summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/multiprecision/performance/delaunay_test.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/multiprecision/performance/delaunay_test.cpp')
-rw-r--r--src/boost/libs/multiprecision/performance/delaunay_test.cpp308
1 files changed, 308 insertions, 0 deletions
diff --git a/src/boost/libs/multiprecision/performance/delaunay_test.cpp b/src/boost/libs/multiprecision/performance/delaunay_test.cpp
new file mode 100644
index 00000000..1dcb4e6a
--- /dev/null
+++ b/src/boost/libs/multiprecision/performance/delaunay_test.cpp
@@ -0,0 +1,308 @@
+///////////////////////////////////////////////////////////////////////////////
+// Copyright 2012 John Maddock.
+// Copyright 2012 Phil Endecott
+// Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#include <boost/multiprecision/cpp_int.hpp>
+#include "arithmetic_backend.hpp"
+#include <boost/chrono.hpp>
+#include <boost/random/mersenne_twister.hpp>
+#include <boost/random/uniform_int_distribution.hpp>
+
+#include <fstream>
+#include <iomanip>
+
+template <class Clock>
+struct stopwatch
+{
+ typedef typename Clock::duration duration;
+ stopwatch()
+ {
+ m_start = Clock::now();
+ }
+ duration elapsed()
+ {
+ return Clock::now() - m_start;
+ }
+ void reset()
+ {
+ m_start = Clock::now();
+ }
+
+ private:
+ typename Clock::time_point m_start;
+};
+
+// Custom 128-bit maths used for exact calculation of the Delaunay test.
+// Only the few operators actually needed here are implemented.
+
+struct int128_t
+{
+ int64_t high;
+ uint64_t low;
+
+ int128_t() {}
+ int128_t(int32_t i) : high(i >> 31), low(static_cast<int64_t>(i)) {}
+ int128_t(uint32_t i) : high(0), low(i) {}
+ int128_t(int64_t i) : high(i >> 63), low(i) {}
+ int128_t(uint64_t i) : high(0), low(i) {}
+};
+
+inline int128_t operator<<(int128_t val, int amt)
+{
+ int128_t r;
+ r.low = val.low << amt;
+ r.high = val.low >> (64 - amt);
+ r.high |= val.high << amt;
+ return r;
+}
+
+inline int128_t& operator+=(int128_t& l, int128_t r)
+{
+ l.low += r.low;
+ bool carry = l.low < r.low;
+ l.high += r.high;
+ if (carry)
+ ++l.high;
+ return l;
+}
+
+inline int128_t operator-(int128_t val)
+{
+ val.low = ~val.low;
+ val.high = ~val.high;
+ val.low += 1;
+ if (val.low == 0)
+ val.high += 1;
+ return val;
+}
+
+inline int128_t operator+(int128_t l, int128_t r)
+{
+ l += r;
+ return l;
+}
+
+inline bool operator<(int128_t l, int128_t r)
+{
+ if (l.high != r.high)
+ return l.high < r.high;
+ return l.low < r.low;
+}
+
+inline int128_t mult_64x64_to_128(int64_t a, int64_t b)
+{
+ // Make life simple by dealing only with positive numbers:
+ bool neg = false;
+ if (a < 0)
+ {
+ neg = !neg;
+ a = -a;
+ }
+ if (b < 0)
+ {
+ neg = !neg;
+ b = -b;
+ }
+
+ // Divide input into 32-bit halves:
+ uint32_t ah = a >> 32;
+ uint32_t al = a & 0xffffffff;
+ uint32_t bh = b >> 32;
+ uint32_t bl = b & 0xffffffff;
+
+ // Long multiplication, with 64-bit temporaries:
+
+ // ah al
+ // * bh bl
+ // ----------------
+ // al*bl (t1)
+ // + ah*bl (t2)
+ // + al*bh (t3)
+ // + ah*bh (t4)
+ // ----------------
+
+ uint64_t t1 = static_cast<uint64_t>(al) * bl;
+ uint64_t t2 = static_cast<uint64_t>(ah) * bl;
+ uint64_t t3 = static_cast<uint64_t>(al) * bh;
+ uint64_t t4 = static_cast<uint64_t>(ah) * bh;
+
+ int128_t r(t1);
+ r.high = t4;
+ r += int128_t(t2) << 32;
+ r += int128_t(t3) << 32;
+
+ if (neg)
+ r = -r;
+
+ return r;
+}
+
+template <class R, class T>
+BOOST_FORCEINLINE void mul_2n(R& r, const T& a, const T& b)
+{
+ r = a;
+ r *= b;
+}
+
+template <class B, boost::multiprecision::expression_template_option ET, class T>
+BOOST_FORCEINLINE void mul_2n(boost::multiprecision::number<B, ET>& r, const T& a, const T& b)
+{
+ multiply(r, a, b);
+}
+
+BOOST_FORCEINLINE void mul_2n(int128_t& r, const boost::int64_t& a, const boost::int64_t& b)
+{
+ r = mult_64x64_to_128(a, b);
+}
+
+template <class Traits>
+inline bool delaunay_test(int32_t ax, int32_t ay, int32_t bx, int32_t by,
+ int32_t cx, int32_t cy, int32_t dx, int32_t dy)
+{
+ // Test whether the quadrilateral ABCD's diagonal AC should be flipped to BD.
+ // This is the Cline & Renka method.
+ // Flip if the sum of the angles ABC and CDA is greater than 180 degrees.
+ // Equivalently, flip if sin(ABC + CDA) < 0.
+ // Trig identity: cos(ABC) * sin(CDA) + sin(ABC) * cos(CDA) < 0
+ // We can use scalar and vector products to find sin and cos, and simplify
+ // to the following code.
+ // Numerical robustness is important. This code addresses it by performing
+ // exact calculations with large integer types.
+ //
+ // NOTE: This routine is limited to inputs with up to 30 BIT PRECISION, which
+ // is to say all inputs must be in the range [INT_MIN/2, INT_MAX/2].
+
+ typedef typename Traits::i64_t i64;
+ typedef typename Traits::i128_t i128;
+
+ i64 cos_abc, t;
+ mul_2n(cos_abc, (ax - bx), (cx - bx)); // subtraction yields 31-bit values, multiplied to give 62-bit values
+ mul_2n(t, (ay - by), (cy - by));
+ cos_abc += t; // addition yields 63 bit value, leaving one left for the sign
+
+ i64 cos_cda;
+ mul_2n(cos_cda, (cx - dx), (ax - dx));
+ mul_2n(t, (cy - dy), (ay - dy));
+ cos_cda += t;
+
+ if (cos_abc >= 0 && cos_cda >= 0)
+ return false;
+ if (cos_abc < 0 && cos_cda < 0)
+ return true;
+
+ i64 sin_abc;
+ mul_2n(sin_abc, (ax - bx), (cy - by));
+ mul_2n(t, (cx - bx), (ay - by));
+ sin_abc -= t;
+
+ i64 sin_cda;
+ mul_2n(sin_cda, (cx - dx), (ay - dy));
+ mul_2n(t, (ax - dx), (cy - dy));
+ sin_cda -= t;
+
+ i128 sin_sum, t128;
+ mul_2n(sin_sum, sin_abc, cos_cda); // 63-bit inputs multiplied to 126-bit output
+ mul_2n(t128, cos_abc, sin_cda);
+ sin_sum += t128; // Addition yields 127 bit result, leaving one bit for the sign
+
+ return sin_sum < 0;
+}
+
+struct dt_dat
+{
+ int32_t ax, ay, bx, by, cx, cy, dx, dy;
+};
+
+typedef std::vector<dt_dat> data_t;
+data_t data;
+
+template <class Traits>
+void do_calc(const char* name)
+{
+ std::cout << "Running calculations for: " << name << std::endl;
+
+ stopwatch<boost::chrono::high_resolution_clock> w;
+
+ boost::uint64_t flips = 0;
+ boost::uint64_t calcs = 0;
+
+ for (int j = 0; j < 1000; ++j)
+ {
+ for (data_t::const_iterator i = data.begin(); i != data.end(); ++i)
+ {
+ const dt_dat& d = *i;
+ bool flip = delaunay_test<Traits>(d.ax, d.ay, d.bx, d.by, d.cx, d.cy, d.dx, d.dy);
+ if (flip)
+ ++flips;
+ ++calcs;
+ }
+ }
+ double t = boost::chrono::duration_cast<boost::chrono::duration<double> >(w.elapsed()).count();
+
+ std::cout << "Number of calculations = " << calcs << std::endl;
+ std::cout << "Number of flips = " << flips << std::endl;
+ std::cout << "Total execution time = " << t << std::endl;
+ std::cout << "Time per calculation = " << t / calcs << std::endl
+ << std::endl;
+}
+
+template <class I64, class I128>
+struct test_traits
+{
+ typedef I64 i64_t;
+ typedef I128 i128_t;
+};
+
+dt_dat generate_quadrilateral()
+{
+ static boost::random::mt19937 gen;
+ static boost::random::uniform_int_distribution<> dist(INT_MIN / 2, INT_MAX / 2);
+
+ dt_dat result;
+
+ result.ax = dist(gen);
+ result.ay = dist(gen);
+ result.bx = boost::random::uniform_int_distribution<>(result.ax, INT_MAX / 2)(gen); // bx is to the right of ax.
+ result.by = dist(gen);
+ result.cx = dist(gen);
+ result.cy = boost::random::uniform_int_distribution<>(result.cx > result.bx ? result.by : result.ay, INT_MAX / 2)(gen); // cy is below at least one of ay and by.
+ result.dx = boost::random::uniform_int_distribution<>(result.cx, INT_MAX / 2)(gen); // dx is to the right of cx.
+ result.dy = boost::random::uniform_int_distribution<>(result.cx > result.bx ? result.by : result.ay, INT_MAX / 2)(gen); // cy is below at least one of ay and by.
+
+ return result;
+}
+
+static void load_data()
+{
+ for (unsigned i = 0; i < 100000; ++i)
+ data.push_back(generate_quadrilateral());
+}
+
+int main()
+{
+ using namespace boost::multiprecision;
+ std::cout << "loading data...\n";
+ load_data();
+
+ std::cout << "calculating...\n";
+
+ do_calc<test_traits<boost::int64_t, boost::int64_t> >("int64_t, int64_t");
+ do_calc<test_traits<number<arithmetic_backend<boost::int64_t>, et_off>, number<arithmetic_backend<boost::int64_t>, et_off> > >("arithmetic_backend<int64_t>, arithmetic_backend<int64_t>");
+ do_calc<test_traits<boost::int64_t, number<arithmetic_backend<boost::int64_t>, et_off> > >("int64_t, arithmetic_backend<int64_t>");
+ do_calc<test_traits<number<cpp_int_backend<64, 64, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_off>, number<cpp_int_backend<64, 64, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_off> > >("multiprecision::int64_t, multiprecision::int64_t");
+
+ do_calc<test_traits<boost::int64_t, ::int128_t> >("int64_t, int128_t");
+ do_calc<test_traits<boost::int64_t, boost::multiprecision::int128_t> >("int64_t, boost::multiprecision::int128_t");
+ do_calc<test_traits<boost::int64_t, number<cpp_int_backend<128, 128, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_on> > >("int64_t, int128_t (ET)");
+ do_calc<test_traits<number<cpp_int_backend<64, 64, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_off>, boost::multiprecision::int128_t> >("multiprecision::int64_t, multiprecision::int128_t");
+
+ do_calc<test_traits<boost::int64_t, cpp_int> >("int64_t, cpp_int");
+ do_calc<test_traits<boost::int64_t, number<cpp_int_backend<>, et_off> > >("int64_t, cpp_int (no ET's)");
+ do_calc<test_traits<boost::int64_t, number<cpp_int_backend<128> > > >("int64_t, cpp_int(128-bit cache)");
+ do_calc<test_traits<boost::int64_t, number<cpp_int_backend<128>, et_off> > >("int64_t, cpp_int (128-bit Cache no ET's)");
+
+ return 0;
+}