)) { + return -1; + } + enum_ctx.has_pci_addr = true; + } + + if (hotplug_fd < 0) { + hotplug_fd = spdk_uevent_connect(); + if (hotplug_fd < 0) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Failed to open uevent netlink socket\n"); + } + } else { + _nvme_pcie_hotplug_monitor(cb_ctx, probe_cb, remove_cb); + } + + if (enum_ctx.has_pci_addr == false) { + return spdk_pci_nvme_enumerate(pcie_nvme_enum_cb, &enum_ctx); + } else { + return spdk_pci_nvme_device_attach(pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr); + } +} + +static int +nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx, struct spdk_pci_addr *pci_addr) +{ + struct nvme_pcie_enum_ctx enum_ctx; + + enum_ctx.probe_cb = probe_cb; + enum_ctx.cb_ctx = cb_ctx; + + return spdk_pci_nvme_device_attach(pcie_nvme_enum_cb, &enum_ctx, pci_addr); +} + +struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid, + const struct spdk_nvme_ctrlr_opts *opts, + void *devhandle) +{ + struct spdk_pci_device *pci_dev = devhandle; + struct nvme_pcie_ctrlr *pctrlr; + union spdk_nvme_cap_register cap; + union spdk_nvme_vs_register vs; + uint32_t cmd_reg; + int rc, claim_fd; + struct spdk_pci_id pci_id; + struct spdk_pci_addr pci_addr; + + if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) { + SPDK_ERRLOG("could not parse pci address\n"); + return NULL; + } + + claim_fd = spdk_pci_device_claim(&pci_addr); + if (claim_fd < 0) { + SPDK_ERRLOG("could not claim device %s\n", trid->traddr); + return NULL; + } + + pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL, + SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); + if (pctrlr == NULL) { + close(claim_fd); + SPDK_ERRLOG("could not allocate ctrlr\n"); + return NULL; + } + + pctrlr->is_remapped = false; + pctrlr->ctrlr.is_removed = false; + pctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; + pctrlr->devhandle = devhandle; + pctrlr->ctrlr.opts = *opts; + pctrlr->claim_fd = claim_fd; + memcpy(&pctrlr->ctrlr.trid, trid, sizeof(pctrlr->ctrlr.trid)); + + rc = nvme_pcie_ctrlr_allocate_bars(pctrlr); + if (rc != 0) { + close(claim_fd); + spdk_free(pctrlr); + return NULL; + } + + /* Enable PCI busmaster and disable INTx */ + spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4); + cmd_reg |= 0x404; + spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4); + + if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) { + SPDK_ERRLOG("get_cap() failed\n"); + close(claim_fd); + spdk_free(pctrlr); + return NULL; + } + + if (nvme_ctrlr_get_vs(&pctrlr->ctrlr, &vs)) { + SPDK_ERRLOG("get_vs() failed\n"); + close(claim_fd); + spdk_free(pctrlr); + return NULL; + } + + nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap, &vs); + + /* Doorbell stride is 2 ^ (dstrd + 2), + * but we want multiples of 4, so drop the + 2 */ + pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd; + + rc = nvme_ctrlr_construct(&pctrlr->ctrlr); + if (rc != 0) { + nvme_ctrlr_destruct(&pctrlr->ctrlr); + return NULL; + } + + pci_id = spdk_pci_device_get_id(pci_dev); + pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id); + + rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr); + if (rc != 0) { + nvme_ctrlr_destruct(&pctrlr->ctrlr); + return NULL; + } + + /* Construct the primary process properties */ + rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev); + if (rc != 0) { + nvme_ctrlr_destruct(&pctrlr->ctrlr); + return NULL; + } + + if (g_sigset != true) { + nvme_pcie_ctrlr_setup_signal(); + g_sigset = true; + } + + return &pctrlr->ctrlr; +} + +int +nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) +{ + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); + struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq); + union spdk_nvme_aqa_register aqa; + + if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) { + SPDK_ERRLOG("set_asq() failed\n"); + return -EIO; + } + + if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) { + SPDK_ERRLOG("set_acq() failed\n"); + return -EIO; + } + + aqa.raw = 0; + /* acqs and asqs are 0-based. */ + aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1; + aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1; + + if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) { + SPDK_ERRLOG("set_aqa() failed\n"); + return -EIO; + } + + return 0; +} + +int +nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) +{ + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); + struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr); + + close(pctrlr->claim_fd); + + if (ctrlr->adminq) { + nvme_pcie_qpair_destroy(ctrlr->adminq); + } + + nvme_ctrlr_destruct_finish(ctrlr); + + nvme_ctrlr_free_processes(ctrlr); + + nvme_pcie_ctrlr_free_bars(pctrlr); + + if (devhandle) { + spdk_pci_device_detach(devhandle); + } + + spdk_free(pctrlr); + + return 0; +} + +static void +nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr) +{ + tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp); + tr->cid = cid; + tr->active = false; +} + +int +nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair) +{ + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + + pqpair->sq_tail = pqpair->cq_head = 0; + + /* + * First time through the completion queue, HW will set phase + * bit on completions to 1. So set this to 1 here, indicating + * we're looking for a 1 to know which entries have completed. + * we'll toggle the bit each time when the completion queue + * rolls over. + */ + pqpair->phase = 1; + + memset(pqpair->cmd, 0, + pqpair->num_entries * sizeof(struct spdk_nvme_cmd)); + memset(pqpair->cpl, 0, + pqpair->num_entries * sizeof(struct spdk_nvme_cpl)); + + return 0; +} + +static int +nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair) +{ + struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + struct nvme_tracker *tr; + uint16_t i; + volatile uint32_t *doorbell_base; + uint64_t offset; + uint16_t num_trackers; + size_t page_align = 0x200000; + uint32_t flags = SPDK_MALLOC_DMA; + + /* + * Limit the maximum number of completions to return per call to prevent wraparound, + * and calculate how many trackers can be submitted at once without overflowing the + * completion queue. + */ + pqpair->max_completions_cap = pqpair->num_entries / 4; + pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS); + pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS); + num_trackers = pqpair->num_entries - pqpair->max_completions_cap; + + SPDK_INFOLOG(SPDK_LOG_NVME, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n", + pqpair->max_completions_cap, num_trackers); + + assert(num_trackers != 0); + + pqpair->sq_in_cmb = false; + + if (nvme_qpair_is_admin_queue(&pqpair->qpair)) { + flags |= SPDK_MALLOC_SHARE; + } + + /* cmd and cpl rings must be aligned on page size boundaries. */ + if (ctrlr->opts.use_cmb_sqs) { + if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd), + sysconf(_SC_PAGESIZE), &offset) == 0) { + pqpair->cmd = pctrlr->cmb_bar_virt_addr + offset; + pqpair->cmd_bus_addr = pctrlr->cmb_bar_phys_addr + offset; + pqpair->sq_in_cmb = true; + } + } + + /* To ensure physical address contiguity we make each ring occupy + * a single hugepage only. See MAX_IO_QUEUE_ENTRIES. + */ + if (pqpair->sq_in_cmb == false) { + pqpair->cmd = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cmd), + page_align, &pqpair->cmd_bus_addr, + SPDK_ENV_SOCKET_ID_ANY, flags); + if (pqpair->cmd == NULL) { + SPDK_ERRLOG("alloc qpair_cmd failed\n"); + return -ENOMEM; + } + } + + pqpair->cpl = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cpl), + page_align, &pqpair->cpl_bus_addr, + SPDK_ENV_SOCKET_ID_ANY, flags); + if (pqpair->cpl == NULL) { + SPDK_ERRLOG("alloc qpair_cpl failed\n"); + return -ENOMEM; + } + + doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl; + pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32; + pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32; + + /* + * Reserve space for all of the trackers in a single allocation. + * struct nvme_tracker must be padded so that its size is already a power of 2. + * This ensures the PRP list embedded in the nvme_tracker object will not span a + * 4KB boundary, while allowing access to trackers in tr[] via normal array indexing. + */ + pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL, + SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); + if (pqpair->tr == NULL) { + SPDK_ERRLOG("nvme_tr failed\n"); + return -ENOMEM; + } + + TAILQ_INIT(&pqpair->free_tr); + TAILQ_INIT(&pqpair->outstanding_tr); + + for (i = 0; i < num_trackers; i++) { + tr = &pqpair->tr[i]; + nvme_qpair_construct_tracker(tr, i, spdk_vtophys(tr)); + TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list); + } + + nvme_pcie_qpair_reset(qpair); + + return 0; +} + +static inline void +nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src) +{ + /* dst and src are known to be non-overlapping and 64-byte aligned. */ +#if defined(__AVX__) + __m256i *d256 = (__m256i *)dst; + const __m256i *s256 = (const __m256i *)src; + + _mm256_store_si256(&d256[0], _mm256_load_si256(&s256[0])); + _mm256_store_si256(&d256[1], _mm256_load_si256(&s256[1])); +#elif defined(__SSE2__) + __m128i *d128 = (__m128i *)dst; + const __m128i *s128 = (const __m128i *)src; + + _mm_store_si128(&d128[0], _mm_load_si128(&s128[0])); + _mm_store_si128(&d128[1], _mm_load_si128(&s128[1])); + _mm_store_si128(&d128[2], _mm_load_si128(&s128[2])); + _mm_store_si128(&d128[3], _mm_load_si128(&s128[3])); +#else + *dst = *src; +#endif +} + +/** + * Note: the ctrlr_lock must be held when calling this function. + */ +static void +nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair, + struct nvme_request *req, struct spdk_nvme_cpl *cpl) +{ + struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; + struct nvme_request *active_req = req; + struct spdk_nvme_ctrlr_process *active_proc; + + /* + * The admin request is from another process. Move to the per + * process list for that process to handle it later. + */ + assert(nvme_qpair_is_admin_queue(qpair)); + assert(active_req->pid != getpid()); + + active_proc = spdk_nvme_ctrlr_get_process(ctrlr, active_req->pid); + if (active_proc) { + /* Save the original completion information */ + memcpy(&active_req->cpl, cpl, sizeof(*cpl)); + STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq); + } else { + SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n", + active_req->pid); + + nvme_free_request(active_req); + } +} + +/** + * Note: the ctrlr_lock must be held when calling this function. + */ +static void +nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair) +{ + struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; + struct nvme_request *req, *tmp_req; + pid_t pid = getpid(); + struct spdk_nvme_ctrlr_process *proc; + + /* + * Check whether there is any pending admin request from + * other active processes. + */ + assert(nvme_qpair_is_admin_queue(qpair)); + + proc = spdk_nvme_ctrlr_get_current_process(ctrlr); + if (!proc) { + SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid); + assert(proc); + return; + } + + STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) { + STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq); + + assert(req->pid == pid); + + nvme_complete_request(req, &req->cpl); + nvme_free_request(req); + } +} + +static inline int +nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old) +{ + return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old); +} + +static bool +nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value, + volatile uint32_t *shadow_db, + volatile uint32_t *eventidx) +{ + uint16_t old; + + if (!shadow_db) { + return true; + } + + old = *shadow_db; + *shadow_db = value; + + if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) { + return false; + } + + return true; +} + +static void +nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr) +{ + struct nvme_request *req; + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr); + + req = tr->req; + assert(req != NULL); + req->timed_out = false; + if (spdk_unlikely(pctrlr->ctrlr.timeout_enabled)) { + req->submit_tick = spdk_get_ticks(); + } else { + req->submit_tick = 0; + } + + pqpair->tr[tr->cid].active = true; + + /* Copy the command from the tracker to the submission queue. */ + nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd); + + if (++pqpair->sq_tail == pqpair->num_entries) { + pqpair->sq_tail = 0; + } + + if (pqpair->sq_tail == pqpair->sq_head) { + SPDK_ERRLOG("sq_tail is passing sq_head!\n"); + } + + spdk_wmb(); + if (spdk_likely(nvme_pcie_qpair_update_mmio_required(qpair, + pqpair->sq_tail, + pqpair->sq_shadow_tdbl, + pqpair->sq_eventidx))) { + g_thread_mmio_ctrlr = pctrlr; + spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail); + g_thread_mmio_ctrlr = NULL; + } +} + +static void +nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr, + struct spdk_nvme_cpl *cpl, bool print_on_error) +{ + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + struct nvme_request *req; + bool retry, error, was_active; + bool req_from_current_proc = true; + + req = tr->req; + + assert(req != NULL); + + error = spdk_nvme_cpl_is_error(cpl); + retry = error && nvme_completion_is_retry(cpl) && + req->retries < spdk_nvme_retry_count; + + if (error && print_on_error) { + nvme_qpair_print_command(qpair, &req->cmd); + nvme_qpair_print_completion(qpair, cpl); + } + + was_active = pqpair->tr[cpl->cid].active; + pqpair->tr[cpl->cid].active = false; + + assert(cpl->cid == req->cmd.cid); + + if (retry) { + req->retries++; + nvme_pcie_qpair_submit_tracker(qpair, tr); + } else { + if (was_active) { + /* Only check admin requests from different processes. */ + if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) { + req_from_current_proc = false; + nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl); + } else { + nvme_complete_request(req, cpl); + } + } + + if (req_from_current_proc == true) { + nvme_free_request(req); + } + + tr->req = NULL; + + TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list); + TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list); + + /* + * If the controller is in the middle of resetting, don't + * try to submit queued requests here - let the reset logic + * handle that instead. + */ + if (!STAILQ_EMPTY(&qpair->queued_req) && + !qpair->ctrlr->is_resetting) { + req = STAILQ_FIRST(&qpair->queued_req); + STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); + nvme_qpair_submit_request(qpair, req); + } + } +} + +static void +nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair, + struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr, + bool print_on_error) +{ + struct spdk_nvme_cpl cpl; + + memset(&cpl, 0, sizeof(cpl)); + cpl.sqid = qpair->id; + cpl.cid = tr->cid; + cpl.status.sct = sct; + cpl.status.sc = sc; + cpl.status.dnr = dnr; + nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error); +} + +static void +nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr) +{ + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + struct nvme_tracker *tr, *temp; + + TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) { + SPDK_ERRLOG("aborting outstanding command\n"); + nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, + SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true); + } +} + +static void +nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) +{ + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + struct nvme_tracker *tr; + + tr = TAILQ_FIRST(&pqpair->outstanding_tr); + while (tr != NULL) { + assert(tr->req != NULL); + if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { + nvme_pcie_qpair_manual_complete_tracker(qpair, tr, + SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0, + false); + tr = TAILQ_FIRST(&pqpair->outstanding_tr); + } else { + tr = TAILQ_NEXT(tr, tq_list); + } + } +} + +static void +nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair) +{ + nvme_pcie_admin_qpair_abort_aers(qpair); +} + +static int +nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair) +{ + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + + if (nvme_qpair_is_admin_queue(qpair)) { + nvme_pcie_admin_qpair_destroy(qpair); + } + if (pqpair->cmd && !pqpair->sq_in_cmb) { + spdk_free(pqpair->cmd); + } + if (pqpair->cpl) { + spdk_free(pqpair->cpl); + } + if (pqpair->tr) { + spdk_free(pqpair->tr); + } + + nvme_qpair_deinit(qpair); + + spdk_free(pqpair); + + return 0; +} + +static void +nvme_pcie_admin_qpair_enable(struct spdk_nvme_qpair *qpair) +{ + /* + * Manually abort each outstanding admin command. Do not retry + * admin commands found here, since they will be left over from + * a controller reset and its likely the context in which the + * command was issued no longer applies. + */ + nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */); +} + +static void +nvme_pcie_io_qpair_enable(struct spdk_nvme_qpair *qpair) +{ + /* Manually abort each outstanding I/O. */ + nvme_pcie_qpair_abort_trackers(qpair, 0); +} + +int +nvme_pcie_qpair_enable(struct spdk_nvme_qpair *qpair) +{ + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + + pqpair->is_enabled = true; + if (nvme_qpair_is_io_queue(qpair)) { + nvme_pcie_io_qpair_enable(qpair); + } else { + nvme_pcie_admin_qpair_enable(qpair); + } + + return 0; +} + +static void +nvme_pcie_admin_qpair_disable(struct spdk_nvme_qpair *qpair) +{ + nvme_pcie_admin_qpair_abort_aers(qpair); +} + +static void +nvme_pcie_io_qpair_disable(struct spdk_nvme_qpair *qpair) +{ +} + +int +nvme_pcie_qpair_disable(struct spdk_nvme_qpair *qpair) +{ + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + + pqpair->is_enabled = false; + if (nvme_qpair_is_io_queue(qpair)) { + nvme_pcie_io_qpair_disable(qpair); + } else { + nvme_pcie_admin_qpair_disable(qpair); + } + + return 0; +} + + +int +nvme_pcie_qpair_fail(struct spdk_nvme_qpair *qpair) +{ + nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */); + + return 0; +} + +static int +nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr, + struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, + void *cb_arg) +{ + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que); + struct nvme_request *req; + struct spdk_nvme_cmd *cmd; + + req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); + if (req == NULL) { + return -ENOMEM; + } + + cmd = &req->cmd; + cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ; + + /* + * TODO: create a create io completion queue command data + * structure. + */ + cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id; + /* + * 0x2 = interrupts enabled + * 0x1 = physically contiguous + */ + cmd->cdw11 = 0x1; + cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr; + + return nvme_ctrlr_submit_admin_request(ctrlr, req); +} + +static int +nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr, + struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg) +{ + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que); + struct nvme_request *req; + struct spdk_nvme_cmd *cmd; + + req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); + if (req == NULL) { + return -ENOMEM; + } + + cmd = &req->cmd; + cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ; + + /* + * TODO: create a create io submission queue command data + * structure. + */ + cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id; + /* 0x1 = physically contiguous */ + cmd->cdw11 = (io_que->id << 16) | (io_que->qprio << 1) | 0x1; + cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr; + + return nvme_ctrlr_submit_admin_request(ctrlr, req); +} + +static int +nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, + spdk_nvme_cmd_cb cb_fn, void *cb_arg) +{ + struct nvme_request *req; + struct spdk_nvme_cmd *cmd; + + req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); + if (req == NULL) { + return -ENOMEM; + } + + cmd = &req->cmd; + cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ; + cmd->cdw10 = qpair->id; + + return nvme_ctrlr_submit_admin_request(ctrlr, req); +} + +static int +nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, + spdk_nvme_cmd_cb cb_fn, void *cb_arg) +{ + struct nvme_request *req; + struct spdk_nvme_cmd *cmd; + + req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); + if (req == NULL) { + return -ENOMEM; + } + + cmd = &req->cmd; + cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ; + cmd->cdw10 = qpair->id; + + return nvme_ctrlr_submit_admin_request(ctrlr, req); +} + +static int +_nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, + uint16_t qid) +{ + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + struct nvme_completion_poll_status status; + int rc; + + rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status); + if (rc != 0) { + return rc; + } + + if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) { + SPDK_ERRLOG("nvme_create_io_cq failed!\n"); + return -1; + } + + rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status); + if (rc != 0) { + return rc; + } + + if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) { + SPDK_ERRLOG("nvme_create_io_sq failed!\n"); + /* Attempt to delete the completion queue */ + rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status); + if (rc != 0) { + return -1; + } + spdk_nvme_wait_for_completion(ctrlr->adminq, &status); + return -1; + } + + if (ctrlr->shadow_doorbell) { + pqpair->sq_shadow_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32; + pqpair->cq_shadow_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32; + pqpair->sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32; + pqpair->cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32; + } + nvme_pcie_qpair_reset(qpair); + + return 0; +} + +struct spdk_nvme_qpair * +nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, + const struct spdk_nvme_io_qpair_opts *opts) +{ + struct nvme_pcie_qpair *pqpair; + struct spdk_nvme_qpair *qpair; + int rc; + + assert(ctrlr != NULL); + + pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, + SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); + if (pqpair == NULL) { + return NULL; + } + + pqpair->num_entries = opts->io_queue_size; + + qpair = &pqpair->qpair; + + rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests); + if (rc != 0) { + nvme_pcie_qpair_destroy(qpair); + return NULL; + } + + rc = nvme_pcie_qpair_construct(qpair); + if (rc != 0) { + nvme_pcie_qpair_destroy(qpair); + return NULL; + } + + rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qid); + + if (rc != 0) { + SPDK_ERRLOG("I/O queue creation failed\n"); + nvme_pcie_qpair_destroy(qpair); + return NULL; + } + + return qpair; +} + +int +nvme_pcie_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) +{ + return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id); +} + +int +nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) +{ + struct nvme_completion_poll_status status; + int rc; + + assert(ctrlr != NULL); + + if (ctrlr->is_removed) { + goto free; + } + + /* Delete the I/O submission queue */ + rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status); + if (rc != 0) { + return rc; + } + if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) { + return -1; + } + + if (qpair->no_deletion_notification_needed == 0) { + /* Complete any I/O in the completion queue */ + nvme_pcie_qpair_process_completions(qpair, 0); + + /* Abort the rest of the I/O */ + nvme_pcie_qpair_abort_trackers(qpair, 1); + } + + /* Delete the completion queue */ + rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status); + if (rc != 0) { + return rc; + } + if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) { + return -1; + } + +free: + nvme_pcie_qpair_destroy(qpair); + return 0; +} + +static void +nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr) +{ + /* + * Bad vtophys translation, so abort this request and return + * immediately. + */ + nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, + SPDK_NVME_SC_INVALID_FIELD, + 1 /* do not retry */, true); +} + +/* + * Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes. + * + * *prp_index will be updated to account for the number of PRP entries used. + */ +static int +nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len, + uint32_t page_size) +{ + struct spdk_nvme_cmd *cmd = &tr->req->cmd; + uintptr_t page_mask = page_size - 1; + uint64_t phys_addr; + uint32_t i; + + SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp_index:%u virt_addr:%p len:%u\n", + *prp_index, virt_addr, (uint32_t)len); + + if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) { + SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr); + return -EINVAL; + } + + i = *prp_index; + while (len) { + uint32_t seg_len; + + /* + * prp_index 0 is stored in prp1, and the rest are stored in the prp[] array, + * so prp_index == count is valid. + */ + if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) { + SPDK_ERRLOG("out of PRP entries\n"); + return -EINVAL; + } + + phys_addr = spdk_vtophys(virt_addr); + if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) { + SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr); + return -EINVAL; + } + + if (i == 0) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp1 = %p\n", (void *)phys_addr); + cmd->dptr.prp.prp1 = phys_addr; + seg_len = page_size - ((uintptr_t)virt_addr & page_mask); + } else { + if ((phys_addr & page_mask) != 0) { + SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr); + return -EINVAL; + } + + SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp[%u] = %p\n", i - 1, (void *)phys_addr); + tr->u.prp[i - 1] = phys_addr; + seg_len = page_size; + } + + seg_len = spdk_min(seg_len, len); + virt_addr += seg_len; + len -= seg_len; + i++; + } + + cmd->psdt = SPDK_NVME_PSDT_PRP; + if (i <= 1) { + cmd->dptr.prp.prp2 = 0; + } else if (i == 2) { + cmd->dptr.prp.prp2 = tr->u.prp[0]; + SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2); + } else { + cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr; + SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2); + } + + *prp_index = i; + return 0; +} + +/** + * Build PRP list describing physically contiguous payload buffer. + */ +static int +nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, + struct nvme_tracker *tr) +{ + uint32_t prp_index = 0; + int rc; + + rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset, + req->payload_size, qpair->ctrlr->page_size); + if (rc) { + nvme_pcie_fail_request_bad_vtophys(qpair, tr); + return rc; + } + + return 0; +} + +#define _2MB_OFFSET(ptr) (((uintptr_t)(ptr)) & (0x200000 - 1)) + +/** + * Build SGL list describing scattered payload buffer. + */ +static int +nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, + struct nvme_tracker *tr) +{ + int rc; + void *virt_addr; + uint64_t phys_addr; + uint32_t remaining_transfer_len, remaining_user_sge_len, length; + struct spdk_nvme_sgl_descriptor *sgl; + uint32_t nseg = 0; + + /* + * Build scattered payloads. + */ + assert(req->payload_size != 0); + assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); + assert(req->payload.reset_sgl_fn != NULL); + assert(req->payload.next_sge_fn != NULL); + req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); + + sgl = tr->u.sgl; + req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; + req->cmd.dptr.sgl1.unkeyed.subtype = 0; + + remaining_transfer_len = req->payload_size; + + while (remaining_transfer_len > 0) { + rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, + &virt_addr, &remaining_user_sge_len); + if (rc) { + nvme_pcie_fail_request_bad_vtophys(qpair, tr); + return -1; + } + + remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len); + remaining_transfer_len -= remaining_user_sge_len; + while (remaining_user_sge_len > 0) { + if (nseg >= NVME_MAX_SGL_DESCRIPTORS) { + nvme_pcie_fail_request_bad_vtophys(qpair, tr); + return -1; + } + + phys_addr = spdk_vtophys(virt_addr); + if (phys_addr == SPDK_VTOPHYS_ERROR) { + nvme_pcie_fail_request_bad_vtophys(qpair, tr); + return -1; + } + + length = spdk_min(remaining_user_sge_len, 0x200000 - _2MB_OFFSET(virt_addr)); + remaining_user_sge_len -= length; + virt_addr += length; + + if (nseg > 0 && phys_addr == + (*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) { + /* extend previous entry */ + (*(sgl - 1)).unkeyed.length += length; + continue; + } + + sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; + sgl->unkeyed.length = length; + sgl->address = phys_addr; + sgl->unkeyed.subtype = 0; + + sgl++; + nseg++; + } + } + + if (nseg == 1) { + /* + * The whole transfer can be described by a single SGL descriptor. + * Use the special case described by the spec where SGL1's type is Data Block. + * This means the SGL in the tracker is not used at all, so copy the first (and only) + * SGL element into SGL1. + */ + req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; + req->cmd.dptr.sgl1.address = tr->u.sgl[0].address; + req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length; + } else { + /* For now we can only support 1 SGL segment in NVMe controller */ + req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; + req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr; + req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor); + } + + return 0; +} + +/** + * Build PRP list describing scattered payload buffer. + */ +static int +nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, + struct nvme_tracker *tr) +{ + int rc; + void *virt_addr; + uint32_t remaining_transfer_len, length; + uint32_t prp_index = 0; + uint32_t page_size = qpair->ctrlr->page_size; + + /* + * Build scattered payloads. + */ + assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); + assert(req->payload.reset_sgl_fn != NULL); + req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); + + remaining_transfer_len = req->payload_size; + while (remaining_transfer_len > 0) { + assert(req->payload.next_sge_fn != NULL); + rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length); + if (rc) { + nvme_pcie_fail_request_bad_vtophys(qpair, tr); + return -1; + } + + length = spdk_min(remaining_transfer_len, length); + + /* + * Any incompatible sges should have been handled up in the splitting routine, + * but assert here as an additional check. + * + * All SGEs except last must end on a page boundary. + */ + assert((length == remaining_transfer_len) || + _is_page_aligned((uintptr_t)virt_addr + length, page_size)); + + rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size); + if (rc) { + nvme_pcie_fail_request_bad_vtophys(qpair, tr); + return rc; + } + + remaining_transfer_len -= length; + } + + return 0; +} + +static inline bool +nvme_pcie_qpair_check_enabled(struct spdk_nvme_qpair *qpair) +{ + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + + if (!pqpair->is_enabled && + !qpair->ctrlr->is_resetting) { + nvme_qpair_enable(qpair); + } + return pqpair->is_enabled; +} + +int +nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) +{ + struct nvme_tracker *tr; + int rc = 0; + void *md_payload; + struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + + nvme_pcie_qpair_check_enabled(qpair); + + if (nvme_qpair_is_admin_queue(qpair)) { + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + } + + tr = TAILQ_FIRST(&pqpair->free_tr); + + if (tr == NULL || !pqpair->is_enabled) { + /* + * No tracker is available, or the qpair is disabled due to + * an in-progress controller-level reset. + * + * Put the request on the qpair's request queue to be + * processed when a tracker frees up via a command + * completion or when the controller reset is + * completed. + */ + STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); + goto exit; + } + + TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */ + TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list); + tr->req = req; + req->cmd.cid = tr->cid; + + if (req->payload_size && req->payload.md) { + md_payload = req->payload.md + req->md_offset; + tr->req->cmd.mptr = spdk_vtophys(md_payload); + if (tr->req->cmd.mptr == SPDK_VTOPHYS_ERROR) { + nvme_pcie_fail_request_bad_vtophys(qpair, tr); + rc = -EINVAL; + goto exit; + } + } + + if (req->payload_size == 0) { + /* Null payload - leave PRP fields zeroed */ + rc = 0; + } else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) { + rc = nvme_pcie_qpair_build_contig_request(qpair, req, tr); + } else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) { + if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) { + rc = nvme_pcie_qpair_build_hw_sgl_request(qpair, req, tr); + } else { + rc = nvme_pcie_qpair_build_prps_sgl_request(qpair, req, tr); + } + } else { + assert(0); + nvme_pcie_fail_request_bad_vtophys(qpair, tr); + rc = -EINVAL; + } + + if (rc < 0) { + goto exit; + } + + nvme_pcie_qpair_submit_tracker(qpair, tr); + +exit: + if (nvme_qpair_is_admin_queue(qpair)) { + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + } + + return rc; +} + +static void +nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair) +{ + uint64_t t02; + struct nvme_tracker *tr, *tmp; + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; + struct spdk_nvme_ctrlr_process *active_proc; + + /* Don't check timeouts during controller initialization. */ + if (ctrlr->state != NVME_CTRLR_STATE_READY) { + return; + } + + if (nvme_qpair_is_admin_queue(qpair)) { + active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr); + } else { + active_proc = qpair->active_proc; + } + + /* Only check timeouts if the current process has a timeout callback. */ + if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { + return; + } + + t02 = spdk_get_ticks(); + TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) { + assert(tr->req != NULL); + + if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) { + /* + * The requests are in order, so as soon as one has not timed out, + * stop iterating. + */ + break; + } + } +} + +int32_t +nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) +{ + struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); + struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr); + struct nvme_tracker *tr; + struct spdk_nvme_cpl *cpl; + uint32_t num_completions = 0; + struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; + + if (spdk_unlikely(!nvme_pcie_qpair_check_enabled(qpair))) { + /* + * qpair is not enabled, likely because a controller reset is + * is in progress. Ignore the interrupt - any I/O that was + * associated with this interrupt will get retried when the + * reset is complete. + */ + return 0; + } + + if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + } + + if (max_completions == 0 || max_completions > pqpair->max_completions_cap) { + /* + * max_completions == 0 means unlimited, but complete at most + * max_completions_cap batch of I/O at a time so that the completion + * queue doorbells don't wrap around. + */ + max_completions = pqpair->max_completions_cap; + } + + while (1) { + cpl = &pqpair->cpl[pqpair->cq_head]; + + if (cpl->status.p != pqpair->phase) { + break; + } +#ifdef __PPC64__ + /* + * This memory barrier prevents reordering of: + * - load after store from/to tr + * - load after load cpl phase and cpl cid + */ + spdk_mb(); +#endif + + if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) { + pqpair->cq_head = 0; + pqpair->phase = !pqpair->phase; + } + + tr = &pqpair->tr[cpl->cid]; + pqpair->sq_head = cpl->sqhd; + + if (tr->active) { + nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true); + } else { + SPDK_ERRLOG("cpl does not map to outstanding cmd\n"); + nvme_qpair_print_completion(qpair, cpl); + assert(0); + } + + if (++num_completions == max_completions) { + break; + } + } + + if (num_completions > 0) { + if (spdk_likely(nvme_pcie_qpair_update_mmio_required(qpair, pqpair->cq_head, + pqpair->cq_shadow_hdbl, + pqpair->cq_eventidx))) { + g_thread_mmio_ctrlr = pctrlr; + spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head); + g_thread_mmio_ctrlr = NULL; + } + } + + if (spdk_unlikely(ctrlr->timeout_enabled)) { + /* + * User registered for timeout callback + */ + nvme_pcie_qpair_check_timeout(qpair); + } + + /* Before returning, complete any pending admin request. */ + if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { + nvme_pcie_qpair_complete_pending_admin_request(qpair); + + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + } + + return num_completions; +} |