summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/example/autodiff_black_scholes.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/math/example/autodiff_black_scholes.cpp')
-rw-r--r--src/boost/libs/math/example/autodiff_black_scholes.cpp195
1 files changed, 195 insertions, 0 deletions
diff --git a/src/boost/libs/math/example/autodiff_black_scholes.cpp b/src/boost/libs/math/example/autodiff_black_scholes.cpp
new file mode 100644
index 00000000..b7fcd9c0
--- /dev/null
+++ b/src/boost/libs/math/example/autodiff_black_scholes.cpp
@@ -0,0 +1,195 @@
+// Copyright Matthew Pulver 2018 - 2019.
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt or copy at
+// https://www.boost.org/LICENSE_1_0.txt)
+
+#include <boost/math/differentiation/autodiff.hpp>
+#include <iostream>
+#include <stdexcept>
+
+using namespace boost::math::constants;
+using namespace boost::math::differentiation;
+
+// Equations and function/variable names are from
+// https://en.wikipedia.org/wiki/Greeks_(finance)#Formulas_for_European_option_Greeks
+
+// Standard normal probability density function
+template <typename X>
+X phi(X const& x) {
+ return one_div_root_two_pi<X>() * exp(-0.5 * x * x);
+}
+
+// Standard normal cumulative distribution function
+template <typename X>
+X Phi(X const& x) {
+ return 0.5 * erfc(-one_div_root_two<X>() * x);
+}
+
+enum class CP { call, put };
+
+// Assume zero annual dividend yield (q=0).
+template <typename Price, typename Sigma, typename Tau, typename Rate>
+promote<Price, Sigma, Tau, Rate> black_scholes_option_price(CP cp,
+ double K,
+ Price const& S,
+ Sigma const& sigma,
+ Tau const& tau,
+ Rate const& r) {
+ using namespace std;
+ auto const d1 = (log(S / K) + (r + sigma * sigma / 2) * tau) / (sigma * sqrt(tau));
+ auto const d2 = (log(S / K) + (r - sigma * sigma / 2) * tau) / (sigma * sqrt(tau));
+ switch (cp) {
+ case CP::call:
+ return S * Phi(d1) - exp(-r * tau) * K * Phi(d2);
+ case CP::put:
+ return exp(-r * tau) * K * Phi(-d2) - S * Phi(-d1);
+ default:
+ throw std::runtime_error("Invalid CP value.");
+ }
+}
+
+int main() {
+ double const K = 100.0; // Strike price.
+ auto const variables = make_ftuple<double, 3, 3, 1, 1>(105, 5, 30.0 / 365, 1.25 / 100);
+ auto const& S = std::get<0>(variables); // Stock price.
+ auto const& sigma = std::get<1>(variables); // Volatility.
+ auto const& tau = std::get<2>(variables); // Time to expiration in years. (30 days).
+ auto const& r = std::get<3>(variables); // Interest rate.
+ auto const call_price = black_scholes_option_price(CP::call, K, S, sigma, tau, r);
+ auto const put_price = black_scholes_option_price(CP::put, K, S, sigma, tau, r);
+
+ double const d1 = static_cast<double>((log(S / K) + (r + sigma * sigma / 2) * tau) / (sigma * sqrt(tau)));
+ double const d2 = static_cast<double>((log(S / K) + (r - sigma * sigma / 2) * tau) / (sigma * sqrt(tau)));
+ double const formula_call_delta = +Phi(+d1);
+ double const formula_put_delta = -Phi(-d1);
+ double const formula_vega = static_cast<double>(S * phi(d1) * sqrt(tau));
+ double const formula_call_theta =
+ static_cast<double>(-S * phi(d1) * sigma / (2 * sqrt(tau)) - r * K * exp(-r * tau) * Phi(+d2));
+ double const formula_put_theta =
+ static_cast<double>(-S * phi(d1) * sigma / (2 * sqrt(tau)) + r * K * exp(-r * tau) * Phi(-d2));
+ double const formula_call_rho = static_cast<double>(+K * tau * exp(-r * tau) * Phi(+d2));
+ double const formula_put_rho = static_cast<double>(-K * tau * exp(-r * tau) * Phi(-d2));
+ double const formula_gamma = static_cast<double>(phi(d1) / (S * sigma * sqrt(tau)));
+ double const formula_vanna = static_cast<double>(-phi(d1) * d2 / sigma);
+ double const formula_charm =
+ static_cast<double>(phi(d1) * (d2 * sigma * sqrt(tau) - 2 * r * tau) / (2 * tau * sigma * sqrt(tau)));
+ double const formula_vomma = static_cast<double>(S * phi(d1) * sqrt(tau) * d1 * d2 / sigma);
+ double const formula_veta = static_cast<double>(-S * phi(d1) * sqrt(tau) *
+ (r * d1 / (sigma * sqrt(tau)) - (1 + d1 * d2) / (2 * tau)));
+ double const formula_speed =
+ static_cast<double>(-phi(d1) * (d1 / (sigma * sqrt(tau)) + 1) / (S * S * sigma * sqrt(tau)));
+ double const formula_zomma = static_cast<double>(phi(d1) * (d1 * d2 - 1) / (S * sigma * sigma * sqrt(tau)));
+ double const formula_color =
+ static_cast<double>(-phi(d1) / (2 * S * tau * sigma * sqrt(tau)) *
+ (1 + (2 * r * tau - d2 * sigma * sqrt(tau)) * d1 / (sigma * sqrt(tau))));
+ double const formula_ultima =
+ -formula_vega * static_cast<double>((d1 * d2 * (1 - d1 * d2) + d1 * d1 + d2 * d2) / (sigma * sigma));
+
+ std::cout << std::setprecision(std::numeric_limits<double>::digits10)
+ << "autodiff black-scholes call price = " << call_price.derivative(0, 0, 0, 0) << '\n'
+ << "autodiff black-scholes put price = " << put_price.derivative(0, 0, 0, 0) << '\n'
+ << "\n## First-order Greeks\n"
+ << "autodiff call delta = " << call_price.derivative(1, 0, 0, 0) << '\n'
+ << " formula call delta = " << formula_call_delta << '\n'
+ << "autodiff call vega = " << call_price.derivative(0, 1, 0, 0) << '\n'
+ << " formula call vega = " << formula_vega << '\n'
+ << "autodiff call theta = " << -call_price.derivative(0, 0, 1, 0)
+ << '\n' // minus sign due to tau = T-time
+ << " formula call theta = " << formula_call_theta << '\n'
+ << "autodiff call rho = " << call_price.derivative(0, 0, 0, 1) << '\n'
+ << " formula call rho = " << formula_call_rho << '\n'
+ << '\n'
+ << "autodiff put delta = " << put_price.derivative(1, 0, 0, 0) << '\n'
+ << " formula put delta = " << formula_put_delta << '\n'
+ << "autodiff put vega = " << put_price.derivative(0, 1, 0, 0) << '\n'
+ << " formula put vega = " << formula_vega << '\n'
+ << "autodiff put theta = " << -put_price.derivative(0, 0, 1, 0) << '\n'
+ << " formula put theta = " << formula_put_theta << '\n'
+ << "autodiff put rho = " << put_price.derivative(0, 0, 0, 1) << '\n'
+ << " formula put rho = " << formula_put_rho << '\n'
+ << "\n## Second-order Greeks\n"
+ << "autodiff call gamma = " << call_price.derivative(2, 0, 0, 0) << '\n'
+ << "autodiff put gamma = " << put_price.derivative(2, 0, 0, 0) << '\n'
+ << " formula gamma = " << formula_gamma << '\n'
+ << "autodiff call vanna = " << call_price.derivative(1, 1, 0, 0) << '\n'
+ << "autodiff put vanna = " << put_price.derivative(1, 1, 0, 0) << '\n'
+ << " formula vanna = " << formula_vanna << '\n'
+ << "autodiff call charm = " << -call_price.derivative(1, 0, 1, 0) << '\n'
+ << "autodiff put charm = " << -put_price.derivative(1, 0, 1, 0) << '\n'
+ << " formula charm = " << formula_charm << '\n'
+ << "autodiff call vomma = " << call_price.derivative(0, 2, 0, 0) << '\n'
+ << "autodiff put vomma = " << put_price.derivative(0, 2, 0, 0) << '\n'
+ << " formula vomma = " << formula_vomma << '\n'
+ << "autodiff call veta = " << call_price.derivative(0, 1, 1, 0) << '\n'
+ << "autodiff put veta = " << put_price.derivative(0, 1, 1, 0) << '\n'
+ << " formula veta = " << formula_veta << '\n'
+ << "\n## Third-order Greeks\n"
+ << "autodiff call speed = " << call_price.derivative(3, 0, 0, 0) << '\n'
+ << "autodiff put speed = " << put_price.derivative(3, 0, 0, 0) << '\n'
+ << " formula speed = " << formula_speed << '\n'
+ << "autodiff call zomma = " << call_price.derivative(2, 1, 0, 0) << '\n'
+ << "autodiff put zomma = " << put_price.derivative(2, 1, 0, 0) << '\n'
+ << " formula zomma = " << formula_zomma << '\n'
+ << "autodiff call color = " << call_price.derivative(2, 0, 1, 0) << '\n'
+ << "autodiff put color = " << put_price.derivative(2, 0, 1, 0) << '\n'
+ << " formula color = " << formula_color << '\n'
+ << "autodiff call ultima = " << call_price.derivative(0, 3, 0, 0) << '\n'
+ << "autodiff put ultima = " << put_price.derivative(0, 3, 0, 0) << '\n'
+ << " formula ultima = " << formula_ultima << '\n';
+ return 0;
+}
+/*
+Output:
+autodiff black-scholes call price = 56.5136030677739
+autodiff black-scholes put price = 51.4109161009333
+
+## First-order Greeks
+autodiff call delta = 0.773818444921273
+ formula call delta = 0.773818444921274
+autodiff call vega = 9.05493427705736
+ formula call vega = 9.05493427705736
+autodiff call theta = -275.73013426444
+ formula call theta = -275.73013426444
+autodiff call rho = 2.03320550539396
+ formula call rho = 2.03320550539396
+
+autodiff put delta = -0.226181555078726
+ formula put delta = -0.226181555078726
+autodiff put vega = 9.05493427705736
+ formula put vega = 9.05493427705736
+autodiff put theta = -274.481417851526
+ formula put theta = -274.481417851526
+autodiff put rho = -6.17753255212599
+ formula put rho = -6.17753255212599
+
+## Second-order Greeks
+autodiff call gamma = 0.00199851912993254
+autodiff put gamma = 0.00199851912993254
+ formula gamma = 0.00199851912993254
+autodiff call vanna = 0.0410279463126531
+autodiff put vanna = 0.0410279463126531
+ formula vanna = 0.0410279463126531
+autodiff call charm = -1.2505564233679
+autodiff put charm = -1.2505564233679
+ formula charm = -1.2505564233679
+autodiff call vomma = -0.928114149313108
+autodiff put vomma = -0.928114149313108
+ formula vomma = -0.928114149313107
+autodiff call veta = 26.7947073115641
+autodiff put veta = 26.7947073115641
+ formula veta = 26.7947073115641
+
+## Third-order Greeks
+autodiff call speed = -2.90117322380992e-05
+autodiff put speed = -2.90117322380992e-05
+ formula speed = -2.90117322380992e-05
+autodiff call zomma = -0.000604548369901419
+autodiff put zomma = -0.000604548369901419
+ formula zomma = -0.000604548369901419
+autodiff call color = -0.0184014426606065
+autodiff put color = -0.0184014426606065
+ formula color = -0.0184014426606065
+autodiff call ultima = -0.0922426864775683
+autodiff put ultima = -0.0922426864775683
+ formula ultima = -0.0922426864775685
+**/