summaryrefslogtreecommitdiffstats
path: root/src/seastar/dpdk/drivers/net/mlx5/mlx5_rxtx.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/seastar/dpdk/drivers/net/mlx5/mlx5_rxtx.c')
-rw-r--r--src/seastar/dpdk/drivers/net/mlx5/mlx5_rxtx.c2225
1 files changed, 2225 insertions, 0 deletions
diff --git a/src/seastar/dpdk/drivers/net/mlx5/mlx5_rxtx.c b/src/seastar/dpdk/drivers/net/mlx5/mlx5_rxtx.c
new file mode 100644
index 00000000..de6e0fa4
--- /dev/null
+++ b/src/seastar/dpdk/drivers/net/mlx5/mlx5_rxtx.c
@@ -0,0 +1,2225 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright 2015 6WIND S.A.
+ * Copyright 2015 Mellanox.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of 6WIND S.A. nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <assert.h>
+#include <stdint.h>
+#include <string.h>
+#include <stdlib.h>
+
+/* Verbs header. */
+/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
+#ifdef PEDANTIC
+#pragma GCC diagnostic ignored "-Wpedantic"
+#endif
+#include <infiniband/verbs.h>
+#include <infiniband/mlx5_hw.h>
+#include <infiniband/arch.h>
+#ifdef PEDANTIC
+#pragma GCC diagnostic error "-Wpedantic"
+#endif
+
+/* DPDK headers don't like -pedantic. */
+#ifdef PEDANTIC
+#pragma GCC diagnostic ignored "-Wpedantic"
+#endif
+#include <rte_mbuf.h>
+#include <rte_mempool.h>
+#include <rte_prefetch.h>
+#include <rte_common.h>
+#include <rte_branch_prediction.h>
+#include <rte_ether.h>
+#ifdef PEDANTIC
+#pragma GCC diagnostic error "-Wpedantic"
+#endif
+
+#include "mlx5.h"
+#include "mlx5_utils.h"
+#include "mlx5_rxtx.h"
+#include "mlx5_autoconf.h"
+#include "mlx5_defs.h"
+#include "mlx5_prm.h"
+
+static inline int
+check_cqe(volatile struct mlx5_cqe *cqe,
+ unsigned int cqes_n, const uint16_t ci)
+ __attribute__((always_inline));
+
+static inline void
+txq_complete(struct txq *txq) __attribute__((always_inline));
+
+static inline uint32_t
+txq_mp2mr(struct txq *txq, struct rte_mempool *mp)
+ __attribute__((always_inline));
+
+static inline void
+mlx5_tx_dbrec(struct txq *txq, volatile struct mlx5_wqe *wqe)
+ __attribute__((always_inline));
+
+static inline uint32_t
+rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
+ __attribute__((always_inline));
+
+static inline int
+mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe *cqe,
+ uint16_t cqe_cnt, uint32_t *rss_hash)
+ __attribute__((always_inline));
+
+static inline uint32_t
+rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe *cqe)
+ __attribute__((always_inline));
+
+#ifndef NDEBUG
+
+/**
+ * Verify or set magic value in CQE.
+ *
+ * @param cqe
+ * Pointer to CQE.
+ *
+ * @return
+ * 0 the first time.
+ */
+static inline int
+check_cqe_seen(volatile struct mlx5_cqe *cqe)
+{
+ static const uint8_t magic[] = "seen";
+ volatile uint8_t (*buf)[sizeof(cqe->rsvd0)] = &cqe->rsvd0;
+ int ret = 1;
+ unsigned int i;
+
+ for (i = 0; i < sizeof(magic) && i < sizeof(*buf); ++i)
+ if (!ret || (*buf)[i] != magic[i]) {
+ ret = 0;
+ (*buf)[i] = magic[i];
+ }
+ return ret;
+}
+
+#endif /* NDEBUG */
+
+/**
+ * Check whether CQE is valid.
+ *
+ * @param cqe
+ * Pointer to CQE.
+ * @param cqes_n
+ * Size of completion queue.
+ * @param ci
+ * Consumer index.
+ *
+ * @return
+ * 0 on success, 1 on failure.
+ */
+static inline int
+check_cqe(volatile struct mlx5_cqe *cqe,
+ unsigned int cqes_n, const uint16_t ci)
+{
+ uint16_t idx = ci & cqes_n;
+ uint8_t op_own = cqe->op_own;
+ uint8_t op_owner = MLX5_CQE_OWNER(op_own);
+ uint8_t op_code = MLX5_CQE_OPCODE(op_own);
+
+ if (unlikely((op_owner != (!!(idx))) || (op_code == MLX5_CQE_INVALID)))
+ return 1; /* No CQE. */
+#ifndef NDEBUG
+ if ((op_code == MLX5_CQE_RESP_ERR) ||
+ (op_code == MLX5_CQE_REQ_ERR)) {
+ volatile struct mlx5_err_cqe *err_cqe = (volatile void *)cqe;
+ uint8_t syndrome = err_cqe->syndrome;
+
+ if ((syndrome == MLX5_CQE_SYNDROME_LOCAL_LENGTH_ERR) ||
+ (syndrome == MLX5_CQE_SYNDROME_REMOTE_ABORTED_ERR))
+ return 0;
+ if (!check_cqe_seen(cqe))
+ ERROR("unexpected CQE error %u (0x%02x)"
+ " syndrome 0x%02x",
+ op_code, op_code, syndrome);
+ return 1;
+ } else if ((op_code != MLX5_CQE_RESP_SEND) &&
+ (op_code != MLX5_CQE_REQ)) {
+ if (!check_cqe_seen(cqe))
+ ERROR("unexpected CQE opcode %u (0x%02x)",
+ op_code, op_code);
+ return 1;
+ }
+#endif /* NDEBUG */
+ return 0;
+}
+
+/**
+ * Return the address of the WQE.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param wqe_ci
+ * WQE consumer index.
+ *
+ * @return
+ * WQE address.
+ */
+static inline uintptr_t *
+tx_mlx5_wqe(struct txq *txq, uint16_t ci)
+{
+ ci &= ((1 << txq->wqe_n) - 1);
+ return (uintptr_t *)((uintptr_t)txq->wqes + ci * MLX5_WQE_SIZE);
+}
+
+/**
+ * Return the size of tailroom of WQ.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param addr
+ * Pointer to tail of WQ.
+ *
+ * @return
+ * Size of tailroom.
+ */
+static inline size_t
+tx_mlx5_wq_tailroom(struct txq *txq, void *addr)
+{
+ size_t tailroom;
+ tailroom = (uintptr_t)(txq->wqes) +
+ (1 << txq->wqe_n) * MLX5_WQE_SIZE -
+ (uintptr_t)addr;
+ return tailroom;
+}
+
+/**
+ * Copy data to tailroom of circular queue.
+ *
+ * @param dst
+ * Pointer to destination.
+ * @param src
+ * Pointer to source.
+ * @param n
+ * Number of bytes to copy.
+ * @param base
+ * Pointer to head of queue.
+ * @param tailroom
+ * Size of tailroom from dst.
+ *
+ * @return
+ * Pointer after copied data.
+ */
+static inline void *
+mlx5_copy_to_wq(void *dst, const void *src, size_t n,
+ void *base, size_t tailroom)
+{
+ void *ret;
+
+ if (n > tailroom) {
+ rte_memcpy(dst, src, tailroom);
+ rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
+ n - tailroom);
+ ret = (uint8_t *)base + n - tailroom;
+ } else {
+ rte_memcpy(dst, src, n);
+ ret = (n == tailroom) ? base : (uint8_t *)dst + n;
+ }
+ return ret;
+}
+
+/**
+ * Manage TX completions.
+ *
+ * When sending a burst, mlx5_tx_burst() posts several WRs.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ */
+static inline void
+txq_complete(struct txq *txq)
+{
+ const unsigned int elts_n = 1 << txq->elts_n;
+ const unsigned int cqe_n = 1 << txq->cqe_n;
+ const unsigned int cqe_cnt = cqe_n - 1;
+ uint16_t elts_free = txq->elts_tail;
+ uint16_t elts_tail;
+ uint16_t cq_ci = txq->cq_ci;
+ volatile struct mlx5_cqe *cqe = NULL;
+ volatile struct mlx5_wqe_ctrl *ctrl;
+
+ do {
+ volatile struct mlx5_cqe *tmp;
+
+ tmp = &(*txq->cqes)[cq_ci & cqe_cnt];
+ if (check_cqe(tmp, cqe_n, cq_ci))
+ break;
+ cqe = tmp;
+#ifndef NDEBUG
+ if (MLX5_CQE_FORMAT(cqe->op_own) == MLX5_COMPRESSED) {
+ if (!check_cqe_seen(cqe))
+ ERROR("unexpected compressed CQE, TX stopped");
+ return;
+ }
+ if ((MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_RESP_ERR) ||
+ (MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_REQ_ERR)) {
+ if (!check_cqe_seen(cqe))
+ ERROR("unexpected error CQE, TX stopped");
+ return;
+ }
+#endif /* NDEBUG */
+ ++cq_ci;
+ } while (1);
+ if (unlikely(cqe == NULL))
+ return;
+ txq->wqe_pi = ntohs(cqe->wqe_counter);
+ ctrl = (volatile struct mlx5_wqe_ctrl *)
+ tx_mlx5_wqe(txq, txq->wqe_pi);
+ elts_tail = ctrl->ctrl3;
+ assert(elts_tail < (1 << txq->wqe_n));
+ /* Free buffers. */
+ while (elts_free != elts_tail) {
+ struct rte_mbuf *elt = (*txq->elts)[elts_free];
+ unsigned int elts_free_next =
+ (elts_free + 1) & (elts_n - 1);
+ struct rte_mbuf *elt_next = (*txq->elts)[elts_free_next];
+
+#ifndef NDEBUG
+ /* Poisoning. */
+ memset(&(*txq->elts)[elts_free],
+ 0x66,
+ sizeof((*txq->elts)[elts_free]));
+#endif
+ RTE_MBUF_PREFETCH_TO_FREE(elt_next);
+ /* Only one segment needs to be freed. */
+ rte_pktmbuf_free_seg(elt);
+ elts_free = elts_free_next;
+ }
+ txq->cq_ci = cq_ci;
+ txq->elts_tail = elts_tail;
+ /* Update the consumer index. */
+ rte_wmb();
+ *txq->cq_db = htonl(cq_ci);
+}
+
+/**
+ * Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which
+ * the cloned mbuf is allocated is returned instead.
+ *
+ * @param buf
+ * Pointer to mbuf.
+ *
+ * @return
+ * Memory pool where data is located for given mbuf.
+ */
+static struct rte_mempool *
+txq_mb2mp(struct rte_mbuf *buf)
+{
+ if (unlikely(RTE_MBUF_INDIRECT(buf)))
+ return rte_mbuf_from_indirect(buf)->pool;
+ return buf->pool;
+}
+
+/**
+ * Get Memory Region (MR) <-> Memory Pool (MP) association from txq->mp2mr[].
+ * Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full,
+ * remove an entry first.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param[in] mp
+ * Memory Pool for which a Memory Region lkey must be returned.
+ *
+ * @return
+ * mr->lkey on success, (uint32_t)-1 on failure.
+ */
+static inline uint32_t
+txq_mp2mr(struct txq *txq, struct rte_mempool *mp)
+{
+ unsigned int i;
+ uint32_t lkey = (uint32_t)-1;
+
+ for (i = 0; (i != RTE_DIM(txq->mp2mr)); ++i) {
+ if (unlikely(txq->mp2mr[i].mp == NULL)) {
+ /* Unknown MP, add a new MR for it. */
+ break;
+ }
+ if (txq->mp2mr[i].mp == mp) {
+ assert(txq->mp2mr[i].lkey != (uint32_t)-1);
+ assert(htonl(txq->mp2mr[i].mr->lkey) ==
+ txq->mp2mr[i].lkey);
+ lkey = txq->mp2mr[i].lkey;
+ break;
+ }
+ }
+ if (unlikely(lkey == (uint32_t)-1))
+ lkey = txq_mp2mr_reg(txq, mp, i);
+ return lkey;
+}
+
+/**
+ * Ring TX queue doorbell.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param wqe
+ * Pointer to the last WQE posted in the NIC.
+ */
+static inline void
+mlx5_tx_dbrec(struct txq *txq, volatile struct mlx5_wqe *wqe)
+{
+ uint64_t *dst = (uint64_t *)((uintptr_t)txq->bf_reg);
+ volatile uint64_t *src = ((volatile uint64_t *)wqe);
+
+ rte_wmb();
+ *txq->qp_db = htonl(txq->wqe_ci);
+ /* Ensure ordering between DB record and BF copy. */
+ rte_wmb();
+ *dst = *src;
+}
+
+/**
+ * DPDK callback to check the status of a tx descriptor.
+ *
+ * @param tx_queue
+ * The tx queue.
+ * @param[in] offset
+ * The index of the descriptor in the ring.
+ *
+ * @return
+ * The status of the tx descriptor.
+ */
+int
+mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
+{
+ struct txq *txq = tx_queue;
+ const unsigned int elts_n = 1 << txq->elts_n;
+ const unsigned int elts_cnt = elts_n - 1;
+ unsigned int used;
+
+ txq_complete(txq);
+ used = (txq->elts_head - txq->elts_tail) & elts_cnt;
+ if (offset < used)
+ return RTE_ETH_TX_DESC_FULL;
+ return RTE_ETH_TX_DESC_DONE;
+}
+
+/**
+ * DPDK callback to check the status of a rx descriptor.
+ *
+ * @param rx_queue
+ * The rx queue.
+ * @param[in] offset
+ * The index of the descriptor in the ring.
+ *
+ * @return
+ * The status of the tx descriptor.
+ */
+int
+mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
+{
+ struct rxq *rxq = rx_queue;
+ struct rxq_zip *zip = &rxq->zip;
+ volatile struct mlx5_cqe *cqe;
+ const unsigned int cqe_n = (1 << rxq->cqe_n);
+ const unsigned int cqe_cnt = cqe_n - 1;
+ unsigned int cq_ci;
+ unsigned int used;
+
+ /* if we are processing a compressed cqe */
+ if (zip->ai) {
+ used = zip->cqe_cnt - zip->ca;
+ cq_ci = zip->cq_ci;
+ } else {
+ used = 0;
+ cq_ci = rxq->cq_ci;
+ }
+ cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
+ while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
+ int8_t op_own;
+ unsigned int n;
+
+ op_own = cqe->op_own;
+ if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
+ n = ntohl(cqe->byte_cnt);
+ else
+ n = 1;
+ cq_ci += n;
+ used += n;
+ cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
+ }
+ used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
+ if (offset < used)
+ return RTE_ETH_RX_DESC_DONE;
+ return RTE_ETH_RX_DESC_AVAIL;
+}
+
+/**
+ * DPDK callback for TX.
+ *
+ * @param dpdk_txq
+ * Generic pointer to TX queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+uint16_t
+mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ struct txq *txq = (struct txq *)dpdk_txq;
+ uint16_t elts_head = txq->elts_head;
+ const unsigned int elts_n = 1 << txq->elts_n;
+ unsigned int i = 0;
+ unsigned int j = 0;
+ unsigned int k = 0;
+ unsigned int max;
+ unsigned int max_inline = txq->max_inline;
+ const unsigned int inline_en = !!max_inline && txq->inline_en;
+ uint16_t max_wqe;
+ unsigned int comp;
+ volatile struct mlx5_wqe_v *wqe = NULL;
+ volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
+ unsigned int segs_n = 0;
+ struct rte_mbuf *buf = NULL;
+ uint8_t *raw;
+
+ if (unlikely(!pkts_n))
+ return 0;
+ /* Prefetch first packet cacheline. */
+ rte_prefetch0(*pkts);
+ /* Start processing. */
+ txq_complete(txq);
+ max = (elts_n - (elts_head - txq->elts_tail));
+ if (max > elts_n)
+ max -= elts_n;
+ max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
+ if (unlikely(!max_wqe))
+ return 0;
+ do {
+ volatile rte_v128u32_t *dseg = NULL;
+ uint32_t length;
+ unsigned int ds = 0;
+ unsigned int sg = 0; /* counter of additional segs attached. */
+ uintptr_t addr;
+ uint64_t naddr;
+ uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
+ uint16_t tso_header_sz = 0;
+ uint16_t ehdr;
+ uint8_t cs_flags = 0;
+ uint64_t tso = 0;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ uint32_t total_length = 0;
+#endif
+
+ /* first_seg */
+ buf = *pkts;
+ segs_n = buf->nb_segs;
+ /*
+ * Make sure there is enough room to store this packet and
+ * that one ring entry remains unused.
+ */
+ assert(segs_n);
+ if (max < segs_n + 1)
+ break;
+ max -= segs_n;
+ --segs_n;
+ if (unlikely(--max_wqe == 0))
+ break;
+ wqe = (volatile struct mlx5_wqe_v *)
+ tx_mlx5_wqe(txq, txq->wqe_ci);
+ rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
+ if (pkts_n - i > 1)
+ rte_prefetch0(*(pkts + 1));
+ addr = rte_pktmbuf_mtod(buf, uintptr_t);
+ length = DATA_LEN(buf);
+ ehdr = (((uint8_t *)addr)[1] << 8) |
+ ((uint8_t *)addr)[0];
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ total_length = length;
+#endif
+ if (length < (MLX5_WQE_DWORD_SIZE + 2))
+ break;
+ /* Update element. */
+ (*txq->elts)[elts_head] = buf;
+ /* Prefetch next buffer data. */
+ if (pkts_n - i > 1)
+ rte_prefetch0(
+ rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
+ /* Should we enable HW CKSUM offload */
+ if (buf->ol_flags &
+ (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
+ const uint64_t is_tunneled = buf->ol_flags &
+ (PKT_TX_TUNNEL_GRE |
+ PKT_TX_TUNNEL_VXLAN);
+
+ if (is_tunneled && txq->tunnel_en) {
+ cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
+ MLX5_ETH_WQE_L4_INNER_CSUM;
+ if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
+ cs_flags |= MLX5_ETH_WQE_L3_CSUM;
+ } else {
+ cs_flags = MLX5_ETH_WQE_L3_CSUM |
+ MLX5_ETH_WQE_L4_CSUM;
+ }
+ }
+ raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
+ /* Replace the Ethernet type by the VLAN if necessary. */
+ if (buf->ol_flags & PKT_TX_VLAN_PKT) {
+ uint32_t vlan = htonl(0x81000000 | buf->vlan_tci);
+ unsigned int len = 2 * ETHER_ADDR_LEN - 2;
+
+ addr += 2;
+ length -= 2;
+ /* Copy Destination and source mac address. */
+ memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
+ /* Copy VLAN. */
+ memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
+ /* Copy missing two bytes to end the DSeg. */
+ memcpy((uint8_t *)raw + len + sizeof(vlan),
+ ((uint8_t *)addr) + len, 2);
+ addr += len + 2;
+ length -= (len + 2);
+ } else {
+ memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
+ MLX5_WQE_DWORD_SIZE);
+ length -= pkt_inline_sz;
+ addr += pkt_inline_sz;
+ }
+ if (txq->tso_en) {
+ tso = buf->ol_flags & PKT_TX_TCP_SEG;
+ if (tso) {
+ uintptr_t end = (uintptr_t)
+ (((uintptr_t)txq->wqes) +
+ (1 << txq->wqe_n) *
+ MLX5_WQE_SIZE);
+ unsigned int copy_b;
+ uint8_t vlan_sz = (buf->ol_flags &
+ PKT_TX_VLAN_PKT) ? 4 : 0;
+ const uint64_t is_tunneled =
+ buf->ol_flags &
+ (PKT_TX_TUNNEL_GRE |
+ PKT_TX_TUNNEL_VXLAN);
+
+ tso_header_sz = buf->l2_len + vlan_sz +
+ buf->l3_len + buf->l4_len;
+
+ if (is_tunneled && txq->tunnel_en) {
+ tso_header_sz += buf->outer_l2_len +
+ buf->outer_l3_len;
+ cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
+ } else {
+ cs_flags |= MLX5_ETH_WQE_L4_CSUM;
+ }
+ if (unlikely(tso_header_sz >
+ MLX5_MAX_TSO_HEADER))
+ break;
+ copy_b = tso_header_sz - pkt_inline_sz;
+ /* First seg must contain all headers. */
+ assert(copy_b <= length);
+ raw += MLX5_WQE_DWORD_SIZE;
+ if (copy_b &&
+ ((end - (uintptr_t)raw) > copy_b)) {
+ uint16_t n = (MLX5_WQE_DS(copy_b) -
+ 1 + 3) / 4;
+
+ if (unlikely(max_wqe < n))
+ break;
+ max_wqe -= n;
+ rte_memcpy((void *)raw,
+ (void *)addr, copy_b);
+ addr += copy_b;
+ length -= copy_b;
+ pkt_inline_sz += copy_b;
+ /*
+ * Another DWORD will be added
+ * in the inline part.
+ */
+ raw += MLX5_WQE_DS(copy_b) *
+ MLX5_WQE_DWORD_SIZE -
+ MLX5_WQE_DWORD_SIZE;
+ } else {
+ /* NOP WQE. */
+ wqe->ctrl = (rte_v128u32_t){
+ htonl(txq->wqe_ci << 8),
+ htonl(txq->qp_num_8s | 1),
+ 0,
+ 0,
+ };
+ ds = 1;
+ total_length = 0;
+ k++;
+ goto next_wqe;
+ }
+ }
+ }
+ /* Inline if enough room. */
+ if (inline_en || tso) {
+ uintptr_t end = (uintptr_t)
+ (((uintptr_t)txq->wqes) +
+ (1 << txq->wqe_n) * MLX5_WQE_SIZE);
+ unsigned int inline_room = max_inline *
+ RTE_CACHE_LINE_SIZE -
+ (pkt_inline_sz - 2);
+ uintptr_t addr_end = (addr + inline_room) &
+ ~(RTE_CACHE_LINE_SIZE - 1);
+ unsigned int copy_b = (addr_end > addr) ?
+ RTE_MIN((addr_end - addr), length) :
+ 0;
+
+ raw += MLX5_WQE_DWORD_SIZE;
+ if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
+ /*
+ * One Dseg remains in the current WQE. To
+ * keep the computation positive, it is
+ * removed after the bytes to Dseg conversion.
+ */
+ uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
+
+ if (unlikely(max_wqe < n))
+ break;
+ max_wqe -= n;
+ if (tso) {
+ uint32_t inl =
+ htonl(copy_b | MLX5_INLINE_SEG);
+
+ pkt_inline_sz =
+ MLX5_WQE_DS(tso_header_sz) *
+ MLX5_WQE_DWORD_SIZE;
+ rte_memcpy((void *)raw,
+ (void *)&inl, sizeof(inl));
+ raw += sizeof(inl);
+ pkt_inline_sz += sizeof(inl);
+ }
+ rte_memcpy((void *)raw, (void *)addr, copy_b);
+ addr += copy_b;
+ length -= copy_b;
+ pkt_inline_sz += copy_b;
+ }
+ /*
+ * 2 DWORDs consumed by the WQE header + ETH segment +
+ * the size of the inline part of the packet.
+ */
+ ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
+ if (length > 0) {
+ if (ds % (MLX5_WQE_SIZE /
+ MLX5_WQE_DWORD_SIZE) == 0) {
+ if (unlikely(--max_wqe == 0))
+ break;
+ dseg = (volatile rte_v128u32_t *)
+ tx_mlx5_wqe(txq, txq->wqe_ci +
+ ds / 4);
+ } else {
+ dseg = (volatile rte_v128u32_t *)
+ ((uintptr_t)wqe +
+ (ds * MLX5_WQE_DWORD_SIZE));
+ }
+ goto use_dseg;
+ } else if (!segs_n) {
+ goto next_pkt;
+ } else {
+ /* dseg will be advance as part of next_seg */
+ dseg = (volatile rte_v128u32_t *)
+ ((uintptr_t)wqe +
+ ((ds - 1) * MLX5_WQE_DWORD_SIZE));
+ goto next_seg;
+ }
+ } else {
+ /*
+ * No inline has been done in the packet, only the
+ * Ethernet Header as been stored.
+ */
+ dseg = (volatile rte_v128u32_t *)
+ ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
+ ds = 3;
+use_dseg:
+ /* Add the remaining packet as a simple ds. */
+ naddr = htonll(addr);
+ *dseg = (rte_v128u32_t){
+ htonl(length),
+ txq_mp2mr(txq, txq_mb2mp(buf)),
+ naddr,
+ naddr >> 32,
+ };
+ ++ds;
+ if (!segs_n)
+ goto next_pkt;
+ }
+next_seg:
+ assert(buf);
+ assert(ds);
+ assert(wqe);
+ /*
+ * Spill on next WQE when the current one does not have
+ * enough room left. Size of WQE must a be a multiple
+ * of data segment size.
+ */
+ assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
+ if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
+ if (unlikely(--max_wqe == 0))
+ break;
+ dseg = (volatile rte_v128u32_t *)
+ tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
+ rte_prefetch0(tx_mlx5_wqe(txq,
+ txq->wqe_ci + ds / 4 + 1));
+ } else {
+ ++dseg;
+ }
+ ++ds;
+ buf = buf->next;
+ assert(buf);
+ length = DATA_LEN(buf);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ total_length += length;
+#endif
+ /* Store segment information. */
+ naddr = htonll(rte_pktmbuf_mtod(buf, uintptr_t));
+ *dseg = (rte_v128u32_t){
+ htonl(length),
+ txq_mp2mr(txq, txq_mb2mp(buf)),
+ naddr,
+ naddr >> 32,
+ };
+ elts_head = (elts_head + 1) & (elts_n - 1);
+ (*txq->elts)[elts_head] = buf;
+ ++sg;
+ /* Advance counter only if all segs are successfully posted. */
+ if (sg < segs_n)
+ goto next_seg;
+ else
+ j += sg;
+next_pkt:
+ elts_head = (elts_head + 1) & (elts_n - 1);
+ ++pkts;
+ ++i;
+ /* Initialize known and common part of the WQE structure. */
+ if (tso) {
+ wqe->ctrl = (rte_v128u32_t){
+ htonl((txq->wqe_ci << 8) | MLX5_OPCODE_TSO),
+ htonl(txq->qp_num_8s | ds),
+ 0,
+ 0,
+ };
+ wqe->eseg = (rte_v128u32_t){
+ 0,
+ cs_flags | (htons(buf->tso_segsz) << 16),
+ 0,
+ (ehdr << 16) | htons(tso_header_sz),
+ };
+ } else {
+ wqe->ctrl = (rte_v128u32_t){
+ htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND),
+ htonl(txq->qp_num_8s | ds),
+ 0,
+ 0,
+ };
+ wqe->eseg = (rte_v128u32_t){
+ 0,
+ cs_flags,
+ 0,
+ (ehdr << 16) | htons(pkt_inline_sz),
+ };
+ }
+next_wqe:
+ txq->wqe_ci += (ds + 3) / 4;
+ /* Save the last successful WQE for completion request */
+ last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Increment sent bytes counter. */
+ txq->stats.obytes += total_length;
+#endif
+ } while (i < pkts_n);
+ /* Take a shortcut if nothing must be sent. */
+ if (unlikely((i + k) == 0))
+ return 0;
+ txq->elts_head = (txq->elts_head + i + j) & (elts_n - 1);
+ /* Check whether completion threshold has been reached. */
+ comp = txq->elts_comp + i + j + k;
+ if (comp >= MLX5_TX_COMP_THRESH) {
+ /* Request completion on last WQE. */
+ last_wqe->ctrl2 = htonl(8);
+ /* Save elts_head in unused "immediate" field of WQE. */
+ last_wqe->ctrl3 = txq->elts_head;
+ txq->elts_comp = 0;
+ } else {
+ txq->elts_comp = comp;
+ }
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Increment sent packets counter. */
+ txq->stats.opackets += i;
+#endif
+ /* Ring QP doorbell. */
+ mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
+ return i;
+}
+
+/**
+ * Open a MPW session.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param mpw
+ * Pointer to MPW session structure.
+ * @param length
+ * Packet length.
+ */
+static inline void
+mlx5_mpw_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
+{
+ uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
+ volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
+ (volatile struct mlx5_wqe_data_seg (*)[])
+ tx_mlx5_wqe(txq, idx + 1);
+
+ mpw->state = MLX5_MPW_STATE_OPENED;
+ mpw->pkts_n = 0;
+ mpw->len = length;
+ mpw->total_len = 0;
+ mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
+ mpw->wqe->eseg.mss = htons(length);
+ mpw->wqe->eseg.inline_hdr_sz = 0;
+ mpw->wqe->eseg.rsvd0 = 0;
+ mpw->wqe->eseg.rsvd1 = 0;
+ mpw->wqe->eseg.rsvd2 = 0;
+ mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
+ (txq->wqe_ci << 8) | MLX5_OPCODE_TSO);
+ mpw->wqe->ctrl[2] = 0;
+ mpw->wqe->ctrl[3] = 0;
+ mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
+ (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
+ mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
+ (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
+ mpw->data.dseg[2] = &(*dseg)[0];
+ mpw->data.dseg[3] = &(*dseg)[1];
+ mpw->data.dseg[4] = &(*dseg)[2];
+}
+
+/**
+ * Close a MPW session.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param mpw
+ * Pointer to MPW session structure.
+ */
+static inline void
+mlx5_mpw_close(struct txq *txq, struct mlx5_mpw *mpw)
+{
+ unsigned int num = mpw->pkts_n;
+
+ /*
+ * Store size in multiple of 16 bytes. Control and Ethernet segments
+ * count as 2.
+ */
+ mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | (2 + num));
+ mpw->state = MLX5_MPW_STATE_CLOSED;
+ if (num < 3)
+ ++txq->wqe_ci;
+ else
+ txq->wqe_ci += 2;
+ rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
+ rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
+}
+
+/**
+ * DPDK callback for TX with MPW support.
+ *
+ * @param dpdk_txq
+ * Generic pointer to TX queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+uint16_t
+mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ struct txq *txq = (struct txq *)dpdk_txq;
+ uint16_t elts_head = txq->elts_head;
+ const unsigned int elts_n = 1 << txq->elts_n;
+ unsigned int i = 0;
+ unsigned int j = 0;
+ unsigned int max;
+ uint16_t max_wqe;
+ unsigned int comp;
+ struct mlx5_mpw mpw = {
+ .state = MLX5_MPW_STATE_CLOSED,
+ };
+
+ if (unlikely(!pkts_n))
+ return 0;
+ /* Prefetch first packet cacheline. */
+ rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
+ rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
+ /* Start processing. */
+ txq_complete(txq);
+ max = (elts_n - (elts_head - txq->elts_tail));
+ if (max > elts_n)
+ max -= elts_n;
+ max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
+ if (unlikely(!max_wqe))
+ return 0;
+ do {
+ struct rte_mbuf *buf = *(pkts++);
+ unsigned int elts_head_next;
+ uint32_t length;
+ unsigned int segs_n = buf->nb_segs;
+ uint32_t cs_flags = 0;
+
+ /*
+ * Make sure there is enough room to store this packet and
+ * that one ring entry remains unused.
+ */
+ assert(segs_n);
+ if (max < segs_n + 1)
+ break;
+ /* Do not bother with large packets MPW cannot handle. */
+ if (segs_n > MLX5_MPW_DSEG_MAX)
+ break;
+ max -= segs_n;
+ --pkts_n;
+ /* Should we enable HW CKSUM offload */
+ if (buf->ol_flags &
+ (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
+ cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
+ /* Retrieve packet information. */
+ length = PKT_LEN(buf);
+ assert(length);
+ /* Start new session if packet differs. */
+ if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
+ ((mpw.len != length) ||
+ (segs_n != 1) ||
+ (mpw.wqe->eseg.cs_flags != cs_flags)))
+ mlx5_mpw_close(txq, &mpw);
+ if (mpw.state == MLX5_MPW_STATE_CLOSED) {
+ /*
+ * Multi-Packet WQE consumes at most two WQE.
+ * mlx5_mpw_new() expects to be able to use such
+ * resources.
+ */
+ if (unlikely(max_wqe < 2))
+ break;
+ max_wqe -= 2;
+ mlx5_mpw_new(txq, &mpw, length);
+ mpw.wqe->eseg.cs_flags = cs_flags;
+ }
+ /* Multi-segment packets must be alone in their MPW. */
+ assert((segs_n == 1) || (mpw.pkts_n == 0));
+#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
+ length = 0;
+#endif
+ do {
+ volatile struct mlx5_wqe_data_seg *dseg;
+ uintptr_t addr;
+
+ elts_head_next = (elts_head + 1) & (elts_n - 1);
+ assert(buf);
+ (*txq->elts)[elts_head] = buf;
+ dseg = mpw.data.dseg[mpw.pkts_n];
+ addr = rte_pktmbuf_mtod(buf, uintptr_t);
+ *dseg = (struct mlx5_wqe_data_seg){
+ .byte_count = htonl(DATA_LEN(buf)),
+ .lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
+ .addr = htonll(addr),
+ };
+ elts_head = elts_head_next;
+#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
+ length += DATA_LEN(buf);
+#endif
+ buf = buf->next;
+ ++mpw.pkts_n;
+ ++j;
+ } while (--segs_n);
+ assert(length == mpw.len);
+ if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
+ mlx5_mpw_close(txq, &mpw);
+ elts_head = elts_head_next;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Increment sent bytes counter. */
+ txq->stats.obytes += length;
+#endif
+ ++i;
+ } while (pkts_n);
+ /* Take a shortcut if nothing must be sent. */
+ if (unlikely(i == 0))
+ return 0;
+ /* Check whether completion threshold has been reached. */
+ /* "j" includes both packets and segments. */
+ comp = txq->elts_comp + j;
+ if (comp >= MLX5_TX_COMP_THRESH) {
+ volatile struct mlx5_wqe *wqe = mpw.wqe;
+
+ /* Request completion on last WQE. */
+ wqe->ctrl[2] = htonl(8);
+ /* Save elts_head in unused "immediate" field of WQE. */
+ wqe->ctrl[3] = elts_head;
+ txq->elts_comp = 0;
+ } else {
+ txq->elts_comp = comp;
+ }
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Increment sent packets counter. */
+ txq->stats.opackets += i;
+#endif
+ /* Ring QP doorbell. */
+ if (mpw.state == MLX5_MPW_STATE_OPENED)
+ mlx5_mpw_close(txq, &mpw);
+ mlx5_tx_dbrec(txq, mpw.wqe);
+ txq->elts_head = elts_head;
+ return i;
+}
+
+/**
+ * Open a MPW inline session.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param mpw
+ * Pointer to MPW session structure.
+ * @param length
+ * Packet length.
+ */
+static inline void
+mlx5_mpw_inline_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
+{
+ uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
+ struct mlx5_wqe_inl_small *inl;
+
+ mpw->state = MLX5_MPW_INL_STATE_OPENED;
+ mpw->pkts_n = 0;
+ mpw->len = length;
+ mpw->total_len = 0;
+ mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
+ mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
+ (txq->wqe_ci << 8) |
+ MLX5_OPCODE_TSO);
+ mpw->wqe->ctrl[2] = 0;
+ mpw->wqe->ctrl[3] = 0;
+ mpw->wqe->eseg.mss = htons(length);
+ mpw->wqe->eseg.inline_hdr_sz = 0;
+ mpw->wqe->eseg.cs_flags = 0;
+ mpw->wqe->eseg.rsvd0 = 0;
+ mpw->wqe->eseg.rsvd1 = 0;
+ mpw->wqe->eseg.rsvd2 = 0;
+ inl = (struct mlx5_wqe_inl_small *)
+ (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
+ mpw->data.raw = (uint8_t *)&inl->raw;
+}
+
+/**
+ * Close a MPW inline session.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param mpw
+ * Pointer to MPW session structure.
+ */
+static inline void
+mlx5_mpw_inline_close(struct txq *txq, struct mlx5_mpw *mpw)
+{
+ unsigned int size;
+ struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
+ (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
+
+ size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
+ /*
+ * Store size in multiple of 16 bytes. Control and Ethernet segments
+ * count as 2.
+ */
+ mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | MLX5_WQE_DS(size));
+ mpw->state = MLX5_MPW_STATE_CLOSED;
+ inl->byte_cnt = htonl(mpw->total_len | MLX5_INLINE_SEG);
+ txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
+}
+
+/**
+ * DPDK callback for TX with MPW inline support.
+ *
+ * @param dpdk_txq
+ * Generic pointer to TX queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+uint16_t
+mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
+ uint16_t pkts_n)
+{
+ struct txq *txq = (struct txq *)dpdk_txq;
+ uint16_t elts_head = txq->elts_head;
+ const unsigned int elts_n = 1 << txq->elts_n;
+ unsigned int i = 0;
+ unsigned int j = 0;
+ unsigned int max;
+ uint16_t max_wqe;
+ unsigned int comp;
+ unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
+ struct mlx5_mpw mpw = {
+ .state = MLX5_MPW_STATE_CLOSED,
+ };
+ /*
+ * Compute the maximum number of WQE which can be consumed by inline
+ * code.
+ * - 2 DSEG for:
+ * - 1 control segment,
+ * - 1 Ethernet segment,
+ * - N Dseg from the inline request.
+ */
+ const unsigned int wqe_inl_n =
+ ((2 * MLX5_WQE_DWORD_SIZE +
+ txq->max_inline * RTE_CACHE_LINE_SIZE) +
+ RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
+
+ if (unlikely(!pkts_n))
+ return 0;
+ /* Prefetch first packet cacheline. */
+ rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
+ rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
+ /* Start processing. */
+ txq_complete(txq);
+ max = (elts_n - (elts_head - txq->elts_tail));
+ if (max > elts_n)
+ max -= elts_n;
+ do {
+ struct rte_mbuf *buf = *(pkts++);
+ unsigned int elts_head_next;
+ uintptr_t addr;
+ uint32_t length;
+ unsigned int segs_n = buf->nb_segs;
+ uint32_t cs_flags = 0;
+
+ /*
+ * Make sure there is enough room to store this packet and
+ * that one ring entry remains unused.
+ */
+ assert(segs_n);
+ if (max < segs_n + 1)
+ break;
+ /* Do not bother with large packets MPW cannot handle. */
+ if (segs_n > MLX5_MPW_DSEG_MAX)
+ break;
+ max -= segs_n;
+ --pkts_n;
+ /*
+ * Compute max_wqe in case less WQE were consumed in previous
+ * iteration.
+ */
+ max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
+ /* Should we enable HW CKSUM offload */
+ if (buf->ol_flags &
+ (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
+ cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
+ /* Retrieve packet information. */
+ length = PKT_LEN(buf);
+ /* Start new session if packet differs. */
+ if (mpw.state == MLX5_MPW_STATE_OPENED) {
+ if ((mpw.len != length) ||
+ (segs_n != 1) ||
+ (mpw.wqe->eseg.cs_flags != cs_flags))
+ mlx5_mpw_close(txq, &mpw);
+ } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
+ if ((mpw.len != length) ||
+ (segs_n != 1) ||
+ (length > inline_room) ||
+ (mpw.wqe->eseg.cs_flags != cs_flags)) {
+ mlx5_mpw_inline_close(txq, &mpw);
+ inline_room =
+ txq->max_inline * RTE_CACHE_LINE_SIZE;
+ }
+ }
+ if (mpw.state == MLX5_MPW_STATE_CLOSED) {
+ if ((segs_n != 1) ||
+ (length > inline_room)) {
+ /*
+ * Multi-Packet WQE consumes at most two WQE.
+ * mlx5_mpw_new() expects to be able to use
+ * such resources.
+ */
+ if (unlikely(max_wqe < 2))
+ break;
+ max_wqe -= 2;
+ mlx5_mpw_new(txq, &mpw, length);
+ mpw.wqe->eseg.cs_flags = cs_flags;
+ } else {
+ if (unlikely(max_wqe < wqe_inl_n))
+ break;
+ max_wqe -= wqe_inl_n;
+ mlx5_mpw_inline_new(txq, &mpw, length);
+ mpw.wqe->eseg.cs_flags = cs_flags;
+ }
+ }
+ /* Multi-segment packets must be alone in their MPW. */
+ assert((segs_n == 1) || (mpw.pkts_n == 0));
+ if (mpw.state == MLX5_MPW_STATE_OPENED) {
+ assert(inline_room ==
+ txq->max_inline * RTE_CACHE_LINE_SIZE);
+#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
+ length = 0;
+#endif
+ do {
+ volatile struct mlx5_wqe_data_seg *dseg;
+
+ elts_head_next =
+ (elts_head + 1) & (elts_n - 1);
+ assert(buf);
+ (*txq->elts)[elts_head] = buf;
+ dseg = mpw.data.dseg[mpw.pkts_n];
+ addr = rte_pktmbuf_mtod(buf, uintptr_t);
+ *dseg = (struct mlx5_wqe_data_seg){
+ .byte_count = htonl(DATA_LEN(buf)),
+ .lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
+ .addr = htonll(addr),
+ };
+ elts_head = elts_head_next;
+#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
+ length += DATA_LEN(buf);
+#endif
+ buf = buf->next;
+ ++mpw.pkts_n;
+ ++j;
+ } while (--segs_n);
+ assert(length == mpw.len);
+ if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
+ mlx5_mpw_close(txq, &mpw);
+ } else {
+ unsigned int max;
+
+ assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
+ assert(length <= inline_room);
+ assert(length == DATA_LEN(buf));
+ elts_head_next = (elts_head + 1) & (elts_n - 1);
+ addr = rte_pktmbuf_mtod(buf, uintptr_t);
+ (*txq->elts)[elts_head] = buf;
+ /* Maximum number of bytes before wrapping. */
+ max = ((((uintptr_t)(txq->wqes)) +
+ (1 << txq->wqe_n) *
+ MLX5_WQE_SIZE) -
+ (uintptr_t)mpw.data.raw);
+ if (length > max) {
+ rte_memcpy((void *)(uintptr_t)mpw.data.raw,
+ (void *)addr,
+ max);
+ mpw.data.raw = (volatile void *)txq->wqes;
+ rte_memcpy((void *)(uintptr_t)mpw.data.raw,
+ (void *)(addr + max),
+ length - max);
+ mpw.data.raw += length - max;
+ } else {
+ rte_memcpy((void *)(uintptr_t)mpw.data.raw,
+ (void *)addr,
+ length);
+
+ if (length == max)
+ mpw.data.raw =
+ (volatile void *)txq->wqes;
+ else
+ mpw.data.raw += length;
+ }
+ ++mpw.pkts_n;
+ mpw.total_len += length;
+ ++j;
+ if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
+ mlx5_mpw_inline_close(txq, &mpw);
+ inline_room =
+ txq->max_inline * RTE_CACHE_LINE_SIZE;
+ } else {
+ inline_room -= length;
+ }
+ }
+ elts_head = elts_head_next;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Increment sent bytes counter. */
+ txq->stats.obytes += length;
+#endif
+ ++i;
+ } while (pkts_n);
+ /* Take a shortcut if nothing must be sent. */
+ if (unlikely(i == 0))
+ return 0;
+ /* Check whether completion threshold has been reached. */
+ /* "j" includes both packets and segments. */
+ comp = txq->elts_comp + j;
+ if (comp >= MLX5_TX_COMP_THRESH) {
+ volatile struct mlx5_wqe *wqe = mpw.wqe;
+
+ /* Request completion on last WQE. */
+ wqe->ctrl[2] = htonl(8);
+ /* Save elts_head in unused "immediate" field of WQE. */
+ wqe->ctrl[3] = elts_head;
+ txq->elts_comp = 0;
+ } else {
+ txq->elts_comp = comp;
+ }
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Increment sent packets counter. */
+ txq->stats.opackets += i;
+#endif
+ /* Ring QP doorbell. */
+ if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
+ mlx5_mpw_inline_close(txq, &mpw);
+ else if (mpw.state == MLX5_MPW_STATE_OPENED)
+ mlx5_mpw_close(txq, &mpw);
+ mlx5_tx_dbrec(txq, mpw.wqe);
+ txq->elts_head = elts_head;
+ return i;
+}
+
+/**
+ * Open an Enhanced MPW session.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param mpw
+ * Pointer to MPW session structure.
+ * @param length
+ * Packet length.
+ */
+static inline void
+mlx5_empw_new(struct txq *txq, struct mlx5_mpw *mpw, int padding)
+{
+ uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
+
+ mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
+ mpw->pkts_n = 0;
+ mpw->total_len = sizeof(struct mlx5_wqe);
+ mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
+ mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
+ (txq->wqe_ci << 8) |
+ MLX5_OPCODE_ENHANCED_MPSW);
+ mpw->wqe->ctrl[2] = 0;
+ mpw->wqe->ctrl[3] = 0;
+ memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
+ if (unlikely(padding)) {
+ uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
+
+ /* Pad the first 2 DWORDs with zero-length inline header. */
+ *(volatile uint32_t *)addr = htonl(MLX5_INLINE_SEG);
+ *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
+ htonl(MLX5_INLINE_SEG);
+ mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
+ /* Start from the next WQEBB. */
+ mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
+ } else {
+ mpw->data.raw = (volatile void *)(mpw->wqe + 1);
+ }
+}
+
+/**
+ * Close an Enhanced MPW session.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param mpw
+ * Pointer to MPW session structure.
+ *
+ * @return
+ * Number of consumed WQEs.
+ */
+static inline uint16_t
+mlx5_empw_close(struct txq *txq, struct mlx5_mpw *mpw)
+{
+ uint16_t ret;
+
+ /* Store size in multiple of 16 bytes. Control and Ethernet segments
+ * count as 2.
+ */
+ mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | MLX5_WQE_DS(mpw->total_len));
+ mpw->state = MLX5_MPW_STATE_CLOSED;
+ ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
+ txq->wqe_ci += ret;
+ return ret;
+}
+
+/**
+ * DPDK callback for TX with Enhanced MPW support.
+ *
+ * @param dpdk_txq
+ * Generic pointer to TX queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+uint16_t
+mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ struct txq *txq = (struct txq *)dpdk_txq;
+ uint16_t elts_head = txq->elts_head;
+ const unsigned int elts_n = 1 << txq->elts_n;
+ unsigned int i = 0;
+ unsigned int j = 0;
+ unsigned int max_elts;
+ uint16_t max_wqe;
+ unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
+ unsigned int mpw_room = 0;
+ unsigned int inl_pad = 0;
+ uint32_t inl_hdr;
+ struct mlx5_mpw mpw = {
+ .state = MLX5_MPW_STATE_CLOSED,
+ };
+
+ if (unlikely(!pkts_n))
+ return 0;
+ /* Start processing. */
+ txq_complete(txq);
+ max_elts = (elts_n - (elts_head - txq->elts_tail));
+ if (max_elts > elts_n)
+ max_elts -= elts_n;
+ /* A CQE slot must always be available. */
+ assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
+ max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
+ if (unlikely(!max_wqe))
+ return 0;
+ do {
+ struct rte_mbuf *buf = *(pkts++);
+ unsigned int elts_head_next;
+ uintptr_t addr;
+ uint64_t naddr;
+ unsigned int n;
+ unsigned int do_inline = 0; /* Whether inline is possible. */
+ uint32_t length;
+ unsigned int segs_n = buf->nb_segs;
+ uint32_t cs_flags = 0;
+
+ /*
+ * Make sure there is enough room to store this packet and
+ * that one ring entry remains unused.
+ */
+ assert(segs_n);
+ if (max_elts - j < segs_n + 1)
+ break;
+ /* Do not bother with large packets MPW cannot handle. */
+ if (segs_n > MLX5_MPW_DSEG_MAX)
+ break;
+ /* Should we enable HW CKSUM offload. */
+ if (buf->ol_flags &
+ (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
+ cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
+ /* Retrieve packet information. */
+ length = PKT_LEN(buf);
+ /* Start new session if:
+ * - multi-segment packet
+ * - no space left even for a dseg
+ * - next packet can be inlined with a new WQE
+ * - cs_flag differs
+ * It can't be MLX5_MPW_STATE_OPENED as always have a single
+ * segmented packet.
+ */
+ if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
+ if ((segs_n != 1) ||
+ (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
+ mpw_room) ||
+ (length <= txq->inline_max_packet_sz &&
+ inl_pad + sizeof(inl_hdr) + length >
+ mpw_room) ||
+ (mpw.wqe->eseg.cs_flags != cs_flags))
+ max_wqe -= mlx5_empw_close(txq, &mpw);
+ }
+ if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
+ if (unlikely(segs_n != 1)) {
+ /* Fall back to legacy MPW.
+ * A MPW session consumes 2 WQEs at most to
+ * include MLX5_MPW_DSEG_MAX pointers.
+ */
+ if (unlikely(max_wqe < 2))
+ break;
+ mlx5_mpw_new(txq, &mpw, length);
+ } else {
+ /* In Enhanced MPW, inline as much as the budget
+ * is allowed. The remaining space is to be
+ * filled with dsegs. If the title WQEBB isn't
+ * padded, it will have 2 dsegs there.
+ */
+ mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
+ (max_inline ? max_inline :
+ pkts_n * MLX5_WQE_DWORD_SIZE) +
+ MLX5_WQE_SIZE);
+ if (unlikely(max_wqe * MLX5_WQE_SIZE <
+ mpw_room))
+ break;
+ /* Don't pad the title WQEBB to not waste WQ. */
+ mlx5_empw_new(txq, &mpw, 0);
+ mpw_room -= mpw.total_len;
+ inl_pad = 0;
+ do_inline =
+ length <= txq->inline_max_packet_sz &&
+ sizeof(inl_hdr) + length <= mpw_room &&
+ !txq->mpw_hdr_dseg;
+ }
+ mpw.wqe->eseg.cs_flags = cs_flags;
+ } else {
+ /* Evaluate whether the next packet can be inlined.
+ * Inlininig is possible when:
+ * - length is less than configured value
+ * - length fits for remaining space
+ * - not required to fill the title WQEBB with dsegs
+ */
+ do_inline =
+ length <= txq->inline_max_packet_sz &&
+ inl_pad + sizeof(inl_hdr) + length <=
+ mpw_room &&
+ (!txq->mpw_hdr_dseg ||
+ mpw.total_len >= MLX5_WQE_SIZE);
+ }
+ /* Multi-segment packets must be alone in their MPW. */
+ assert((segs_n == 1) || (mpw.pkts_n == 0));
+ if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
+#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
+ length = 0;
+#endif
+ do {
+ volatile struct mlx5_wqe_data_seg *dseg;
+
+ elts_head_next =
+ (elts_head + 1) & (elts_n - 1);
+ assert(buf);
+ (*txq->elts)[elts_head] = buf;
+ dseg = mpw.data.dseg[mpw.pkts_n];
+ addr = rte_pktmbuf_mtod(buf, uintptr_t);
+ *dseg = (struct mlx5_wqe_data_seg){
+ .byte_count = htonl(DATA_LEN(buf)),
+ .lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
+ .addr = htonll(addr),
+ };
+ elts_head = elts_head_next;
+#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
+ length += DATA_LEN(buf);
+#endif
+ buf = buf->next;
+ ++j;
+ ++mpw.pkts_n;
+ } while (--segs_n);
+ /* A multi-segmented packet takes one MPW session.
+ * TODO: Pack more multi-segmented packets if possible.
+ */
+ mlx5_mpw_close(txq, &mpw);
+ if (mpw.pkts_n < 3)
+ max_wqe--;
+ else
+ max_wqe -= 2;
+ } else if (do_inline) {
+ /* Inline packet into WQE. */
+ unsigned int max;
+
+ assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
+ assert(length == DATA_LEN(buf));
+ inl_hdr = htonl(length | MLX5_INLINE_SEG);
+ addr = rte_pktmbuf_mtod(buf, uintptr_t);
+ mpw.data.raw = (volatile void *)
+ ((uintptr_t)mpw.data.raw + inl_pad);
+ max = tx_mlx5_wq_tailroom(txq,
+ (void *)(uintptr_t)mpw.data.raw);
+ /* Copy inline header. */
+ mpw.data.raw = (volatile void *)
+ mlx5_copy_to_wq(
+ (void *)(uintptr_t)mpw.data.raw,
+ &inl_hdr,
+ sizeof(inl_hdr),
+ (void *)(uintptr_t)txq->wqes,
+ max);
+ max = tx_mlx5_wq_tailroom(txq,
+ (void *)(uintptr_t)mpw.data.raw);
+ /* Copy packet data. */
+ mpw.data.raw = (volatile void *)
+ mlx5_copy_to_wq(
+ (void *)(uintptr_t)mpw.data.raw,
+ (void *)addr,
+ length,
+ (void *)(uintptr_t)txq->wqes,
+ max);
+ ++mpw.pkts_n;
+ mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
+ /* No need to get completion as the entire packet is
+ * copied to WQ. Free the buf right away.
+ */
+ elts_head_next = elts_head;
+ rte_pktmbuf_free_seg(buf);
+ mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
+ /* Add pad in the next packet if any. */
+ inl_pad = (((uintptr_t)mpw.data.raw +
+ (MLX5_WQE_DWORD_SIZE - 1)) &
+ ~(MLX5_WQE_DWORD_SIZE - 1)) -
+ (uintptr_t)mpw.data.raw;
+ } else {
+ /* No inline. Load a dseg of packet pointer. */
+ volatile rte_v128u32_t *dseg;
+
+ assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
+ assert((inl_pad + sizeof(*dseg)) <= mpw_room);
+ assert(length == DATA_LEN(buf));
+ if (!tx_mlx5_wq_tailroom(txq,
+ (void *)((uintptr_t)mpw.data.raw
+ + inl_pad)))
+ dseg = (volatile void *)txq->wqes;
+ else
+ dseg = (volatile void *)
+ ((uintptr_t)mpw.data.raw +
+ inl_pad);
+ elts_head_next = (elts_head + 1) & (elts_n - 1);
+ (*txq->elts)[elts_head] = buf;
+ addr = rte_pktmbuf_mtod(buf, uintptr_t);
+ for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
+ rte_prefetch2((void *)(addr +
+ n * RTE_CACHE_LINE_SIZE));
+ naddr = htonll(addr);
+ *dseg = (rte_v128u32_t) {
+ htonl(length),
+ txq_mp2mr(txq, txq_mb2mp(buf)),
+ naddr,
+ naddr >> 32,
+ };
+ mpw.data.raw = (volatile void *)(dseg + 1);
+ mpw.total_len += (inl_pad + sizeof(*dseg));
+ ++j;
+ ++mpw.pkts_n;
+ mpw_room -= (inl_pad + sizeof(*dseg));
+ inl_pad = 0;
+ }
+ elts_head = elts_head_next;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Increment sent bytes counter. */
+ txq->stats.obytes += length;
+#endif
+ ++i;
+ } while (i < pkts_n);
+ /* Take a shortcut if nothing must be sent. */
+ if (unlikely(i == 0))
+ return 0;
+ /* Check whether completion threshold has been reached. */
+ if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
+ (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
+ (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
+ volatile struct mlx5_wqe *wqe = mpw.wqe;
+
+ /* Request completion on last WQE. */
+ wqe->ctrl[2] = htonl(8);
+ /* Save elts_head in unused "immediate" field of WQE. */
+ wqe->ctrl[3] = elts_head;
+ txq->elts_comp = 0;
+ txq->mpw_comp = txq->wqe_ci;
+ txq->cq_pi++;
+ } else {
+ txq->elts_comp += j;
+ }
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Increment sent packets counter. */
+ txq->stats.opackets += i;
+#endif
+ if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
+ mlx5_empw_close(txq, &mpw);
+ else if (mpw.state == MLX5_MPW_STATE_OPENED)
+ mlx5_mpw_close(txq, &mpw);
+ /* Ring QP doorbell. */
+ mlx5_tx_dbrec(txq, mpw.wqe);
+ txq->elts_head = elts_head;
+ return i;
+}
+
+/**
+ * Translate RX completion flags to packet type.
+ *
+ * @param[in] cqe
+ * Pointer to CQE.
+ *
+ * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
+ *
+ * @return
+ * Packet type for struct rte_mbuf.
+ */
+static inline uint32_t
+rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
+{
+ uint32_t pkt_type;
+ uint16_t flags = ntohs(cqe->hdr_type_etc);
+
+ if (cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) {
+ pkt_type =
+ TRANSPOSE(flags,
+ MLX5_CQE_RX_IPV4_PACKET,
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN) |
+ TRANSPOSE(flags,
+ MLX5_CQE_RX_IPV6_PACKET,
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN);
+ pkt_type |= ((cqe->pkt_info & MLX5_CQE_RX_OUTER_PACKET) ?
+ RTE_PTYPE_L3_IPV6_EXT_UNKNOWN :
+ RTE_PTYPE_L3_IPV4_EXT_UNKNOWN);
+ } else {
+ pkt_type =
+ TRANSPOSE(flags,
+ MLX5_CQE_L3_HDR_TYPE_IPV6,
+ RTE_PTYPE_L3_IPV6_EXT_UNKNOWN) |
+ TRANSPOSE(flags,
+ MLX5_CQE_L3_HDR_TYPE_IPV4,
+ RTE_PTYPE_L3_IPV4_EXT_UNKNOWN);
+ }
+ return pkt_type;
+}
+
+/**
+ * Get size of the next packet for a given CQE. For compressed CQEs, the
+ * consumer index is updated only once all packets of the current one have
+ * been processed.
+ *
+ * @param rxq
+ * Pointer to RX queue.
+ * @param cqe
+ * CQE to process.
+ * @param[out] rss_hash
+ * Packet RSS Hash result.
+ *
+ * @return
+ * Packet size in bytes (0 if there is none), -1 in case of completion
+ * with error.
+ */
+static inline int
+mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe *cqe,
+ uint16_t cqe_cnt, uint32_t *rss_hash)
+{
+ struct rxq_zip *zip = &rxq->zip;
+ uint16_t cqe_n = cqe_cnt + 1;
+ int len = 0;
+ uint16_t idx, end;
+
+ /* Process compressed data in the CQE and mini arrays. */
+ if (zip->ai) {
+ volatile struct mlx5_mini_cqe8 (*mc)[8] =
+ (volatile struct mlx5_mini_cqe8 (*)[8])
+ (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt]);
+
+ len = ntohl((*mc)[zip->ai & 7].byte_cnt);
+ *rss_hash = ntohl((*mc)[zip->ai & 7].rx_hash_result);
+ if ((++zip->ai & 7) == 0) {
+ /* Invalidate consumed CQEs */
+ idx = zip->ca;
+ end = zip->na;
+ while (idx != end) {
+ (*rxq->cqes)[idx & cqe_cnt].op_own =
+ MLX5_CQE_INVALIDATE;
+ ++idx;
+ }
+ /*
+ * Increment consumer index to skip the number of
+ * CQEs consumed. Hardware leaves holes in the CQ
+ * ring for software use.
+ */
+ zip->ca = zip->na;
+ zip->na += 8;
+ }
+ if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
+ /* Invalidate the rest */
+ idx = zip->ca;
+ end = zip->cq_ci;
+
+ while (idx != end) {
+ (*rxq->cqes)[idx & cqe_cnt].op_own =
+ MLX5_CQE_INVALIDATE;
+ ++idx;
+ }
+ rxq->cq_ci = zip->cq_ci;
+ zip->ai = 0;
+ }
+ /* No compressed data, get next CQE and verify if it is compressed. */
+ } else {
+ int ret;
+ int8_t op_own;
+
+ ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
+ if (unlikely(ret == 1))
+ return 0;
+ ++rxq->cq_ci;
+ op_own = cqe->op_own;
+ if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
+ volatile struct mlx5_mini_cqe8 (*mc)[8] =
+ (volatile struct mlx5_mini_cqe8 (*)[8])
+ (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
+ cqe_cnt]);
+
+ /* Fix endianness. */
+ zip->cqe_cnt = ntohl(cqe->byte_cnt);
+ /*
+ * Current mini array position is the one returned by
+ * check_cqe64().
+ *
+ * If completion comprises several mini arrays, as a
+ * special case the second one is located 7 CQEs after
+ * the initial CQE instead of 8 for subsequent ones.
+ */
+ zip->ca = rxq->cq_ci;
+ zip->na = zip->ca + 7;
+ /* Compute the next non compressed CQE. */
+ --rxq->cq_ci;
+ zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
+ /* Get packet size to return. */
+ len = ntohl((*mc)[0].byte_cnt);
+ *rss_hash = ntohl((*mc)[0].rx_hash_result);
+ zip->ai = 1;
+ /* Prefetch all the entries to be invalidated */
+ idx = zip->ca;
+ end = zip->cq_ci;
+ while (idx != end) {
+ rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
+ ++idx;
+ }
+ } else {
+ len = ntohl(cqe->byte_cnt);
+ *rss_hash = ntohl(cqe->rx_hash_res);
+ }
+ /* Error while receiving packet. */
+ if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
+ return -1;
+ }
+ return len;
+}
+
+/**
+ * Translate RX completion flags to offload flags.
+ *
+ * @param[in] rxq
+ * Pointer to RX queue structure.
+ * @param[in] cqe
+ * Pointer to CQE.
+ *
+ * @return
+ * Offload flags (ol_flags) for struct rte_mbuf.
+ */
+static inline uint32_t
+rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe *cqe)
+{
+ uint32_t ol_flags = 0;
+ uint16_t flags = ntohs(cqe->hdr_type_etc);
+
+ ol_flags =
+ TRANSPOSE(flags,
+ MLX5_CQE_RX_L3_HDR_VALID,
+ PKT_RX_IP_CKSUM_GOOD) |
+ TRANSPOSE(flags,
+ MLX5_CQE_RX_L4_HDR_VALID,
+ PKT_RX_L4_CKSUM_GOOD);
+ if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
+ ol_flags |=
+ TRANSPOSE(flags,
+ MLX5_CQE_RX_L3_HDR_VALID,
+ PKT_RX_IP_CKSUM_GOOD) |
+ TRANSPOSE(flags,
+ MLX5_CQE_RX_L4_HDR_VALID,
+ PKT_RX_L4_CKSUM_GOOD);
+ return ol_flags;
+}
+
+/**
+ * DPDK callback for RX.
+ *
+ * @param dpdk_rxq
+ * Generic pointer to RX queue structure.
+ * @param[out] pkts
+ * Array to store received packets.
+ * @param pkts_n
+ * Maximum number of packets in array.
+ *
+ * @return
+ * Number of packets successfully received (<= pkts_n).
+ */
+uint16_t
+mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ struct rxq *rxq = dpdk_rxq;
+ const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
+ const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
+ const unsigned int sges_n = rxq->sges_n;
+ struct rte_mbuf *pkt = NULL;
+ struct rte_mbuf *seg = NULL;
+ volatile struct mlx5_cqe *cqe =
+ &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
+ unsigned int i = 0;
+ unsigned int rq_ci = rxq->rq_ci << sges_n;
+ int len = 0; /* keep its value across iterations. */
+
+ while (pkts_n) {
+ unsigned int idx = rq_ci & wqe_cnt;
+ volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
+ struct rte_mbuf *rep = (*rxq->elts)[idx];
+ uint32_t rss_hash_res = 0;
+
+ if (pkt)
+ NEXT(seg) = rep;
+ seg = rep;
+ rte_prefetch0(seg);
+ rte_prefetch0(cqe);
+ rte_prefetch0(wqe);
+ rep = rte_mbuf_raw_alloc(rxq->mp);
+ if (unlikely(rep == NULL)) {
+ ++rxq->stats.rx_nombuf;
+ if (!pkt) {
+ /*
+ * no buffers before we even started,
+ * bail out silently.
+ */
+ break;
+ }
+ while (pkt != seg) {
+ assert(pkt != (*rxq->elts)[idx]);
+ rep = NEXT(pkt);
+ NEXT(pkt) = NULL;
+ NB_SEGS(pkt) = 1;
+ rte_mbuf_raw_free(pkt);
+ pkt = rep;
+ }
+ break;
+ }
+ if (!pkt) {
+ cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
+ len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
+ &rss_hash_res);
+ if (!len) {
+ rte_mbuf_raw_free(rep);
+ break;
+ }
+ if (unlikely(len == -1)) {
+ /* RX error, packet is likely too large. */
+ rte_mbuf_raw_free(rep);
+ ++rxq->stats.idropped;
+ goto skip;
+ }
+ pkt = seg;
+ assert(len >= (rxq->crc_present << 2));
+ /* Update packet information. */
+ pkt->packet_type = 0;
+ pkt->ol_flags = 0;
+ if (rss_hash_res && rxq->rss_hash) {
+ pkt->hash.rss = rss_hash_res;
+ pkt->ol_flags = PKT_RX_RSS_HASH;
+ }
+ if (rxq->mark &&
+ MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
+ pkt->ol_flags |= PKT_RX_FDIR;
+ if (cqe->sop_drop_qpn !=
+ htonl(MLX5_FLOW_MARK_DEFAULT)) {
+ uint32_t mark = cqe->sop_drop_qpn;
+
+ pkt->ol_flags |= PKT_RX_FDIR_ID;
+ pkt->hash.fdir.hi =
+ mlx5_flow_mark_get(mark);
+ }
+ }
+ if (rxq->csum | rxq->csum_l2tun) {
+ pkt->packet_type = rxq_cq_to_pkt_type(cqe);
+ pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
+ }
+ if (rxq->vlan_strip &&
+ (cqe->hdr_type_etc &
+ htons(MLX5_CQE_VLAN_STRIPPED))) {
+ pkt->ol_flags |= PKT_RX_VLAN_PKT |
+ PKT_RX_VLAN_STRIPPED;
+ pkt->vlan_tci = ntohs(cqe->vlan_info);
+ }
+ if (rxq->crc_present)
+ len -= ETHER_CRC_LEN;
+ PKT_LEN(pkt) = len;
+ }
+ DATA_LEN(rep) = DATA_LEN(seg);
+ PKT_LEN(rep) = PKT_LEN(seg);
+ SET_DATA_OFF(rep, DATA_OFF(seg));
+ NB_SEGS(rep) = NB_SEGS(seg);
+ PORT(rep) = PORT(seg);
+ NEXT(rep) = NULL;
+ (*rxq->elts)[idx] = rep;
+ /*
+ * Fill NIC descriptor with the new buffer. The lkey and size
+ * of the buffers are already known, only the buffer address
+ * changes.
+ */
+ wqe->addr = htonll(rte_pktmbuf_mtod(rep, uintptr_t));
+ if (len > DATA_LEN(seg)) {
+ len -= DATA_LEN(seg);
+ ++NB_SEGS(pkt);
+ ++rq_ci;
+ continue;
+ }
+ DATA_LEN(seg) = len;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Increment bytes counter. */
+ rxq->stats.ibytes += PKT_LEN(pkt);
+#endif
+ /* Return packet. */
+ *(pkts++) = pkt;
+ pkt = NULL;
+ --pkts_n;
+ ++i;
+skip:
+ /* Align consumer index to the next stride. */
+ rq_ci >>= sges_n;
+ ++rq_ci;
+ rq_ci <<= sges_n;
+ }
+ if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
+ return 0;
+ /* Update the consumer index. */
+ rxq->rq_ci = rq_ci >> sges_n;
+ rte_wmb();
+ *rxq->cq_db = htonl(rxq->cq_ci);
+ rte_wmb();
+ *rxq->rq_db = htonl(rxq->rq_ci);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Increment packets counter. */
+ rxq->stats.ipackets += i;
+#endif
+ return i;
+}
+
+/**
+ * Dummy DPDK callback for TX.
+ *
+ * This function is used to temporarily replace the real callback during
+ * unsafe control operations on the queue, or in case of error.
+ *
+ * @param dpdk_txq
+ * Generic pointer to TX queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+uint16_t
+removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ (void)dpdk_txq;
+ (void)pkts;
+ (void)pkts_n;
+ return 0;
+}
+
+/**
+ * Dummy DPDK callback for RX.
+ *
+ * This function is used to temporarily replace the real callback during
+ * unsafe control operations on the queue, or in case of error.
+ *
+ * @param dpdk_rxq
+ * Generic pointer to RX queue structure.
+ * @param[out] pkts
+ * Array to store received packets.
+ * @param pkts_n
+ * Maximum number of packets in array.
+ *
+ * @return
+ * Number of packets successfully received (<= pkts_n).
+ */
+uint16_t
+removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ (void)dpdk_rxq;
+ (void)pkts;
+ (void)pkts_n;
+ return 0;
+}
+
+/**
+ * DPDK callback for rx queue interrupt enable.
+ *
+ * @param dev
+ * Pointer to Ethernet device structure.
+ * @param rx_queue_id
+ * RX queue number
+ *
+ * @return
+ * 0 on success, negative on failure.
+ */
+int
+mlx5_rx_intr_enable(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+#ifdef HAVE_UPDATE_CQ_CI
+ struct priv *priv = mlx5_get_priv(dev);
+ struct rxq *rxq = (*priv->rxqs)[rx_queue_id];
+ struct rxq_ctrl *rxq_ctrl = container_of(rxq, struct rxq_ctrl, rxq);
+ struct ibv_cq *cq = rxq_ctrl->cq;
+ uint16_t ci = rxq->cq_ci;
+ int ret = 0;
+
+ ibv_mlx5_exp_update_cq_ci(cq, ci);
+ ret = ibv_req_notify_cq(cq, 0);
+#else
+ int ret = -1;
+ (void)dev;
+ (void)rx_queue_id;
+#endif
+ if (ret)
+ WARN("unable to arm interrupt on rx queue %d", rx_queue_id);
+ return ret;
+}
+
+/**
+ * DPDK callback for rx queue interrupt disable.
+ *
+ * @param dev
+ * Pointer to Ethernet device structure.
+ * @param rx_queue_id
+ * RX queue number
+ *
+ * @return
+ * 0 on success, negative on failure.
+ */
+int
+mlx5_rx_intr_disable(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+#ifdef HAVE_UPDATE_CQ_CI
+ struct priv *priv = mlx5_get_priv(dev);
+ struct rxq *rxq = (*priv->rxqs)[rx_queue_id];
+ struct rxq_ctrl *rxq_ctrl = container_of(rxq, struct rxq_ctrl, rxq);
+ struct ibv_cq *cq = rxq_ctrl->cq;
+ struct ibv_cq *ev_cq;
+ void *ev_ctx;
+ int ret = 0;
+
+ ret = ibv_get_cq_event(cq->channel, &ev_cq, &ev_ctx);
+ if (ret || ev_cq != cq)
+ ret = -1;
+ else
+ ibv_ack_cq_events(cq, 1);
+#else
+ int ret = -1;
+ (void)dev;
+ (void)rx_queue_id;
+#endif
+ if (ret)
+ WARN("unable to disable interrupt on rx queue %d",
+ rx_queue_id);
+ return ret;
+}