summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/graph_parallel/test/ssca.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/graph_parallel/test/ssca.cpp')
-rw-r--r--src/boost/libs/graph_parallel/test/ssca.cpp1263
1 files changed, 1263 insertions, 0 deletions
diff --git a/src/boost/libs/graph_parallel/test/ssca.cpp b/src/boost/libs/graph_parallel/test/ssca.cpp
new file mode 100644
index 00000000..0930e4d0
--- /dev/null
+++ b/src/boost/libs/graph_parallel/test/ssca.cpp
@@ -0,0 +1,1263 @@
+// Copyright 2004 The Trustees of Indiana University.
+
+// Use, modification and distribution is subject to the Boost Software
+// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+// Authors: Nick Edmonds
+// Andrew Lumsdaine
+
+#include <boost/graph/use_mpi.hpp>
+
+#define CSR
+
+#ifdef CSR
+# include <boost/graph/distributed/compressed_sparse_row_graph.hpp>
+#else
+# include <boost/graph/distributed/adjacency_list.hpp>
+#endif
+
+#include <boost/test/minimal.hpp>
+#include <boost/graph/distributed/mpi_process_group.hpp>
+#include <boost/graph/distributed/queue.hpp>
+
+#include <boost/graph/parallel/distribution.hpp>
+#include <boost/lexical_cast.hpp>
+#include <boost/bind.hpp>
+#include <sys/time.h>
+#include <time.h>
+
+#include <boost/random.hpp>
+#include <boost/property_map/parallel/distributed_property_map.hpp>
+
+#include <boost/random/linear_congruential.hpp>
+
+#include <boost/graph/distributed/graphviz.hpp>
+#include <boost/graph/graph_traits.hpp>
+#include <boost/graph/iteration_macros.hpp>
+
+#include <boost/graph/parallel/algorithm.hpp>
+#include <boost/graph/breadth_first_search.hpp>
+#include <boost/pending/queue.hpp>
+
+#include <boost/graph/rmat_graph_generator.hpp>
+#include <boost/graph/distributed/betweenness_centrality.hpp>
+#include <boost/graph/distributed/filtered_graph.hpp>
+#include <boost/graph/parallel/container_traits.hpp>
+
+#include <boost/graph/properties.hpp>
+
+#include <algorithm>
+#include <vector>
+#include <string>
+#include <iostream>
+#include <iomanip>
+#include <fstream>
+#include <string>
+#include <sstream>
+#include <stdint.h>
+
+using namespace boost;
+
+// #define DEBUG
+
+typedef rand48 RandomGenerator;
+
+/****************************************************************************
+ * Timing
+ ****************************************************************************/
+#ifndef PBGL_ACCOUNTING
+
+typedef double time_type;
+
+inline time_type get_time()
+{
+ timeval tp;
+ gettimeofday(&tp, 0);
+ return tp.tv_sec + tp.tv_usec / 1000000.0;
+}
+
+std::string print_time(time_type t)
+{
+ std::ostringstream out;
+ out << std::setiosflags(std::ios::fixed) << std::setprecision(2) << t;
+ return out.str();
+}
+
+#endif // PBGL_ACCOUNTING
+
+/****************************************************************************
+ * Edge weight generator iterator *
+ ****************************************************************************/
+template<typename F, typename RandomGenerator>
+class generator_iterator
+{
+public:
+ typedef std::input_iterator_tag iterator_category;
+ typedef typename F::result_type value_type;
+ typedef const value_type& reference;
+ typedef const value_type* pointer;
+ typedef void difference_type;
+
+ explicit
+ generator_iterator(RandomGenerator& gen, const F& f = F())
+ : f(f), gen(&gen)
+ {
+ value = this->f(gen);
+ }
+
+ reference operator*() const { return value; }
+ pointer operator->() const { return &value; }
+
+ generator_iterator& operator++()
+ {
+ value = f(*gen);
+ return *this;
+ }
+
+ generator_iterator operator++(int)
+ {
+ generator_iterator temp(*this);
+ ++(*this);
+ return temp;
+ }
+
+ bool operator==(const generator_iterator& other) const
+ { return f == other.f; }
+
+ bool operator!=(const generator_iterator& other) const
+ { return !(*this == other); }
+
+private:
+ F f;
+ RandomGenerator* gen;
+ value_type value;
+};
+
+template<typename F, typename RandomGenerator>
+inline generator_iterator<F, RandomGenerator>
+make_generator_iterator( RandomGenerator& gen, const F& f)
+{ return generator_iterator<F, RandomGenerator>(gen, f); }
+
+template<typename Graph, typename DistanceMap, typename WeightMap, typename ColorMap>
+struct ssca_visitor : bfs_visitor<>
+{
+ typedef typename property_traits<WeightMap>::value_type Weight;
+ typedef typename property_traits<ColorMap>::value_type ColorValue;
+ typedef color_traits<ColorValue> Color;
+
+ ssca_visitor(DistanceMap& distance, const WeightMap& weight, ColorMap& color,
+ Weight max_)
+ : distance(distance), weight(weight), color(color), max_(max_) {}
+
+ template<typename Edge>
+ void tree_edge(Edge e, const Graph& g)
+ {
+ int new_distance = get(weight, e) == (std::numeric_limits<Weight>::max)() ?
+ (std::numeric_limits<Weight>::max)() : get(distance, source(e, g)) + get(weight, e);
+
+ put(distance, target(e, g), new_distance);
+ if (new_distance > max_)
+ put(color, target(e, g), Color::black());
+ }
+
+ private:
+ DistanceMap& distance;
+ const WeightMap& weight;
+ ColorMap& color;
+ Weight max_;
+};
+
+// Generate source vertices for approximate BC
+template <typename Graph, typename Buffer>
+void
+generate_sources(const Graph& g, Buffer sources,
+ typename graph_traits<Graph>::vertices_size_type num_sources)
+{
+ typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
+ typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
+ typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
+
+ typedef typename boost::graph::parallel::process_group_type<Graph>::type
+ process_group_type;
+ process_group_type pg = g.process_group();
+
+ typename process_group_type::process_id_type id = process_id(pg);
+ typename process_group_type::process_size_type p = num_processes(pg);
+
+ // Don't feel like adding a special case for num_sources < p
+ assert(num_sources >= p);
+
+ minstd_rand gen;
+ uniform_int<vertices_size_type> rand_vertex(0, num_vertices(g) - 1);
+ std::vector<vertex_descriptor> all_sources, local_sources;
+ vertices_size_type local_vertices = vertices_size_type(floor((double)num_sources / p));
+ local_vertices += (id < (num_sources - (p * local_vertices)) ? 1 : 0);
+
+ while (local_vertices > 0) {
+ vertex_iterator iter = vertices(g).first;
+ std::advance(iter, rand_vertex(gen));
+
+ if (out_degree(*iter, g) != 0
+ && std::find(local_sources.begin(), local_sources.end(), *iter) == local_sources.end()) {
+ local_sources.push_back(*iter);
+ --local_vertices;
+ }
+ }
+ all_gather(pg, local_sources.begin(), local_sources.end(), all_sources);
+ std::sort(all_sources.begin(), all_sources.end());
+ for (typename std::vector<vertex_descriptor>::iterator iter = all_sources.begin();
+ iter != all_sources.end(); ++iter)
+ sources.push(*iter);
+}
+
+// Kernel 2 - Classify large sets
+template <typename Graph, typename WeightMap>
+void classify_sets(const Graph& g, const WeightMap& weight_map,
+ std::vector<std::pair<typename graph_traits<Graph>::vertex_descriptor,
+ typename graph_traits<Graph>::vertex_descriptor> > & global_S)
+{
+ typedef typename boost::graph::parallel::process_group_type<Graph>::type
+ process_group_type;
+ process_group_type pg = g.process_group();
+
+ typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
+ std::vector<std::pair<vertex_descriptor, vertex_descriptor> > S;
+
+ time_type start = get_time();
+
+#ifdef CSR
+ typedef typename property_map<Graph, vertex_owner_t>::const_type OwnerMap;
+ typedef typename property_map<Graph, vertex_local_t>::const_type LocalMap;
+ OwnerMap owner = get(vertex_owner, g);
+ LocalMap local = get(vertex_local, g);
+#endif
+
+ int max_ = 0;
+ BGL_FORALL_EDGES_T(e, g, Graph) {
+#ifdef CSR
+ if (get(owner, source(e, g)) == process_id(pg)) {
+#endif
+ int w = get(weight_map, e);
+ if (w > max_) {
+ max_ = w;
+ S.clear();
+ }
+
+ if (w >= max_)
+ S.push_back(std::make_pair(source(e, g), target(e, g)));
+#ifdef CSR
+ }
+#endif
+ }
+
+ int global_max = all_reduce(pg, max_, boost::parallel::maximum<int>());
+ if (max_ < global_max)
+ S.clear();
+
+ global_S.clear();
+
+ all_gather(pg, S.begin(), S.end(), global_S);
+
+ // This is probably unnecessary as long as the sets of edges owned by procs is disjoint
+ std::sort(global_S.begin(), global_S.end());
+ std::unique(global_S.begin(), global_S.end());
+
+ synchronize(pg);
+
+ time_type end = get_time();
+
+ if (process_id(pg) == 0) {
+ std::cerr << " Distributed Graph: " << print_time(end - start) << std::endl
+ << " Max int weight = " << global_max << std::endl;
+ }
+}
+
+template <typename ProcessGroup, typename Graph, typename WeightMap,
+ typename EdgeVector>
+void seq_classify_sets(const ProcessGroup& pg, const Graph& g,
+ const WeightMap& weight_map, EdgeVector& S)
+{
+ typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
+ typedef typename property_traits<WeightMap>::value_type edge_weight_type;
+
+ time_type start = get_time();
+
+ edge_weight_type max_ = 0;
+ BGL_FORALL_EDGES_T(e, g, Graph) {
+ edge_weight_type w = get(weight_map, e);
+ if (w > max_) {
+ max_ = w;
+ S.clear();
+ }
+
+ if (w >= max_)
+ S.push_back(e);
+ }
+
+ synchronize(pg);
+
+ time_type end = get_time();
+
+ if (process_id(pg) == 0)
+ std::cerr << " Non-Distributed Graph: " << print_time(end - start) << std::endl
+ << " Max int weight = " << max_ << std::endl;
+}
+
+// Kernel 3 - Graph Extraction
+template <typename Graph, typename OwnerMap, typename LocalMap,
+ typename WeightMap, typename DistanceMap, typename ColorMap,
+ typename EdgeVector>
+void subgraph_extraction(Graph& g, const OwnerMap& owner, const LocalMap& local,
+ const WeightMap& weight_map, DistanceMap distances,
+ ColorMap color_map, const EdgeVector& S,
+ int subGraphEdgeLength)
+{
+ // Nick: I think turning the vertex black when the maximum distance is
+ // exceeded will prevent BFS from exploring beyond the subgraph.
+ // Unfortunately we can't run subgraph extraction in parallel
+ // because the subgraphs may overlap
+
+ typedef typename property_traits<ColorMap>::value_type ColorValue;
+ typedef color_traits<ColorValue> Color;
+
+ typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
+ typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
+
+ typedef typename boost::graph::parallel::process_group_type<Graph>::type
+ process_group_type;
+
+ typedef boost::graph::distributed::distributed_queue<process_group_type,
+ OwnerMap, queue<vertex_descriptor> > queue_t;
+
+ process_group_type pg = g.process_group();
+ typename process_group_type::process_id_type id = process_id(pg);
+
+ queue_t Q(pg, owner);
+
+ EdgeVector sources(S.begin(), S.end());
+
+#ifdef DEBUG
+ std::vector<std::vector<vertex_descriptor> > subgraphs;
+#endif
+
+ synchronize(pg);
+
+ typedef typename std::vector<std::pair<vertex_descriptor, vertex_descriptor> >::iterator
+ source_iterator;
+
+ time_type start = get_time();
+ for (source_iterator iter = sources.begin(); iter != sources.end(); ++iter) {
+ // Reinitialize distance and color maps every BFS
+ BGL_FORALL_VERTICES_T(v, g, Graph) {
+ if (get(owner, v) == id) {
+ local_put(color_map, v, Color::white());
+ local_put(distances, v, (std::numeric_limits<int>::max)());
+ }
+ }
+
+ vertex_descriptor u = iter->first, v = iter->second;
+
+ local_put(distances, u, 0);
+ local_put(distances, v, 0);
+
+ while (!Q.empty()) Q.pop();
+ if (get(owner, u) == id)
+ Q.push(u);
+
+ local_put(color_map, u, Color::gray());
+
+ breadth_first_search(g, v, Q,
+ ssca_visitor<Graph, DistanceMap, WeightMap, ColorMap>
+ (distances, weight_map, color_map, subGraphEdgeLength),
+ color_map);
+
+ // At this point all vertices with distance > 0 in addition to the
+ // starting vertices compose the subgraph.
+#ifdef DEBUG
+ subgraphs.push_back(std::vector<vertex_descriptor>());
+ std::vector<vertex_descriptor>& subgraph = subgraphs.back();
+
+ BGL_FORALL_VERTICES_T(v, g, Graph) {
+ if (get(distances, v) < (std::numeric_limits<int>::max)())
+ subgraph.push_back(v);
+ }
+#endif
+ }
+
+ synchronize(pg);
+
+ time_type end = get_time();
+
+#ifdef DEBUG
+ for (unsigned int i = 0; i < subgraphs.size(); i++) {
+ all_gather(pg, subgraphs[i].begin(), subgraphs[i].end(), subgraphs[i]);
+ std::sort(subgraphs[i].begin(), subgraphs[i].end());
+ subgraphs[i].erase(std::unique(subgraphs[i].begin(), subgraphs[i].end()),
+ subgraphs[i].end());
+ }
+
+ if (process_id(pg) == 0)
+ for (int i = 0; abs(i) < subgraphs.size(); i++) {
+ std::cerr << "Subgraph " << i << " :\n";
+ for (int j = 0; abs(j) < subgraphs[i].size(); j++)
+ std::cerr << " " << get(local, subgraphs[i][j]) << "@"
+ << get(owner, subgraphs[i][j]) << std::endl;
+ }
+#endif
+
+ if (process_id(pg) == 0)
+ std::cerr << " Distributed Graph: " << print_time(end - start) << std::endl;
+}
+
+template <typename ProcessGroup, typename Graph, typename WeightMap,
+ typename DistanceMap, typename ColorMap, typename EdgeVector>
+void seq_subgraph_extraction(const ProcessGroup& pg, const Graph& g,
+ const WeightMap& weight_map, DistanceMap distances,
+ ColorMap color_map, const EdgeVector& S,
+ int subGraphEdgeLength)
+{
+ // Nick: I think turning the vertex black when the maximum distance is
+ // exceeded will prevent BFS from exploring beyond the subgraph.
+
+ using boost::graph::distributed::mpi_process_group;
+
+ typedef typename property_traits<ColorMap>::value_type ColorValue;
+ typedef color_traits<ColorValue> Color;
+
+ typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
+ typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
+
+ boost::queue<vertex_descriptor> Q;
+
+ std::vector<edge_descriptor> sources(S.begin(), S.end());
+
+#ifdef DEBUG
+ std::vector<std::vector<vertex_descriptor> > subgraphs;
+#endif
+
+ synchronize(pg);
+
+ typedef ProcessGroup process_group_type;
+
+ typename process_group_type::process_id_type id = process_id(pg);
+ typename process_group_type::process_size_type p = num_processes(pg);
+
+ time_type start = get_time();
+
+ for (int i = id; i < sources.size(); i += p) {
+
+ // Reinitialize distance and color maps every BFS
+ BGL_FORALL_VERTICES_T(v, g, Graph) {
+ put(color_map, v, Color::white());
+ put(distances, v, (std::numeric_limits<int>::max)());
+ }
+
+ vertex_descriptor u = source(sources[i], g),
+ v = target(sources[i], g);
+
+ put(distances, u, 0);
+ put(distances, v, 0);
+
+ while (!Q.empty()) Q.pop();
+ Q.push(u);
+
+ put(color_map, u, Color::gray());
+
+ breadth_first_search(g, v, Q,
+ ssca_visitor<Graph, DistanceMap, WeightMap, ColorMap>
+ (distances, weight_map, color_map, subGraphEdgeLength),
+ color_map);
+
+#ifdef DEBUG
+ subgraphs.push_back(std::vector<vertex_descriptor>());
+ std::vector<vertex_descriptor>& subgraph = subgraphs.back();
+
+ BGL_FORALL_VERTICES_T(v, g, Graph) {
+ if (get(distances, v) < (std::numeric_limits<int>::max)())
+ subgraph.push_back(v);
+ }
+#endif
+ }
+
+ synchronize(pg);
+
+ time_type end = get_time();
+
+#ifdef DEBUG
+ std::vector<vertex_descriptor> ser_subgraphs;
+
+ for (int i = 0; i < subgraphs.size(); ++i) {
+ for (int j = 0; j < subgraphs[i].size(); ++j)
+ ser_subgraphs.push_back(subgraphs[i][j]);
+ ser_subgraphs.push_back(graph_traits<Graph>::null_vertex());
+ }
+
+ all_gather(pg, ser_subgraphs.begin(), ser_subgraphs.end(), ser_subgraphs);
+
+ int i = 0;
+ typename std::vector<vertex_descriptor>::iterator iter(ser_subgraphs.begin());
+
+ while (iter != ser_subgraphs.end()) {
+ std::cerr << "Subgraph " << i << " :\n";
+ while (*iter != graph_traits<Graph>::null_vertex()) {
+ std::cerr << " " << *iter << std::endl;
+ ++iter;
+ }
+ ++i;
+ ++iter;
+ }
+#endif
+
+ if (process_id(pg) == 0)
+ std::cerr << " Non-Distributed Graph: " << print_time(end - start) << std::endl;
+}
+
+template <typename ProcessGroup, typename Graph, typename CentralityMap>
+void
+extract_max_bc_vertices(const ProcessGroup& pg, const Graph& g, const CentralityMap& centrality,
+ std::vector<typename graph_traits<Graph>::vertex_descriptor>& max_bc_vec)
+{
+ using boost::graph::parallel::process_group;
+ using boost::parallel::all_gather;
+ using boost::parallel::all_reduce;
+
+ // Find set of vertices with highest BC score
+ typedef typename property_traits<CentralityMap>::value_type centrality_type;
+ std::vector<centrality_type> max_bc_vertices;
+ centrality_type max_ = 0;
+
+ max_bc_vec.clear();
+
+ BGL_FORALL_VERTICES_T(v, g, Graph) {
+ if (get(centrality, v) == max_)
+ max_bc_vec.push_back(v);
+ else if (get(centrality, v) > max_) {
+ max_ = get(centrality, v);
+ max_bc_vec.clear();
+ max_bc_vec.push_back(v);
+ }
+ }
+
+ centrality_type global_max = all_reduce(pg, max_, boost::parallel::minimum<int>());
+
+ if (global_max > max_)
+ max_bc_vec.clear();
+
+ all_gather(pg, max_bc_vec.begin(), max_bc_vec.end(), max_bc_vec);
+}
+
+
+// Function object to filter edges divisible by 8
+// EdgeWeightMap::value_type must be integral!
+template <typename EdgeWeightMap>
+struct edge_weight_not_divisible_by_eight {
+ typedef typename property_traits<EdgeWeightMap>::value_type weight_type;
+
+ edge_weight_not_divisible_by_eight() { }
+ edge_weight_not_divisible_by_eight(EdgeWeightMap weight) : m_weight(weight) { }
+ template <typename Edge>
+ bool operator()(const Edge& e) const {
+ return (get(m_weight, e) & ((std::numeric_limits<weight_type>::max)() - 7)) != get(m_weight, e);
+ }
+
+ EdgeWeightMap m_weight;
+};
+
+//
+// Vertex and Edge properties
+//
+#ifdef CSR
+typedef int weight_type;
+
+struct WeightedEdge {
+ WeightedEdge(weight_type weight = 0) : weight(weight) { }
+
+ weight_type weight;
+};
+
+struct VertexProperties {
+ VertexProperties(int distance = 0, default_color_type color = white_color)
+ : distance(distance), color(color) { }
+
+ int distance;
+ default_color_type color;
+};
+#endif
+
+template <typename RandomGenerator, typename ProcessGroup, typename vertices_size_type,
+ typename edges_size_type>
+void
+run_non_distributed_graph_tests(RandomGenerator& gen, const ProcessGroup& pg,
+ vertices_size_type n, edges_size_type m,
+ std::size_t maxEdgeWeight, uint64_t seed,
+ int K4Alpha, double a, double b, double c, double d,
+ int subGraphEdgeLength, bool show_degree_dist,
+ bool full_bc, bool verify)
+{
+#ifdef CSR
+ typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge>
+ seqGraph;
+#else
+ typedef adjacency_list<vecS, vecS, directedS,
+ // Vertex properties
+ property<vertex_distance_t, int,
+ property<vertex_color_t, default_color_type> >,
+ // Edge properties
+ property<edge_weight_t, int> > seqGraph;
+#endif
+
+ // Generate sequential graph for non_distributed betweenness centrality
+ // Reseed the PRNG to get the same graph
+ gen.seed(seed);
+
+ synchronize(pg);
+
+ time_type start = get_time();
+
+#ifdef CSR
+ seqGraph sg(edges_are_sorted,
+ sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
+ sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(),
+ make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
+ n);
+#else
+ seqGraph sg(unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
+ unique_rmat_iterator<RandomGenerator, seqGraph>(),
+ make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
+ n);
+#endif
+
+ // Not strictly necessary to synchronize here, but it make sure that the
+ // time we measure is the time needed for all copies of the graph to be
+ // constructed
+ synchronize(pg);
+
+ time_type end = get_time();
+
+ if (process_id(pg) == 0)
+ std::cerr<< "Kernel 1:\n"
+ << " Non-Distributed Graph: " << print_time(end - start) << std::endl;
+
+ std::map<int, int> degree_dist;
+ if ( show_degree_dist ) {
+ BGL_FORALL_VERTICES_T(v, sg, seqGraph) {
+ degree_dist[out_degree(v, sg)]++;
+ }
+
+ std::cerr << "Degree - Fraction of vertices of that degree\n";
+ for (std::map<int, int>::iterator iter = degree_dist.begin();
+ iter != degree_dist.end(); ++iter)
+ std::cerr << " " << iter->first << " - " << double(iter->second) / num_vertices(sg) << std::endl << std::endl;
+ }
+
+ //
+ // Kernel 2 - Classify large sets
+ //
+ std::vector<graph_traits<seqGraph>::edge_descriptor> seqS;
+
+ if (process_id(pg) == 0)
+ std::cerr << "Kernel 2:\n";
+
+ seq_classify_sets(pg, sg,
+#ifdef CSR
+ get(&WeightedEdge::weight, sg),
+#else
+ get(edge_weight, sg),
+#endif
+ seqS);
+
+ //
+ // Kernel 3 - Graph Extraction
+ //
+#ifdef CSR
+ typedef weight_type weight_t;
+ weight_t unit_weight(1);
+#else
+ int unit_weight(1);;
+#endif
+
+ if (process_id(pg) == 0)
+ std::cerr << "Kernel 3:\n";
+
+ seq_subgraph_extraction(pg, sg,
+#ifdef CSR
+// get(&WeightedEdge::weight, sg),
+ ref_property_map<graph_traits<seqGraph>::edge_descriptor, weight_t>(unit_weight),
+ get(&VertexProperties::distance, sg),
+ get(&VertexProperties::color, sg),
+#else
+// get(edge_weight, sg),
+ ref_property_map<graph_traits<seqGraph>::edge_descriptor, int>(unit_weight),
+ get(vertex_distance, sg),
+ get(vertex_color, sg),
+#endif
+ seqS, subGraphEdgeLength);
+
+#ifdef CSR
+ typedef property_map<seqGraph, weight_type WeightedEdge::*>::type seqEdgeWeightMap;
+ edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(&WeightedEdge::weight, sg));
+#else
+ typedef property_map<seqGraph, edge_weight_t>::type seqEdgeWeightMap;
+ edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(edge_weight, sg));
+#endif
+
+ typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
+ filteredSeqGraph;
+
+ filteredSeqGraph fsg(sg, sg_filter);
+
+ std::vector<graph_traits<seqGraph>::vertex_descriptor> max_seq_bc_vec;
+
+ // Non-Distributed Centrality Map
+ typedef property_map<seqGraph, vertex_index_t>::const_type seqIndexMap;
+ typedef iterator_property_map<std::vector<int>::iterator, seqIndexMap> seqCentralityMap;
+
+ std::vector<int> non_distributed_centralityS(num_vertices(sg), 0);
+ seqCentralityMap non_distributed_centrality(non_distributed_centralityS.begin(),
+ get(vertex_index, sg));
+
+ vertices_size_type n0 = 0;
+ BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph) {
+ if (out_degree(v, fsg) == 0) ++n0;
+ }
+
+ if (process_id(pg) == 0)
+ std::cerr << "Kernel 4:\n";
+
+ // Run Betweenness Centrality
+ if (full_bc) {
+
+ // Non-Distributed Graph BC
+ start = get_time();
+ non_distributed_brandes_betweenness_centrality(pg, fsg, non_distributed_centrality);
+ extract_max_bc_vertices(pg, fsg, non_distributed_centrality, max_seq_bc_vec);
+ end = get_time();
+
+ edges_size_type nonDistributedExactTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
+
+ if (process_id(pg) == 0)
+ std::cerr << " non-Distributed Graph Exact = " << print_time(end - start) << " ("
+ << nonDistributedExactTEPs << " TEPs)\n";
+ }
+
+ // Non-Distributed Graph Approximate BC
+ std::vector<int> nonDistributedApproxCentralityS(num_vertices(sg), 0);
+ seqCentralityMap nonDistributedApproxCentrality(nonDistributedApproxCentralityS.begin(),
+ get(vertex_index, sg));
+
+ queue<typename graph_traits<filteredSeqGraph>::vertex_descriptor> sources;
+ {
+ minstd_rand gen;
+ uniform_int<vertices_size_type> rand_vertex(0, num_vertices(fsg) - 1);
+ int remaining_sources = floor(pow(2, K4Alpha));
+ std::vector<typename graph_traits<filteredSeqGraph>::vertex_descriptor> temp_sources;
+
+ while (remaining_sources > 0) {
+ typename graph_traits<filteredSeqGraph>::vertex_descriptor v =
+ vertex(rand_vertex(gen), fsg);
+
+ if (out_degree(v, fsg) != 0
+ && std::find(temp_sources.begin(), temp_sources.end(), v) == temp_sources.end()) {
+ temp_sources.push_back(v);
+ --remaining_sources;
+ }
+ }
+
+ for (int i = 0; i < temp_sources.size(); ++i)
+ sources.push(temp_sources[i]);
+ }
+
+ start = get_time();
+ non_distributed_brandes_betweenness_centrality(pg, fsg, buffer(sources).
+ centrality_map(nonDistributedApproxCentrality));
+ extract_max_bc_vertices(pg, fsg, nonDistributedApproxCentrality, max_seq_bc_vec);
+ end = get_time();
+
+ edges_size_type nonDistributedApproxTEPs = edges_size_type(floor(7 * n * pow(2, K4Alpha) / (end - start)));
+
+ if (process_id(pg) == 0)
+ std::cerr << " Non-Distributed Graph Approximate (" << floor(pow(2, K4Alpha)) << " sources) = "
+ << print_time(end - start) << " (" << nonDistributedApproxTEPs << " TEPs)\n";
+
+ // Verify Correctness of Kernel 4
+ if (full_bc && verify && process_id(pg) == 0) {
+
+ std::vector<int> seq_centralityS(num_vertices(fsg), 0);
+ seqCentralityMap seq_centrality(seq_centralityS.begin(), get(vertex_index, fsg));
+
+ max_seq_bc_vec.clear();
+ property_traits<seqCentralityMap>::value_type max_ = 0;
+
+ start = get_time();
+ brandes_betweenness_centrality(fsg, seq_centrality);
+
+ typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
+ filteredSeqGraph;
+
+ BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph ) {
+ if (get(seq_centrality, v) == max_)
+ max_seq_bc_vec.push_back(v);
+ else if (get(seq_centrality, v) > max_) {
+ max_ = get(seq_centrality, v);
+ max_seq_bc_vec.clear();
+ max_seq_bc_vec.push_back(v);
+ }
+ }
+
+ end = get_time();
+
+ edges_size_type sequentialTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
+
+ std::cerr << " Sequential = " << print_time(end - start) << " (" << sequentialTEPs << " TEPs)\n";
+
+ typename ProcessGroup::process_id_type id = process_id(pg);
+ typename ProcessGroup::process_size_type p = num_processes(pg);
+
+ assert((double)n/p == floor((double)n/p));
+
+ std::cerr << "\nVerifying non-scalable betweenness centrality...\n";
+
+ {
+ bool passed = true;
+
+ // Verify non-scalable betweenness centrality
+ BGL_FORALL_VERTICES_T(v, sg, seqGraph) {
+ if (get(non_distributed_centrality, v) != get(seq_centrality, v)) {
+ std::cerr << " " << id << ": Error - centrality of " << v
+ << " does not match the sequential result ("
+ << get(non_distributed_centrality, v) << " vs. "
+ << get(seq_centrality, v) << ")\n";
+ passed = false;
+ }
+ }
+
+ if (passed)
+ std::cerr << " PASSED\n";
+ }
+
+ }
+
+}
+
+template <typename RandomGenerator, typename ProcessGroup, typename vertices_size_type,
+ typename edges_size_type>
+void
+run_distributed_graph_tests(RandomGenerator& gen, const ProcessGroup& pg,
+ vertices_size_type n, edges_size_type m,
+ std::size_t maxEdgeWeight, uint64_t seed,
+ int K4Alpha, double a, double b, double c, double d,
+ int subGraphEdgeLength, bool show_degree_dist,
+ bool emit_dot_file, bool full_bc, bool verify)
+{
+#ifdef CSR
+ typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge, no_property,
+ distributedS<ProcessGroup> > Graph;
+#else
+ typedef adjacency_list<vecS,
+ distributedS<ProcessGroup, vecS>,
+ directedS,
+ // Vertex properties
+ property<vertex_distance_t, int,
+ property<vertex_color_t, default_color_type> >,
+ // Edge properties
+ property<edge_weight_t, int> > Graph;
+#endif
+
+ gen.seed(seed);
+
+ parallel::variant_distribution<ProcessGroup> distrib
+ = parallel::block(pg, n);
+
+ typedef typename ProcessGroup::process_id_type process_id_type;
+ process_id_type id = process_id(pg);
+
+ typedef typename property_map<Graph, vertex_owner_t>::const_type OwnerMap;
+ typedef typename property_map<Graph, vertex_local_t>::const_type LocalMap;
+
+ typedef keep_local_edges<parallel::variant_distribution<ProcessGroup>,
+ process_id_type>
+ EdgeFilter;
+
+ //
+ // Kernel 1 - Graph construction
+ // Nick: The benchmark specifies that we only have to time graph generation from
+ // edge tuples, the generator generates the edge tuples at graph construction
+ // time so we're timing some overhead in the random number generator, etc.
+ synchronize(pg);
+
+ time_type start = get_time();
+
+#ifdef CSR
+// typedef sorted_unique_rmat_iterator<RandomGenerator, Graph, EdgeFilter> RMATIter;
+ typedef sorted_rmat_iterator<RandomGenerator, Graph, keep_all_edges> RMATIter;
+
+ Graph g(//RMATIter(gen, n, m, a, b, c, d, false, true, EdgeFilter(distrib, id)),
+ RMATIter(gen, n, m, a, b, c, d, true, keep_all_edges()),
+ RMATIter(),
+ make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
+ n, pg, distrib);
+#else
+ typedef unique_rmat_iterator<RandomGenerator, Graph, EdgeFilter> RMATIter;
+ Graph g(RMATIter(gen, n, m, a, b, c, d, true EdgeFilter(distrib, id)),
+ RMATIter(),
+ make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
+ n, pg, distrib);
+#endif
+
+ synchronize(pg);
+
+ time_type end = get_time();
+
+ if (id == 0)
+ std::cerr<< "Kernel 1:\n"
+ << " Distributed Graph: " << print_time(end - start) << std::endl;
+
+ if ( emit_dot_file )
+ write_graphviz("ssca.dot", g);
+
+ //
+ // Kernel 2 - Classify large sets
+ //
+ typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
+ std::vector<std::pair<vertex_descriptor, vertex_descriptor> > S;
+
+ if (id == 0)
+ std::cerr << "Kernel 2:\n";
+
+ classify_sets(g,
+#ifdef CSR
+ get(&WeightedEdge::weight, g),
+#else
+ get(edge_weight, g),
+#endif
+ S);
+
+ //
+ // Kernel 3 - Graph Extraction
+ //
+ OwnerMap owner = get(vertex_owner, g);
+ LocalMap local = get(vertex_local, g);
+
+ if (id == 0)
+ std::cerr << "Kernel 3:\n";
+
+#ifdef CSR
+ typedef weight_type weight_t;
+ weight_t unit_weight(1);
+#else
+ int unit_weight(1);;
+#endif
+
+ subgraph_extraction(g, owner, local,
+#ifdef CSR
+// get(&WeightedEdge::weight, g),
+ ref_property_map<typename graph_traits<Graph>::edge_descriptor, weight_t>(unit_weight),
+ get(&VertexProperties::distance, g),
+ get(&VertexProperties::color, g),
+#else
+// get(edge_weight, g),
+ ref_property_map<graph_traits<Graph>::edge_descriptor, int>(unit_weight),
+ get(vertex_distance, g),
+ get(vertex_color, g),
+#endif
+ S, subGraphEdgeLength);
+
+ //
+ // Kernel 4 - Betweenness Centrality
+ //
+
+ // Filter edges with weights divisible by 8
+#ifdef CSR
+ typedef typename property_map<Graph, weight_type WeightedEdge::*>::type EdgeWeightMap;
+ edge_weight_not_divisible_by_eight<EdgeWeightMap> filter(get(&WeightedEdge::weight, g));
+#else
+ typedef typename property_map<Graph, edge_weight_t>::type EdgeWeightMap;
+ edge_weight_not_divisible_by_eight<EdgeWeightMap> filter(get(edge_weight, g));
+#endif
+
+ typedef filtered_graph<const Graph, edge_weight_not_divisible_by_eight<EdgeWeightMap> >
+ filteredGraph;
+ filteredGraph fg(g, filter);
+
+ // Vectors of max BC scores for all tests
+ std::vector<typename graph_traits<Graph>::vertex_descriptor> max_bc_vec;
+
+ // Distributed Centrality Map
+ typedef typename property_map<Graph, vertex_index_t>::const_type IndexMap;
+ typedef iterator_property_map<std::vector<int>::iterator, IndexMap> CentralityMap;
+
+ std::vector<int> centralityS(num_vertices(g), 0);
+ CentralityMap centrality(centralityS.begin(), get(vertex_index, g));
+
+ // Calculate number of vertices of degree 0
+ vertices_size_type local_n0 = 0, n0;
+ BGL_FORALL_VERTICES_T(v, fg, filteredGraph) {
+ if (out_degree(v, g) == 0) local_n0++;
+ }
+ n0 = boost::parallel::all_reduce(pg, local_n0, std::plus<vertices_size_type>());
+
+ if (id == 0)
+ std::cerr << "Kernel 4:\n";
+
+ // Run Betweenness Centrality
+ if (full_bc) {
+
+ // Distributed Graph Full BC
+ start = get_time();
+ brandes_betweenness_centrality(fg, centrality);
+ extract_max_bc_vertices(pg, g, centrality, max_bc_vec);
+ end = get_time();
+
+ edges_size_type exactTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
+
+ if (id == 0)
+ std::cerr << " Exact = " << print_time(end - start) << " ("
+ << exactTEPs << " TEPs)\n";
+ }
+
+ // Distributed Graph Approximate BC
+ std::vector<int> approxCentralityS(num_vertices(g), 0);
+ CentralityMap approxCentrality(approxCentralityS.begin(), get(vertex_index, g));
+
+ queue<vertex_descriptor> sources;
+ generate_sources(g, sources, vertices_size_type(floor(pow(2, K4Alpha))));
+
+ start = get_time();
+ brandes_betweenness_centrality(fg, buffer(sources).centrality_map(approxCentrality));
+ extract_max_bc_vertices(pg, fg, approxCentrality, max_bc_vec);
+ end = get_time();
+
+ edges_size_type approxTEPs = edges_size_type(floor(7 * n * pow(2, K4Alpha) / (end - start)));
+
+ if (id == 0)
+ std::cerr << " Approximate (" << floor(pow(2, K4Alpha)) << " sources) = "
+ << print_time(end - start) << " (" << approxTEPs << " TEPs)\n";
+
+
+ // Verify Correctness of Kernel 4
+ if (full_bc && verify && id == 0) {
+
+ // Build non-distributed graph to verify against
+ typedef adjacency_list<vecS, vecS, directedS,
+ // Vertex properties
+ property<vertex_distance_t, int,
+ property<vertex_color_t, default_color_type> >,
+ // Edge properties
+ property<edge_weight_t, int> > seqGraph;
+
+ gen.seed(seed);
+
+#ifdef CSR
+ seqGraph sg(sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
+ sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(),
+ make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
+ n);
+#else
+ seqGraph sg(unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
+ unique_rmat_iterator<RandomGenerator, seqGraph>(),
+ make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
+ n);
+#endif
+
+ typedef property_map<seqGraph, edge_weight_t>::type seqEdgeWeightMap;
+ edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(edge_weight, sg));
+
+ filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
+ fsg(sg, sg_filter);
+
+ // Build sequential centrality map
+ typedef property_map<seqGraph, vertex_index_t>::const_type seqIndexMap;
+ typedef iterator_property_map<std::vector<int>::iterator, seqIndexMap> seqCentralityMap;
+
+ std::vector<int> seq_centralityS(num_vertices(sg), 0);
+ seqCentralityMap seq_centrality(seq_centralityS.begin(), get(vertex_index, sg));
+
+ std::vector<graph_traits<seqGraph>::vertex_descriptor> max_seq_bc_vec;
+
+ max_seq_bc_vec.clear();
+ property_traits<seqCentralityMap>::value_type max_ = 0;
+
+ start = get_time();
+ brandes_betweenness_centrality(fsg, seq_centrality);
+
+ typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
+ filteredSeqGraph;
+
+ BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph ) {
+ if (get(seq_centrality, v) == max_)
+ max_seq_bc_vec.push_back(v);
+ else if (get(seq_centrality, v) > max_) {
+ max_ = get(seq_centrality, v);
+ max_seq_bc_vec.clear();
+ max_seq_bc_vec.push_back(v);
+ }
+ }
+
+ end = get_time();
+
+ edges_size_type sequentialTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
+
+ std::cerr << " Sequential = " << print_time(end - start) << " (" << sequentialTEPs << " TEPs)\n";
+
+ typename ProcessGroup::process_size_type p = num_processes(pg);
+
+ assert((double)n/p == floor((double)n/p));
+
+ std::cerr << "\nVerifying betweenness centrality...\n";
+
+ {
+ bool passed = true;
+
+ // Verify exact betweenness centrality
+ BGL_FORALL_VERTICES_T(v, g, Graph) {
+ if (get(centrality, v) != seq_centralityS[(n/p) * get(owner, v) + get(local, v)]) {
+ std::cerr << " " << id << ": Error - centrality of " << get(local, v) << "@" << get(owner, v)
+ << " does not match the sequential result (" << get(centrality, v) << " vs. "
+ << seq_centralityS[(n/p) * get(owner, v) + get(local, v)] << ")\n";
+ passed = false;
+ }
+ }
+
+ if (passed)
+ std::cerr << " PASSED\n";
+ }
+ }
+}
+
+void usage()
+{
+ std::cerr << "SSCA benchmark.\n\n"
+ << "Usage : ssca [options]\n\n"
+ << "Options are:\n"
+ << "\t--vertices v\t\t\tNumber of vertices in the graph\n"
+ << "\t--edges v\t\t\tNumber of edges in the graph\n"
+ << "\t--seed s\t\t\tSeed for synchronized random number generator\n"
+ << "\t--full-bc\t\t\tRun full (exact) Betweenness Centrality\n"
+ << "\t--max-weight miw\t\tMaximum integer edge weight\n"
+ << "\t--subgraph-edge-length sel\tEdge length of subgraphs to extract in Kernel 3\n"
+ << "\t--k4alpha k\t\t\tValue of K4Alpha in Kernel 4\n"
+ << "\t--scale s\t\t\tSCALE parameter for the SSCA benchmark (sets n, m, and C)\n"
+ << "\t--dot\t\t\t\tEmit a dot file containing the graph\n"
+ << "\t--verify\t\t\tVerify result\n"
+ << "\t--degree-dist\t\t\t Output degree distribution of graph\n"
+ << "\t--no-distributed-graph\t\tOmit distributed graph tests\n";
+}
+
+int test_main(int argc, char* argv[])
+{
+ mpi::environment env(argc, argv);
+
+ using boost::graph::distributed::mpi_process_group;
+
+#ifdef CSR
+ typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge, no_property,
+ distributedS<mpi_process_group> > Graph;
+#else
+ typedef adjacency_list<vecS,
+ distributedS<mpi_process_group, vecS>,
+ directedS,
+ // Vertex properties
+ property<vertex_distance_t, int,
+ property<vertex_color_t, default_color_type> >,
+ // Edge properties
+ property<edge_weight_t, int> > Graph;
+#endif
+
+ typedef graph_traits<Graph>::vertices_size_type vertices_size_type;
+ typedef graph_traits<Graph>::edges_size_type edges_size_type;
+
+ RandomGenerator gen;
+
+ // Default args
+ vertices_size_type n = 100;
+ edges_size_type m = 8*n;
+ uint64_t seed = 1;
+ int maxEdgeWeight = 100,
+ subGraphEdgeLength = 8,
+ K4Alpha = 0.5;
+ double a = 0.57, b = 0.19, c = 0.19, d = 0.05;
+ bool emit_dot_file = false, verify = false, full_bc = true,
+ distributed_graph = true, show_degree_dist = false,
+ non_distributed_graph = true;
+
+ mpi_process_group pg;
+
+ if (argc == 1) {
+ if (process_id(pg) == 0)
+ usage();
+ exit(-1);
+ }
+
+ // Parse args
+ for (int i = 1; i < argc; ++i) {
+ std::string arg = argv[i];
+
+ if (arg == "--vertices")
+ n = boost::lexical_cast<vertices_size_type>( argv[i+1] );
+
+ if (arg == "--seed")
+ seed = boost::lexical_cast<uint64_t>( argv[i+1] );
+
+ if (arg == "--full-bc")
+ full_bc = (argv[i+1]== "true");
+
+ if (arg == "--max-weight")
+ maxEdgeWeight = boost::lexical_cast<int>( argv[i+1] );
+
+ if (arg == "--subgraph-edge-length")
+ subGraphEdgeLength = boost::lexical_cast<int>( argv[i+1] );
+
+ if (arg == "--edges")
+ m = boost::lexical_cast<edges_size_type>( argv[i+1] );
+
+ if (arg == "--k4alpha")
+ K4Alpha = boost::lexical_cast<int>( argv[i+1] );
+
+ if (arg == "--dot")
+ emit_dot_file = true;
+
+ if (arg == "--verify")
+ verify = true;
+
+ if (arg == "--degree-dist")
+ show_degree_dist = true;
+
+ if (arg == "--no-distributed-graph")
+ distributed_graph = false;
+
+ if (arg == "--no-non-distributed-graph")
+ non_distributed_graph = false;
+
+ if (arg == "--scale") {
+ vertices_size_type scale = boost::lexical_cast<vertices_size_type>( argv[i+1] );
+ maxEdgeWeight = n = vertices_size_type(floor(pow(2, scale)));
+ m = 8 * n;
+ }
+
+ if (arg == "--help") {
+ if (process_id(pg) == 0)
+ usage();
+ exit(-1);
+ }
+ }
+
+ if (non_distributed_graph) {
+ if (process_id(pg) == 0)
+ std::cerr << "Non-Distributed Graph Tests\n";
+
+ run_non_distributed_graph_tests(gen, pg, n, m, maxEdgeWeight, seed, K4Alpha, a, b, c, d,
+ subGraphEdgeLength, show_degree_dist, full_bc, verify);
+ }
+
+ if (distributed_graph) {
+ if (process_id(pg) == 0)
+ std::cerr << "Distributed Graph Tests\n";
+
+ run_distributed_graph_tests(gen, pg, n, m, maxEdgeWeight, seed, K4Alpha, a, b, c, d,
+ subGraphEdgeLength, show_degree_dist, emit_dot_file,
+ full_bc, verify);
+ }
+
+ return 0;
+}