summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/signal_statistics_test.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/math/test/signal_statistics_test.cpp')
-rw-r--r--src/boost/libs/math/test/signal_statistics_test.cpp331
1 files changed, 331 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/signal_statistics_test.cpp b/src/boost/libs/math/test/signal_statistics_test.cpp
new file mode 100644
index 00000000..79f7b1a1
--- /dev/null
+++ b/src/boost/libs/math/test/signal_statistics_test.cpp
@@ -0,0 +1,331 @@
+/*
+ * (C) Copyright Nick Thompson 2018.
+ * Use, modification and distribution are subject to the
+ * Boost Software License, Version 1.0. (See accompanying file
+ * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+ */
+
+#include <vector>
+#include <array>
+#include <forward_list>
+#include <algorithm>
+#include <random>
+#include <boost/core/lightweight_test.hpp>
+#include <boost/numeric/ublas/vector.hpp>
+#include <boost/math/constants/constants.hpp>
+#include <boost/math/statistics/univariate_statistics.hpp>
+#include <boost/math/statistics/signal_statistics.hpp>
+#include <boost/multiprecision/cpp_bin_float.hpp>
+#include <boost/multiprecision/cpp_complex.hpp>
+
+using std::abs;
+using boost::multiprecision::cpp_bin_float_50;
+using boost::multiprecision::cpp_complex_50;
+using boost::math::constants::two_pi;
+
+/*
+ * Test checklist:
+ * 1) Does it work with multiprecision?
+ * 2) Does it work with .cbegin()/.cend() if the data is not altered?
+ * 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.)
+ * 4) Does it work with std::forward_list if a forward iterator is all that is required?
+ * 5) Does it work with complex data if complex data is sensible?
+ * 6) Does it work with integer data if sensible?
+ */
+
+template<class Real>
+void test_hoyer_sparsity()
+{
+ using std::sqrt;
+ Real tol = 5*std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v{1,0,0};
+ Real hs = boost::math::statistics::hoyer_sparsity(v.begin(), v.end());
+ BOOST_TEST(abs(hs - 1) < tol);
+
+ hs = boost::math::statistics::hoyer_sparsity(v);
+ BOOST_TEST(abs(hs - 1) < tol);
+
+ // Does it work with constant iterators?
+ hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
+ BOOST_TEST(abs(hs - 1) < tol);
+
+ v[0] = 1;
+ v[1] = 1;
+ v[2] = 1;
+ hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
+ BOOST_TEST(abs(hs) < tol);
+
+ std::array<Real, 3> w{1,1,1};
+ hs = boost::math::statistics::hoyer_sparsity(w);
+ BOOST_TEST(abs(hs) < tol);
+
+ // Now some statistics:
+ // If x_i ~ Unif(0,1), E[x_i] = 1/2, E[x_i^2] = 1/3.
+ // Therefore, E[||x||_1] = N/2, E[||x||_2] = sqrt(N/3),
+ // and hoyer_sparsity(x) is close to (1-sqrt(3)/2)/(1-1/sqrt(N))
+ std::mt19937 gen(82);
+ std::uniform_real_distribution<long double> dis(0, 1);
+ v.resize(5000);
+ for (size_t i = 0; i < v.size(); ++i) {
+ v[i] = dis(gen);
+ }
+ hs = boost::math::statistics::hoyer_sparsity(v);
+ Real expected = (1.0 - boost::math::constants::root_three<Real>()/2)/(1.0 - 1.0/sqrt(v.size()));
+ BOOST_TEST(abs(expected - hs) < 0.01);
+
+ // Does it work with a forward list?
+ std::forward_list<Real> u1{1, 1, 1};
+ hs = boost::math::statistics::hoyer_sparsity(u1);
+ BOOST_TEST(abs(hs) < tol);
+
+ // Does it work with a boost ublas vector?
+ boost::numeric::ublas::vector<Real> u2(3);
+ u2[0] = 1;
+ u2[1] = 1;
+ u2[2] = 1;
+ hs = boost::math::statistics::hoyer_sparsity(u2);
+ BOOST_TEST(abs(hs) < tol);
+
+}
+
+template<class Z>
+void test_integer_hoyer_sparsity()
+{
+ using std::sqrt;
+ double tol = 5*std::numeric_limits<double>::epsilon();
+ std::vector<Z> v{1,0,0};
+ double hs = boost::math::statistics::hoyer_sparsity(v);
+ BOOST_TEST(abs(hs - 1) < tol);
+
+ v[0] = 1;
+ v[1] = 1;
+ v[2] = 1;
+ hs = boost::math::statistics::hoyer_sparsity(v);
+ BOOST_TEST(abs(hs) < tol);
+}
+
+
+template<class Complex>
+void test_complex_hoyer_sparsity()
+{
+ typedef typename Complex::value_type Real;
+ using std::sqrt;
+ Real tol = 5*std::numeric_limits<Real>::epsilon();
+ std::vector<Complex> v{{0,1}, {0, 0}, {0,0}};
+ Real hs = boost::math::statistics::hoyer_sparsity(v.begin(), v.end());
+ BOOST_TEST(abs(hs - 1) < tol);
+
+ hs = boost::math::statistics::hoyer_sparsity(v);
+ BOOST_TEST(abs(hs - 1) < tol);
+
+ // Does it work with constant iterators?
+ hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
+ BOOST_TEST(abs(hs - 1) < tol);
+
+ // All are the same magnitude:
+ v[0] = {0, 1};
+ v[1] = {1, 0};
+ v[2] = {0,-1};
+ hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
+ BOOST_TEST(abs(hs) < tol);
+}
+
+
+template<class Real>
+void test_absolute_gini_coefficient()
+{
+ using boost::math::statistics::absolute_gini_coefficient;
+ using boost::math::statistics::sample_absolute_gini_coefficient;
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> v{-1,0,0};
+ Real gini = sample_absolute_gini_coefficient(v.begin(), v.end());
+ BOOST_TEST(abs(gini - 1) < tol);
+
+ gini = absolute_gini_coefficient(v);
+ BOOST_TEST(abs(gini - Real(2)/Real(3)) < tol);
+
+ v[0] = 1;
+ v[1] = -1;
+ v[2] = 1;
+ gini = absolute_gini_coefficient(v.begin(), v.end());
+ BOOST_TEST(abs(gini) < tol);
+ gini = sample_absolute_gini_coefficient(v.begin(), v.end());
+ BOOST_TEST(abs(gini) < tol);
+
+ std::vector<std::complex<Real>> w(128);
+ std::complex<Real> i{0,1};
+ for(size_t k = 0; k < w.size(); ++k)
+ {
+ w[k] = exp(i*static_cast<Real>(k)/static_cast<Real>(w.size()));
+ }
+ gini = absolute_gini_coefficient(w.begin(), w.end());
+ BOOST_TEST(abs(gini) < tol);
+ gini = sample_absolute_gini_coefficient(w.begin(), w.end());
+ BOOST_TEST(abs(gini) < tol);
+
+ // The population Gini index is invariant under "cloning": If w = v \oplus v, then G(w) = G(v).
+ // We use the sample Gini index, so we need to rescale
+ std::vector<Real> u(1000);
+ std::mt19937 gen(35);
+ std::uniform_real_distribution<long double> dis(0, 50);
+ for (size_t i = 0; i < u.size()/2; ++i)
+ {
+ u[i] = dis(gen);
+ }
+ for (size_t i = 0; i < u.size()/2; ++i)
+ {
+ u[i + u.size()/2] = u[i];
+ }
+ Real population_gini1 = absolute_gini_coefficient(u.begin(), u.begin() + u.size()/2);
+ Real population_gini2 = absolute_gini_coefficient(u.begin(), u.end());
+
+ BOOST_TEST(abs(population_gini1 - population_gini2) < 10*tol);
+
+ // The Gini coefficient of a uniform distribution is (b-a)/(3*(b+a)), see https://en.wikipedia.org/wiki/Gini_coefficient
+ Real expected = (dis.b() - dis.a() )/(3*(dis.a() + dis.b()));
+
+ BOOST_TEST(abs(expected - population_gini1) < 0.01);
+
+ std::exponential_distribution<long double> exp_dis(1);
+ for (size_t i = 0; i < u.size(); ++i)
+ {
+ u[i] = exp_dis(gen);
+ }
+ population_gini2 = absolute_gini_coefficient(u);
+
+ BOOST_TEST(abs(population_gini2 - 0.5) < 0.01);
+}
+
+
+template<class Real>
+void test_oracle_snr()
+{
+ using std::abs;
+ Real tol = 100*std::numeric_limits<Real>::epsilon();
+ size_t length = 100;
+ std::vector<Real> signal(length, 1);
+ std::vector<Real> noisy_signal = signal;
+
+ noisy_signal[0] += 1;
+ Real snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
+ Real snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
+ BOOST_TEST(abs(snr - length) < tol);
+ BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
+}
+
+template<class Z>
+void test_integer_oracle_snr()
+{
+ double tol = std::numeric_limits<double>::epsilon();
+ size_t length = 100;
+ std::vector<Z> signal(length, 1);
+ std::vector<Z> noisy_signal = signal;
+
+ noisy_signal[0] += 1;
+ double snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
+ double snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
+ BOOST_TEST(abs(snr - length) < tol);
+ BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
+}
+
+template<class Complex>
+void test_complex_oracle_snr()
+{
+ using Real = typename Complex::value_type;
+ using std::abs;
+ using std::log10;
+ Real tol = 100*std::numeric_limits<Real>::epsilon();
+ size_t length = 100;
+ std::vector<Complex> signal(length, {1,0});
+ std::vector<Complex> noisy_signal = signal;
+
+ noisy_signal[0] += Complex(1,0);
+ Real snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
+ Real snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
+ BOOST_TEST(abs(snr - length) < tol);
+ BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
+}
+
+template<class Real>
+void test_m2m4_snr_estimator()
+{
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> signal(5000, 1);
+ std::vector<Real> x(signal.size());
+ std::mt19937 gen(18);
+ std::normal_distribution<Real> dis{0, 1.0};
+
+ for (size_t i = 0; i < x.size(); ++i)
+ {
+ signal[i] = 5*sin(100*6.28*i/x.size());
+ x[i] = signal[i] + dis(gen);
+ }
+
+ // Kurtosis of a sine wave is 1.5:
+ auto m2m4_db = boost::math::statistics::m2m4_snr_estimator_db(x, 1.5);
+ auto oracle_snr_db = boost::math::statistics::mean_invariant_oracle_snr_db(signal, x);
+ BOOST_TEST(abs(m2m4_db - oracle_snr_db) < 0.2);
+
+ std::uniform_real_distribution<Real> uni_dis{-1,1};
+ for (size_t i = 0; i < x.size(); ++i)
+ {
+ x[i] = signal[i] + uni_dis(gen);
+ }
+
+ // Kurtosis of continuous uniform distribution over [-1,1] is 1.8:
+ m2m4_db = boost::math::statistics::m2m4_snr_estimator_db(x, 1.5, 1.8);
+ oracle_snr_db = boost::math::statistics::mean_invariant_oracle_snr_db(signal, x);
+ // The performance depends on the exact numbers generated by the distribution, but this isn't bad:
+ BOOST_TEST(abs(m2m4_db - oracle_snr_db) < 0.2);
+
+ // The SNR estimator should be scale invariant.
+ // If x has snr y, then kx should have snr y.
+ Real ka = 1.5;
+ Real kw = 1.8;
+ auto m2m4 = boost::math::statistics::m2m4_snr_estimator(x.begin(), x.end(), ka, kw);
+ for(size_t i = 0; i < x.size(); ++i)
+ {
+ x[i] *= 4096;
+ }
+ auto m2m4_2 = boost::math::statistics::m2m4_snr_estimator(x.begin(), x.end(), ka, kw);
+ BOOST_TEST(abs(m2m4 - m2m4_2) < tol);
+}
+
+int main()
+{
+ test_absolute_gini_coefficient<float>();
+ test_absolute_gini_coefficient<double>();
+ test_absolute_gini_coefficient<long double>();
+
+ test_hoyer_sparsity<float>();
+ test_hoyer_sparsity<double>();
+ test_hoyer_sparsity<long double>();
+ test_hoyer_sparsity<cpp_bin_float_50>();
+
+ test_integer_hoyer_sparsity<int>();
+ test_integer_hoyer_sparsity<unsigned>();
+
+ test_complex_hoyer_sparsity<std::complex<float>>();
+ test_complex_hoyer_sparsity<std::complex<double>>();
+ test_complex_hoyer_sparsity<std::complex<long double>>();
+ test_complex_hoyer_sparsity<cpp_complex_50>();
+
+ test_oracle_snr<float>();
+ test_oracle_snr<double>();
+ test_oracle_snr<long double>();
+ test_oracle_snr<cpp_bin_float_50>();
+
+ test_integer_oracle_snr<int>();
+ test_integer_oracle_snr<unsigned>();
+
+ test_complex_oracle_snr<std::complex<float>>();
+ test_complex_oracle_snr<std::complex<double>>();
+ test_complex_oracle_snr<std::complex<long double>>();
+ test_complex_oracle_snr<cpp_complex_50>();
+
+ test_m2m4_snr_estimator<float>();
+ test_m2m4_snr_estimator<double>();
+ test_m2m4_snr_estimator<long double>();
+
+ return boost::report_errors();
+}