summaryrefslogtreecommitdiffstats
path: root/src/spdk/doc/nvmf.md
diff options
context:
space:
mode:
Diffstat (limited to 'src/spdk/doc/nvmf.md')
-rw-r--r--src/spdk/doc/nvmf.md226
1 files changed, 226 insertions, 0 deletions
diff --git a/src/spdk/doc/nvmf.md b/src/spdk/doc/nvmf.md
new file mode 100644
index 00000000..0c9c74cc
--- /dev/null
+++ b/src/spdk/doc/nvmf.md
@@ -0,0 +1,226 @@
+# NVMe over Fabrics Target {#nvmf}
+
+@sa @ref nvme_fabrics_host
+@sa @ref nvmf_tgt_tracepoints
+
+# NVMe-oF Target Getting Started Guide {#nvmf_getting_started}
+
+The NVMe over Fabrics target is a user space application that presents block devices over the
+network using RDMA. It requires an RDMA-capable NIC with its corresponding OFED software package
+installed to run. The target should work on all flavors of RDMA, but it is currently tested against
+Mellanox NICs (RoCEv2) and Chelsio NICs (iWARP).
+
+The NVMe over Fabrics specification defines subsystems that can be exported over the network. SPDK
+has chosen to call the software that exports these subsystems a "target", which is the term used
+for iSCSI. The specification refers to the "client" that connects to the target as a "host". Many
+people will also refer to the host as an "initiator", which is the equivalent thing in iSCSI
+parlance. SPDK will try to stick to the terms "target" and "host" to match the specification.
+
+The Linux kernel also implements an NVMe-oF target and host, and SPDK is tested for
+interoperability with the Linux kernel implementations.
+
+If you want to kill the application using signal, make sure use the SIGTERM, then the application
+will release all the share memory resource before exit, the SIGKILL will make the share memory
+resource have no chance to be released by application, you may need to release the resource manually.
+
+## Prerequisites {#nvmf_prereqs}
+
+This guide starts by assuming that you can already build the standard SPDK distribution on your
+platform. By default, the NVMe over Fabrics target is not built. To build nvmf_tgt there are some
+additional dependencies.
+
+Fedora:
+~~~{.sh}
+dnf install libibverbs-devel librdmacm-devel
+~~~
+
+Ubuntu:
+~~~{.sh}
+apt-get install libibverbs-dev librdmacm-dev
+~~~
+
+Then build SPDK with RDMA enabled:
+
+~~~{.sh}
+./configure --with-rdma <other config parameters>
+make
+~~~
+
+Once built, the binary will be in `app/nvmf_tgt`.
+
+## Prerequisites for InfiniBand/RDMA Verbs {#nvmf_prereqs_verbs}
+
+Before starting our NVMe-oF target we must load the InfiniBand and RDMA modules that allow
+userspace processes to use InfiniBand/RDMA verbs directly.
+
+~~~{.sh}
+modprobe ib_cm
+modprobe ib_core
+# Please note that ib_ucm does not exist in newer versions of the kernel and is not required.
+modprobe ib_ucm || true
+modprobe ib_umad
+modprobe ib_uverbs
+modprobe iw_cm
+modprobe rdma_cm
+modprobe rdma_ucm
+~~~
+
+## Prerequisites for RDMA NICs {#nvmf_prereqs_rdma_nics}
+
+Before starting our NVMe-oF target we must detect RDMA NICs and assign them IP addresses.
+
+### Finding RDMA NICs and associated network interfaces
+
+~~~{.sh}
+ls /sys/class/infiniband/*/device/net
+~~~
+
+### Mellanox ConnectX-3 RDMA NICs
+
+~~~{.sh}
+modprobe mlx4_core
+modprobe mlx4_ib
+modprobe mlx4_en
+~~~
+
+### Mellanox ConnectX-4 RDMA NICs
+
+~~~{.sh}
+modprobe mlx5_core
+modprobe mlx5_ib
+~~~
+
+### Assigning IP addresses to RDMA NICs
+
+~~~{.sh}
+ifconfig eth1 192.168.100.8 netmask 255.255.255.0 up
+ifconfig eth2 192.168.100.9 netmask 255.255.255.0 up
+~~~
+
+## Configuring the SPDK NVMe over Fabrics Target {#nvmf_config}
+
+An NVMe over Fabrics target can be configured using JSON RPCs.
+The basic RPCs needed to configure the NVMe-oF subsystem are detailed below. More information about
+working with NVMe over Fabrics specific RPCs can be found on the @ref jsonrpc_components_nvmf_tgt RPC page.
+
+Using .ini style configuration files for configuration of the NVMe-oF target is deprecated and should
+be replaced with JSON based RPCs. .ini style configuration files can be converted to json format by way
+of the new script `scripts/config_converter.py`.
+
+### Using RPCs {#nvmf_config_rpc}
+
+Start the nvmf_tgt application with elevated privileges and instruct it to wait for RPCs.
+The set_nvmf_target_options RPC can then be used to configure basic target parameters.
+Below is an example where the target is configured with an I/O unit size of 8192,
+4 max qpairs per controller, and an in capsule data size of 0. The parameters controlled
+by set_nvmf_target_options may only be modified before the SPDK NVMe-oF subsystem is initialized.
+Once the target options are configured. You need to start the NVMe-oF subsystem with start_subsystem_init.
+
+~~~{.sh}
+app/nvmf_tgt/nvmf_tgt --wait-for-rpc
+scripts/rpc.py set_nvmf_target_options -u 8192 -p 4 -c 0
+scripts/rpc.py start_subsystem_init
+~~~
+
+Note: The start_subsystem_init rpc is referring to SPDK application subsystems and not the NVMe over Fabrics concept.
+
+Below is an example of creating a malloc bdev and assigning it to a subsystem. Adjust the bdevs,
+NQN, serial number, and IP address to your own circumstances.
+
+~~~{.sh}
+scripts/rpc.py construct_malloc_bdev -b Malloc0 512 512
+scripts/rpc.py nvmf_subsystem_create nqn.2016-06.io.spdk:cnode1 -a -s SPDK00000000000001
+scripts/rpc.py nvmf_subsystem_add_ns nqn.2016-06.io.spdk:cnode1 Malloc0
+scripts/rpc.py nvmf_subsystem_add_listener nqn.2016-06.io.spdk:cnode1 -t rdma -a 192.168.100.8 -s 4420
+~~~
+
+### NQN Formal Definition
+
+NVMe qualified names or NQNs are defined in section 7.9 of the
+[NVMe specification](http://nvmexpress.org/wp-content/uploads/NVM_Express_Revision_1.3.pdf). SPDK has attempted to
+formalize that definition using [Extended Backus-Naur form](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form).
+SPDK modules use this formal definition (provided below) when validating NQNs.
+
+~~~{.sh}
+
+Basic Types
+year = 4 * digit ;
+month = '01' | '02' | '03' | '04' | '05' | '06' | '07' | '08' | '09' | '10' | '11' | '12' ;
+digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' ;
+hex digit = 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' ;
+
+NQN Definition
+NVMe Qualified Name = ( NVMe-oF Discovery NQN | NVMe UUID NQN | NVMe Domain NQN ), '\0' ;
+NVMe-oF Discovery NQN = "nqn.2014-08.org.nvmexpress.discovery" ;
+NVMe UUID NQN = "nqn.2014-08.org.nvmexpress:uuid:", string UUID ;
+string UUID = 8 * hex digit, '-', 3 * (4 * hex digit, '-'), 12 * hex digit ;
+NVMe Domain NQN = "nqn.", year, '-', month, '.', reverse domain, ':', utf-8 string ;
+
+~~~
+
+Please note that the following types from the definition above are defined elsewhere:
+1. utf-8 string: Defined in [rfc 3629](https://tools.ietf.org/html/rfc3629).
+2. reverse domain: Equivalent to domain name as defined in [rfc 1034](https://tools.ietf.org/html/rfc1034).
+
+While not stated in the formal definition, SPDK enforces the requirement from the spec that the
+"maximum name is 223 bytes in length". SPDK does not include the null terminating character when
+defining the length of an nqn, and will accept an nqn containing up to 223 valid bytes with an
+additional null terminator. To be precise, SPDK follows the same conventions as the c standard
+library function [strlen()](http://man7.org/linux/man-pages/man3/strlen.3.html).
+
+#### NQN Comparisons
+
+SPDK compares NQNs byte for byte without case matching or unicode normalization. This has specific implications for
+uuid based NQNs. The following pair of NQNs, for example, would not match when compared in the SPDK NVMe-oF Target:
+
+nqn.2014-08.org.nvmexpress:uuid:11111111-aaaa-bbdd-ffee-123456789abc
+nqn.2014-08.org.nvmexpress:uuid:11111111-AAAA-BBDD-FFEE-123456789ABC
+
+In order to ensure the consistency of uuid based NQNs while using SPDK, users should use lowercase when representing
+alphabetic hex digits in their NQNs.
+
+### Assigning CPU Cores to the NVMe over Fabrics Target {#nvmf_config_lcore}
+
+SPDK uses the [DPDK Environment Abstraction Layer](http://dpdk.org/doc/guides/prog_guide/env_abstraction_layer.html)
+to gain access to hardware resources such as huge memory pages and CPU core(s). DPDK EAL provides
+functions to assign threads to specific cores.
+To ensure the SPDK NVMe-oF target has the best performance, configure the NICs and NVMe devices to
+be located on the same NUMA node.
+
+The `-m` core mask option specifies a bit mask of the CPU cores that
+SPDK is allowed to execute work items on.
+For example, to allow SPDK to use cores 24, 25, 26 and 27:
+~~~{.sh}
+app/nvmf_tgt/nvmf_tgt -m 0xF000000
+~~~
+
+## Configuring the Linux NVMe over Fabrics Host {#nvmf_host}
+
+Both the Linux kernel and SPDK implement an NVMe over Fabrics host.
+The Linux kernel NVMe-oF RDMA host support is provided by the `nvme-rdma` driver.
+
+~~~{.sh}
+modprobe nvme-rdma
+~~~
+
+The nvme-cli tool may be used to interface with the Linux kernel NVMe over Fabrics host.
+
+Discovery:
+~~~{.sh}
+nvme discover -t rdma -a 192.168.100.8 -s 4420
+~~~
+
+Connect:
+~~~{.sh}
+nvme connect -t rdma -n "nqn.2016-06.io.spdk:cnode1" -a 192.168.100.8 -s 4420
+~~~
+
+Disconnect:
+~~~{.sh}
+nvme disconnect -n "nqn.2016-06.io.spdk:cnode1"
+~~~
+
+## Enabling NVMe-oF target tracepoints for offline analysis and debug {#nvmf_trace}
+
+SPDK has a tracing framework for capturing low-level event information at runtime.
+@ref nvmf_tgt_tracepoints enable analysis of both performance and application crashes.