diff options
Diffstat (limited to 'src/boost/libs/math/test/test_ellint_1.hpp')
-rw-r--r-- | src/boost/libs/math/test/test_ellint_1.hpp | 149 |
1 files changed, 149 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_ellint_1.hpp b/src/boost/libs/math/test/test_ellint_1.hpp new file mode 100644 index 00000000..459e7423 --- /dev/null +++ b/src/boost/libs/math/test/test_ellint_1.hpp @@ -0,0 +1,149 @@ +// Copyright John Maddock 2006. +// Copyright Paul A. Bristow 2007, 2009 +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + +#ifdef _MSC_VER +# pragma warning(disable : 4756) // overflow in constant arithmetic +// Constants are too big for float case, but this doesn't matter for test. +#endif + +#include <boost/math/concepts/real_concept.hpp> +#define BOOST_TEST_MAIN +#include <boost/test/unit_test.hpp> +#include <boost/test/tools/floating_point_comparison.hpp> +#include <boost/math/special_functions/math_fwd.hpp> +#include <boost/array.hpp> +#include "functor.hpp" + +#include "handle_test_result.hpp" +#include "table_type.hpp" + +#ifndef SC_ +#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L)) +#endif + +template <class Real, typename T> +void do_test_ellint_f(T& data, const char* type_name, const char* test) +{ +#if !(defined(ERROR_REPORTING_MODE) && !defined(ELLINT_1_FUNCTION_TO_TEST)) + typedef Real value_type; + + std::cout << "Testing: " << test << std::endl; + +#ifdef ELLINT_1_FUNCTION_TO_TEST + value_type(*fp2)(value_type, value_type) = ELLINT_1_FUNCTION_TO_TEST; +#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) + value_type (*fp2)(value_type, value_type) = boost::math::ellint_1<value_type, value_type>; +#else + value_type (*fp2)(value_type, value_type) = boost::math::ellint_1; +#endif + boost::math::tools::test_result<value_type> result; + + result = boost::math::tools::test_hetero<Real>( + data, + bind_func<Real>(fp2, 1, 0), + extract_result<Real>(2)); + handle_test_result(result, data[result.worst()], result.worst(), + type_name, "ellint_1", test); + + std::cout << std::endl; +#endif +} + +template <class Real, typename T> +void do_test_ellint_k(T& data, const char* type_name, const char* test) +{ +#if !(defined(ERROR_REPORTING_MODE) && !defined(ELLINT_1C_FUNCTION_TO_TEST)) + typedef Real value_type; + boost::math::tools::test_result<value_type> result; + + std::cout << "Testing: " << test << std::endl; + +#ifdef ELLINT_1C_FUNCTION_TO_TEST + value_type(*fp1)(value_type) = ELLINT_1C_FUNCTION_TO_TEST; +#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) + value_type (*fp1)(value_type) = boost::math::ellint_1<value_type>; +#else + value_type (*fp1)(value_type) = boost::math::ellint_1; +#endif + result = boost::math::tools::test_hetero<Real>( + data, + bind_func<Real>(fp1, 0), + extract_result<Real>(1)); + handle_test_result(result, data[result.worst()], result.worst(), + type_name, "ellint_1 (complete)", test); + + std::cout << std::endl; +#endif +} + +template <typename T> +void test_spots(T, const char* type_name) +{ + // Function values calculated on http://functions.wolfram.com/ + // Note that Mathematica's EllipticF accepts k^2 as the second parameter. + static const boost::array<boost::array<typename table_type<T>::type, 3>, 22> data1 = {{ + {{ SC_(0.0), SC_(0.0), SC_(0.0) }}, + {{ SC_(-10.0), SC_(0.0), SC_(-10.0) }}, + {{ SC_(-1.0), SC_(-1.0), SC_(-1.2261911708835170708130609674719067527242483502207) }}, + {{ SC_(-4.0), SC_(0.875), SC_(-5.3190556182262405182189463092940736859067548232647) }}, + {{ SC_(8.0), SC_(-0.625), SC_(9.0419973860310100524448893214394562615252527557062) }}, + {{ SC_(1e-05), SC_(0.875), SC_(0.000010000000000127604166668510945638036143355898993088) }}, + {{ SC_(1e+05), SC_(0.009765625) /*T(10)/1024*/, SC_(100002.38431454899771096037307519328741455615271038) }}, + {{ SC_(1e-20), SC_(1.0), SC_(1.0000000000000000000000000000000000000000166666667e-20) }}, + {{ SC_(1e-20), SC_(1e-20), SC_(1.000000000000000e-20) }}, + {{ SC_(1e+20), SC_(0.390625) /*T(400)/1024*/, SC_(1.0418143796499216839719289963154558027005142709763e20) }}, + {{ SC_(1e+50), SC_(0.875), SC_(1.3913251718238765549409892714295358043696028445944e50) }}, + {{ SC_(2.0), SC_(0.5), SC_(2.1765877052210673672479877957388515321497888026770) }}, + {{ SC_(4.0), SC_(0.5), SC_(4.2543274975235836861894752787874633017836785640477) }}, + {{ SC_(6.0), SC_(0.5), SC_(6.4588766202317746302999080620490579800463614807916) }}, + {{ SC_(10.0), SC_(0.5), SC_(10.697409951222544858346795279378531495869386960090) }}, + {{ SC_(-2.0), SC_(0.5), SC_(-2.1765877052210673672479877957388515321497888026770) }}, + {{ SC_(-4.0), SC_(0.5), SC_(-4.2543274975235836861894752787874633017836785640477) }}, + {{ SC_(-6.0), SC_(0.5), SC_(-6.4588766202317746302999080620490579800463614807916) }}, + {{ SC_(-10.0), SC_(0.5), SC_(-10.697409951222544858346795279378531495869386960090) }}, + // Some values where k is > 1: + {{ SC_(0.1538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538), SC_(1.1538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538), SC_(0.154661869446904722070471580919758948531148566762183486996920)}}, + {{ SC_(0.1538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538), SC_(1.461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461), SC_(0.155166467455029577314314021156113481657713115640002027219)}}, + {{ SC_(0.1538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538), SC_(2.461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461), SC_(0.15776272074094290829870142225970052217542486917945444918)}}, + }}; + + do_test_ellint_f<T>(data1, type_name, "Elliptic Integral F: Mathworld Data"); + +#include "ellint_f_data.ipp" + + do_test_ellint_f<T>(ellint_f_data, type_name, "Elliptic Integral F: Random Data"); + + // Function values calculated on http://functions.wolfram.com/ + // Note that Mathematica's EllipticK accepts k^2 as the second parameter. + static const boost::array<boost::array<typename table_type<T>::type, 2>, 9> data2 = {{ + {{ SC_(0.0), SC_(1.5707963267948966192313216916397514420985846996876) }}, + {{ SC_(0.125), SC_(1.5769867712158131421244030532288080803822271060839) }}, + {{ SC_(0.25), SC_(1.5962422221317835101489690714979498795055744578951) }}, + {{ SC_(0.29296875) /*T(300)/1024*/, SC_(1.6062331054696636704261124078746600894998873503208) }}, + {{ SC_(0.390625) /*T(400)/1024*/, SC_(1.6364782007562008756208066125715722889067992997614) }}, + {{ SC_(-0.5), SC_(1.6857503548125960428712036577990769895008008941411) }}, + {{ SC_(-0.75), SC_(1.9109897807518291965531482187613425592531451316788) }}, + {{ SC_(0.875) /*1-T(1)/8*/, SC_(2.185488469278223686913080323730158689730428415766) }}, + {{ SC_(0.9990234375) /*1-T(1)/1024*/, SC_(4.5074135978990422666372495313621124487894807327687) }}, + }}; + + do_test_ellint_k<T>(data2, type_name, "Elliptic Integral K: Mathworld Data"); + +#include "ellint_k_data.ipp" + + do_test_ellint_k<T>(ellint_k_data, type_name, "Elliptic Integral K: Random Data"); + + // + // Test error handling: + // + BOOST_CHECK_GE(boost::math::ellint_1(T(1)), boost::math::tools::max_value<T>()); + BOOST_CHECK_GE(boost::math::ellint_1(T(-1)), boost::math::tools::max_value<T>()); + BOOST_CHECK_THROW(boost::math::ellint_1(T(1.0001)), std::domain_error); + BOOST_CHECK_THROW(boost::math::ellint_1(T(-1.0001)), std::domain_error); + BOOST_CHECK_THROW(boost::math::ellint_1(T(2.2), T(0.5)), std::domain_error); + BOOST_CHECK_THROW(boost::math::ellint_1(T(-2.2), T(0.5)), std::domain_error); +} + |