summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/compute/example/matrix_transpose.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/compute/example/matrix_transpose.cpp')
-rw-r--r--src/boost/libs/compute/example/matrix_transpose.cpp355
1 files changed, 355 insertions, 0 deletions
diff --git a/src/boost/libs/compute/example/matrix_transpose.cpp b/src/boost/libs/compute/example/matrix_transpose.cpp
new file mode 100644
index 00000000..ee9b1e9d
--- /dev/null
+++ b/src/boost/libs/compute/example/matrix_transpose.cpp
@@ -0,0 +1,355 @@
+//---------------------------------------------------------------------------//
+// Copyright (c) 2014 Benoit Dequidt <benoit.dequidt@gmail.com>
+//
+// Distributed under the Boost Software License, Version 1.0
+// See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt
+//
+// See http://boostorg.github.com/compute for more information.
+//---------------------------------------------------------------------------//
+
+#include <iostream>
+#include <cstdlib>
+
+#include <boost/program_options.hpp>
+
+#include <boost/compute/core.hpp>
+#include <boost/compute/algorithm/copy.hpp>
+#include <boost/compute/container/vector.hpp>
+#include <boost/compute/type_traits/type_name.hpp>
+#include <boost/compute/utility/source.hpp>
+
+namespace compute = boost::compute;
+namespace po = boost::program_options;
+
+using compute::uint_;
+
+const uint_ TILE_DIM = 32;
+const uint_ BLOCK_ROWS = 8;
+
+// generate a copy kernel program
+compute::kernel make_copy_kernel(const compute::context& context)
+{
+ // source for the copy_kernel program
+ const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
+ __kernel void copy_kernel(__global const float *src, __global float *dst)
+ {
+ uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
+ uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
+
+ uint width = get_num_groups(0) * TILE_DIM;
+
+ for(uint i = 0 ; i < TILE_DIM ; i+= BLOCK_ROWS){
+ dst[(y+i)*width +x] = src[(y+i)*width + x];
+ }
+ }
+ );
+
+ // setup compilation flags for the copy program
+ std::stringstream options;
+ options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
+
+ // create and build the copy program
+ compute::program program =
+ compute::program::build_with_source(source, context, options.str());
+
+ // create and return the copy kernel
+ return program.create_kernel("copy_kernel");
+}
+
+// generate a naive transpose kernel
+compute::kernel make_naive_transpose_kernel(const compute::context& context)
+{
+ // source for the naive_transpose kernel
+ const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
+ __kernel void naive_transpose(__global const float *src, __global float *dst)
+ {
+ uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
+ uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
+
+ uint width = get_num_groups(0) * TILE_DIM;
+
+ for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){
+ dst[x*width + y+i] = src[(y+i)*width + x];
+ }
+ }
+ );
+
+ // setup compilation flags for the naive_transpose program
+ std::stringstream options;
+ options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
+
+ // create and build the naive_transpose program
+ compute::program program =
+ compute::program::build_with_source(source, context, options.str());
+
+ // create and return the naive_transpose kernel
+ return program.create_kernel("naive_transpose");
+}
+
+// generates a coalesced transpose kernel
+compute::kernel make_coalesced_transpose_kernel(const compute::context& context)
+{
+ // source for the coalesced_transpose kernel
+ const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
+ __kernel void coalesced_transpose(__global const float *src, __global float *dst)
+ {
+ __local float tile[TILE_DIM][TILE_DIM];
+
+ // compute indexes
+ uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
+ uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
+
+ uint width = get_num_groups(0) * TILE_DIM;
+
+ // load inside local memory
+ for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){
+ tile[get_local_id(1)+i][get_local_id(0)] = src[(y+i)*width + x];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ // transpose indexes
+ x = get_group_id(1) * TILE_DIM + get_local_id(0);
+ y = get_group_id(0) * TILE_DIM + get_local_id(1);
+
+ // write output from local memory
+ for(uint i = 0 ; i < TILE_DIM ; i+=BLOCK_ROWS){
+ dst[(y+i)*width + x] = tile[get_local_id(0)][get_local_id(1)+i];
+ }
+ }
+ );
+
+ // setup compilation flags for the coalesced_transpose program
+ std::stringstream options;
+ options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
+
+ // create and build the coalesced_transpose program
+ compute::program program =
+ compute::program::build_with_source(source, context, options.str());
+
+ // create and return coalesced_transpose kernel
+ return program.create_kernel("coalesced_transpose");
+}
+
+// generate a coalesced withtout bank conflicts kernel
+compute::kernel make_coalesced_no_bank_conflicts_kernel(const compute::context& context)
+{
+ const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
+ __kernel void coalesced_no_bank_conflicts(__global const float *src, __global float *dst)
+ {
+ // TILE_DIM+1 is here to avoid bank conflicts in local memory
+ __local float tile[TILE_DIM][TILE_DIM+1];
+
+ // compute indexes
+ uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
+ uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
+
+ uint width = get_num_groups(0) * TILE_DIM;
+
+ // load inside local memory
+ for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){
+ tile[get_local_id(1)+i][get_local_id(0)] = src[(y+i)*width + x];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ // transpose indexes
+ x = get_group_id(1) * TILE_DIM + get_local_id(0);
+ y = get_group_id(0) * TILE_DIM + get_local_id(1);
+
+ // write output from local memory
+ for(uint i = 0 ; i < TILE_DIM ; i+=BLOCK_ROWS){
+ dst[(y+i)*width + x] = tile[get_local_id(0)][get_local_id(1)+i];
+ }
+ }
+ );
+
+ // setup compilation flags for the coalesced_no_bank_conflicts program
+ std::stringstream options;
+ options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
+
+ // create and build the coalesced_no_bank_conflicts program
+ compute::program program =
+ compute::program::build_with_source(source, context, options.str());
+
+ // create and return the coalesced_no_bank_conflicts kernel
+ return program.create_kernel("coalesced_no_bank_conflicts");
+}
+
+// compare 'expectedResult' to 'transposedMatrix'. prints an error message if not equal.
+bool check_transposition(const std::vector<float>& expectedResult,
+ uint_ size,
+ const std::vector<float>& transposedMatrix)
+{
+ for(uint_ i = 0 ; i < size ; ++i){
+ if(expectedResult[i] != transposedMatrix[i]){
+ std::cout << "idx = " << i << " , expected " << expectedResult[i]
+ << " , got " << transposedMatrix[i] << std::endl;
+ std::cout << "FAILED" << std::endl;
+ return false;
+ }
+ }
+ return true;
+}
+
+// generate a matrix inside 'in' and do the tranposition inside 'out'
+void generate_matrix(std::vector<float>& in, std::vector<float>& out, uint_ rows, uint_ cols)
+{
+ // generate a matrix
+ for(uint_ i = 0 ; i < rows ; ++i){
+ for(uint_ j = 0 ; j < cols ; ++j){
+ in[i*cols + j] = i*cols + j;
+ }
+ }
+
+ // store transposed result
+ for(uint_ j = 0; j < cols ; ++j){
+ for(uint_ i = 0 ; i < rows ; ++i){
+ out[j*rows + i] = in[i*cols + j];
+ }
+ }
+}
+
+// neccessary for 64-bit integer on win32
+#ifdef _WIN32
+#define uint64_t unsigned __int64
+#endif
+
+int main(int argc, char *argv[])
+{
+ // setup command line arguments
+ po::options_description options("options");
+ options.add_options()
+ ("help", "show usage instructions")
+ ("rows", po::value<uint_>()->default_value(4096), "number of matrix rows")
+ ("cols", po::value<uint_>()->default_value(4096), "number of matrix columns")
+ ;
+
+ // parse command line
+ po::variables_map vm;
+ po::store(po::parse_command_line(argc, argv, options), vm);
+ po::notify(vm);
+
+ // check command line arguments
+ if(vm.count("help")){
+ std::cout << options << std::endl;
+ return 0;
+ }
+
+ // get number rows and columns for the matrix
+ const uint_ rows = vm["rows"].as<uint_>();
+ const uint_ cols = vm["cols"].as<uint_>();
+
+ // get the default device
+ compute::device device = compute::system::default_device();
+
+ // print out device name and matrix information
+ std::cout << "Device: " << device.name() << std::endl;
+ std::cout << "Matrix Size: " << rows << "x" << cols << std::endl;
+ std::cout << "Grid Size: " << rows/TILE_DIM << "x" << cols/TILE_DIM << " blocks" << std::endl;
+ std::cout << "Local Size: " << TILE_DIM << "x" << BLOCK_ROWS << " threads" << std::endl;
+ std::cout << std::endl;
+
+ // On OSX this example does not work on CPU devices
+ #if defined(__APPLE__)
+ if(device.type() & compute::device::cpu) {
+ std::cout << "On OSX this example does not work on CPU devices" << std::endl;
+ return 0;
+ }
+ #endif
+
+ const size_t global_work_size[2] = {rows, cols*BLOCK_ROWS/TILE_DIM};
+ const size_t local_work_size[2] = {TILE_DIM, BLOCK_ROWS};
+
+ // setup input data on the host
+ const uint_ size = rows * cols;
+ std::vector<float> h_input(size);
+ std::vector<float> h_output(size);
+ std::vector<float> expectedResult(size);
+ generate_matrix(h_input, expectedResult, rows, cols);
+
+ // create a context for the device
+ compute::context context(device);
+
+ // device vectors
+ compute::vector<float> d_input(size, context);
+ compute::vector<float> d_output(size, context);
+
+ // command_queue with profiling
+ compute::command_queue queue(context, device, compute::command_queue::enable_profiling);
+
+ // copy input data
+ compute::copy(h_input.begin(), h_input.end(), d_input.begin(), queue);
+
+ // simple copy kernel
+ std::cout << "Testing copy_kernel:" << std::endl;
+ compute::kernel kernel = make_copy_kernel(context);
+ kernel.set_arg(0, d_input);
+ kernel.set_arg(1, d_output);
+
+ compute::event start;
+ start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
+ queue.finish();
+ uint64_t elapsed = start.duration<boost::chrono::nanoseconds>().count();
+
+ std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
+ std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
+ compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
+
+ check_transposition(h_input, rows*cols, h_output);
+ std::cout << std::endl;
+
+ // naive_transpose kernel
+ std::cout << "Testing naive_transpose:" << std::endl;
+ kernel = make_naive_transpose_kernel(context);
+ kernel.set_arg(0, d_input);
+ kernel.set_arg(1, d_output);
+
+ start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
+ queue.finish();
+ elapsed = start.duration<boost::chrono::nanoseconds>().count();
+ std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
+ std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
+ compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
+
+ check_transposition(expectedResult, rows*cols, h_output);
+ std::cout << std::endl;
+
+ // coalesced_transpose kernel
+ std::cout << "Testing coalesced_transpose:" << std::endl;
+ kernel = make_coalesced_transpose_kernel(context);
+ kernel.set_arg(0, d_input);
+ kernel.set_arg(1, d_output);
+
+ start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
+ queue.finish();
+ elapsed = start.duration<boost::chrono::nanoseconds>().count();
+ std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
+ std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
+
+ compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
+
+ check_transposition(expectedResult, rows*cols, h_output);
+ std::cout << std::endl;
+
+ // coalesced_no_bank_conflicts kernel
+ std::cout << "Testing coalesced_no_bank_conflicts:" << std::endl;
+
+ kernel = make_coalesced_no_bank_conflicts_kernel(context);
+ kernel.set_arg(0, d_input);
+ kernel.set_arg(1, d_output);
+
+ start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
+ queue.finish();
+ elapsed = start.duration<boost::chrono::nanoseconds>().count();
+ std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
+ std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
+
+ compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
+
+ check_transposition(expectedResult, rows*cols, h_output);
+ std::cout << std::endl;
+
+ return 0;
+}