summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/multiprecision/example/cpp_complex_examples.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/multiprecision/example/cpp_complex_examples.cpp')
-rw-r--r--src/boost/libs/multiprecision/example/cpp_complex_examples.cpp120
1 files changed, 120 insertions, 0 deletions
diff --git a/src/boost/libs/multiprecision/example/cpp_complex_examples.cpp b/src/boost/libs/multiprecision/example/cpp_complex_examples.cpp
new file mode 100644
index 00000000..7d00cc73
--- /dev/null
+++ b/src/boost/libs/multiprecision/example/cpp_complex_examples.cpp
@@ -0,0 +1,120 @@
+///////////////////////////////////////////////////////////////
+// Copyright 2018 Nick Thompson. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
+
+/*`This example demonstrates the usage of the MPC backend for multiprecision complex numbers.
+In the following, we will show how using MPC backend allows for the same operations as the C++ standard library complex numbers.
+*/
+
+//[cpp_complex_eg
+#include <iostream>
+#include <complex>
+#include <boost/multiprecision/cpp_complex.hpp>
+
+template<class Complex>
+void complex_number_examples()
+{
+ Complex z1{0, 1};
+ std::cout << std::setprecision(std::numeric_limits<typename Complex::value_type>::digits10);
+ std::cout << std::scientific << std::fixed;
+ std::cout << "Print a complex number: " << z1 << std::endl;
+ std::cout << "Square it : " << z1*z1 << std::endl;
+ std::cout << "Real part : " << z1.real() << " = " << real(z1) << std::endl;
+ std::cout << "Imaginary part : " << z1.imag() << " = " << imag(z1) << std::endl;
+ using std::abs;
+ std::cout << "Absolute value : " << abs(z1) << std::endl;
+ std::cout << "Argument : " << arg(z1) << std::endl;
+ std::cout << "Norm : " << norm(z1) << std::endl;
+ std::cout << "Complex conjugate : " << conj(z1) << std::endl;
+ std::cout << "Projection onto Riemann sphere: " << proj(z1) << std::endl;
+ typename Complex::value_type r = 1;
+ typename Complex::value_type theta = 0.8;
+ using std::polar;
+ std::cout << "Polar coordinates (phase = 0) : " << polar(r) << std::endl;
+ std::cout << "Polar coordinates (phase !=0) : " << polar(r, theta) << std::endl;
+
+ std::cout << "\nElementary special functions:\n";
+ using std::exp;
+ std::cout << "exp(z1) = " << exp(z1) << std::endl;
+ using std::log;
+ std::cout << "log(z1) = " << log(z1) << std::endl;
+ using std::log10;
+ std::cout << "log10(z1) = " << log10(z1) << std::endl;
+ using std::pow;
+ std::cout << "pow(z1, z1) = " << pow(z1, z1) << std::endl;
+ using std::sqrt;
+ std::cout << "Take its square root : " << sqrt(z1) << std::endl;
+ using std::sin;
+ std::cout << "sin(z1) = " << sin(z1) << std::endl;
+ using std::cos;
+ std::cout << "cos(z1) = " << cos(z1) << std::endl;
+ using std::tan;
+ std::cout << "tan(z1) = " << tan(z1) << std::endl;
+ using std::asin;
+ std::cout << "asin(z1) = " << asin(z1) << std::endl;
+ using std::acos;
+ std::cout << "acos(z1) = " << acos(z1) << std::endl;
+ using std::atan;
+ std::cout << "atan(z1) = " << atan(z1) << std::endl;
+ using std::sinh;
+ std::cout << "sinh(z1) = " << sinh(z1) << std::endl;
+ using std::cosh;
+ std::cout << "cosh(z1) = " << cosh(z1) << std::endl;
+ using std::tanh;
+ std::cout << "tanh(z1) = " << tanh(z1) << std::endl;
+ using std::asinh;
+ std::cout << "asinh(z1) = " << asinh(z1) << std::endl;
+ using std::acosh;
+ std::cout << "acosh(z1) = " << acosh(z1) << std::endl;
+ using std::atanh;
+ std::cout << "atanh(z1) = " << atanh(z1) << std::endl;
+}
+
+int main()
+{
+ std::cout << "First, some operations we usually perform with std::complex:\n";
+ complex_number_examples<std::complex<double>>();
+ std::cout << "\nNow the same operations performed using quad precision complex numbers:\n";
+ complex_number_examples<boost::multiprecision::cpp_complex_quad>();
+
+ return 0;
+}
+//]
+
+/*
+
+//[cpp_complex_out
+
+Print a complex number: (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
+Square it : -1.000000000000000000000000000000000
+Real part : 0.000000000000000000000000000000000 = 0.000000000000000000000000000000000
+Imaginary part : 1.000000000000000000000000000000000 = 1.000000000000000000000000000000000
+Absolute value : 1.000000000000000000000000000000000
+Argument : 1.570796326794896619231321691639751
+Norm : 1.000000000000000000000000000000000
+Complex conjugate : (0.000000000000000000000000000000000,-1.000000000000000000000000000000000)
+Projection onto Riemann sphere: (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
+Polar coordinates (phase = 0) : 1.000000000000000000000000000000000
+Polar coordinates (phase !=0) : (0.696706709347165389063740022772448,0.717356090899522792567167815703377)
+
+Elementary special functions:
+exp(z1) = (0.540302305868139717400936607442977,0.841470984807896506652502321630299)
+log(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
+log10(z1) = (0.000000000000000000000000000000000,0.682188176920920673742891812715678)
+pow(z1, z1) = 0.207879576350761908546955619834979
+Take its square root : (0.707106781186547524400844362104849,0.707106781186547524400844362104849)
+sin(z1) = (0.000000000000000000000000000000000,1.175201193643801456882381850595601)
+cos(z1) = 1.543080634815243778477905620757062
+tan(z1) = (0.000000000000000000000000000000000,0.761594155955764888119458282604794)
+asin(z1) = (0.000000000000000000000000000000000,0.881373587019543025232609324979793)
+acos(z1) = (1.570796326794896619231321691639751,-0.881373587019543025232609324979793)
+atan(z1) = (0.000000000000000000000000000000000,inf)
+sinh(z1) = (0.000000000000000000000000000000000,0.841470984807896506652502321630299)
+cosh(z1) = 0.540302305868139717400936607442977
+tanh(z1) = (0.000000000000000000000000000000000,1.557407724654902230506974807458360)
+asinh(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
+acosh(z1) = (0.881373587019543025232609324979792,1.570796326794896619231321691639751)
+atanh(z1) = (0.000000000000000000000000000000000,0.785398163397448309615660845819876)
+//]
+*/