summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/numeric/ublas/examples/tensor
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/numeric/ublas/examples/tensor')
-rw-r--r--src/boost/libs/numeric/ublas/examples/tensor/Jamfile25
-rw-r--r--src/boost/libs/numeric/ublas/examples/tensor/construction_access.cpp89
-rw-r--r--src/boost/libs/numeric/ublas/examples/tensor/einstein_notation.cpp139
-rw-r--r--src/boost/libs/numeric/ublas/examples/tensor/prod_expressions.cpp183
-rw-r--r--src/boost/libs/numeric/ublas/examples/tensor/simple_expressions.cpp63
5 files changed, 499 insertions, 0 deletions
diff --git a/src/boost/libs/numeric/ublas/examples/tensor/Jamfile b/src/boost/libs/numeric/ublas/examples/tensor/Jamfile
new file mode 100644
index 00000000..42f2fe63
--- /dev/null
+++ b/src/boost/libs/numeric/ublas/examples/tensor/Jamfile
@@ -0,0 +1,25 @@
+# Boost.uBLAS
+#
+# Copyright (c) 2018 Cem Bassoy
+#
+# Use, modification and distribution is subject to the Boost Software License,
+# Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+# http://www.boost.org/LICENSE_1_0.txt)
+
+
+# Project settings
+project boost-ublas-tensor-example
+ : requirements
+ # these tests require C++17
+ <cxxstd>11:<build>no
+ <define>BOOST_UBLAS_NO_EXCEPTIONS
+ <toolset>vacpp:<define>"BOOST_UBLAS_NO_ELEMENT_PROXIES"
+ <toolset>gcc:<cxxflags>"-Wall -pedantic -Wextra -std=c++17"
+ <toolset>gcc:<cxxflags>"-Wno-unknown-pragmas"
+ <toolset>msvc:<cxxflags>"/W4" # == all
+ ;
+
+exe construction_access : construction_access.cpp ;
+exe simple_expressions : simple_expressions.cpp ;
+exe prod_expressions : prod_expressions.cpp ;
+exe einstein_notation : einstein_notation.cpp ; \ No newline at end of file
diff --git a/src/boost/libs/numeric/ublas/examples/tensor/construction_access.cpp b/src/boost/libs/numeric/ublas/examples/tensor/construction_access.cpp
new file mode 100644
index 00000000..053690c7
--- /dev/null
+++ b/src/boost/libs/numeric/ublas/examples/tensor/construction_access.cpp
@@ -0,0 +1,89 @@
+//
+// Copyright (c) 2018-2019, Cem Bassoy, cem.bassoy@gmail.com
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// The authors gratefully acknowledge the support of
+// Fraunhofer IOSB, Ettlingen, Germany
+//
+
+#include <boost/numeric/ublas/tensor.hpp>
+#include <boost/multiprecision/cpp_bin_float.hpp>
+
+#include <ostream>
+
+int main()
+{
+ using namespace boost::numeric::ublas;
+ using namespace boost::multiprecision;
+
+
+ // creates a three-dimensional tensor with extents 3,4 and 2
+ // tensor A stores single-precision floating-point number according
+ // to the first-order storage format
+ using ftype = float;
+ auto A = tensor<ftype>{3,4,2};
+
+ // initializes the tensor with increasing values along the first-index
+ // using a single index.
+ auto vf = ftype(0);
+ for(auto i = 0u; i < A.size(); ++i, vf += ftype(1))
+ A[i] = vf;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "A=" << A << ";" << std::endl << std::endl;
+
+ // creates a four-dimensional tensor with extents 5,4,3 and 2
+ // tensor A stores complex floating-point extended double precision numbers
+ // according to the last-order storage format
+ // and initializes it with the default value.
+ using ctype = std::complex<cpp_bin_float_double_extended>;
+ auto B = tensor<ctype,last_order>(shape{5,4,3,2},ctype{});
+
+ // initializes the tensor with increasing values along the last-index
+ // using a single-index
+ auto vc = ctype(0,0);
+ for(auto i = 0u; i < B.size(); ++i, vc += ctype(1,1))
+ B[i] = vc;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "B=" << B << ";" << std::endl << std::endl;
+
+
+
+ auto C = tensor<ctype,last_order>(B.extents());
+ // computes the complex conjugate of elements of B
+ // using multi-index notation.
+ for(auto i = 0u; i < B.size(0); ++i)
+ for(auto j = 0u; j < B.size(1); ++j)
+ for(auto k = 0u; k < B.size(2); ++k)
+ for(auto l = 0u; l < B.size(3); ++l)
+ C.at(i,j,k,l) = std::conj(B.at(i,j,k,l));
+
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "C=" << C << ";" << std::endl << std::endl;
+
+
+ // computes the complex conjugate of elements of B
+ // using iterators.
+ auto D = tensor<ctype,last_order>(B.extents());
+ std::transform(B.begin(), B.end(), D.begin(), [](auto const& b){ return std::conj(b); });
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "D=" << D << ";" << std::endl << std::endl;
+
+ // reshaping tensors.
+ auto new_extents = B.extents().base();
+ std::next_permutation( new_extents.begin(), new_extents.end() );
+ D.reshape( shape(new_extents) );
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "newD=" << D << ";" << std::endl << std::endl;
+}
diff --git a/src/boost/libs/numeric/ublas/examples/tensor/einstein_notation.cpp b/src/boost/libs/numeric/ublas/examples/tensor/einstein_notation.cpp
new file mode 100644
index 00000000..1d95fc06
--- /dev/null
+++ b/src/boost/libs/numeric/ublas/examples/tensor/einstein_notation.cpp
@@ -0,0 +1,139 @@
+//
+// Copyright (c) 2018-2019, Cem Bassoy, cem.bassoy@gmail.com
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// The authors gratefully acknowledge the support of
+// Fraunhofer IOSB, Ettlingen, Germany
+//
+
+
+#include <boost/numeric/ublas/tensor.hpp>
+#include <boost/numeric/ublas/matrix.hpp>
+#include <boost/numeric/ublas/vector.hpp>
+#include <iostream>
+
+int main()
+{
+ using namespace boost::numeric::ublas;
+
+ using format_t = column_major;
+ using value_t = float;
+ using tensor_t = tensor<value_t,format_t>;
+ using matrix_t = matrix<value_t,format_t>;
+ using namespace boost::numeric::ublas::index;
+
+ // Tensor-Vector-Multiplications - Including Transposition
+ {
+
+ auto n = shape{3,4,2};
+ auto A = tensor_t(n,1);
+ auto B1 = matrix_t(n[1],n[2],2);
+ auto v1 = tensor_t(shape{n[0],1},2);
+ auto v2 = tensor_t(shape{n[1],1},2);
+// auto v3 = tensor_t(shape{n[2],1},2);
+
+ // C1(j,k) = B1(j,k) + A(i,j,k)*v1(i);
+ // tensor_t C1 = B1 + prod(A,vector_t(n[0],1),1);
+// tensor_t C1 = B1 + A(_i,_,_) * v1(_i,_);
+
+ // C2(i,k) = A(i,j,k)*v2(j) + 4;
+ //tensor_t C2 = prod(A,vector_t(n[1],1),2) + 4;
+// tensor_t C2 = A(_,_i,_) * v2(_i,_) + 4;
+
+ // not yet implemented!
+ // C3() = A(i,j,k)*T1(i)*T2(j)*T2(k);
+ // tensor_t C3 = prod(prod(prod(A,v1,1),v2,1),v3,1);
+ // tensor_t C3 = A(_i,_j,_k) * v1(_i,_) * v2(_j,_) * v3(_k,_);
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C1(j,k) = B1(j,k) + A(i,j,k)*v1(i);" << std::endl << std::endl;
+// std::cout << "C1=" << C1 << ";" << std::endl << std::endl;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C2(i,k) = A(i,j,k)*v2(j) + 4;" << std::endl << std::endl;
+// std::cout << "C2=" << C2 << ";" << std::endl << std::endl;
+
+ }
+
+
+ // Tensor-Matrix-Multiplications - Including Transposition
+ {
+ auto n = shape{3,4,2};
+ auto m = 5u;
+ auto A = tensor_t(n,2);
+ auto B = tensor_t(shape{n[1],n[2],m},2);
+ auto B1 = tensor_t(shape{m,n[0]},1);
+ auto B2 = tensor_t(shape{m,n[1]},1);
+
+
+ // C1(l,j,k) = B(j,k,l) + A(i,j,k)*B1(l,i);
+ // tensor_t C1 = B + prod(A,B1,1);
+// tensor_t C1 = B + A(_i,_,_) * B1(_,_i);
+
+ // C2(i,l,k) = A(i,j,k)*B2(l,j) + 4;
+ // tensor_t C2 = prod(A,B2) + 4;
+// tensor_t C2 = A(_,_j,_) * B2(_,_j) + 4;
+
+ // C3(i,l1,l2) = A(i,j,k)*T1(l1,j)*T2(l2,k);
+ // not yet implemented.
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C1(l,j,k) = B(j,k,l) + A(i,j,k)*B1(l,i);" << std::endl << std::endl;
+// std::cout << "C1=" << C1 << ";" << std::endl << std::endl;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C2(i,l,k) = A(i,j,k)*B2(l,j) + 4;" << std::endl << std::endl;
+// std::cout << "C2=" << C2 << ";" << std::endl << std::endl;
+
+// // formatted output
+// std::cout << "% --------------------------- " << std::endl;
+// std::cout << "% --------------------------- " << std::endl << std::endl;
+// std::cout << "% C3(i,l1,l2) = A(i,j,k)*T1(l1,j)*T2(l2,k);" << std::endl << std::endl;
+// std::cout << "C3=" << C3 << ";" << std::endl << std::endl;
+ }
+
+
+ // Tensor-Tensor-Multiplications Including Transposition
+ {
+ auto na = shape{3,4,5};
+ auto nb = shape{4,6,3,2};
+ auto A = tensor_t(na,2);
+ auto B = tensor_t(nb,3);
+ auto T1 = tensor_t(shape{na[2],na[2]},2);
+ auto T2 = tensor_t(shape{na[2],nb[1],nb[3]},2);
+
+
+ // C1(j,l) = T1(j,l) + A(i,j,k)*A(i,j,l) + 5;
+ // tensor_t C1 = T1 + prod(A,A,perm_t{1,2}) + 5;
+// tensor_t C1 = T1 + A(_i,_j,_m)*A(_i,_j,_l) + 5;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C1(k,l) = T1(k,l) + A(i,j,k)*A(i,j,l) + 5;" << std::endl << std::endl;
+// std::cout << "C1=" << C1 << ";" << std::endl << std::endl;
+
+
+ // C2(k,l,m) = T2(k,l,m) + A(i,j,k)*B(j,l,i,m) + 5;
+ //tensor_t C2 = T2 + prod(A,B,perm_t{1,2},perm_t{3,1}) + 5;
+// tensor_t C2 = T2 + A(_i,_j,_k)*B(_j,_l,_i,_m) + 5;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C2(k,l,m) = T2(k,l,m) + A(i,j,k)*B(j,l,i,m) + 5;" << std::endl << std::endl;
+// std::cout << "C2=" << C2 << ";" << std::endl << std::endl;
+
+ }
+}
diff --git a/src/boost/libs/numeric/ublas/examples/tensor/prod_expressions.cpp b/src/boost/libs/numeric/ublas/examples/tensor/prod_expressions.cpp
new file mode 100644
index 00000000..6ff72521
--- /dev/null
+++ b/src/boost/libs/numeric/ublas/examples/tensor/prod_expressions.cpp
@@ -0,0 +1,183 @@
+//
+// Copyright (c) 2018-2019, Cem Bassoy, cem.bassoy@gmail.com
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// The authors gratefully acknowledge the support of
+// Fraunhofer IOSB, Ettlingen, Germany
+//
+
+
+#include <boost/numeric/ublas/tensor.hpp>
+#include <boost/numeric/ublas/matrix.hpp>
+#include <boost/numeric/ublas/vector.hpp>
+#include <iostream>
+
+int main()
+{
+ using namespace boost::numeric::ublas;
+
+ using format_t = column_major;
+ using value_t = float; // std::complex<double>;
+ using tensor_t = tensor<value_t,format_t>;
+ using matrix_t = matrix<value_t,format_t>;
+ using vector_t = vector<value_t>;
+
+ // Tensor-Vector-Multiplications - Including Transposition
+ {
+
+ auto n = shape{3,4,2};
+ auto A = tensor_t(n,2);
+ auto q = 0u; // contraction mode
+
+ // C1(j,k) = T2(j,k) + A(i,j,k)*T1(i);
+ q = 1u;
+ tensor_t C1 = matrix_t(n[1],n[2],2) + prod(A,vector_t(n[q-1],1),q);
+
+ // C2(i,k) = A(i,j,k)*T1(j) + 4;
+ q = 2u;
+ tensor_t C2 = prod(A,vector_t(n[q-1],1),q) + 4;
+
+ // C3() = A(i,j,k)*T1(i)*T2(j)*T2(k);
+ tensor_t C3 = prod(prod(prod(A,vector_t(n[0],1),1),vector_t(n[1],1),1),vector_t(n[2],1),1);
+
+ // C4(i,j) = A(k,i,j)*T1(k) + 4;
+ q = 1u;
+ tensor_t C4 = prod(trans(A,{2,3,1}),vector_t(n[2],1),q) + 4;
+
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C1(j,k) = T2(j,k) + A(i,j,k)*T1(i);" << std::endl << std::endl;
+ std::cout << "C1=" << C1 << ";" << std::endl << std::endl;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C2(i,k) = A(i,j,k)*T1(j) + 4;" << std::endl << std::endl;
+ std::cout << "C2=" << C2 << ";" << std::endl << std::endl;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C3() = A(i,j,k)*T1(i)*T2(j)*T2(k);" << std::endl << std::endl;
+ std::cout << "C3()=" << C3(0) << ";" << std::endl << std::endl;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C4(i,j) = A(k,i,j)*T1(k) + 4;" << std::endl << std::endl;
+ std::cout << "C4=" << C4 << ";" << std::endl << std::endl;
+
+ }
+
+
+ // Tensor-Matrix-Multiplications - Including Transposition
+ {
+
+ auto n = shape{3,4,2};
+ auto A = tensor_t(n,2);
+ auto m = 5u;
+ auto q = 0u; // contraction mode
+
+ // C1(l,j,k) = T2(l,j,k) + A(i,j,k)*T1(l,i);
+ q = 1u;
+ tensor_t C1 = tensor_t(shape{m,n[1],n[2]},2) + prod(A,matrix_t(m,n[q-1],1),q);
+
+ // C2(i,l,k) = A(i,j,k)*T1(l,j) + 4;
+ q = 2u;
+ tensor_t C2 = prod(A,matrix_t(m,n[q-1],1),q) + 4;
+
+ // C3(i,l1,l2) = A(i,j,k)*T1(l1,j)*T2(l2,k);
+ q = 3u;
+ tensor_t C3 = prod(prod(A,matrix_t(m+1,n[q-2],1),q-1),matrix_t(m+2,n[q-1],1),q);
+
+ // C4(i,l1,l2) = A(i,j,k)*T2(l2,k)*T1(l1,j);
+ tensor_t C4 = prod(prod(A,matrix_t(m+2,n[q-1],1),q),matrix_t(m+1,n[q-2],1),q-1);
+
+ // C5(i,k,l) = A(i,k,j)*T1(l,j) + 4;
+ q = 3u;
+ tensor_t C5 = prod(trans(A,{1,3,2}),matrix_t(m,n[1],1),q) + 4;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C1(l,j,k) = T2(l,j,k) + A(i,j,k)*T1(l,i);" << std::endl << std::endl;
+ std::cout << "C1=" << C1 << ";" << std::endl << std::endl;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C2(i,l,k) = A(i,j,k)*T1(l,j) + 4;" << std::endl << std::endl;
+ std::cout << "C2=" << C2 << ";" << std::endl << std::endl;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C3(i,l1,l2) = A(i,j,k)*T1(l1,j)*T2(l2,k);" << std::endl << std::endl;
+ std::cout << "C3=" << C3 << ";" << std::endl << std::endl;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C4(i,l1,l2) = A(i,j,k)*T2(l2,k)*T1(l1,j);" << std::endl << std::endl;
+ std::cout << "C4=" << C4 << ";" << std::endl << std::endl;
+ std::cout << "% C3 and C4 should have the same values, true? " << std::boolalpha << (C3 == C4) << "!" << std::endl;
+
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C5(i,k,l) = A(i,k,j)*T1(l,j) + 4;" << std::endl << std::endl;
+ std::cout << "C5=" << C5 << ";" << std::endl << std::endl;
+ }
+
+
+
+
+
+ // Tensor-Tensor-Multiplications Including Transposition
+ {
+
+ using perm_t = std::vector<std::size_t>;
+
+ auto na = shape{3,4,5};
+ auto nb = shape{4,6,3,2};
+ auto A = tensor_t(na,2);
+ auto B = tensor_t(nb,3);
+
+
+ // C1(j,l) = T(j,l) + A(i,j,k)*A(i,j,l) + 5;
+ tensor_t C1 = tensor_t(shape{na[2],na[2]},2) + prod(A,A,perm_t{1,2}) + 5;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C1(k,l) = T(k,l) + A(i,j,k)*A(i,j,l) + 5;" << std::endl << std::endl;
+ std::cout << "C1=" << C1 << ";" << std::endl << std::endl;
+
+
+ // C2(k,l,m) = T(k,l,m) + A(i,j,k)*B(j,l,i,m) + 5;
+ tensor_t C2 = tensor_t(shape{na[2],nb[1],nb[3]},2) + prod(A,B,perm_t{1,2},perm_t{3,1}) + 5;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C2(k,l,m) = T(k,l,m) + A(i,j,k)*B(j,l,i,m) + 5;" << std::endl << std::endl;
+ std::cout << "C2=" << C2 << ";" << std::endl << std::endl;
+
+
+ // C3(k,l,m) = T(k,l,m) + A(i,j,k)*trans(B(j,l,i,m),{2,3,1,4})+ 5;
+ tensor_t C3 = tensor_t(shape{na[2],nb[1],nb[3]},2) + prod(A,trans(B,{2,3,1,4}),perm_t{1,2}) + 5;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "% C3(k,l,m) = T(k,l,m) + A(i,j,k)*trans(B(j,l,i,m),{2,3,1,4})+ 5;" << std::endl << std::endl;
+ std::cout << "C3=" << C3 << ";" << std::endl << std::endl;
+
+ }
+}
diff --git a/src/boost/libs/numeric/ublas/examples/tensor/simple_expressions.cpp b/src/boost/libs/numeric/ublas/examples/tensor/simple_expressions.cpp
new file mode 100644
index 00000000..fabb00f4
--- /dev/null
+++ b/src/boost/libs/numeric/ublas/examples/tensor/simple_expressions.cpp
@@ -0,0 +1,63 @@
+//
+// Copyright (c) 2018-2019, Cem Bassoy, cem.bassoy@gmail.com
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// The authors gratefully acknowledge the support of
+// Fraunhofer IOSB, Ettlingen, Germany
+//
+
+
+#include <boost/numeric/ublas/tensor.hpp>
+#include <boost/numeric/ublas/matrix.hpp>
+#include <boost/numeric/ublas/vector.hpp>
+#include <ostream>
+
+int main()
+{
+ using namespace boost::numeric::ublas;
+
+ using tensorf = tensor<float>;
+ using matrixf = matrix<float>;
+ using vectorf = vector<float>;
+
+ auto A = tensorf{3,4,2};
+ auto B = A = 2;
+
+ // Calling overloaded operators
+ // and using simple tensor expression templates.
+ if( A != (B+1) )
+ A += 2*B - 1;
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "A=" << A << ";" << std::endl << std::endl;
+
+ auto n = shape{3,4};
+ auto D = matrixf(n[0],n[1],1);
+ auto e = vectorf(n[1],1);
+ auto f = vectorf(n[0],2);
+
+ // Calling constructor with
+ // vector expression templates
+ tensorf C = 2*f;
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "C=" << C << ";" << std::endl << std::endl;
+
+
+ // Calling overloaded operators
+ // and mixing simple tensor and matrix expression templates
+ tensorf F = 3*C + 4*prod(2*D,e);
+
+ // formatted output
+ std::cout << "% --------------------------- " << std::endl;
+ std::cout << "% --------------------------- " << std::endl << std::endl;
+ std::cout << "F=" << F << ";" << std::endl << std::endl;
+
+
+}