summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/compute/example/k_means.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/compute/example/k_means.cpp')
-rw-r--r--src/boost/libs/compute/example/k_means.cpp229
1 files changed, 229 insertions, 0 deletions
diff --git a/src/boost/libs/compute/example/k_means.cpp b/src/boost/libs/compute/example/k_means.cpp
new file mode 100644
index 00000000..cd291a9b
--- /dev/null
+++ b/src/boost/libs/compute/example/k_means.cpp
@@ -0,0 +1,229 @@
+//---------------------------------------------------------------------------//
+// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
+//
+// Distributed under the Boost Software License, Version 1.0
+// See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt
+//
+// See http://boostorg.github.com/compute for more information.
+//---------------------------------------------------------------------------//
+
+#include <opencv2/core/core.hpp>
+#include <opencv2/highgui/highgui.hpp>
+#include <opencv2/imgproc/imgproc.hpp>
+
+#include <boost/compute/system.hpp>
+#include <boost/compute/container/vector.hpp>
+#include <boost/compute/image/image2d.hpp>
+#include <boost/compute/interop/opencv/core.hpp>
+#include <boost/compute/interop/opencv/highgui.hpp>
+#include <boost/compute/random/default_random_engine.hpp>
+#include <boost/compute/random/uniform_real_distribution.hpp>
+#include <boost/compute/utility/dim.hpp>
+#include <boost/compute/utility/source.hpp>
+
+namespace compute = boost::compute;
+
+using compute::dim;
+using compute::int_;
+using compute::float_;
+using compute::float2_;
+
+// the k-means example implements the k-means clustering algorithm
+int main()
+{
+ // number of clusters
+ size_t k = 6;
+
+ // number of points
+ size_t n_points = 4500;
+
+ // height and width of image
+ size_t height = 800;
+ size_t width = 800;
+
+ // get default device and setup context
+ compute::device gpu = compute::system::default_device();
+ compute::context context(gpu);
+ compute::command_queue queue(context, gpu);
+
+ // generate random, uniformily-distributed points
+ compute::default_random_engine random_engine(queue);
+ compute::uniform_real_distribution<float_> uniform_distribution(0, 800);
+
+ compute::vector<float2_> points(n_points, context);
+ uniform_distribution.generate(
+ compute::make_buffer_iterator<float_>(points.get_buffer(), 0),
+ compute::make_buffer_iterator<float_>(points.get_buffer(), n_points * 2),
+ random_engine,
+ queue
+ );
+
+ // initialize all points to cluster 0
+ compute::vector<int_> clusters(n_points, context);
+ compute::fill(clusters.begin(), clusters.end(), 0, queue);
+
+ // create initial means with the first k points
+ compute::vector<float2_> means(k, context);
+ compute::copy_n(points.begin(), k, means.begin(), queue);
+
+ // k-means clustering program source
+ const char k_means_source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
+ __kernel void assign_clusters(__global const float2 *points,
+ __global const float2 *means,
+ const int k,
+ __global int *clusters)
+ {
+ const uint gid = get_global_id(0);
+
+ const float2 point = points[gid];
+
+ // find the closest cluster
+ float current_distance = 0;
+ int closest_cluster = -1;
+
+ // find closest cluster mean to the point
+ for(int i = 0; i < k; i++){
+ const float2 mean = means[i];
+
+ int distance_to_mean = distance(point, mean);
+ if(closest_cluster == -1 || distance_to_mean < current_distance){
+ current_distance = distance_to_mean;
+ closest_cluster = i;
+ }
+ }
+
+ // write new cluster
+ clusters[gid] = closest_cluster;
+ }
+
+ __kernel void update_means(__global const float2 *points,
+ const uint n_points,
+ __global float2 *means,
+ __global const int *clusters)
+ {
+ const uint k = get_global_id(0);
+
+ float2 sum = { 0, 0 };
+ float count = 0;
+ for(uint i = 0; i < n_points; i++){
+ if(clusters[i] == k){
+ sum += points[i];
+ count += 1;
+ }
+ }
+
+ means[k] = sum / count;
+ }
+ );
+
+ // build the k-means program
+ compute::program k_means_program =
+ compute::program::build_with_source(k_means_source, context);
+
+ // setup the k-means kernels
+ compute::kernel assign_clusters_kernel(k_means_program, "assign_clusters");
+ assign_clusters_kernel.set_arg(0, points);
+ assign_clusters_kernel.set_arg(1, means);
+ assign_clusters_kernel.set_arg(2, int_(k));
+ assign_clusters_kernel.set_arg(3, clusters);
+
+ compute::kernel update_means_kernel(k_means_program, "update_means");
+ update_means_kernel.set_arg(0, points);
+ update_means_kernel.set_arg(1, int_(n_points));
+ update_means_kernel.set_arg(2, means);
+ update_means_kernel.set_arg(3, clusters);
+
+ // run the k-means algorithm
+ for(int iteration = 0; iteration < 25; iteration++){
+ queue.enqueue_1d_range_kernel(assign_clusters_kernel, 0, n_points, 0);
+ queue.enqueue_1d_range_kernel(update_means_kernel, 0, k, 0);
+ }
+
+ // create output image
+ compute::image2d image(
+ context, width, height, compute::image_format(CL_RGBA, CL_UNSIGNED_INT8)
+ );
+
+ // program with two kernels, one to fill the image with white, and then
+ // one the draw to points calculated in coordinates on the image
+ const char draw_walk_source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
+ __kernel void draw_points(__global const float2 *points,
+ __global const int *clusters,
+ __write_only image2d_t image)
+ {
+ const uint i = get_global_id(0);
+ const float2 coord = points[i];
+
+ // map cluster number to color
+ uint4 color = { 0, 0, 0, 0 };
+ switch(clusters[i]){
+ case 0:
+ color = (uint4)(255, 0, 0, 255);
+ break;
+ case 1:
+ color = (uint4)(0, 255, 0, 255);
+ break;
+ case 2:
+ color = (uint4)(0, 0, 255, 255);
+ break;
+ case 3:
+ color = (uint4)(255, 255, 0, 255);
+ break;
+ case 4:
+ color = (uint4)(255, 0, 255, 255);
+ break;
+ case 5:
+ color = (uint4)(0, 255, 255, 255);
+ break;
+ }
+
+ // draw a 3x3 pixel point
+ for(int x = -1; x <= 1; x++){
+ for(int y = -1; y <= 1; y++){
+ if(coord.x + x > 0 && coord.x + x < get_image_width(image) &&
+ coord.y + y > 0 && coord.y + y < get_image_height(image)){
+ write_imageui(image, (int2)(coord.x, coord.y) + (int2)(x, y), color);
+ }
+ }
+ }
+ }
+
+ __kernel void fill_gray(__write_only image2d_t image)
+ {
+ const int2 coord = { get_global_id(0), get_global_id(1) };
+
+ if(coord.x < get_image_width(image) && coord.y < get_image_height(image)){
+ uint4 gray = { 15, 15, 15, 15 };
+ write_imageui(image, coord, gray);
+ }
+ }
+ );
+
+ // build the program
+ compute::program draw_program =
+ compute::program::build_with_source(draw_walk_source, context);
+
+ // fill image with dark gray
+ compute::kernel fill_kernel(draw_program, "fill_gray");
+ fill_kernel.set_arg(0, image);
+
+ queue.enqueue_nd_range_kernel(
+ fill_kernel, dim(0, 0), dim(width, height), dim(1, 1)
+ );
+
+ // draw points colored according to cluster
+ compute::kernel draw_kernel(draw_program, "draw_points");
+ draw_kernel.set_arg(0, points);
+ draw_kernel.set_arg(1, clusters);
+ draw_kernel.set_arg(2, image);
+ queue.enqueue_1d_range_kernel(draw_kernel, 0, n_points, 0);
+
+ // show image
+ compute::opencv_imshow("k-means", image, queue);
+
+ // wait and return
+ cv::waitKey(0);
+
+ return 0;
+}