summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/test_geometric.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/math/test/test_geometric.cpp')
-rw-r--r--src/boost/libs/math/test/test_geometric.cpp802
1 files changed, 802 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_geometric.cpp b/src/boost/libs/math/test/test_geometric.cpp
new file mode 100644
index 00000000..33fbb8d4
--- /dev/null
+++ b/src/boost/libs/math/test/test_geometric.cpp
@@ -0,0 +1,802 @@
+// test_geometric.cpp
+
+// Copyright Paul A. Bristow 2010.
+// Copyright John Maddock 2010.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// Tests for Geometric Distribution.
+
+// Note that these defines must be placed BEFORE #includes.
+#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
+// because several tests overflow & underflow by design.
+#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
+
+#ifdef _MSC_VER
+# pragma warning(disable: 4127) // conditional expression is constant.
+#endif
+
+#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
+# define TEST_FLOAT
+# define TEST_DOUBLE
+# define TEST_LDOUBLE
+# define TEST_REAL_CONCEPT
+#endif
+
+#include <boost/math/tools/test.hpp>
+#include <boost/math/concepts/real_concept.hpp> // for real_concept
+using ::boost::math::concepts::real_concept;
+
+#include <boost/math/distributions/geometric.hpp> // for geometric_distribution
+using boost::math::geometric_distribution;
+using boost::math::geometric; // using typedef for geometric_distribution<double>
+
+#include <boost/math/distributions/negative_binomial.hpp> // for some comparisons.
+
+#define BOOST_TEST_MAIN
+#include <boost/test/unit_test.hpp> // for test_main
+#include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE_FRACTION
+#include "test_out_of_range.hpp"
+
+#include <iostream>
+using std::cout;
+using std::endl;
+using std::setprecision;
+using std::showpoint;
+#include <limits>
+using std::numeric_limits;
+
+template <class RealType>
+void test_spot( // Test a single spot value against 'known good' values.
+ RealType k, // Number of failures.
+ RealType p, // Probability of success_fraction.
+ RealType P, // CDF probability.
+ RealType Q, // Complement of CDF.
+ RealType tol) // Test tolerance.
+{
+ boost::math::geometric_distribution<RealType> g(p);
+ BOOST_CHECK_EQUAL(p, g.success_fraction());
+ BOOST_CHECK_CLOSE_FRACTION(cdf(g, k), P, tol);
+
+ if((P < 0.99) && (Q < 0.99))
+ {
+ // We can only check this if P is not too close to 1,
+ // so that we can guarantee that Q is free of error:
+ //
+ BOOST_CHECK_CLOSE_FRACTION(
+ cdf(complement(g, k)), Q, tol);
+ if(k != 0)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(
+ quantile(g, P), k, tol);
+ }
+ else
+ {
+ // Just check quantile is very small:
+ if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
+ && (boost::is_floating_point<RealType>::value))
+ {
+ // Limit where this is checked: if exponent range is very large we may
+ // run out of iterations in our root finding algorithm.
+ BOOST_CHECK(quantile(g, P) < boost::math::tools::epsilon<RealType>() * 10);
+ }
+ }
+ if(k != 0)
+ {
+ BOOST_CHECK_CLOSE_FRACTION(
+ quantile(complement(g, Q)), k, tol);
+ }
+ else
+ {
+ // Just check quantile is very small:
+ if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
+ && (boost::is_floating_point<RealType>::value))
+ {
+ // Limit where this is checked: if exponent range is very large we may
+ // run out of iterations in our root finding algorithm.
+ BOOST_CHECK(quantile(complement(g, Q)) < boost::math::tools::epsilon<RealType>() * 10);
+ }
+ }
+ } // if((P < 0.99) && (Q < 0.99))
+
+ // Parameter estimation test: estimate success ratio:
+ BOOST_CHECK_CLOSE_FRACTION(
+ geometric_distribution<RealType>::find_lower_bound_on_p(
+ 1+k, P),
+ p, 0.02); // Wide tolerance needed for some tests.
+ // Note we bump up the sample size here, purely for the sake of the test,
+ // internally the function has to adjust the sample size so that we get
+ // the right upper bound, our test undoes this, so we can verify the result.
+ BOOST_CHECK_CLOSE_FRACTION(
+ geometric_distribution<RealType>::find_upper_bound_on_p(
+ 1+k+1, Q),
+ p, 0.02);
+
+ if(Q < P)
+ {
+ //
+ // We check two things here, that the upper and lower bounds
+ // are the right way around, and that they do actually bracket
+ // the naive estimate of p = successes / (sample size)
+ //
+ BOOST_CHECK(
+ geometric_distribution<RealType>::find_lower_bound_on_p(
+ 1+k, Q)
+ <=
+ geometric_distribution<RealType>::find_upper_bound_on_p(
+ 1+k, Q)
+ );
+ BOOST_CHECK(
+ geometric_distribution<RealType>::find_lower_bound_on_p(
+ 1+k, Q)
+ <=
+ 1 / (1+k)
+ );
+ BOOST_CHECK(
+ 1 / (1+k)
+ <=
+ geometric_distribution<RealType>::find_upper_bound_on_p(
+ 1+k, Q)
+ );
+ }
+ else
+ {
+ // As above but when P is small.
+ BOOST_CHECK(
+ geometric_distribution<RealType>::find_lower_bound_on_p(
+ 1+k, P)
+ <=
+ geometric_distribution<RealType>::find_upper_bound_on_p(
+ 1+k, P)
+ );
+ BOOST_CHECK(
+ geometric_distribution<RealType>::find_lower_bound_on_p(
+ 1+k, P)
+ <=
+ 1 / (1+k)
+ );
+ BOOST_CHECK(
+ 1 / (1+k)
+ <=
+ geometric_distribution<RealType>::find_upper_bound_on_p(
+ 1+k, P)
+ );
+ }
+
+ // Estimate sample size:
+ BOOST_CHECK_CLOSE_FRACTION(
+ geometric_distribution<RealType>::find_minimum_number_of_trials(
+ k, p, P),
+ 1+k, 0.02); // Can differ 50 to 51 for small p
+ BOOST_CHECK_CLOSE_FRACTION(
+ geometric_distribution<RealType>::find_maximum_number_of_trials(
+ k, p, Q),
+ 1+k, 0.02);
+
+} // test_spot
+
+template <class RealType> // Any floating-point type RealType.
+void test_spots(RealType)
+{
+ // Basic sanity checks.
+ // Most test data is to double precision (17 decimal digits) only,
+
+ cout << "Floating point Type is " << typeid(RealType).name() << endl;
+
+ // so set tolerance to 1000 eps expressed as a fraction,
+ // or 1000 eps of type double expressed as a fraction,
+ // whichever is the larger.
+
+ RealType tolerance = (std::max)
+ (boost::math::tools::epsilon<RealType>(),
+ static_cast<RealType>(std::numeric_limits<double>::epsilon()));
+ tolerance *= 10; // 10 eps
+
+ cout << "Tolerance = " << tolerance << "." << endl;
+
+ RealType tol1eps = boost::math::tools::epsilon<RealType>(); // Very tight, suit exact values.
+ //RealType tol2eps = boost::math::tools::epsilon<RealType>() * 2; // Tight, values.
+ RealType tol5eps = boost::math::tools::epsilon<RealType>() * 5; // Wider 5 epsilon.
+ cout << "Tolerance 5 eps = " << tol5eps << "." << endl;
+
+
+ // Sources of spot test values are mainly R.
+
+ using boost::math::geometric_distribution;
+ using boost::math::geometric;
+ using boost::math::cdf;
+ using boost::math::pdf;
+ using boost::math::quantile;
+ using boost::math::complement;
+
+ BOOST_MATH_STD_USING // for std math functions
+
+ // Test geometric using cdf spot values R
+ // These test quantiles and complements as well.
+
+ test_spot( //
+ static_cast<RealType>(2), // Number of failures, k
+ static_cast<RealType>(0.5), // Probability of success as fraction, p
+ static_cast<RealType>(0.875L), // Probability of result (CDF), P
+ static_cast<RealType>(0.125L), // complement CCDF Q = 1 - P
+ tolerance);
+
+ test_spot( //
+ static_cast<RealType>(0), // Number of failures, k
+ static_cast<RealType>(0.25), // Probability of success as fraction, p
+ static_cast<RealType>(0.25), // Probability of result (CDF), P
+ static_cast<RealType>(0.75), // Q = 1 - P
+ tolerance);
+
+ test_spot(
+ // R formatC(pgeom(10,0.25), digits=17) [1] "0.95776486396789551"
+ // formatC(pgeom(10,0.25, FALSE), digits=17) [1] "0.042235136032104499"
+
+ static_cast<RealType>(10), // Number of failures, k
+ static_cast<RealType>(0.25), // Probability of success, p
+ static_cast<RealType>(0.95776486396789551L), // Probability of result (CDF), P
+ static_cast<RealType>(0.042235136032104499L), // Q = 1 - P
+ tolerance);
+
+ test_spot( //
+ // > R formatC(pgeom(50,0.25, TRUE), digits=17) [1] "0.99999957525875771"
+ // > R formatC(pgeom(50,0.25, FALSE), digits=17) [1] "4.2474124232020353e-07"
+ static_cast<RealType>(50), // Number of failures, k
+ static_cast<RealType>(0.25), // Probability of success, p
+ static_cast<RealType>(0.99999957525875771), // Probability of result (CDF), P
+ static_cast<RealType>(4.2474124232020353e-07), // Q = 1 - P
+ tolerance);
+ /*
+ // This causes failures in find_upper_bound_on_p p is small branch.
+ test_spot( // formatC(pgeom(50,0.01, TRUE), digits=17)[1] "0.40104399353383874"
+ // > formatC(pgeom(50,0.01, FALSE), digits=17) [1] "0.59895600646616121"
+ static_cast<RealType>(50), // Number of failures, k
+ static_cast<RealType>(0.01), // Probability of success, p
+ static_cast<RealType>(0.40104399353383874), // Probability of result (CDF), P
+ static_cast<RealType>(0.59895600646616121), // Q = 1 - P
+ tolerance);
+ */
+
+ test_spot( // > formatC(pgeom(50,0.99, TRUE), digits=17) [1] " 1"
+ // formatC(pgeom(50,0.99, FALSE), digits=17) [1] "1.0000000000000364e-102"
+ static_cast<RealType>(50), // Number of failures, k
+ static_cast<RealType>(0.99), // Probability of success, p
+ static_cast<RealType>(1), // Probability of result (CDF), P
+ static_cast<RealType>(1.0000000000000364e-102), // Q = 1 - P
+ tolerance);
+
+ test_spot( // > formatC(pgeom(1,0.99, TRUE), digits=17) [1] "0.99990000000000001"
+ // > formatC(pgeom(1,0.99, FALSE), digits=17) [1] "0.00010000000000000009"
+ static_cast<RealType>(1), // Number of failures, k
+ static_cast<RealType>(0.99), // Probability of success, p
+ static_cast<RealType>(0.9999), // Probability of result (CDF), P
+ static_cast<RealType>(0.0001), // Q = 1 - P
+ tolerance);
+
+if(std::numeric_limits<RealType>::is_specialized)
+{ // An extreme value test that is more accurate than using negative binomial.
+ // Since geometric only uses exp and log functions.
+ test_spot( // > formatC(pgeom(10000, 0.001, TRUE), digits=17) [1] "0.99995487182736897"
+// > formatC(pgeom(10000,0.001, FALSE), digits=17) [1] "4.5128172631071587e-05"
+ static_cast<RealType>(10000L), // Number of failures, k
+ static_cast<RealType>(0.001L), // Probability of success, p
+ static_cast<RealType>(0.99995487182736897L), // Probability of result (CDF), P
+ static_cast<RealType>(4.5128172631071587e-05L), // Q = 1 - P
+ tolerance); //
+ } // numeric_limit is specialized
+ // End of single spot tests using RealType
+
+ // Tests on PDF:
+
+ BOOST_CHECK_CLOSE_FRACTION( //> formatC(dgeom(0,0.5), digits=17)[1] " 0.5"
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
+ static_cast<RealType>(0.0) ), // Number of failures, k is very small but not integral,
+ static_cast<RealType>(0.5), // nearly success probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION( //> formatC(dgeom(0,0.5), digits=17)[1] " 0.5"
+ // R treates geom as a discrete distribution.
+ // > formatC(dgeom(1.999999,0.5, FALSE), digits=17) [1] " 0"
+ // Warning message:
+ // In dgeom(1.999999, 0.5, FALSE) : non-integer x = 1.999999
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
+ static_cast<RealType>(0.0001L) ), // Number of failures, k is very small but not integral,
+ static_cast<RealType>(0.4999653438420768L), // nearly success probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION( // > formatC(pgeom(0.0001,0.5, TRUE), digits=17)[1] " 0.5"
+ // > formatC(pgeom(0.0001,0.5, FALSE), digits=17) [1] " 0.5"
+ // R treates geom as a discrete distribution.
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
+ static_cast<RealType>(0.0001L) ), // Number of failures, k is very small but not integral,
+ static_cast<RealType>(0.4999653438420768L), // nearly success probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION( // formatC(dgeom(1,0.01), digits=17)[1] "0.0099000000000000008"
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.01L)),
+ static_cast<RealType>(1) ), // Number of failures, k
+ static_cast<RealType>(0.0099000000000000008), //
+ tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION( //> formatC(dgeom(1,0.99), digits=17)[1] "0.0099000000000000043"
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.99L)),
+ static_cast<RealType>(1) ), // Number of failures, k
+ static_cast<RealType>(0.00990000000000000043L), //
+ tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION( //> > formatC(dgeom(0,0.99), digits=17)[1] "0.98999999999999999"
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.99L)),
+ static_cast<RealType>(0) ), // Number of failures, k
+ static_cast<RealType>(0.98999999999999999L), //
+ tolerance);
+
+ // p near unity.
+ BOOST_CHECK_CLOSE_FRACTION( // > formatC(dgeom(100,0.99), digits=17)[1] "9.9000000000003448e-201"
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.99L)),
+ static_cast<RealType>(100) ), // Number of failures, k
+ static_cast<RealType>(9.9000000000003448e-201L), //
+ 100 * tolerance); // Note difference
+
+ // p nearer unity.
+ BOOST_CHECK_CLOSE_FRACTION( //
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999)),
+ static_cast<RealType>(10) ), // Number of failures, k
+ // static_cast<double>(9.9989999999889024e-41), // Boost.Math
+ // static_cast<float>(1.00156406e-040)
+ static_cast<RealType>(9.999e-41), // exact from 100 digit calculator.
+ 2e3 * tolerance); // Note bigger tolerance needed.
+
+ // Moshier Cephes 100 digits calculator says 9.999e-41
+ //0.9999*pow(1-0.9999,10)
+ // 9.9990000000000000000000000000000000000000000000000000000000000000000000E-41
+ // 9.998999999988988e-041
+ // > formatC(dgeom(10, 0.9999), digits=17) [1] "9.9989999999889024e-41"
+ // p * pow(q, k) 9.9989999999889880e-041
+ // exp(p * k * log1p(-p)) 9.9989999999889024e-041
+
+
+
+ // 0.9999999999 * pow(1-0.9999999999,10)= 9.9999999990E-101
+ // > formatC(dgeom(10,0.9999999999), digits=17) [1] "1.0000008273040127e-100"
+ BOOST_CHECK_CLOSE_FRACTION( //
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999999999L)),
+ static_cast<RealType>(10) ), //
+ static_cast<RealType>(9.9999999990E-101L), // 1.0000008273040179e-100
+ 1e9 * tolerance); // Note big tolerance needed.
+ // 1.0000008273040179e-100 Boost.Math
+ // 1.0000008273040127e-100 R
+ // 0.9999999990000004e-100 100 digit calculator 'exact'
+
+ BOOST_CHECK_CLOSE_FRACTION( //
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.00000000001L)),
+ static_cast<RealType>(10) ), //
+ static_cast<RealType>(9.999999999e-12L), // get 9.9999999989999994e-012
+ 1 * tolerance); // Note small tolerance needed.
+
+
+ BOOST_CHECK_CLOSE_FRACTION( //
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.00000000001L)),
+ static_cast<RealType>(1000) ), //
+ static_cast<RealType>(9.9999999e-12L), // get 9.9999998999999913e-012
+ tolerance); // Note small tolerance needed.
+
+
+ ///////////////////////////////////////////////////
+ BOOST_CHECK_CLOSE_FRACTION( //
+ // > formatC(dgeom(0.0001,0.5, FALSE), digits=17) [1] " 0.5"
+ // R treates geom as a discrete distribution.
+ // But Boost.Math is continuous, so if you want R behaviour,
+ // make number of failures, k into an integer with the floor function.
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
+ static_cast<RealType>(floor(0.0001L)) ), // Number of failures, k is very small but MADE integral,
+ static_cast<RealType>(0.5), // nearly success probability.
+ tolerance);
+
+ // R switches over at about 1e7 from k = 0, returning 0.5, to k = 1, returning 0.25.
+ // Boost.Math does not do this, even for 0.9999999999999999
+ // > formatC(pgeom(0.999999,0.5, FALSE), digits=17) [1] " 0.5"
+ // > formatC(pgeom(0.9999999,0.5, FALSE), digits=17) [1] " 0.25"
+
+ BOOST_CHECK_CLOSE_FRACTION( // > formatC(pgeom(0.0001,0.5, TRUE), digits=17)[1] " 0.5"
+ // > formatC(pgeom(0.0001,0.5, FALSE), digits=17) [1] " 0.5"
+ // R treates geom as a discrete distribution.
+ // But Boost.Math is continuous, so if you want R behaviour,
+ // make number of failures, k into an integer with the floor function.
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
+ static_cast<RealType>(floor(0.9999999999999999L)) ), // Number of failures, k is very small but MADE integral,
+ static_cast<RealType>(0.5), // nearly success probability.
+ tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION( // > formatC(pgeom(0.0001,0.5, TRUE), digits=17)[1] " 0.5"
+ // > formatC(pgeom(0.0001,0.5, FALSE), digits=17) [1] " 0.5"
+ // R treates geom as a discrete distribution.
+ // But Boost.Math is continuous, so if you want R behaviour,
+ // make number of failures, k into an integer with the floor function.
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
+ static_cast<RealType>(floor(1. - tolerance)) ),
+ // Number of failures, k is very small but MADE integral,
+ // Need to use tolerance here,
+ // as epsilon is ill-defined for Real concept:
+ // numeric_limits<RealType>::epsilon() 0
+ static_cast<RealType>(0.5), // nearly success probability.
+ tolerance * 10);
+
+ BOOST_CHECK_CLOSE_FRACTION(
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.0001L)),
+ static_cast<RealType>(2)), // k = 2.
+ static_cast<RealType>(9.99800010e-5L), // 'exact '
+ tolerance);
+
+ //> formatC(dgeom(2, 0.9999), digits=17) [1] "9.9989999999977806e-09"
+ BOOST_CHECK_CLOSE_FRACTION(
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999L)),
+ static_cast<RealType>(2)), // k = 0
+ static_cast<RealType>(9.999e-9L), // 'exact'
+ 1000*tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION(
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999L)),
+ static_cast<RealType>(3)), // k = 3
+ static_cast<RealType>(9.999e-13L), // get
+ 1000*tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION(
+ pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999L)),
+ static_cast<RealType>(5)), // k = 5
+ static_cast<RealType>(9.999e-21L), // 9.9989999999944947e-021
+ 1000*tolerance);
+
+
+ BOOST_CHECK_CLOSE_FRACTION(
+ pdf(geometric_distribution<RealType>( static_cast<RealType>(0.0001L)),
+ static_cast<RealType>(3)), // k = 0.
+ static_cast<RealType>(9.99700029999e-5L), //
+ tolerance);
+ // Tests on cdf:
+ // MathCAD pgeom k, r, p) == failures, successes, probability.
+
+ BOOST_CHECK_CLOSE_FRACTION(cdf(
+ geometric_distribution<RealType>(static_cast<RealType>(0.5)), // prob 0.5
+ static_cast<RealType>(0) ), // k = 0
+ static_cast<RealType>(0.5), // probability =p
+ tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION(cdf(complement(
+ geometric_distribution<RealType>(static_cast<RealType>(0.5)), //
+ static_cast<RealType>(0) )), // k = 0
+ static_cast<RealType>(0.5), // probability =
+ tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION(cdf(
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)), // prob 0.5
+ static_cast<RealType>(1) ), // k = 0
+ static_cast<RealType>(0.4375L), // probability =p
+ tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION(cdf(complement(
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)), //
+ static_cast<RealType>(1) )), // k = 0
+ static_cast<RealType>(1-0.4375L), // probability =
+ tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION(cdf(complement(
+ geometric_distribution<RealType>(static_cast<RealType>(0.5)), //
+ static_cast<RealType>(1) )), // k = 0
+ static_cast<RealType>(0.25), // probability = exact 0.25
+ tolerance);
+
+ BOOST_CHECK_CLOSE_FRACTION( //
+ cdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
+ static_cast<RealType>(4)), // k =4.
+ static_cast<RealType>(0.96875L), // exact
+ tolerance);
+
+
+ // Tests of other functions, mean and other moments ...
+
+ geometric_distribution<RealType> dist(static_cast<RealType>(0.25));
+ // mean:
+ BOOST_CHECK_CLOSE_FRACTION(
+ mean(dist), static_cast<RealType>((1 - 0.25) /0.25), tol5eps);
+ BOOST_CHECK_CLOSE_FRACTION(
+ mode(dist), static_cast<RealType>(0), tol1eps);
+ // variance:
+ BOOST_CHECK_CLOSE_FRACTION(
+ variance(dist), static_cast<RealType>((1 - 0.25) / (0.25 * 0.25)), tol5eps);
+
+ // std deviation:
+ // sqrt(0.75/0.125)
+
+ BOOST_CHECK_CLOSE_FRACTION(
+ standard_deviation(dist), //
+ static_cast<RealType>(sqrt((1.0L - 0.25L) / (0.25L * 0.25L))), // using 100 digit calc
+ tol5eps);
+
+ BOOST_CHECK_CLOSE_FRACTION(
+ skewness(dist), //
+ static_cast<RealType>((2-0.25L) /sqrt(0.75L)),
+ // using calculator
+ tol5eps);
+ BOOST_CHECK_CLOSE_FRACTION(
+ kurtosis_excess(dist), //
+ static_cast<RealType>(6 + 0.0625L/0.75L), //
+ tol5eps);
+ // 6.083333333333333 6.166666666666667
+ BOOST_CHECK_CLOSE_FRACTION(
+ kurtosis(dist), // true
+ static_cast<RealType>(9 + 0.0625L/0.75L), //
+ tol5eps);
+ // hazard:
+ RealType x = static_cast<RealType>(0.125);
+ BOOST_CHECK_CLOSE_FRACTION(
+ hazard(dist, x)
+ , pdf(dist, x) / cdf(complement(dist, x)), tol5eps);
+ // cumulative hazard:
+ BOOST_CHECK_CLOSE_FRACTION(
+ chf(dist, x), -log(cdf(complement(dist, x))), tol5eps);
+ // coefficient_of_variation:
+ BOOST_CHECK_CLOSE_FRACTION(
+ coefficient_of_variation(dist)
+ , standard_deviation(dist) / mean(dist), tol5eps);
+
+ // Special cases for PDF:
+ BOOST_CHECK_EQUAL(
+ pdf(
+ geometric_distribution<RealType>(static_cast<RealType>(0)), //
+ static_cast<RealType>(0)),
+ static_cast<RealType>(0) );
+
+ BOOST_CHECK_EQUAL(
+ pdf(
+ geometric_distribution<RealType>(static_cast<RealType>(0)),
+ static_cast<RealType>(0.0001)),
+ static_cast<RealType>(0) );
+
+ BOOST_CHECK_EQUAL(
+ pdf(
+ geometric_distribution<RealType>(static_cast<RealType>(1)),
+ static_cast<RealType>(0.001)),
+ static_cast<RealType>(0) );
+
+ BOOST_CHECK_EQUAL(
+ pdf(
+ geometric_distribution<RealType>(static_cast<RealType>(1)),
+ static_cast<RealType>(8)),
+ static_cast<RealType>(0) );
+
+ BOOST_CHECK_SMALL(
+ pdf(
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(0))-
+ static_cast<RealType>(0.25),
+ 2 * boost::math::tools::epsilon<RealType>() ); // Expect exact, but not quite.
+ // numeric_limits<RealType>::epsilon()); // Not suitable for real concept!
+
+ // Quantile boundary cases checks:
+ BOOST_CHECK_EQUAL(
+ quantile( // zero P < cdf(0) so should be exactly zero.
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(0)),
+ static_cast<RealType>(0));
+
+ BOOST_CHECK_EQUAL(
+ quantile( // min P < cdf(0) so should be exactly zero.
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(boost::math::tools::min_value<RealType>())),
+ static_cast<RealType>(0));
+
+ BOOST_CHECK_CLOSE_FRACTION(
+ quantile( // Small P < cdf(0) so should be near zero.
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(boost::math::tools::epsilon<RealType>())), //
+ static_cast<RealType>(0),
+ tol5eps);
+
+ BOOST_CHECK_CLOSE_FRACTION(
+ quantile( // Small P < cdf(0) so should be exactly zero.
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(0.0001)),
+ static_cast<RealType>(0),
+ tolerance);
+
+ //BOOST_CHECK( // Fails with overflow for real_concept
+ //quantile( // Small P near 1 so k failures should be big.
+ //geometric_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
+ //static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>())) <=
+ //static_cast<RealType>(189.56999032670058) // 106.462769 for float
+ //);
+
+ if(std::numeric_limits<RealType>::has_infinity)
+ { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
+ // Note that infinity is not implemented for real_concept, so these tests
+ // are only done for types, like built-in float, double.. that have infinity.
+ // Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
+ // #define BOOST_MATH_THROW_ON_OVERFLOW_POLICY == throw_on_error would throw here.
+ // #define BOOST_MAT_DOMAIN_ERROR_POLICY IS defined throw_on_error,
+ // so the throw path of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
+
+ BOOST_CHECK(
+ quantile( // At P == 1 so k failures should be infinite.
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(1)) ==
+ //static_cast<RealType>(boost::math::tools::infinity<RealType>())
+ static_cast<RealType>(std::numeric_limits<RealType>::infinity()) );
+
+ BOOST_CHECK_EQUAL(
+ quantile( // At 1 == P so should be infinite.
+ geometric_distribution<RealType>( static_cast<RealType>(0.25)),
+ static_cast<RealType>(1)), //
+ std::numeric_limits<RealType>::infinity() );
+
+ BOOST_CHECK_EQUAL(
+ quantile(complement( // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(0))),
+ std::numeric_limits<RealType>::infinity() );
+ } // test for infinity using std::numeric_limits<>::infinity()
+ else
+ { // real_concept case, so check it throws rather than returning infinity.
+ BOOST_CHECK_EQUAL(
+ quantile( // At P == 1 so k failures should be infinite.
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(1)),
+ boost::math::tools::max_value<RealType>() );
+
+ BOOST_CHECK_EQUAL(
+ quantile(complement( // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(0))),
+ boost::math::tools::max_value<RealType>());
+ } // has infinity
+
+ BOOST_CHECK( // Should work for built-in and real_concept.
+ quantile(complement( // Q near to 1 so P nearly 1, so should be large > 300.
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(boost::math::tools::min_value<RealType>())))
+ >= static_cast<RealType>(300) );
+
+ BOOST_CHECK_EQUAL(
+ quantile( // P == 0 < cdf(0) so should be zero.
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(0)),
+ static_cast<RealType>(0));
+
+ // Quantile Complement boundary cases:
+
+ BOOST_CHECK_EQUAL(
+ quantile(complement( // Q = 1 so P = 0 < cdf(0) so should be exactly zero.
+ geometric_distribution<RealType>( static_cast<RealType>(0.25)),
+ static_cast<RealType>(1))),
+ static_cast<RealType>(0)
+ );
+
+ BOOST_CHECK_EQUAL(
+ quantile(complement( // Q very near 1 so P == epsilon < cdf(0) so should be exactly zero.
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>()))),
+ static_cast<RealType>(0)
+ );
+
+ // Check that duff arguments throw domain_error:
+
+ BOOST_MATH_CHECK_THROW(
+ pdf( // Negative success_fraction!
+ geometric_distribution<RealType>(static_cast<RealType>(-0.25)),
+ static_cast<RealType>(0)), std::domain_error);
+ BOOST_MATH_CHECK_THROW(
+ pdf( // Success_fraction > 1!
+ geometric_distribution<RealType>(static_cast<RealType>(1.25)),
+ static_cast<RealType>(0)),
+ std::domain_error);
+ BOOST_MATH_CHECK_THROW(
+ pdf( // Negative k argument !
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(-1)),
+ std::domain_error);
+ //BOOST_MATH_CHECK_THROW(
+ //pdf( // check limit on k (failures)
+ //geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ //std::numeric_limits<RealType>infinity()),
+ //std::domain_error);
+ BOOST_MATH_CHECK_THROW(
+ cdf( // Negative k argument !
+ geometric_distribution<RealType>(static_cast<RealType>(0.25)),
+ static_cast<RealType>(-1)),
+ std::domain_error);
+ BOOST_MATH_CHECK_THROW(
+ cdf( // Negative success_fraction!
+ geometric_distribution<RealType>(static_cast<RealType>(-0.25)),
+ static_cast<RealType>(0)), std::domain_error);
+ BOOST_MATH_CHECK_THROW(
+ cdf( // Success_fraction > 1!
+ geometric_distribution<RealType>(static_cast<RealType>(1.25)),
+ static_cast<RealType>(0)), std::domain_error);
+ BOOST_MATH_CHECK_THROW(
+ quantile( // Negative success_fraction!
+ geometric_distribution<RealType>(static_cast<RealType>(-0.25)),
+ static_cast<RealType>(0)), std::domain_error);
+ BOOST_MATH_CHECK_THROW(
+ quantile( // Success_fraction > 1!
+ geometric_distribution<RealType>(static_cast<RealType>(1.25)),
+ static_cast<RealType>(0)), std::domain_error);
+ check_out_of_range<geometric_distribution<RealType> >(0.5);
+ // End of check throwing 'duff' out-of-domain values.
+
+ { // Compare geometric and negative binomial functions.
+ using boost::math::negative_binomial_distribution;
+ using boost::math::geometric_distribution;
+
+ RealType k = static_cast<RealType>(2.L);
+ RealType alpha = static_cast<RealType>(0.05L);
+ RealType p = static_cast<RealType>(0.5L);
+
+ BOOST_CHECK_CLOSE_FRACTION( // Successes parameter in negative binomial is 1 for geometric.
+ geometric_distribution<RealType>::find_lower_bound_on_p(k, alpha),
+ negative_binomial_distribution<RealType>::find_lower_bound_on_p(k, static_cast<RealType>(1), alpha),
+ tolerance);
+ BOOST_CHECK_CLOSE_FRACTION( // Successes parameter in negative binomial is 1 for geometric.
+ geometric_distribution<RealType>::find_upper_bound_on_p(k, alpha),
+ negative_binomial_distribution<RealType>::find_upper_bound_on_p(k, static_cast<RealType>(1), alpha),
+ tolerance);
+ BOOST_CHECK_CLOSE_FRACTION( // Should be identical - successes parameter is not used.
+ geometric_distribution<RealType>::find_maximum_number_of_trials(k, p, alpha),
+ negative_binomial_distribution<RealType>::find_maximum_number_of_trials(k, p, alpha),
+ tolerance);
+ }
+ //geometric::find_upper_bound_on_p(k, alpha);
+ return;
+} // template <class RealType> void test_spots(RealType) // Any floating-point type RealType.
+
+BOOST_AUTO_TEST_CASE( test_main )
+{
+ // Check that can generate geometric distribution using the two convenience methods:
+ using namespace boost::math;
+ geometric g05d(0.5); // Using typedef - default type is double.
+ geometric_distribution<> g05dd(0.5); // Using default RealType double.
+
+ // Basic sanity-check spot values.
+
+ // Test some simple double only examples.
+ geometric_distribution<double> mydist(0.25);
+ // success fraction == 0.25 == 25% or 1 in 4 successes.
+ // Note: double values (matching the distribution definition) avoid the need for any casting.
+
+ // Check accessor functions return exact values for double at least.
+ BOOST_CHECK_EQUAL(mydist.success_fraction(), static_cast<double>(1./4.));
+
+ //cout << numeric_limits<RealType>::epsilon() << endl;
+
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
+#ifdef TEST_FLOAT
+ test_spots(0.0F); // Test float.
+#endif
+#ifdef TEST_DOUBLE
+ test_spots(0.0); // Test double.
+#endif
+#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#ifdef TEST_LDOUBLE
+ test_spots(0.0L); // Test long double.
+#endif
+ #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+#ifdef TEST_REAL_CONCEPT
+ test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
+#endif
+ #endif
+#else
+ std::cout << "<note>The long double tests have been disabled on this platform "
+ "either because the long double overloads of the usual math functions are "
+ "not available at all, or because they are too inaccurate for these tests "
+ "to pass.</note>" << std::endl;
+#endif
+
+
+} // BOOST_AUTO_TEST_CASE( test_main )
+
+/*
+
+
+
+*/