summaryrefslogtreecommitdiffstats
path: root/src/spdk/lib/nvme/nvme_pcie.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/spdk/lib/nvme/nvme_pcie.c
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/spdk/lib/nvme/nvme_pcie.c')
-rw-r--r--src/spdk/lib/nvme/nvme_pcie.c2142
1 files changed, 2142 insertions, 0 deletions
diff --git a/src/spdk/lib/nvme/nvme_pcie.c b/src/spdk/lib/nvme/nvme_pcie.c
new file mode 100644
index 00000000..8042380c
--- /dev/null
+++ b/src/spdk/lib/nvme/nvme_pcie.c
@@ -0,0 +1,2142 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright (c) Intel Corporation.
+ * Copyright (c) 2017, IBM Corporation.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * NVMe over PCIe transport
+ */
+
+#include "spdk/stdinc.h"
+#include "spdk/env.h"
+#include "spdk/likely.h"
+#include "nvme_internal.h"
+#include "nvme_uevent.h"
+
+/*
+ * Number of completion queue entries to process before ringing the
+ * completion queue doorbell.
+ */
+#define NVME_MIN_COMPLETIONS (1)
+#define NVME_MAX_COMPLETIONS (128)
+
+#define NVME_ADMIN_ENTRIES (128)
+
+/*
+ * NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL
+ * segment.
+ */
+#define NVME_MAX_SGL_DESCRIPTORS (253)
+
+#define NVME_MAX_PRP_LIST_ENTRIES (506)
+
+struct nvme_pcie_enum_ctx {
+ spdk_nvme_probe_cb probe_cb;
+ void *cb_ctx;
+ struct spdk_pci_addr pci_addr;
+ bool has_pci_addr;
+};
+
+/* PCIe transport extensions for spdk_nvme_ctrlr */
+struct nvme_pcie_ctrlr {
+ struct spdk_nvme_ctrlr ctrlr;
+
+ /** NVMe MMIO register space */
+ volatile struct spdk_nvme_registers *regs;
+
+ /** NVMe MMIO register size */
+ uint64_t regs_size;
+
+ /* BAR mapping address which contains controller memory buffer */
+ void *cmb_bar_virt_addr;
+
+ /* BAR physical address which contains controller memory buffer */
+ uint64_t cmb_bar_phys_addr;
+
+ /* Controller memory buffer size in Bytes */
+ uint64_t cmb_size;
+
+ /* Current offset of controller memory buffer, relative to start of BAR virt addr */
+ uint64_t cmb_current_offset;
+
+ /* Last valid offset into CMB, this differs if CMB memory registration occurs or not */
+ uint64_t cmb_max_offset;
+
+ void *cmb_mem_register_addr;
+ size_t cmb_mem_register_size;
+
+ bool cmb_io_data_supported;
+
+ /** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
+ uint32_t doorbell_stride_u32;
+
+ /* Opaque handle to associated PCI device. */
+ struct spdk_pci_device *devhandle;
+
+ /* File descriptor returned from spdk_pci_device_claim(). Closed when ctrlr is detached. */
+ int claim_fd;
+
+ /* Flag to indicate the MMIO register has been remapped */
+ bool is_remapped;
+};
+
+struct nvme_tracker {
+ TAILQ_ENTRY(nvme_tracker) tq_list;
+
+ struct nvme_request *req;
+ uint16_t cid;
+
+ uint16_t rsvd1: 15;
+ uint16_t active: 1;
+
+ uint32_t rsvd2;
+
+ uint64_t rsvd3;
+
+ uint64_t prp_sgl_bus_addr;
+
+ union {
+ uint64_t prp[NVME_MAX_PRP_LIST_ENTRIES];
+ struct spdk_nvme_sgl_descriptor sgl[NVME_MAX_SGL_DESCRIPTORS];
+ } u;
+};
+/*
+ * struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary
+ * and so that there is no padding required to meet alignment requirements.
+ */
+SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K");
+SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned");
+
+/* PCIe transport extensions for spdk_nvme_qpair */
+struct nvme_pcie_qpair {
+ /* Submission queue tail doorbell */
+ volatile uint32_t *sq_tdbl;
+
+ /* Completion queue head doorbell */
+ volatile uint32_t *cq_hdbl;
+
+ /* Submission queue shadow tail doorbell */
+ volatile uint32_t *sq_shadow_tdbl;
+
+ /* Completion queue shadow head doorbell */
+ volatile uint32_t *cq_shadow_hdbl;
+
+ /* Submission queue event index */
+ volatile uint32_t *sq_eventidx;
+
+ /* Completion queue event index */
+ volatile uint32_t *cq_eventidx;
+
+ /* Submission queue */
+ struct spdk_nvme_cmd *cmd;
+
+ /* Completion queue */
+ struct spdk_nvme_cpl *cpl;
+
+ TAILQ_HEAD(, nvme_tracker) free_tr;
+ TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr;
+
+ /* Array of trackers indexed by command ID. */
+ struct nvme_tracker *tr;
+
+ uint16_t num_entries;
+
+ uint16_t max_completions_cap;
+
+ uint16_t sq_tail;
+ uint16_t cq_head;
+ uint16_t sq_head;
+
+ uint8_t phase;
+
+ bool is_enabled;
+
+ /*
+ * Base qpair structure.
+ * This is located after the hot data in this structure so that the important parts of
+ * nvme_pcie_qpair are in the same cache line.
+ */
+ struct spdk_nvme_qpair qpair;
+
+ /*
+ * Fields below this point should not be touched on the normal I/O path.
+ */
+
+ bool sq_in_cmb;
+
+ uint64_t cmd_bus_addr;
+ uint64_t cpl_bus_addr;
+};
+
+static int nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx,
+ struct spdk_pci_addr *pci_addr);
+static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair);
+static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair);
+
+__thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
+static volatile uint16_t g_signal_lock;
+static bool g_sigset = false;
+static int hotplug_fd = -1;
+
+static void
+nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx)
+{
+ void *map_address;
+
+ if (!__sync_bool_compare_and_swap(&g_signal_lock, 0, 1)) {
+ return;
+ }
+
+ assert(g_thread_mmio_ctrlr != NULL);
+
+ if (!g_thread_mmio_ctrlr->is_remapped) {
+ map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
+ if (map_address == MAP_FAILED) {
+ SPDK_ERRLOG("mmap failed\n");
+ g_signal_lock = 0;
+ return;
+ }
+ memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
+ g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
+ g_thread_mmio_ctrlr->is_remapped = true;
+ }
+ g_signal_lock = 0;
+ return;
+}
+
+static void
+nvme_pcie_ctrlr_setup_signal(void)
+{
+ struct sigaction sa;
+
+ sa.sa_sigaction = nvme_sigbus_fault_sighandler;
+ sigemptyset(&sa.sa_mask);
+ sa.sa_flags = SA_SIGINFO;
+ sigaction(SIGBUS, &sa, NULL);
+}
+
+static int
+_nvme_pcie_hotplug_monitor(void *cb_ctx, spdk_nvme_probe_cb probe_cb,
+ spdk_nvme_remove_cb remove_cb)
+{
+ struct spdk_nvme_ctrlr *ctrlr, *tmp;
+ struct spdk_uevent event;
+ struct spdk_pci_addr pci_addr;
+ union spdk_nvme_csts_register csts;
+ struct spdk_nvme_ctrlr_process *proc;
+
+ while (spdk_get_uevent(hotplug_fd, &event) > 0) {
+ if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO ||
+ event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) {
+ if (event.action == SPDK_NVME_UEVENT_ADD) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "add nvme address: %s\n",
+ event.traddr);
+ if (spdk_process_is_primary()) {
+ if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) {
+ nvme_pcie_ctrlr_attach(probe_cb, cb_ctx, &pci_addr);
+ }
+ }
+ } else if (event.action == SPDK_NVME_UEVENT_REMOVE) {
+ struct spdk_nvme_transport_id trid;
+
+ memset(&trid, 0, sizeof(trid));
+ trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
+ snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr);
+
+ ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
+ if (ctrlr == NULL) {
+ return 0;
+ }
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "remove nvme address: %s\n",
+ event.traddr);
+
+ nvme_ctrlr_fail(ctrlr, true);
+
+ /* get the user app to clean up and stop I/O */
+ if (remove_cb) {
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+ remove_cb(cb_ctx, ctrlr);
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+ }
+ }
+ }
+ }
+
+ /* This is a work around for vfio-attached device hot remove detection. */
+ TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
+ /* NVMe controller BAR must be mapped to secondary process space before any access. */
+ proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
+ if (proc) {
+ csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
+ if (csts.raw == 0xffffffffU) {
+ nvme_ctrlr_fail(ctrlr, true);
+ if (remove_cb) {
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+ remove_cb(cb_ctx, ctrlr);
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+static inline struct nvme_pcie_ctrlr *
+nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
+{
+ assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE);
+ return SPDK_CONTAINEROF(ctrlr, struct nvme_pcie_ctrlr, ctrlr);
+}
+
+static inline struct nvme_pcie_qpair *
+nvme_pcie_qpair(struct spdk_nvme_qpair *qpair)
+{
+ assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE);
+ return SPDK_CONTAINEROF(qpair, struct nvme_pcie_qpair, qpair);
+}
+
+static volatile void *
+nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+
+ return (volatile void *)((uintptr_t)pctrlr->regs + offset);
+}
+
+int
+nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+
+ assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
+ g_thread_mmio_ctrlr = pctrlr;
+ spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
+ g_thread_mmio_ctrlr = NULL;
+ return 0;
+}
+
+int
+nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+
+ assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
+ g_thread_mmio_ctrlr = pctrlr;
+ spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
+ g_thread_mmio_ctrlr = NULL;
+ return 0;
+}
+
+int
+nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+
+ assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
+ assert(value != NULL);
+ g_thread_mmio_ctrlr = pctrlr;
+ *value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
+ g_thread_mmio_ctrlr = NULL;
+ if (~(*value) == 0) {
+ return -1;
+ }
+
+ return 0;
+}
+
+int
+nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+
+ assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
+ assert(value != NULL);
+ g_thread_mmio_ctrlr = pctrlr;
+ *value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
+ g_thread_mmio_ctrlr = NULL;
+ if (~(*value) == 0) {
+ return -1;
+ }
+
+ return 0;
+}
+
+static int
+nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
+{
+ return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
+ value);
+}
+
+static int
+nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
+{
+ return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
+ value);
+}
+
+static int
+nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
+{
+ return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
+ aqa->raw);
+}
+
+static int
+nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
+{
+ return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
+ &cmbloc->raw);
+}
+
+static int
+nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
+{
+ return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
+ &cmbsz->raw);
+}
+
+uint32_t
+nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
+{
+ /*
+ * For commands requiring more than 2 PRP entries, one PRP will be
+ * embedded in the command (prp1), and the rest of the PRP entries
+ * will be in a list pointed to by the command (prp2). This means
+ * that real max number of PRP entries we support is 506+1, which
+ * results in a max xfer size of 506*ctrlr->page_size.
+ */
+ return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
+}
+
+uint16_t
+nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
+{
+ return NVME_MAX_SGL_DESCRIPTORS;
+}
+
+static void
+nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
+{
+ int rc;
+ void *addr;
+ uint32_t bir;
+ union spdk_nvme_cmbsz_register cmbsz;
+ union spdk_nvme_cmbloc_register cmbloc;
+ uint64_t size, unit_size, offset, bar_size, bar_phys_addr;
+ uint64_t mem_register_start, mem_register_end;
+
+ if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
+ nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
+ SPDK_ERRLOG("get registers failed\n");
+ goto exit;
+ }
+
+ if (!cmbsz.bits.sz) {
+ goto exit;
+ }
+
+ bir = cmbloc.bits.bir;
+ /* Values 0 2 3 4 5 are valid for BAR */
+ if (bir > 5 || bir == 1) {
+ goto exit;
+ }
+
+ /* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
+ unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
+ /* controller memory buffer size in Bytes */
+ size = unit_size * cmbsz.bits.sz;
+ /* controller memory buffer offset from BAR in Bytes */
+ offset = unit_size * cmbloc.bits.ofst;
+
+ rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
+ &bar_phys_addr, &bar_size);
+ if ((rc != 0) || addr == NULL) {
+ goto exit;
+ }
+
+ if (offset > bar_size) {
+ goto exit;
+ }
+
+ if (size > bar_size - offset) {
+ goto exit;
+ }
+
+ pctrlr->cmb_bar_virt_addr = addr;
+ pctrlr->cmb_bar_phys_addr = bar_phys_addr;
+ pctrlr->cmb_size = size;
+ pctrlr->cmb_current_offset = offset;
+ pctrlr->cmb_max_offset = offset + size;
+
+ if (!cmbsz.bits.sqs) {
+ pctrlr->ctrlr.opts.use_cmb_sqs = false;
+ }
+
+ /* If only SQS is supported use legacy mapping */
+ if (cmbsz.bits.sqs && !(cmbsz.bits.wds || cmbsz.bits.rds)) {
+ return;
+ }
+
+ /* If CMB is less than 4MiB in size then abort CMB mapping */
+ if (pctrlr->cmb_size < (1ULL << 22)) {
+ goto exit;
+ }
+
+ mem_register_start = (((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + 0x1fffff) & ~(0x200000 - 1));
+ mem_register_end = ((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + pctrlr->cmb_size);
+ mem_register_end &= ~(uint64_t)(0x200000 - 1);
+ pctrlr->cmb_mem_register_addr = (void *)mem_register_start;
+ pctrlr->cmb_mem_register_size = mem_register_end - mem_register_start;
+
+ rc = spdk_mem_register(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
+ if (rc) {
+ SPDK_ERRLOG("spdk_mem_register() failed\n");
+ goto exit;
+ }
+ pctrlr->cmb_current_offset = mem_register_start - ((uint64_t)pctrlr->cmb_bar_virt_addr);
+ pctrlr->cmb_max_offset = mem_register_end - ((uint64_t)pctrlr->cmb_bar_virt_addr);
+ pctrlr->cmb_io_data_supported = true;
+
+ return;
+exit:
+ pctrlr->cmb_bar_virt_addr = NULL;
+ pctrlr->ctrlr.opts.use_cmb_sqs = false;
+ return;
+}
+
+static int
+nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
+{
+ int rc = 0;
+ union spdk_nvme_cmbloc_register cmbloc;
+ void *addr = pctrlr->cmb_bar_virt_addr;
+
+ if (addr) {
+ if (pctrlr->cmb_mem_register_addr) {
+ spdk_mem_unregister(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
+ }
+
+ if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
+ SPDK_ERRLOG("get_cmbloc() failed\n");
+ return -EIO;
+ }
+ rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
+ }
+ return rc;
+}
+
+static int
+nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t length, uint64_t aligned,
+ uint64_t *offset)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ uint64_t round_offset;
+
+ round_offset = pctrlr->cmb_current_offset;
+ round_offset = (round_offset + (aligned - 1)) & ~(aligned - 1);
+
+ /* CMB may only consume part of the BAR, calculate accordingly */
+ if (round_offset + length > pctrlr->cmb_max_offset) {
+ SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
+ return -1;
+ }
+
+ *offset = round_offset;
+ pctrlr->cmb_current_offset = round_offset + length;
+
+ return 0;
+}
+
+void *
+nvme_pcie_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ uint64_t offset;
+
+ if (pctrlr->cmb_bar_virt_addr == NULL) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB not available\n");
+ return NULL;
+ }
+
+ if (!pctrlr->cmb_io_data_supported) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB doesn't support I/O data\n");
+ return NULL;
+ }
+
+ if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, size, 4, &offset) != 0) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "%zu-byte CMB allocation failed\n", size);
+ return NULL;
+ }
+
+ return pctrlr->cmb_bar_virt_addr + offset;
+}
+
+int
+nvme_pcie_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size)
+{
+ /*
+ * Do nothing for now.
+ * TODO: Track free space so buffers may be reused.
+ */
+ SPDK_ERRLOG("%s: no deallocation for CMB buffers yet!\n",
+ __func__);
+ return 0;
+}
+
+static int
+nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
+{
+ int rc;
+ void *addr;
+ uint64_t phys_addr, size;
+
+ rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
+ &phys_addr, &size);
+ pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
+ if ((pctrlr->regs == NULL) || (rc != 0)) {
+ SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
+ rc, pctrlr->regs);
+ return -1;
+ }
+
+ pctrlr->regs_size = size;
+ nvme_pcie_ctrlr_map_cmb(pctrlr);
+
+ return 0;
+}
+
+static int
+nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
+{
+ int rc = 0;
+ void *addr = (void *)pctrlr->regs;
+
+ if (pctrlr->ctrlr.is_removed) {
+ return rc;
+ }
+
+ rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
+ if (rc != 0) {
+ SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
+ return -1;
+ }
+
+ if (addr) {
+ /* NOTE: addr may have been remapped here. We're relying on DPDK to call
+ * munmap internally.
+ */
+ rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
+ }
+ return rc;
+}
+
+static int
+nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr)
+{
+ struct nvme_pcie_qpair *pqpair;
+ int rc;
+
+ pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
+ if (pqpair == NULL) {
+ return -ENOMEM;
+ }
+
+ pqpair->num_entries = NVME_ADMIN_ENTRIES;
+
+ ctrlr->adminq = &pqpair->qpair;
+
+ rc = nvme_qpair_init(ctrlr->adminq,
+ 0, /* qpair ID */
+ ctrlr,
+ SPDK_NVME_QPRIO_URGENT,
+ NVME_ADMIN_ENTRIES);
+ if (rc != 0) {
+ return rc;
+ }
+
+ return nvme_pcie_qpair_construct(ctrlr->adminq);
+}
+
+/* This function must only be called while holding g_spdk_nvme_driver->lock */
+static int
+pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
+{
+ struct spdk_nvme_transport_id trid = {};
+ struct nvme_pcie_enum_ctx *enum_ctx = ctx;
+ struct spdk_nvme_ctrlr *ctrlr;
+ struct spdk_pci_addr pci_addr;
+
+ pci_addr = spdk_pci_device_get_addr(pci_dev);
+
+ trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
+ spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);
+
+ /* Verify that this controller is not already attached */
+ ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
+ if (ctrlr) {
+ if (spdk_process_is_primary()) {
+ /* Already attached */
+ return 0;
+ } else {
+ return nvme_ctrlr_add_process(ctrlr, pci_dev);
+ }
+ }
+
+ /* check whether user passes the pci_addr */
+ if (enum_ctx->has_pci_addr &&
+ (spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
+ return 1;
+ }
+
+ return nvme_ctrlr_probe(&trid, pci_dev,
+ enum_ctx->probe_cb, enum_ctx->cb_ctx);
+}
+
+int
+nvme_pcie_ctrlr_scan(const struct spdk_nvme_transport_id *trid,
+ void *cb_ctx,
+ spdk_nvme_probe_cb probe_cb,
+ spdk_nvme_remove_cb remove_cb,
+ bool direct_connect)
+{
+ struct nvme_pcie_enum_ctx enum_ctx = {};
+
+ enum_ctx.probe_cb = probe_cb;
+ enum_ctx.cb_ctx = cb_ctx;
+
+ if (strlen(trid->traddr) != 0) {
+ if (spdk_pci_addr_parse(&enum_ctx.pci_addr, trid->traddr)) {
+ return -1;
+ }
+ enum_ctx.has_pci_addr = true;
+ }
+
+ if (hotplug_fd < 0) {
+ hotplug_fd = spdk_uevent_connect();
+ if (hotplug_fd < 0) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "Failed to open uevent netlink socket\n");
+ }
+ } else {
+ _nvme_pcie_hotplug_monitor(cb_ctx, probe_cb, remove_cb);
+ }
+
+ if (enum_ctx.has_pci_addr == false) {
+ return spdk_pci_nvme_enumerate(pcie_nvme_enum_cb, &enum_ctx);
+ } else {
+ return spdk_pci_nvme_device_attach(pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
+ }
+}
+
+static int
+nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx, struct spdk_pci_addr *pci_addr)
+{
+ struct nvme_pcie_enum_ctx enum_ctx;
+
+ enum_ctx.probe_cb = probe_cb;
+ enum_ctx.cb_ctx = cb_ctx;
+
+ return spdk_pci_nvme_device_attach(pcie_nvme_enum_cb, &enum_ctx, pci_addr);
+}
+
+struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
+ const struct spdk_nvme_ctrlr_opts *opts,
+ void *devhandle)
+{
+ struct spdk_pci_device *pci_dev = devhandle;
+ struct nvme_pcie_ctrlr *pctrlr;
+ union spdk_nvme_cap_register cap;
+ union spdk_nvme_vs_register vs;
+ uint32_t cmd_reg;
+ int rc, claim_fd;
+ struct spdk_pci_id pci_id;
+ struct spdk_pci_addr pci_addr;
+
+ if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) {
+ SPDK_ERRLOG("could not parse pci address\n");
+ return NULL;
+ }
+
+ claim_fd = spdk_pci_device_claim(&pci_addr);
+ if (claim_fd < 0) {
+ SPDK_ERRLOG("could not claim device %s\n", trid->traddr);
+ return NULL;
+ }
+
+ pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL,
+ SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
+ if (pctrlr == NULL) {
+ close(claim_fd);
+ SPDK_ERRLOG("could not allocate ctrlr\n");
+ return NULL;
+ }
+
+ pctrlr->is_remapped = false;
+ pctrlr->ctrlr.is_removed = false;
+ pctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
+ pctrlr->devhandle = devhandle;
+ pctrlr->ctrlr.opts = *opts;
+ pctrlr->claim_fd = claim_fd;
+ memcpy(&pctrlr->ctrlr.trid, trid, sizeof(pctrlr->ctrlr.trid));
+
+ rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
+ if (rc != 0) {
+ close(claim_fd);
+ spdk_free(pctrlr);
+ return NULL;
+ }
+
+ /* Enable PCI busmaster and disable INTx */
+ spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4);
+ cmd_reg |= 0x404;
+ spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4);
+
+ if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
+ SPDK_ERRLOG("get_cap() failed\n");
+ close(claim_fd);
+ spdk_free(pctrlr);
+ return NULL;
+ }
+
+ if (nvme_ctrlr_get_vs(&pctrlr->ctrlr, &vs)) {
+ SPDK_ERRLOG("get_vs() failed\n");
+ close(claim_fd);
+ spdk_free(pctrlr);
+ return NULL;
+ }
+
+ nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap, &vs);
+
+ /* Doorbell stride is 2 ^ (dstrd + 2),
+ * but we want multiples of 4, so drop the + 2 */
+ pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
+
+ rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
+ if (rc != 0) {
+ nvme_ctrlr_destruct(&pctrlr->ctrlr);
+ return NULL;
+ }
+
+ pci_id = spdk_pci_device_get_id(pci_dev);
+ pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);
+
+ rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr);
+ if (rc != 0) {
+ nvme_ctrlr_destruct(&pctrlr->ctrlr);
+ return NULL;
+ }
+
+ /* Construct the primary process properties */
+ rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
+ if (rc != 0) {
+ nvme_ctrlr_destruct(&pctrlr->ctrlr);
+ return NULL;
+ }
+
+ if (g_sigset != true) {
+ nvme_pcie_ctrlr_setup_signal();
+ g_sigset = true;
+ }
+
+ return &pctrlr->ctrlr;
+}
+
+int
+nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
+ union spdk_nvme_aqa_register aqa;
+
+ if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
+ SPDK_ERRLOG("set_asq() failed\n");
+ return -EIO;
+ }
+
+ if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
+ SPDK_ERRLOG("set_acq() failed\n");
+ return -EIO;
+ }
+
+ aqa.raw = 0;
+ /* acqs and asqs are 0-based. */
+ aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
+ aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
+
+ if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
+ SPDK_ERRLOG("set_aqa() failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+int
+nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);
+
+ close(pctrlr->claim_fd);
+
+ if (ctrlr->adminq) {
+ nvme_pcie_qpair_destroy(ctrlr->adminq);
+ }
+
+ nvme_ctrlr_destruct_finish(ctrlr);
+
+ nvme_ctrlr_free_processes(ctrlr);
+
+ nvme_pcie_ctrlr_free_bars(pctrlr);
+
+ if (devhandle) {
+ spdk_pci_device_detach(devhandle);
+ }
+
+ spdk_free(pctrlr);
+
+ return 0;
+}
+
+static void
+nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
+{
+ tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
+ tr->cid = cid;
+ tr->active = false;
+}
+
+int
+nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+
+ pqpair->sq_tail = pqpair->cq_head = 0;
+
+ /*
+ * First time through the completion queue, HW will set phase
+ * bit on completions to 1. So set this to 1 here, indicating
+ * we're looking for a 1 to know which entries have completed.
+ * we'll toggle the bit each time when the completion queue
+ * rolls over.
+ */
+ pqpair->phase = 1;
+
+ memset(pqpair->cmd, 0,
+ pqpair->num_entries * sizeof(struct spdk_nvme_cmd));
+ memset(pqpair->cpl, 0,
+ pqpair->num_entries * sizeof(struct spdk_nvme_cpl));
+
+ return 0;
+}
+
+static int
+nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair)
+{
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_tracker *tr;
+ uint16_t i;
+ volatile uint32_t *doorbell_base;
+ uint64_t offset;
+ uint16_t num_trackers;
+ size_t page_align = 0x200000;
+ uint32_t flags = SPDK_MALLOC_DMA;
+
+ /*
+ * Limit the maximum number of completions to return per call to prevent wraparound,
+ * and calculate how many trackers can be submitted at once without overflowing the
+ * completion queue.
+ */
+ pqpair->max_completions_cap = pqpair->num_entries / 4;
+ pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
+ pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
+ num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
+
+ SPDK_INFOLOG(SPDK_LOG_NVME, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
+ pqpair->max_completions_cap, num_trackers);
+
+ assert(num_trackers != 0);
+
+ pqpair->sq_in_cmb = false;
+
+ if (nvme_qpair_is_admin_queue(&pqpair->qpair)) {
+ flags |= SPDK_MALLOC_SHARE;
+ }
+
+ /* cmd and cpl rings must be aligned on page size boundaries. */
+ if (ctrlr->opts.use_cmb_sqs) {
+ if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
+ sysconf(_SC_PAGESIZE), &offset) == 0) {
+ pqpair->cmd = pctrlr->cmb_bar_virt_addr + offset;
+ pqpair->cmd_bus_addr = pctrlr->cmb_bar_phys_addr + offset;
+ pqpair->sq_in_cmb = true;
+ }
+ }
+
+ /* To ensure physical address contiguity we make each ring occupy
+ * a single hugepage only. See MAX_IO_QUEUE_ENTRIES.
+ */
+ if (pqpair->sq_in_cmb == false) {
+ pqpair->cmd = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
+ page_align, &pqpair->cmd_bus_addr,
+ SPDK_ENV_SOCKET_ID_ANY, flags);
+ if (pqpair->cmd == NULL) {
+ SPDK_ERRLOG("alloc qpair_cmd failed\n");
+ return -ENOMEM;
+ }
+ }
+
+ pqpair->cpl = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cpl),
+ page_align, &pqpair->cpl_bus_addr,
+ SPDK_ENV_SOCKET_ID_ANY, flags);
+ if (pqpair->cpl == NULL) {
+ SPDK_ERRLOG("alloc qpair_cpl failed\n");
+ return -ENOMEM;
+ }
+
+ doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl;
+ pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
+ pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
+
+ /*
+ * Reserve space for all of the trackers in a single allocation.
+ * struct nvme_tracker must be padded so that its size is already a power of 2.
+ * This ensures the PRP list embedded in the nvme_tracker object will not span a
+ * 4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
+ */
+ pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL,
+ SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
+ if (pqpair->tr == NULL) {
+ SPDK_ERRLOG("nvme_tr failed\n");
+ return -ENOMEM;
+ }
+
+ TAILQ_INIT(&pqpair->free_tr);
+ TAILQ_INIT(&pqpair->outstanding_tr);
+
+ for (i = 0; i < num_trackers; i++) {
+ tr = &pqpair->tr[i];
+ nvme_qpair_construct_tracker(tr, i, spdk_vtophys(tr));
+ TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
+ }
+
+ nvme_pcie_qpair_reset(qpair);
+
+ return 0;
+}
+
+static inline void
+nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
+{
+ /* dst and src are known to be non-overlapping and 64-byte aligned. */
+#if defined(__AVX__)
+ __m256i *d256 = (__m256i *)dst;
+ const __m256i *s256 = (const __m256i *)src;
+
+ _mm256_store_si256(&d256[0], _mm256_load_si256(&s256[0]));
+ _mm256_store_si256(&d256[1], _mm256_load_si256(&s256[1]));
+#elif defined(__SSE2__)
+ __m128i *d128 = (__m128i *)dst;
+ const __m128i *s128 = (const __m128i *)src;
+
+ _mm_store_si128(&d128[0], _mm_load_si128(&s128[0]));
+ _mm_store_si128(&d128[1], _mm_load_si128(&s128[1]));
+ _mm_store_si128(&d128[2], _mm_load_si128(&s128[2]));
+ _mm_store_si128(&d128[3], _mm_load_si128(&s128[3]));
+#else
+ *dst = *src;
+#endif
+}
+
+/**
+ * Note: the ctrlr_lock must be held when calling this function.
+ */
+static void
+nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
+ struct nvme_request *req, struct spdk_nvme_cpl *cpl)
+{
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct nvme_request *active_req = req;
+ struct spdk_nvme_ctrlr_process *active_proc;
+
+ /*
+ * The admin request is from another process. Move to the per
+ * process list for that process to handle it later.
+ */
+ assert(nvme_qpair_is_admin_queue(qpair));
+ assert(active_req->pid != getpid());
+
+ active_proc = spdk_nvme_ctrlr_get_process(ctrlr, active_req->pid);
+ if (active_proc) {
+ /* Save the original completion information */
+ memcpy(&active_req->cpl, cpl, sizeof(*cpl));
+ STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
+ } else {
+ SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n",
+ active_req->pid);
+
+ nvme_free_request(active_req);
+ }
+}
+
+/**
+ * Note: the ctrlr_lock must be held when calling this function.
+ */
+static void
+nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
+{
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct nvme_request *req, *tmp_req;
+ pid_t pid = getpid();
+ struct spdk_nvme_ctrlr_process *proc;
+
+ /*
+ * Check whether there is any pending admin request from
+ * other active processes.
+ */
+ assert(nvme_qpair_is_admin_queue(qpair));
+
+ proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
+ if (!proc) {
+ SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
+ assert(proc);
+ return;
+ }
+
+ STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
+ STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
+
+ assert(req->pid == pid);
+
+ nvme_complete_request(req, &req->cpl);
+ nvme_free_request(req);
+ }
+}
+
+static inline int
+nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old)
+{
+ return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old);
+}
+
+static bool
+nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value,
+ volatile uint32_t *shadow_db,
+ volatile uint32_t *eventidx)
+{
+ uint16_t old;
+
+ if (!shadow_db) {
+ return true;
+ }
+
+ old = *shadow_db;
+ *shadow_db = value;
+
+ if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) {
+ return false;
+ }
+
+ return true;
+}
+
+static void
+nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
+{
+ struct nvme_request *req;
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
+
+ req = tr->req;
+ assert(req != NULL);
+ req->timed_out = false;
+ if (spdk_unlikely(pctrlr->ctrlr.timeout_enabled)) {
+ req->submit_tick = spdk_get_ticks();
+ } else {
+ req->submit_tick = 0;
+ }
+
+ pqpair->tr[tr->cid].active = true;
+
+ /* Copy the command from the tracker to the submission queue. */
+ nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
+
+ if (++pqpair->sq_tail == pqpair->num_entries) {
+ pqpair->sq_tail = 0;
+ }
+
+ if (pqpair->sq_tail == pqpair->sq_head) {
+ SPDK_ERRLOG("sq_tail is passing sq_head!\n");
+ }
+
+ spdk_wmb();
+ if (spdk_likely(nvme_pcie_qpair_update_mmio_required(qpair,
+ pqpair->sq_tail,
+ pqpair->sq_shadow_tdbl,
+ pqpair->sq_eventidx))) {
+ g_thread_mmio_ctrlr = pctrlr;
+ spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail);
+ g_thread_mmio_ctrlr = NULL;
+ }
+}
+
+static void
+nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
+ struct spdk_nvme_cpl *cpl, bool print_on_error)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_request *req;
+ bool retry, error, was_active;
+ bool req_from_current_proc = true;
+
+ req = tr->req;
+
+ assert(req != NULL);
+
+ error = spdk_nvme_cpl_is_error(cpl);
+ retry = error && nvme_completion_is_retry(cpl) &&
+ req->retries < spdk_nvme_retry_count;
+
+ if (error && print_on_error) {
+ nvme_qpair_print_command(qpair, &req->cmd);
+ nvme_qpair_print_completion(qpair, cpl);
+ }
+
+ was_active = pqpair->tr[cpl->cid].active;
+ pqpair->tr[cpl->cid].active = false;
+
+ assert(cpl->cid == req->cmd.cid);
+
+ if (retry) {
+ req->retries++;
+ nvme_pcie_qpair_submit_tracker(qpair, tr);
+ } else {
+ if (was_active) {
+ /* Only check admin requests from different processes. */
+ if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
+ req_from_current_proc = false;
+ nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
+ } else {
+ nvme_complete_request(req, cpl);
+ }
+ }
+
+ if (req_from_current_proc == true) {
+ nvme_free_request(req);
+ }
+
+ tr->req = NULL;
+
+ TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
+ TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
+
+ /*
+ * If the controller is in the middle of resetting, don't
+ * try to submit queued requests here - let the reset logic
+ * handle that instead.
+ */
+ if (!STAILQ_EMPTY(&qpair->queued_req) &&
+ !qpair->ctrlr->is_resetting) {
+ req = STAILQ_FIRST(&qpair->queued_req);
+ STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
+ nvme_qpair_submit_request(qpair, req);
+ }
+ }
+}
+
+static void
+nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
+ struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
+ bool print_on_error)
+{
+ struct spdk_nvme_cpl cpl;
+
+ memset(&cpl, 0, sizeof(cpl));
+ cpl.sqid = qpair->id;
+ cpl.cid = tr->cid;
+ cpl.status.sct = sct;
+ cpl.status.sc = sc;
+ cpl.status.dnr = dnr;
+ nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
+}
+
+static void
+nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_tracker *tr, *temp;
+
+ TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
+ SPDK_ERRLOG("aborting outstanding command\n");
+ nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
+ SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
+ }
+}
+
+static void
+nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_tracker *tr;
+
+ tr = TAILQ_FIRST(&pqpair->outstanding_tr);
+ while (tr != NULL) {
+ assert(tr->req != NULL);
+ if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
+ nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
+ SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
+ false);
+ tr = TAILQ_FIRST(&pqpair->outstanding_tr);
+ } else {
+ tr = TAILQ_NEXT(tr, tq_list);
+ }
+ }
+}
+
+static void
+nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
+{
+ nvme_pcie_admin_qpair_abort_aers(qpair);
+}
+
+static int
+nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+
+ if (nvme_qpair_is_admin_queue(qpair)) {
+ nvme_pcie_admin_qpair_destroy(qpair);
+ }
+ if (pqpair->cmd && !pqpair->sq_in_cmb) {
+ spdk_free(pqpair->cmd);
+ }
+ if (pqpair->cpl) {
+ spdk_free(pqpair->cpl);
+ }
+ if (pqpair->tr) {
+ spdk_free(pqpair->tr);
+ }
+
+ nvme_qpair_deinit(qpair);
+
+ spdk_free(pqpair);
+
+ return 0;
+}
+
+static void
+nvme_pcie_admin_qpair_enable(struct spdk_nvme_qpair *qpair)
+{
+ /*
+ * Manually abort each outstanding admin command. Do not retry
+ * admin commands found here, since they will be left over from
+ * a controller reset and its likely the context in which the
+ * command was issued no longer applies.
+ */
+ nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */);
+}
+
+static void
+nvme_pcie_io_qpair_enable(struct spdk_nvme_qpair *qpair)
+{
+ /* Manually abort each outstanding I/O. */
+ nvme_pcie_qpair_abort_trackers(qpair, 0);
+}
+
+int
+nvme_pcie_qpair_enable(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+
+ pqpair->is_enabled = true;
+ if (nvme_qpair_is_io_queue(qpair)) {
+ nvme_pcie_io_qpair_enable(qpair);
+ } else {
+ nvme_pcie_admin_qpair_enable(qpair);
+ }
+
+ return 0;
+}
+
+static void
+nvme_pcie_admin_qpair_disable(struct spdk_nvme_qpair *qpair)
+{
+ nvme_pcie_admin_qpair_abort_aers(qpair);
+}
+
+static void
+nvme_pcie_io_qpair_disable(struct spdk_nvme_qpair *qpair)
+{
+}
+
+int
+nvme_pcie_qpair_disable(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+
+ pqpair->is_enabled = false;
+ if (nvme_qpair_is_io_queue(qpair)) {
+ nvme_pcie_io_qpair_disable(qpair);
+ } else {
+ nvme_pcie_admin_qpair_disable(qpair);
+ }
+
+ return 0;
+}
+
+
+int
+nvme_pcie_qpair_fail(struct spdk_nvme_qpair *qpair)
+{
+ nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */);
+
+ return 0;
+}
+
+static int
+nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
+ struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
+ void *cb_arg)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
+ struct nvme_request *req;
+ struct spdk_nvme_cmd *cmd;
+
+ req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
+ if (req == NULL) {
+ return -ENOMEM;
+ }
+
+ cmd = &req->cmd;
+ cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
+
+ /*
+ * TODO: create a create io completion queue command data
+ * structure.
+ */
+ cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
+ /*
+ * 0x2 = interrupts enabled
+ * 0x1 = physically contiguous
+ */
+ cmd->cdw11 = 0x1;
+ cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
+
+ return nvme_ctrlr_submit_admin_request(ctrlr, req);
+}
+
+static int
+nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
+ struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
+ struct nvme_request *req;
+ struct spdk_nvme_cmd *cmd;
+
+ req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
+ if (req == NULL) {
+ return -ENOMEM;
+ }
+
+ cmd = &req->cmd;
+ cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
+
+ /*
+ * TODO: create a create io submission queue command data
+ * structure.
+ */
+ cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
+ /* 0x1 = physically contiguous */
+ cmd->cdw11 = (io_que->id << 16) | (io_que->qprio << 1) | 0x1;
+ cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
+
+ return nvme_ctrlr_submit_admin_request(ctrlr, req);
+}
+
+static int
+nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
+ spdk_nvme_cmd_cb cb_fn, void *cb_arg)
+{
+ struct nvme_request *req;
+ struct spdk_nvme_cmd *cmd;
+
+ req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
+ if (req == NULL) {
+ return -ENOMEM;
+ }
+
+ cmd = &req->cmd;
+ cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
+ cmd->cdw10 = qpair->id;
+
+ return nvme_ctrlr_submit_admin_request(ctrlr, req);
+}
+
+static int
+nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
+ spdk_nvme_cmd_cb cb_fn, void *cb_arg)
+{
+ struct nvme_request *req;
+ struct spdk_nvme_cmd *cmd;
+
+ req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
+ if (req == NULL) {
+ return -ENOMEM;
+ }
+
+ cmd = &req->cmd;
+ cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
+ cmd->cdw10 = qpair->id;
+
+ return nvme_ctrlr_submit_admin_request(ctrlr, req);
+}
+
+static int
+_nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
+ uint16_t qid)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_completion_poll_status status;
+ int rc;
+
+ rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
+ if (rc != 0) {
+ return rc;
+ }
+
+ if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
+ SPDK_ERRLOG("nvme_create_io_cq failed!\n");
+ return -1;
+ }
+
+ rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
+ if (rc != 0) {
+ return rc;
+ }
+
+ if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
+ SPDK_ERRLOG("nvme_create_io_sq failed!\n");
+ /* Attempt to delete the completion queue */
+ rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
+ if (rc != 0) {
+ return -1;
+ }
+ spdk_nvme_wait_for_completion(ctrlr->adminq, &status);
+ return -1;
+ }
+
+ if (ctrlr->shadow_doorbell) {
+ pqpair->sq_shadow_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
+ pqpair->cq_shadow_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
+ pqpair->sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
+ pqpair->cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
+ }
+ nvme_pcie_qpair_reset(qpair);
+
+ return 0;
+}
+
+struct spdk_nvme_qpair *
+nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
+ const struct spdk_nvme_io_qpair_opts *opts)
+{
+ struct nvme_pcie_qpair *pqpair;
+ struct spdk_nvme_qpair *qpair;
+ int rc;
+
+ assert(ctrlr != NULL);
+
+ pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL,
+ SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
+ if (pqpair == NULL) {
+ return NULL;
+ }
+
+ pqpair->num_entries = opts->io_queue_size;
+
+ qpair = &pqpair->qpair;
+
+ rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests);
+ if (rc != 0) {
+ nvme_pcie_qpair_destroy(qpair);
+ return NULL;
+ }
+
+ rc = nvme_pcie_qpair_construct(qpair);
+ if (rc != 0) {
+ nvme_pcie_qpair_destroy(qpair);
+ return NULL;
+ }
+
+ rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qid);
+
+ if (rc != 0) {
+ SPDK_ERRLOG("I/O queue creation failed\n");
+ nvme_pcie_qpair_destroy(qpair);
+ return NULL;
+ }
+
+ return qpair;
+}
+
+int
+nvme_pcie_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
+{
+ return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
+}
+
+int
+nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_completion_poll_status status;
+ int rc;
+
+ assert(ctrlr != NULL);
+
+ if (ctrlr->is_removed) {
+ goto free;
+ }
+
+ /* Delete the I/O submission queue */
+ rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status);
+ if (rc != 0) {
+ return rc;
+ }
+ if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
+ return -1;
+ }
+
+ if (qpair->no_deletion_notification_needed == 0) {
+ /* Complete any I/O in the completion queue */
+ nvme_pcie_qpair_process_completions(qpair, 0);
+
+ /* Abort the rest of the I/O */
+ nvme_pcie_qpair_abort_trackers(qpair, 1);
+ }
+
+ /* Delete the completion queue */
+ rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
+ if (rc != 0) {
+ return rc;
+ }
+ if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
+ return -1;
+ }
+
+free:
+ nvme_pcie_qpair_destroy(qpair);
+ return 0;
+}
+
+static void
+nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
+{
+ /*
+ * Bad vtophys translation, so abort this request and return
+ * immediately.
+ */
+ nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
+ SPDK_NVME_SC_INVALID_FIELD,
+ 1 /* do not retry */, true);
+}
+
+/*
+ * Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
+ *
+ * *prp_index will be updated to account for the number of PRP entries used.
+ */
+static int
+nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
+ uint32_t page_size)
+{
+ struct spdk_nvme_cmd *cmd = &tr->req->cmd;
+ uintptr_t page_mask = page_size - 1;
+ uint64_t phys_addr;
+ uint32_t i;
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp_index:%u virt_addr:%p len:%u\n",
+ *prp_index, virt_addr, (uint32_t)len);
+
+ if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
+ SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
+ return -EINVAL;
+ }
+
+ i = *prp_index;
+ while (len) {
+ uint32_t seg_len;
+
+ /*
+ * prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
+ * so prp_index == count is valid.
+ */
+ if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
+ SPDK_ERRLOG("out of PRP entries\n");
+ return -EINVAL;
+ }
+
+ phys_addr = spdk_vtophys(virt_addr);
+ if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
+ SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
+ return -EINVAL;
+ }
+
+ if (i == 0) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp1 = %p\n", (void *)phys_addr);
+ cmd->dptr.prp.prp1 = phys_addr;
+ seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
+ } else {
+ if ((phys_addr & page_mask) != 0) {
+ SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
+ return -EINVAL;
+ }
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
+ tr->u.prp[i - 1] = phys_addr;
+ seg_len = page_size;
+ }
+
+ seg_len = spdk_min(seg_len, len);
+ virt_addr += seg_len;
+ len -= seg_len;
+ i++;
+ }
+
+ cmd->psdt = SPDK_NVME_PSDT_PRP;
+ if (i <= 1) {
+ cmd->dptr.prp.prp2 = 0;
+ } else if (i == 2) {
+ cmd->dptr.prp.prp2 = tr->u.prp[0];
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
+ } else {
+ cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
+ }
+
+ *prp_index = i;
+ return 0;
+}
+
+/**
+ * Build PRP list describing physically contiguous payload buffer.
+ */
+static int
+nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
+ struct nvme_tracker *tr)
+{
+ uint32_t prp_index = 0;
+ int rc;
+
+ rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset,
+ req->payload_size, qpair->ctrlr->page_size);
+ if (rc) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return rc;
+ }
+
+ return 0;
+}
+
+#define _2MB_OFFSET(ptr) (((uintptr_t)(ptr)) & (0x200000 - 1))
+
+/**
+ * Build SGL list describing scattered payload buffer.
+ */
+static int
+nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
+ struct nvme_tracker *tr)
+{
+ int rc;
+ void *virt_addr;
+ uint64_t phys_addr;
+ uint32_t remaining_transfer_len, remaining_user_sge_len, length;
+ struct spdk_nvme_sgl_descriptor *sgl;
+ uint32_t nseg = 0;
+
+ /*
+ * Build scattered payloads.
+ */
+ assert(req->payload_size != 0);
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
+ assert(req->payload.reset_sgl_fn != NULL);
+ assert(req->payload.next_sge_fn != NULL);
+ req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
+
+ sgl = tr->u.sgl;
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+ req->cmd.dptr.sgl1.unkeyed.subtype = 0;
+
+ remaining_transfer_len = req->payload_size;
+
+ while (remaining_transfer_len > 0) {
+ rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
+ &virt_addr, &remaining_user_sge_len);
+ if (rc) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -1;
+ }
+
+ remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
+ remaining_transfer_len -= remaining_user_sge_len;
+ while (remaining_user_sge_len > 0) {
+ if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -1;
+ }
+
+ phys_addr = spdk_vtophys(virt_addr);
+ if (phys_addr == SPDK_VTOPHYS_ERROR) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -1;
+ }
+
+ length = spdk_min(remaining_user_sge_len, 0x200000 - _2MB_OFFSET(virt_addr));
+ remaining_user_sge_len -= length;
+ virt_addr += length;
+
+ if (nseg > 0 && phys_addr ==
+ (*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
+ /* extend previous entry */
+ (*(sgl - 1)).unkeyed.length += length;
+ continue;
+ }
+
+ sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
+ sgl->unkeyed.length = length;
+ sgl->address = phys_addr;
+ sgl->unkeyed.subtype = 0;
+
+ sgl++;
+ nseg++;
+ }
+ }
+
+ if (nseg == 1) {
+ /*
+ * The whole transfer can be described by a single SGL descriptor.
+ * Use the special case described by the spec where SGL1's type is Data Block.
+ * This means the SGL in the tracker is not used at all, so copy the first (and only)
+ * SGL element into SGL1.
+ */
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
+ req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
+ req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
+ } else {
+ /* For now we can only support 1 SGL segment in NVMe controller */
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
+ req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
+ req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
+ }
+
+ return 0;
+}
+
+/**
+ * Build PRP list describing scattered payload buffer.
+ */
+static int
+nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
+ struct nvme_tracker *tr)
+{
+ int rc;
+ void *virt_addr;
+ uint32_t remaining_transfer_len, length;
+ uint32_t prp_index = 0;
+ uint32_t page_size = qpair->ctrlr->page_size;
+
+ /*
+ * Build scattered payloads.
+ */
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
+ assert(req->payload.reset_sgl_fn != NULL);
+ req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
+
+ remaining_transfer_len = req->payload_size;
+ while (remaining_transfer_len > 0) {
+ assert(req->payload.next_sge_fn != NULL);
+ rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
+ if (rc) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -1;
+ }
+
+ length = spdk_min(remaining_transfer_len, length);
+
+ /*
+ * Any incompatible sges should have been handled up in the splitting routine,
+ * but assert here as an additional check.
+ *
+ * All SGEs except last must end on a page boundary.
+ */
+ assert((length == remaining_transfer_len) ||
+ _is_page_aligned((uintptr_t)virt_addr + length, page_size));
+
+ rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size);
+ if (rc) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return rc;
+ }
+
+ remaining_transfer_len -= length;
+ }
+
+ return 0;
+}
+
+static inline bool
+nvme_pcie_qpair_check_enabled(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+
+ if (!pqpair->is_enabled &&
+ !qpair->ctrlr->is_resetting) {
+ nvme_qpair_enable(qpair);
+ }
+ return pqpair->is_enabled;
+}
+
+int
+nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
+{
+ struct nvme_tracker *tr;
+ int rc = 0;
+ void *md_payload;
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+
+ nvme_pcie_qpair_check_enabled(qpair);
+
+ if (nvme_qpair_is_admin_queue(qpair)) {
+ nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
+ }
+
+ tr = TAILQ_FIRST(&pqpair->free_tr);
+
+ if (tr == NULL || !pqpair->is_enabled) {
+ /*
+ * No tracker is available, or the qpair is disabled due to
+ * an in-progress controller-level reset.
+ *
+ * Put the request on the qpair's request queue to be
+ * processed when a tracker frees up via a command
+ * completion or when the controller reset is
+ * completed.
+ */
+ STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
+ goto exit;
+ }
+
+ TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
+ TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
+ tr->req = req;
+ req->cmd.cid = tr->cid;
+
+ if (req->payload_size && req->payload.md) {
+ md_payload = req->payload.md + req->md_offset;
+ tr->req->cmd.mptr = spdk_vtophys(md_payload);
+ if (tr->req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ rc = -EINVAL;
+ goto exit;
+ }
+ }
+
+ if (req->payload_size == 0) {
+ /* Null payload - leave PRP fields zeroed */
+ rc = 0;
+ } else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) {
+ rc = nvme_pcie_qpair_build_contig_request(qpair, req, tr);
+ } else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) {
+ if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
+ rc = nvme_pcie_qpair_build_hw_sgl_request(qpair, req, tr);
+ } else {
+ rc = nvme_pcie_qpair_build_prps_sgl_request(qpair, req, tr);
+ }
+ } else {
+ assert(0);
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ rc = -EINVAL;
+ }
+
+ if (rc < 0) {
+ goto exit;
+ }
+
+ nvme_pcie_qpair_submit_tracker(qpair, tr);
+
+exit:
+ if (nvme_qpair_is_admin_queue(qpair)) {
+ nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
+ }
+
+ return rc;
+}
+
+static void
+nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
+{
+ uint64_t t02;
+ struct nvme_tracker *tr, *tmp;
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct spdk_nvme_ctrlr_process *active_proc;
+
+ /* Don't check timeouts during controller initialization. */
+ if (ctrlr->state != NVME_CTRLR_STATE_READY) {
+ return;
+ }
+
+ if (nvme_qpair_is_admin_queue(qpair)) {
+ active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
+ } else {
+ active_proc = qpair->active_proc;
+ }
+
+ /* Only check timeouts if the current process has a timeout callback. */
+ if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
+ return;
+ }
+
+ t02 = spdk_get_ticks();
+ TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
+ assert(tr->req != NULL);
+
+ if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) {
+ /*
+ * The requests are in order, so as soon as one has not timed out,
+ * stop iterating.
+ */
+ break;
+ }
+ }
+}
+
+int32_t
+nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
+ struct nvme_tracker *tr;
+ struct spdk_nvme_cpl *cpl;
+ uint32_t num_completions = 0;
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+
+ if (spdk_unlikely(!nvme_pcie_qpair_check_enabled(qpair))) {
+ /*
+ * qpair is not enabled, likely because a controller reset is
+ * is in progress. Ignore the interrupt - any I/O that was
+ * associated with this interrupt will get retried when the
+ * reset is complete.
+ */
+ return 0;
+ }
+
+ if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
+ nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
+ }
+
+ if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
+ /*
+ * max_completions == 0 means unlimited, but complete at most
+ * max_completions_cap batch of I/O at a time so that the completion
+ * queue doorbells don't wrap around.
+ */
+ max_completions = pqpair->max_completions_cap;
+ }
+
+ while (1) {
+ cpl = &pqpair->cpl[pqpair->cq_head];
+
+ if (cpl->status.p != pqpair->phase) {
+ break;
+ }
+#ifdef __PPC64__
+ /*
+ * This memory barrier prevents reordering of:
+ * - load after store from/to tr
+ * - load after load cpl phase and cpl cid
+ */
+ spdk_mb();
+#endif
+
+ if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
+ pqpair->cq_head = 0;
+ pqpair->phase = !pqpair->phase;
+ }
+
+ tr = &pqpair->tr[cpl->cid];
+ pqpair->sq_head = cpl->sqhd;
+
+ if (tr->active) {
+ nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
+ } else {
+ SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
+ nvme_qpair_print_completion(qpair, cpl);
+ assert(0);
+ }
+
+ if (++num_completions == max_completions) {
+ break;
+ }
+ }
+
+ if (num_completions > 0) {
+ if (spdk_likely(nvme_pcie_qpair_update_mmio_required(qpair, pqpair->cq_head,
+ pqpair->cq_shadow_hdbl,
+ pqpair->cq_eventidx))) {
+ g_thread_mmio_ctrlr = pctrlr;
+ spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head);
+ g_thread_mmio_ctrlr = NULL;
+ }
+ }
+
+ if (spdk_unlikely(ctrlr->timeout_enabled)) {
+ /*
+ * User registered for timeout callback
+ */
+ nvme_pcie_qpair_check_timeout(qpair);
+ }
+
+ /* Before returning, complete any pending admin request. */
+ if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
+ nvme_pcie_qpair_complete_pending_admin_request(qpair);
+
+ nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
+ }
+
+ return num_completions;
+}