diff options
Diffstat (limited to 'src/spdk/dpdk/drivers/net/e1000')
50 files changed, 51758 insertions, 0 deletions
diff --git a/src/spdk/dpdk/drivers/net/e1000/Makefile b/src/spdk/dpdk/drivers/net/e1000/Makefile new file mode 100644 index 00000000..9c87e883 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/Makefile @@ -0,0 +1,80 @@ +# SPDX-License-Identifier: BSD-3-Clause +# Copyright(c) 2010-2015 Intel Corporation + +include $(RTE_SDK)/mk/rte.vars.mk + +# +# library name +# +LIB = librte_pmd_e1000.a + +CFLAGS += -O3 +CFLAGS += $(WERROR_FLAGS) +LDLIBS += -lrte_eal -lrte_mbuf -lrte_mempool -lrte_ring +LDLIBS += -lrte_ethdev -lrte_net -lrte_kvargs +LDLIBS += -lrte_bus_pci + +EXPORT_MAP := rte_pmd_e1000_version.map + +LIBABIVER := 1 + +ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y) +# +# CFLAGS for icc +# +CFLAGS_BASE_DRIVER = -diag-disable 177 -diag-disable 181 +CFLAGS_BASE_DRIVER += -diag-disable 869 -diag-disable 2259 +else +# +# CFLAGS for gcc/clang +# +CFLAGS_BASE_DRIVER = -Wno-uninitialized -Wno-unused-parameter +CFLAGS_BASE_DRIVER += -Wno-unused-variable +ifeq ($(CONFIG_RTE_TOOLCHAIN_GCC),y) +ifeq ($(shell test $(GCC_VERSION) -ge 60 && echo 1), 1) +CFLAGS_BASE_DRIVER += -Wno-misleading-indentation +ifeq ($(shell test $(GCC_VERSION) -ge 70 && echo 1), 1) +CFLAGS_BASE_DRIVER += -Wno-implicit-fallthrough +endif +endif +endif +endif + +# +# Add extra flags for base driver files (also known as shared code) +# to disable warnings in them +# +BASE_DRIVER_OBJS=$(sort $(patsubst %.c,%.o,$(notdir $(wildcard $(SRCDIR)/base/*.c)))) +$(foreach obj, $(BASE_DRIVER_OBJS), $(eval CFLAGS_$(obj)+=$(CFLAGS_BASE_DRIVER))) + +VPATH += $(SRCDIR)/base + +# +# all source are stored in SRCS-y +# +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_80003es2lan.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82540.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82541.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82542.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82543.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82571.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82575.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_i210.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_api.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_ich8lan.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_logs.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mac.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_manage.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mbx.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_nvm.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_osdep.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_phy.c +SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_vf.c +SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_ethdev.c +SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_rxtx.c +SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_pf.c +SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_flow.c +SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_ethdev.c +SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_rxtx.c + +include $(RTE_SDK)/mk/rte.lib.mk diff --git a/src/spdk/dpdk/drivers/net/e1000/base/README b/src/spdk/dpdk/drivers/net/e1000/base/README new file mode 100644 index 00000000..de1ae4cf --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/README @@ -0,0 +1,65 @@ +.. + BSD LICENSE + + Copyright(c) 2010-2016 Intel Corporation. All rights reserved. + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + * Neither the name of Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +This directory contains source code of FreeBSD em & igb drivers of version +cid-shared-code.2016.11.22 released by ND. The sub-directory of base/ +contains the original source package. + +This driver is valid for the product(s) listed below +* Intel® Ethernet Controller 82540 +* Intel® Ethernet Controller 82545 Series +* Intel® Ethernet Controller 82546 Series +* Intel® Ethernet Controller 82571 Series +* Intel® Ethernet Controller 82572 Series +* Intel® Ethernet Controller 82573 +* Intel® Ethernet Controller 82574 +* Intel® Ethernet Controller 82583 +* Intel® Ethernet Controller I217 Series +* Intel® Ethernet Controller I218 Series +* Intel® Ethernet Controller I219 Series +* Intel® Ethernet Controller 82576 Series +* Intel® Ethernet Controller 82575 Series +* Intel® Ethernet Controller 82580 Series +* Intel® Ethernet Controller I350 Series +* Intel® Ethernet Controller I210 Series +* Intel® Ethernet Controller I211 +* Intel® Ethernet Controller I354 Series +* Intel® Ethernet Controller DH89XXCC Series + +Updating the driver +=================== + +NOTE: The source code in this directory should not be modified apart from +the following file(s): + + e1000_osdep.c + e1000_osdep.h diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_80003es2lan.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_80003es2lan.c new file mode 100644 index 00000000..5ac925e4 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_80003es2lan.c @@ -0,0 +1,1525 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +/* 80003ES2LAN Gigabit Ethernet Controller (Copper) + * 80003ES2LAN Gigabit Ethernet Controller (Serdes) + */ + +#include "e1000_api.h" + +STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw); +STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw); +STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw); +STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw); +STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, + u16 *data); +STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, + u16 data); +STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw); +STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw); +STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw); +STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw); +STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw); +STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); +STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); +STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); +STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); +STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); +STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw); +STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, + u16 *data); +STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, + u16 data); +STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); +STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); +STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw); +STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw); + +/* A table for the GG82563 cable length where the range is defined + * with a lower bound at "index" and the upper bound at + * "index + 5". + */ +STATIC const u16 e1000_gg82563_cable_length_table[] = { + 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; +#define GG82563_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_gg82563_cable_length_table) / \ + sizeof(e1000_gg82563_cable_length_table[0])) + +/** + * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + + DEBUGFUNC("e1000_init_phy_params_80003es2lan"); + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + return E1000_SUCCESS; + } else { + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan; + } + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + phy->type = e1000_phy_gg82563; + + phy->ops.acquire = e1000_acquire_phy_80003es2lan; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.check_reset_block = e1000_check_reset_block_generic; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.release = e1000_release_phy_80003es2lan; + phy->ops.reset = e1000_phy_hw_reset_generic; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; + + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan; + phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan; + phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan; + phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan; + + phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan; + + /* This can only be done after all function pointers are setup. */ + ret_val = e1000_get_phy_id(hw); + + /* Verify phy id */ + if (phy->id != GG82563_E_PHY_ID) + return -E1000_ERR_PHY; + + return ret_val; +} + +/** + * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_80003es2lan"); + + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->page_size = 32; + nvm->address_bits = 16; + break; + case e1000_nvm_override_spi_small: + nvm->page_size = 8; + nvm->address_bits = 8; + break; + default: + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; + break; + } + + nvm->type = e1000_nvm_eeprom_spi; + + size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + + /* Added to a constant, "size" becomes the left-shift value + * for setting word_size. + */ + size += NVM_WORD_SIZE_BASE_SHIFT; + + /* EEPROM access above 16k is unsupported */ + if (size > 14) + size = 14; + nvm->word_size = 1 << size; + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_80003es2lan; + nvm->ops.read = e1000_read_nvm_eerd; + nvm->ops.release = e1000_release_nvm_80003es2lan; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_80003es2lan; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_init_mac_params_80003es2lan"); + + /* Set media type and media-dependent function pointers */ + switch (hw->device_id) { + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + hw->phy.media_type = e1000_media_type_internal_serdes; + mac->ops.check_for_link = e1000_check_for_serdes_link_generic; + mac->ops.setup_physical_interface = + e1000_setup_fiber_serdes_link_generic; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + mac->ops.check_for_link = e1000_check_for_copper_link_generic; + mac->ops.setup_physical_interface = + e1000_setup_copper_link_80003es2lan; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = true; + /* FWSM register */ + mac->has_fwsm = true; + /* ARC supported; valid only if manageability features are enabled. */ + mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) & + E1000_FWSM_MODE_MASK); + /* Adaptive IFS not supported */ + mac->adaptive_ifs = false; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_80003es2lan; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_80003es2lan; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* check management mode */ + mac->ops.check_mng_mode = e1000_check_mng_mode_generic; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* blink LED */ + mac->ops.blink_led = e1000_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan; + + /* set lan id for port to determine which phy lock to use */ + hw->mac.ops.set_lan_id(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_80003es2lan"); + + hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan; + hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan; + hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan; +} + +/** + * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY + * @hw: pointer to the HW structure + * + * A wrapper to acquire access rights to the correct PHY. + **/ +STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) +{ + u16 mask; + + DEBUGFUNC("e1000_acquire_phy_80003es2lan"); + + mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; + return e1000_acquire_swfw_sync_80003es2lan(hw, mask); +} + +/** + * e1000_release_phy_80003es2lan - Release rights to access PHY + * @hw: pointer to the HW structure + * + * A wrapper to release access rights to the correct PHY. + **/ +STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw) +{ + u16 mask; + + DEBUGFUNC("e1000_release_phy_80003es2lan"); + + mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; + e1000_release_swfw_sync_80003es2lan(hw, mask); +} + +/** + * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register + * @hw: pointer to the HW structure + * + * Acquire the semaphore to access the Kumeran interface. + * + **/ +STATIC s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) +{ + u16 mask; + + DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan"); + + mask = E1000_SWFW_CSR_SM; + + return e1000_acquire_swfw_sync_80003es2lan(hw, mask); +} + +/** + * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register + * @hw: pointer to the HW structure + * + * Release the semaphore used to access the Kumeran interface + **/ +STATIC void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) +{ + u16 mask; + + DEBUGFUNC("e1000_release_mac_csr_80003es2lan"); + + mask = E1000_SWFW_CSR_SM; + + e1000_release_swfw_sync_80003es2lan(hw, mask); +} + +/** + * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM + * @hw: pointer to the HW structure + * + * Acquire the semaphore to access the EEPROM. + **/ +STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_acquire_nvm_80003es2lan"); + + ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); + if (ret_val) + return ret_val; + + ret_val = e1000_acquire_nvm_generic(hw); + + if (ret_val) + e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); + + return ret_val; +} + +/** + * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM + * @hw: pointer to the HW structure + * + * Release the semaphore used to access the EEPROM. + **/ +STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_80003es2lan"); + + e1000_release_nvm_generic(hw); + e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); +} + +/** + * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Acquire the SW/FW semaphore to access the PHY or NVM. The mask + * will also specify which port we're acquiring the lock for. + **/ +STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + u32 swmask = mask; + u32 fwmask = mask << 16; + s32 i = 0; + s32 timeout = 50; + + DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan"); + + while (i < timeout) { + if (e1000_get_hw_semaphore_generic(hw)) + return -E1000_ERR_SWFW_SYNC; + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) + break; + + /* Firmware currently using resource (fwmask) + * or other software thread using resource (swmask) + */ + e1000_put_hw_semaphore_generic(hw); + msec_delay_irq(5); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); + return -E1000_ERR_SWFW_SYNC; + } + + swfw_sync |= swmask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Release the SW/FW semaphore used to access the PHY or NVM. The mask + * will also specify which port we're releasing the lock for. + **/ +STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + + DEBUGFUNC("e1000_release_swfw_sync_80003es2lan"); + + while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) + ; /* Empty */ + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + swfw_sync &= ~mask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); +} + +/** + * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @data: pointer to the data returned from the operation + * + * Read the GG82563 PHY register. + **/ +STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, u16 *data) +{ + s32 ret_val; + u32 page_select; + u16 temp; + + DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan"); + + ret_val = e1000_acquire_phy_80003es2lan(hw); + if (ret_val) + return ret_val; + + /* Select Configuration Page */ + if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { + page_select = GG82563_PHY_PAGE_SELECT; + } else { + /* Use Alternative Page Select register to access + * registers 30 and 31 + */ + page_select = GG82563_PHY_PAGE_SELECT_ALT; + } + + temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); + ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp); + if (ret_val) { + e1000_release_phy_80003es2lan(hw); + return ret_val; + } + + if (hw->dev_spec._80003es2lan.mdic_wa_enable) { + /* The "ready" bit in the MDIC register may be incorrectly set + * before the device has completed the "Page Select" MDI + * transaction. So we wait 200us after each MDI command... + */ + usec_delay(200); + + /* ...and verify the command was successful. */ + ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp); + + if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { + e1000_release_phy_80003es2lan(hw); + return -E1000_ERR_PHY; + } + + usec_delay(200); + + ret_val = e1000_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + + usec_delay(200); + } else { + ret_val = e1000_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + } + + e1000_release_phy_80003es2lan(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @data: value to write to the register + * + * Write to the GG82563 PHY register. + **/ +STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, u16 data) +{ + s32 ret_val; + u32 page_select; + u16 temp; + + DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan"); + + ret_val = e1000_acquire_phy_80003es2lan(hw); + if (ret_val) + return ret_val; + + /* Select Configuration Page */ + if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { + page_select = GG82563_PHY_PAGE_SELECT; + } else { + /* Use Alternative Page Select register to access + * registers 30 and 31 + */ + page_select = GG82563_PHY_PAGE_SELECT_ALT; + } + + temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); + ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp); + if (ret_val) { + e1000_release_phy_80003es2lan(hw); + return ret_val; + } + + if (hw->dev_spec._80003es2lan.mdic_wa_enable) { + /* The "ready" bit in the MDIC register may be incorrectly set + * before the device has completed the "Page Select" MDI + * transaction. So we wait 200us after each MDI command... + */ + usec_delay(200); + + /* ...and verify the command was successful. */ + ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp); + + if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { + e1000_release_phy_80003es2lan(hw); + return -E1000_ERR_PHY; + } + + usec_delay(200); + + ret_val = e1000_write_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + + usec_delay(200); + } else { + ret_val = e1000_write_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + } + + e1000_release_phy_80003es2lan(hw); + + return ret_val; +} + +/** + * e1000_write_nvm_80003es2lan - Write to ESB2 NVM + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @words: number of words to write + * @data: buffer of data to write to the NVM + * + * Write "words" of data to the ESB2 NVM. + **/ +STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data) +{ + DEBUGFUNC("e1000_write_nvm_80003es2lan"); + + return e1000_write_nvm_spi(hw, offset, words, data); +} + +/** + * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete + * @hw: pointer to the HW structure + * + * Wait a specific amount of time for manageability processes to complete. + * This is a function pointer entry point called by the phy module. + **/ +STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + u32 mask = E1000_NVM_CFG_DONE_PORT_0; + + DEBUGFUNC("e1000_get_cfg_done_80003es2lan"); + + if (hw->bus.func == 1) + mask = E1000_NVM_CFG_DONE_PORT_1; + + while (timeout) { + if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) + break; + msec_delay(1); + timeout--; + } + if (!timeout) { + DEBUGOUT("MNG configuration cycle has not completed.\n"); + return -E1000_ERR_RESET; + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex + * @hw: pointer to the HW structure + * + * Force the speed and duplex settings onto the PHY. This is a + * function pointer entry point called by the phy module. + **/ +STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan"); + + if (!(hw->phy.ops.read_reg)) + return E1000_SUCCESS; + + /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + DEBUGOUT1("GG82563 PSCR: %X\n", phy_data); + + ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + /* Reset the phy to commit changes. */ + phy_data |= MII_CR_RESET; + + ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + usec_delay(1); + + if (hw->phy.autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) { + /* We didn't get link. + * Reset the DSP and cross our fingers. + */ + ret_val = e1000_phy_reset_dsp_generic(hw); + if (ret_val) + return ret_val; + } + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + } + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + /* Resetting the phy means we need to verify the TX_CLK corresponds + * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. + */ + phy_data &= ~GG82563_MSCR_TX_CLK_MASK; + if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) + phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; + else + phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; + + /* In addition, we must re-enable CRS on Tx for both half and full + * duplex. + */ + phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + phy_data); + + return ret_val; +} + +/** + * e1000_get_cable_length_80003es2lan - Set approximate cable length + * @hw: pointer to the HW structure + * + * Find the approximate cable length as measured by the GG82563 PHY. + * This is a function pointer entry point called by the phy module. + **/ +STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, index; + + DEBUGFUNC("e1000_get_cable_length_80003es2lan"); + + if (!(hw->phy.ops.read_reg)) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); + if (ret_val) + return ret_val; + + index = phy_data & GG82563_DSPD_CABLE_LENGTH; + + if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) + return -E1000_ERR_PHY; + + phy->min_cable_length = e1000_gg82563_cable_length_table[index]; + phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5]; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + + return E1000_SUCCESS; +} + +/** + * e1000_get_link_up_info_80003es2lan - Report speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to speed buffer + * @duplex: pointer to duplex buffer + * + * Retrieve the current speed and duplex configuration. + **/ +STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_link_up_info_80003es2lan"); + + if (hw->phy.media_type == e1000_media_type_copper) { + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, + duplex); + hw->phy.ops.cfg_on_link_up(hw); + } else { + ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw, + speed, + duplex); + } + + return ret_val; +} + +/** + * e1000_reset_hw_80003es2lan - Reset the ESB2 controller + * @hw: pointer to the HW structure + * + * Perform a global reset to the ESB2 controller. + **/ +STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 kum_reg_data; + + DEBUGFUNC("e1000_reset_hw_80003es2lan"); + + /* Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + ret_val = e1000_acquire_phy_80003es2lan(hw); + if (ret_val) + return ret_val; + + DEBUGOUT("Issuing a global reset to MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + e1000_release_phy_80003es2lan(hw); + + /* Disable IBIST slave mode (far-end loopback) */ + ret_val = e1000_read_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data); + if (!ret_val) { + kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_INBAND_PARAM, + kum_reg_data); + if (ret_val) + DEBUGOUT("Error disabling far-end loopback\n"); + } else + DEBUGOUT("Error disabling far-end loopback\n"); + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) + /* We don't want to continue accessing MAC registers. */ + return ret_val; + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + return e1000_check_alt_mac_addr_generic(hw); +} + +/** + * e1000_init_hw_80003es2lan - Initialize the ESB2 controller + * @hw: pointer to the HW structure + * + * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. + **/ +STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 reg_data; + s32 ret_val; + u16 kum_reg_data; + u16 i; + + DEBUGFUNC("e1000_init_hw_80003es2lan"); + + e1000_initialize_hw_bits_80003es2lan(hw); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + /* An error is not fatal and we should not stop init due to this */ + if (ret_val) + DEBUGOUT("Error initializing identification LED\n"); + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + if (ret_val) + return ret_val; + + /* Disable IBIST slave mode (far-end loopback) */ + ret_val = + e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, + &kum_reg_data); + if (!ret_val) { + kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_INBAND_PARAM, + kum_reg_data); + if (ret_val) + DEBUGOUT("Error disabling far-end loopback\n"); + } else + DEBUGOUT("Error disabling far-end loopback\n"); + + /* Set the transmit descriptor write-back policy */ + reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); + + /* ...for both queues. */ + reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); + + /* Enable retransmit on late collisions */ + reg_data = E1000_READ_REG(hw, E1000_TCTL); + reg_data |= E1000_TCTL_RTLC; + E1000_WRITE_REG(hw, E1000_TCTL, reg_data); + + /* Configure Gigabit Carry Extend Padding */ + reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT); + reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; + reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; + E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data); + + /* Configure Transmit Inter-Packet Gap */ + reg_data = E1000_READ_REG(hw, E1000_TIPG); + reg_data &= ~E1000_TIPG_IPGT_MASK; + reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; + E1000_WRITE_REG(hw, E1000_TIPG, reg_data); + + reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); + reg_data &= ~0x00100000; + E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); + + /* default to true to enable the MDIC W/A */ + hw->dev_spec._80003es2lan.mdic_wa_enable = true; + + ret_val = + e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >> + E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i); + if (!ret_val) { + if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) == + E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO) + hw->dev_spec._80003es2lan.mdic_wa_enable = false; + } + + /* Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_80003es2lan(hw); + + return ret_val; +} + +/** + * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 + * @hw: pointer to the HW structure + * + * Initializes required hardware-dependent bits needed for normal operation. + **/ +STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan"); + + /* Transmit Descriptor Control 0 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); + + /* Transmit Descriptor Control 1 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); + + /* Transmit Arbitration Control 0 */ + reg = E1000_READ_REG(hw, E1000_TARC(0)); + reg &= ~(0xF << 27); /* 30:27 */ + if (hw->phy.media_type != e1000_media_type_copper) + reg &= ~(1 << 20); + E1000_WRITE_REG(hw, E1000_TARC(0), reg); + + /* Transmit Arbitration Control 1 */ + reg = E1000_READ_REG(hw, E1000_TARC(1)); + if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) + reg &= ~(1 << 28); + else + reg |= (1 << 28); + E1000_WRITE_REG(hw, E1000_TARC(1), reg); + + /* Disable IPv6 extension header parsing because some malformed + * IPv6 headers can hang the Rx. + */ + reg = E1000_READ_REG(hw, E1000_RFCTL); + reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); + E1000_WRITE_REG(hw, E1000_RFCTL, reg); + + return; +} + +/** + * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link + * @hw: pointer to the HW structure + * + * Setup some GG82563 PHY registers for obtaining link + **/ +STATIC s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u32 reg; + u16 data; + + DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan"); + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); + if (ret_val) + return ret_val; + + data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ + data |= GG82563_MSCR_TX_CLK_1000MBPS_25; + + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data); + if (ret_val) + return ret_val; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data); + if (ret_val) + return ret_val; + + data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; + + switch (phy->mdix) { + case 1: + data |= GG82563_PSCR_CROSSOVER_MODE_MDI; + break; + case 2: + data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; + break; + case 0: + default: + data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + if (phy->disable_polarity_correction) + data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data); + if (ret_val) + return ret_val; + + /* SW Reset the PHY so all changes take effect */ + ret_val = hw->phy.ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + + /* Bypass Rx and Tx FIFO's */ + reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL; + data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | + E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data); + if (ret_val) + return ret_val; + + reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE; + ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data); + if (ret_val) + return ret_val; + data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data); + if (ret_val) + return ret_val; + + data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data); + if (ret_val) + return ret_val; + + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); + if (ret_val) + return ret_val; + + /* Do not init these registers when the HW is in IAMT mode, since the + * firmware will have already initialized them. We only initialize + * them if the HW is not in IAMT mode. + */ + if (!hw->mac.ops.check_mng_mode(hw)) { + /* Enable Electrical Idle on the PHY */ + data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, + data); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + &data); + if (ret_val) + return ret_val; + + data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + data); + if (ret_val) + return ret_val; + } + + /* Workaround: Disable padding in Kumeran interface in the MAC + * and in the PHY to avoid CRC errors. + */ + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data); + if (ret_val) + return ret_val; + + data |= GG82563_ICR_DIS_PADDING; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data); + if (ret_val) + return ret_val; + + return E1000_SUCCESS; +} + +/** + * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 + * @hw: pointer to the HW structure + * + * Essentially a wrapper for setting up all things "copper" related. + * This is a function pointer entry point called by the mac module. + **/ +STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 reg_data; + + DEBUGFUNC("e1000_setup_copper_link_80003es2lan"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Set the mac to wait the maximum time between each + * iteration and increase the max iterations when + * polling the phy; this fixes erroneous timeouts at 10Mbps. + */ + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4), + 0xFFFF); + if (ret_val) + return ret_val; + ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), + ®_data); + if (ret_val) + return ret_val; + reg_data |= 0x3F; + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), + reg_data); + if (ret_val) + return ret_val; + ret_val = + e1000_read_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, + ®_data); + if (ret_val) + return ret_val; + reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; + ret_val = + e1000_write_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, + reg_data); + if (ret_val) + return ret_val; + + ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); + if (ret_val) + return ret_val; + + return e1000_setup_copper_link_generic(hw); +} + +/** + * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up + * @hw: pointer to the HW structure + * @duplex: current duplex setting + * + * Configure the KMRN interface by applying last minute quirks for + * 10/100 operation. + **/ +STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 speed; + u16 duplex; + + DEBUGFUNC("e1000_configure_on_link_up"); + + if (hw->phy.media_type == e1000_media_type_copper) { + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed, + &duplex); + if (ret_val) + return ret_val; + + if (speed == SPEED_1000) + ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); + else + ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex); + } + + return ret_val; +} + +/** + * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation + * @hw: pointer to the HW structure + * @duplex: current duplex setting + * + * Configure the KMRN interface by applying last minute quirks for + * 10/100 operation. + **/ +STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) +{ + s32 ret_val; + u32 tipg; + u32 i = 0; + u16 reg_data, reg_data2; + + DEBUGFUNC("e1000_configure_kmrn_for_10_100"); + + reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; + ret_val = + e1000_write_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, + reg_data); + if (ret_val) + return ret_val; + + /* Configure Transmit Inter-Packet Gap */ + tipg = E1000_READ_REG(hw, E1000_TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; + E1000_WRITE_REG(hw, E1000_TIPG, tipg); + + do { + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + ®_data); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + ®_data2); + if (ret_val) + return ret_val; + i++; + } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); + + if (duplex == HALF_DUPLEX) + reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; + else + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + + return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); +} + +/** + * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation + * @hw: pointer to the HW structure + * + * Configure the KMRN interface by applying last minute quirks for + * gigabit operation. + **/ +STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val; + u16 reg_data, reg_data2; + u32 tipg; + u32 i = 0; + + DEBUGFUNC("e1000_configure_kmrn_for_1000"); + + reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; + ret_val = + e1000_write_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, + reg_data); + if (ret_val) + return ret_val; + + /* Configure Transmit Inter-Packet Gap */ + tipg = E1000_READ_REG(hw, E1000_TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; + E1000_WRITE_REG(hw, E1000_TIPG, tipg); + + do { + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + ®_data); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + ®_data2); + if (ret_val) + return ret_val; + i++; + } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); + + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + + return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); +} + +/** + * e1000_read_kmrn_reg_80003es2lan - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquire semaphore, then read the PHY register at offset + * using the kumeran interface. The information retrieved is stored in data. + * Release the semaphore before exiting. + **/ +STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, + u16 *data) +{ + u32 kmrnctrlsta; + s32 ret_val; + + DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan"); + + ret_val = e1000_acquire_mac_csr_80003es2lan(hw); + if (ret_val) + return ret_val; + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); + + usec_delay(2); + + kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); + *data = (u16)kmrnctrlsta; + + e1000_release_mac_csr_80003es2lan(hw); + + return ret_val; +} + +/** + * e1000_write_kmrn_reg_80003es2lan - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquire semaphore, then write the data to PHY register + * at the offset using the kumeran interface. Release semaphore + * before exiting. + **/ +STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, + u16 data) +{ + u32 kmrnctrlsta; + s32 ret_val; + + DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan"); + + ret_val = e1000_acquire_mac_csr_80003es2lan(hw); + if (ret_val) + return ret_val; + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | data; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); + + usec_delay(2); + + e1000_release_mac_csr_80003es2lan(hw); + + return ret_val; +} + +/** + * e1000_read_mac_addr_80003es2lan - Read device MAC address + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_read_mac_addr_80003es2lan"); + + /* If there's an alternate MAC address place it in RAR0 + * so that it will override the Si installed default perm + * address. + */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + if (ret_val) + return ret_val; + + return e1000_read_mac_addr_generic(hw); +} + +/** + * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(hw->mac.ops.check_mng_mode(hw) || + hw->phy.ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); + + E1000_READ_REG(hw, E1000_IAC); + E1000_READ_REG(hw, E1000_ICRXOC); + + E1000_READ_REG(hw, E1000_ICRXPTC); + E1000_READ_REG(hw, E1000_ICRXATC); + E1000_READ_REG(hw, E1000_ICTXPTC); + E1000_READ_REG(hw, E1000_ICTXATC); + E1000_READ_REG(hw, E1000_ICTXQEC); + E1000_READ_REG(hw, E1000_ICTXQMTC); + E1000_READ_REG(hw, E1000_ICRXDMTC); +} diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_80003es2lan.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_80003es2lan.h new file mode 100644 index 00000000..93ec19be --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_80003es2lan.h @@ -0,0 +1,100 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_80003ES2LAN_H_ +#define _E1000_80003ES2LAN_H_ + +#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 +#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 +#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 +#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F + +#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 +#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 +#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 + +#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 +#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 +#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000 + +#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C +#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004 + +#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gig Carry Extend Padding */ +#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 + +#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 +#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 + +/* GG82563 PHY Specific Status Register (Page 0, Register 16 */ +#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Dis */ +#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 +#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ +#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ +#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ + +/* PHY Specific Control Register 2 (Page 0, Register 26) */ +#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Neg */ + +/* MAC Specific Control Register (Page 2, Register 21) */ +/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ +#define GG82563_MSCR_TX_CLK_MASK 0x0007 +#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 +#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 +#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 + +#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ + +/* DSP Distance Register (Page 5, Register 26) + * 0 = <50M + * 1 = 50-80M + * 2 = 80-100M + * 3 = 110-140M + * 4 = >140M + */ +#define GG82563_DSPD_CABLE_LENGTH 0x0007 + +/* Kumeran Mode Control Register (Page 193, Register 16) */ +#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 + +/* Max number of times Kumeran read/write should be validated */ +#define GG82563_MAX_KMRN_RETRY 0x5 + +/* Power Management Control Register (Page 193, Register 20) */ +/* 1=Enable SERDES Electrical Idle */ +#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 + +/* In-Band Control Register (Page 194, Register 18) */ +#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ + +#endif diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_82540.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82540.c new file mode 100644 index 00000000..7de7b7ba --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82540.c @@ -0,0 +1,717 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +/* + * 82540EM Gigabit Ethernet Controller + * 82540EP Gigabit Ethernet Controller + * 82545EM Gigabit Ethernet Controller (Copper) + * 82545EM Gigabit Ethernet Controller (Fiber) + * 82545GM Gigabit Ethernet Controller + * 82546EB Gigabit Ethernet Controller (Copper) + * 82546EB Gigabit Ethernet Controller (Fiber) + * 82546GB Gigabit Ethernet Controller + */ + +#include "e1000_api.h" + +STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw); +STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw); +STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw); +STATIC s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw); +STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw); +STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw); +STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw); +STATIC s32 e1000_set_phy_mode_82540(struct e1000_hw *hw); +STATIC s32 e1000_set_vco_speed_82540(struct e1000_hw *hw); +STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw); +STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw); +STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw); +STATIC s32 e1000_read_mac_addr_82540(struct e1000_hw *hw); + +/** + * e1000_init_phy_params_82540 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_m88; + + /* Function Pointers */ + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.read_reg = e1000_read_phy_reg_m88; + phy->ops.reset = e1000_phy_hw_reset_generic; + phy->ops.write_reg = e1000_write_phy_reg_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82540; + + ret_val = e1000_get_phy_id(hw); + if (ret_val) + goto out; + + /* Verify phy id */ + switch (hw->mac.type) { + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + if (phy->id == M88E1011_I_PHY_ID) + break; + /* Fall Through */ + default: + ret_val = -E1000_ERR_PHY; + goto out; + break; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82540 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + + DEBUGFUNC("e1000_init_nvm_params_82540"); + + nvm->type = e1000_nvm_eeprom_microwire; + nvm->delay_usec = 50; + nvm->opcode_bits = 3; + switch (nvm->override) { + case e1000_nvm_override_microwire_large: + nvm->address_bits = 8; + nvm->word_size = 256; + break; + case e1000_nvm_override_microwire_small: + nvm->address_bits = 6; + nvm->word_size = 64; + break; + default: + nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6; + nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64; + break; + } + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82540 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_mac_params_82540"); + + /* Set media type */ + switch (hw->device_id) { + case E1000_DEV_ID_82545EM_FIBER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546GB_FIBER: + hw->phy.media_type = e1000_media_type_fiber; + break; + case E1000_DEV_ID_82545GM_SERDES: + case E1000_DEV_ID_82546GB_SERDES: + hw->phy.media_type = e1000_media_type_internal_serdes; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; + /* function id */ + mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82540; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82540; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82540 + : e1000_setup_fiber_serdes_link_82540; + /* check for link */ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + mac->ops.check_for_link = e1000_check_for_copper_link_generic; + break; + case e1000_media_type_fiber: + mac->ops.check_for_link = e1000_check_for_fiber_link_generic; + break; + case e1000_media_type_internal_serdes: + mac->ops.check_for_link = e1000_check_for_serdes_link_generic; + break; + default: + ret_val = -E1000_ERR_CONFIG; + goto out; + break; + } + /* link info */ + mac->ops.get_link_up_info = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_get_speed_and_duplex_copper_generic + : e1000_get_speed_and_duplex_fiber_serdes_generic; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82540; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540; + +out: + return ret_val; +} + +/** + * e1000_init_function_pointers_82540 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82540(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82540"); + + hw->mac.ops.init_params = e1000_init_mac_params_82540; + hw->nvm.ops.init_params = e1000_init_nvm_params_82540; + hw->phy.ops.init_params = e1000_init_phy_params_82540; +} + +/** + * e1000_reset_hw_82540 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw) +{ + u32 ctrl, manc; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_reset_hw_82540"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* + * Delay to allow any outstanding PCI transactions to complete + * before resetting the device. + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n"); + switch (hw->mac.type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST); + break; + default: + /* + * These controllers can't ack the 64-bit write when + * issuing the reset, so we use IO-mapping as a + * workaround to issue the reset. + */ + E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + break; + } + + /* Wait for EEPROM reload */ + msec_delay(5); + + /* Disable HW ARPs on ASF enabled adapters */ + manc = E1000_READ_REG(hw, E1000_MANC); + manc &= ~E1000_MANC_ARP_EN; + E1000_WRITE_REG(hw, E1000_MANC, manc); + + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + return ret_val; +} + +/** + * e1000_init_hw_82540 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 txdctl, ctrl_ext; + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_init_hw_82540"); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + if (mac->type < e1000_82545_rev_3) + E1000_WRITE_REG(hw, E1000_VET, 0); + + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + /* + * Avoid back to back register writes by adding the register + * read (flush). This is to protect against some strange + * bridge configurations that may issue Memory Write Block + * (MWB) to our register space. The *_rev_3 hardware at + * least doesn't respond correctly to every other dword in an + * MWB to our register space. + */ + E1000_WRITE_FLUSH(hw); + } + + if (mac->type < e1000_82545_rev_3) + e1000_pcix_mmrbc_workaround_generic(hw); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82540(hw); + + if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) || + (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) { + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + /* + * Relaxed ordering must be disabled to avoid a parity + * error crash in a PCI slot. + */ + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + } + + return ret_val; +} + +/** + * e1000_setup_copper_link_82540 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_setup_copper_link_82540"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + ret_val = e1000_set_phy_mode_82540(hw); + if (ret_val) + goto out; + + if (hw->mac.type == e1000_82545_rev_3 || + hw->mac.type == e1000_82546_rev_3) { + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, + &data); + if (ret_val) + goto out; + data |= 0x00000008; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, + data); + if (ret_val) + goto out; + } + + ret_val = e1000_copper_link_setup_m88(hw); + if (ret_val) + goto out; + + ret_val = e1000_setup_copper_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Set the output amplitude to the value in the EEPROM and adjust the VCO + * speed to improve Bit Error Rate (BER) performance. Configures collision + * distance and flow control for fiber and serdes links. Upon successful + * setup, poll for link. + **/ +STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_fiber_serdes_link_82540"); + + switch (mac->type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + if (hw->phy.media_type == e1000_media_type_internal_serdes) { + /* + * If we're on serdes media, adjust the output + * amplitude to value set in the EEPROM. + */ + ret_val = e1000_adjust_serdes_amplitude_82540(hw); + if (ret_val) + goto out; + } + /* Adjust VCO speed to improve BER performance */ + ret_val = e1000_set_vco_speed_82540(hw); + if (ret_val) + goto out; + default: + break; + } + + ret_val = e1000_setup_fiber_serdes_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM + * @hw: pointer to the HW structure + * + * Adjust the SERDES output amplitude based on the EEPROM settings. + **/ +STATIC s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw) +{ + s32 ret_val; + u16 nvm_data; + + DEBUGFUNC("e1000_adjust_serdes_amplitude_82540"); + + ret_val = hw->nvm.ops.read(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data); + if (ret_val) + goto out; + + if (nvm_data != NVM_RESERVED_WORD) { + /* Adjust serdes output amplitude only. */ + nvm_data &= NVM_SERDES_AMPLITUDE_MASK; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_EXT_CTRL, + nvm_data); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_set_vco_speed_82540 - Set VCO speed for better performance + * @hw: pointer to the HW structure + * + * Set the VCO speed to improve Bit Error Rate (BER) performance. + **/ +STATIC s32 e1000_set_vco_speed_82540(struct e1000_hw *hw) +{ + s32 ret_val; + u16 default_page = 0; + u16 phy_data; + + DEBUGFUNC("e1000_set_vco_speed_82540"); + + /* Set PHY register 30, page 5, bit 8 to 0 */ + + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_PAGE_SELECT, + &default_page); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + goto out; + + phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + goto out; + + /* Set PHY register 30, page 4, bit 11 to 1 */ + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + goto out; + + phy_data |= M88E1000_PHY_VCO_REG_BIT11; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, + default_page); + +out: + return ret_val; +} + +/** + * e1000_set_phy_mode_82540 - Set PHY to class A mode + * @hw: pointer to the HW structure + * + * Sets the PHY to class A mode and assumes the following operations will + * follow to enable the new class mode: + * 1. Do a PHY soft reset. + * 2. Restart auto-negotiation or force link. + **/ +STATIC s32 e1000_set_phy_mode_82540(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 nvm_data; + + DEBUGFUNC("e1000_set_phy_mode_82540"); + + if (hw->mac.type != e1000_82545_rev_3) + goto out; + + ret_val = hw->nvm.ops.read(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data); + if (ret_val) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) { + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, + 0x000B); + if (ret_val) { + ret_val = -E1000_ERR_PHY; + goto out; + } + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, + 0x8104); + if (ret_val) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + } + +out: + return ret_val; +} + +/** + * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82540"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); +} + +/** + * e1000_read_mac_addr_82540 - Read device MAC address + * @hw: pointer to the HW structure + * + * Reads the device MAC address from the EEPROM and stores the value. + * Since devices with two ports use the same EEPROM, we increment the + * last bit in the MAC address for the second port. + * + * This version is being used over generic because of customer issues + * with VmWare and Virtual Box when using generic. It seems in + * the emulated 82545, RAR[0] does NOT have a valid address after a + * reset, this older method works and using this breaks nothing for + * these legacy adapters. + **/ +s32 e1000_read_mac_addr_82540(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 offset, nvm_data, i; + + DEBUGFUNC("e1000_read_mac_addr"); + + for (i = 0; i < ETH_ADDR_LEN; i += 2) { + offset = i >> 1; + ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); + hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); + } + + /* Flip last bit of mac address if we're on second port */ + if (hw->bus.func == E1000_FUNC_1) + hw->mac.perm_addr[5] ^= 1; + + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + +out: + return ret_val; +} diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_82541.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82541.c new file mode 100644 index 00000000..9cdb91c9 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82541.c @@ -0,0 +1,1268 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +/* + * 82541EI Gigabit Ethernet Controller + * 82541ER Gigabit Ethernet Controller + * 82541GI Gigabit Ethernet Controller + * 82541PI Gigabit Ethernet Controller + * 82547EI Gigabit Ethernet Controller + * 82547GI Gigabit Ethernet Controller + */ + +#include "e1000_api.h" + +STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw); +STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw); +STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw); +STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw); +STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw); +STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw); +STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw); +STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw); +STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw); +STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, + bool active); +STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw); +STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw); +STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw); +STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, + bool link_up); +STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw); +STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw); + +STATIC const u16 e1000_igp_cable_length_table[] = { + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, + 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 25, 25, 30, 30, 30, 30, + 40, 40, 40, 40, 40, 40, 40, 40, 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, + 60, 60, 60, 60, 60, 60, 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, + 80, 90, 90, 90, 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, + 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 120, 120, + 120, 120, 120, 120, 120, 120, 120, 120}; +#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \ + (sizeof(e1000_igp_cable_length_table) / \ + sizeof(e1000_igp_cable_length_table[0])) + +/** + * e1000_init_phy_params_82541 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + + DEBUGFUNC("e1000_init_phy_params_82541"); + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_igp; + + /* Function Pointers */ + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + phy->ops.get_cable_length = e1000_get_cable_length_igp_82541; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.reset = e1000_phy_hw_reset_82541; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541; + phy->ops.write_reg = e1000_write_phy_reg_igp; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82541; + + ret_val = e1000_get_phy_id(hw); + if (ret_val) + goto out; + + /* Verify phy id */ + if (phy->id != IGP01E1000_I_PHY_ID) { + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82541 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val = E1000_SUCCESS; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_82541"); + + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->type = e1000_nvm_eeprom_spi; + eecd |= E1000_EECD_ADDR_BITS; + break; + case e1000_nvm_override_spi_small: + nvm->type = e1000_nvm_eeprom_spi; + eecd &= ~E1000_EECD_ADDR_BITS; + break; + case e1000_nvm_override_microwire_large: + nvm->type = e1000_nvm_eeprom_microwire; + eecd |= E1000_EECD_SIZE; + break; + case e1000_nvm_override_microwire_small: + nvm->type = e1000_nvm_eeprom_microwire; + eecd &= ~E1000_EECD_SIZE; + break; + default: + nvm->type = eecd & E1000_EECD_TYPE ? e1000_nvm_eeprom_spi + : e1000_nvm_eeprom_microwire; + break; + } + + if (nvm->type == e1000_nvm_eeprom_spi) { + nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 16 : 8; + nvm->delay_usec = 1; + nvm->opcode_bits = 8; + nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) ? 32 : 8; + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_spi; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_spi; + + /* + * nvm->word_size must be discovered after the pointers + * are set so we can verify the size from the nvm image + * itself. Temporarily set it to a dummy value so the + * read will work. + */ + nvm->word_size = 64; + ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size); + if (ret_val) + goto out; + size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT; + /* + * if size != 0, it can be added to a constant and become + * the left-shift value to set the word_size. Otherwise, + * word_size stays at 64. + */ + if (size) { + size += NVM_WORD_SIZE_BASE_SHIFT_82541; + nvm->word_size = 1 << size; + } + } else { + nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 8 : 6; + nvm->delay_usec = 50; + nvm->opcode_bits = 3; + nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) ? 256 : 64; + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; + } + +out: + return ret_val; +} + +/** + * e1000_init_mac_params_82541 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_init_mac_params_82541"); + + /* Set media type */ + hw->phy.media_type = e1000_media_type_copper; + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = true; + + /* Function Pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; + /* function id */ + mac->ops.set_lan_id = e1000_set_lan_id_single_port; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82541; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82541; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface link setup */ + mac->ops.setup_physical_interface = e1000_setup_copper_link_82541; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_link_82541; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_82541; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_82541; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_82541; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541; + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_82541 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82541(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82541"); + + hw->mac.ops.init_params = e1000_init_mac_params_82541; + hw->nvm.ops.init_params = e1000_init_nvm_params_82541; + hw->phy.ops.init_params = e1000_init_phy_params_82541; +} + +/** + * e1000_reset_hw_82541 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw) +{ + u32 ledctl, ctrl, manc; + + DEBUGFUNC("e1000_reset_hw_82541"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* + * Delay to allow any outstanding PCI transactions to complete + * before resetting the device. + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Must reset the Phy before resetting the MAC */ + if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST)); + E1000_WRITE_FLUSH(hw); + msec_delay(5); + } + + DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n"); + switch (hw->mac.type) { + case e1000_82541: + case e1000_82541_rev_2: + /* + * These controllers can't ack the 64-bit write when + * issuing the reset, so we use IO-mapping as a + * workaround to issue the reset. + */ + E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + break; + default: + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + break; + } + + /* Wait for NVM reload */ + msec_delay(20); + + /* Disable HW ARPs on ASF enabled adapters */ + manc = E1000_READ_REG(hw, E1000_MANC); + manc &= ~E1000_MANC_ARP_EN; + E1000_WRITE_REG(hw, E1000_MANC, manc); + + if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { + e1000_phy_init_script_82541(hw); + + /* Configure activity LED after Phy reset */ + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + ledctl &= IGP_ACTIVITY_LED_MASK; + ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + } + + /* Once again, mask the interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + + /* Clear any pending interrupt events. */ + E1000_READ_REG(hw, E1000_ICR); + + return E1000_SUCCESS; +} + +/** + * e1000_init_hw_82541 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + u32 i, txdctl; + s32 ret_val; + + DEBUGFUNC("e1000_init_hw_82541"); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Storing the Speed Power Down value for later use */ + ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO, + &dev_spec->spd_default); + if (ret_val) + goto out; + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + /* + * Avoid back to back register writes by adding the register + * read (flush). This is to protect against some strange + * bridge configurations that may issue Memory Write Block + * (MWB) to our register space. + */ + E1000_WRITE_FLUSH(hw); + } + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82541(hw); + +out: + return ret_val; +} + +/** + * e1000_get_link_up_info_82541 - Report speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to speed buffer + * @duplex: pointer to duplex buffer + * + * Retrieve the current speed and duplex configuration. + **/ +STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_get_link_up_info_82541"); + + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); + if (ret_val) + goto out; + + if (!phy->speed_downgraded) + goto out; + + /* + * IGP01 PHY may advertise full duplex operation after speed + * downgrade even if it is operating at half duplex. + * Here we set the duplex settings to match the duplex in the + * link partner's capabilities. + */ + ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data); + if (ret_val) + goto out; + + if (!(data & NWAY_ER_LP_NWAY_CAPS)) { + *duplex = HALF_DUPLEX; + } else { + ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data); + if (ret_val) + goto out; + + if (*speed == SPEED_100) { + if (!(data & NWAY_LPAR_100TX_FD_CAPS)) + *duplex = HALF_DUPLEX; + } else if (*speed == SPEED_10) { + if (!(data & NWAY_LPAR_10T_FD_CAPS)) + *duplex = HALF_DUPLEX; + } + } + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_82541 - PHY hardware reset + * @hw: pointer to the HW structure + * + * Verify the reset block is not blocking us from resetting. Acquire + * semaphore (if necessary) and read/set/write the device control reset + * bit in the PHY. Wait the appropriate delay time for the device to + * reset and release the semaphore (if necessary). + **/ +STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw) +{ + s32 ret_val; + u32 ledctl; + + DEBUGFUNC("e1000_phy_hw_reset_82541"); + + ret_val = e1000_phy_hw_reset_generic(hw); + if (ret_val) + goto out; + + e1000_phy_init_script_82541(hw); + + if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { + /* Configure activity LED after PHY reset */ + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + ledctl &= IGP_ACTIVITY_LED_MASK; + ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + } + +out: + return ret_val; +} + +/** + * e1000_setup_copper_link_82541 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + s32 ret_val; + u32 ctrl, ledctl; + + DEBUGFUNC("e1000_setup_copper_link_82541"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + + /* Earlier revs of the IGP phy require us to force MDI. */ + if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) { + dev_spec->dsp_config = e1000_dsp_config_disabled; + phy->mdix = 1; + } else { + dev_spec->dsp_config = e1000_dsp_config_enabled; + } + + ret_val = e1000_copper_link_setup_igp(hw); + if (ret_val) + goto out; + + if (hw->mac.autoneg) { + if (dev_spec->ffe_config == e1000_ffe_config_active) + dev_spec->ffe_config = e1000_ffe_config_enabled; + } + + /* Configure activity LED after Phy reset */ + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + ledctl &= IGP_ACTIVITY_LED_MASK; + ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + + ret_val = e1000_setup_copper_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_check_for_link_82541 - Check/Store link connection + * @hw: pointer to the HW structure + * + * This checks the link condition of the adapter and stores the + * results in the hw->mac structure. + **/ +STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_check_for_link_82541"); + + /* + * We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* + * First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) { + ret_val = e1000_config_dsp_after_link_change_82541(hw, false); + goto out; /* No link detected */ + } + + mac->get_link_status = false; + + /* + * Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000_check_downshift_generic(hw); + + /* + * If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) { + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + ret_val = e1000_config_dsp_after_link_change_82541(hw, true); + + /* + * Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + mac->ops.config_collision_dist(hw); + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) + DEBUGOUT("Error configuring flow control\n"); + +out: + return ret_val; +} + +/** + * e1000_config_dsp_after_link_change_82541 - Config DSP after link + * @hw: pointer to the HW structure + * @link_up: boolean flag for link up status + * + * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS + * at any other case. + * + * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a + * gigabit link is achieved to improve link quality. + **/ +STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, + bool link_up) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + s32 ret_val; + u32 idle_errs = 0; + u16 phy_data, phy_saved_data, speed, duplex, i; + u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; + u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { + IGP01E1000_PHY_AGC_PARAM_A, + IGP01E1000_PHY_AGC_PARAM_B, + IGP01E1000_PHY_AGC_PARAM_C, + IGP01E1000_PHY_AGC_PARAM_D}; + + DEBUGFUNC("e1000_config_dsp_after_link_change_82541"); + + if (link_up) { + ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + goto out; + } + + if (speed != SPEED_1000) { + ret_val = E1000_SUCCESS; + goto out; + } + + ret_val = phy->ops.get_cable_length(hw); + if (ret_val) + goto out; + + if ((dev_spec->dsp_config == e1000_dsp_config_enabled) && + phy->min_cable_length >= 50) { + + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, + dsp_reg_array[i], + &phy_data); + if (ret_val) + goto out; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + + ret_val = phy->ops.write_reg(hw, + dsp_reg_array[i], + phy_data); + if (ret_val) + goto out; + } + dev_spec->dsp_config = e1000_dsp_config_activated; + } + + if ((dev_spec->ffe_config != e1000_ffe_config_enabled) || + (phy->min_cable_length >= 50)) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* clear previous idle error counts */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + goto out; + + for (i = 0; i < ffe_idle_err_timeout; i++) { + usec_delay(1000); + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, + &phy_data); + if (ret_val) + goto out; + + idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); + if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { + dev_spec->ffe_config = e1000_ffe_config_active; + + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_CM_CP); + if (ret_val) + goto out; + break; + } + + if (idle_errs) + ffe_idle_err_timeout = + FFE_IDLE_ERR_COUNT_TIMEOUT_100; + } + } else { + if (dev_spec->dsp_config == e1000_dsp_config_activated) { + /* + * Save off the current value of register 0x2F5B + * to be restored at the end of the routines. + */ + ret_val = phy->ops.read_reg(hw, 0x2F5B, + &phy_saved_data); + if (ret_val) + goto out; + + /* Disable the PHY transmitter */ + ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003); + if (ret_val) + goto out; + + msec_delay_irq(20); + + ret_val = phy->ops.write_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIG); + if (ret_val) + goto out; + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, + dsp_reg_array[i], + &phy_data); + if (ret_val) + goto out; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; + + ret_val = phy->ops.write_reg(hw, + dsp_reg_array[i], + phy_data); + if (ret_val) + goto out; + } + + ret_val = phy->ops.write_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + goto out; + + msec_delay_irq(20); + + /* Now enable the transmitter */ + ret_val = phy->ops.write_reg(hw, 0x2F5B, + phy_saved_data); + if (ret_val) + goto out; + + dev_spec->dsp_config = e1000_dsp_config_enabled; + } + + if (dev_spec->ffe_config != e1000_ffe_config_active) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* + * Save off the current value of register 0x2F5B + * to be restored at the end of the routines. + */ + ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data); + if (ret_val) + goto out; + + /* Disable the PHY transmitter */ + ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003); + if (ret_val) + goto out; + + msec_delay_irq(20); + + ret_val = phy->ops.write_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIG); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_DEFAULT); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + goto out; + + msec_delay_irq(20); + + /* Now enable the transmitter */ + ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data); + + if (ret_val) + goto out; + + dev_spec->ffe_config = e1000_ffe_config_enabled; + } + +out: + return ret_val; +} + +/** + * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY + * @hw: pointer to the HW structure + * + * The automatic gain control (agc) normalizes the amplitude of the + * received signal, adjusting for the attenuation produced by the + * cable. By reading the AGC registers, which represent the + * combination of coarse and fine gain value, the value can be put + * into a lookup table to obtain the approximate cable length + * for each channel. + **/ +STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 i, data; + u16 cur_agc_value, agc_value = 0; + u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; + u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {IGP01E1000_PHY_AGC_A, + IGP01E1000_PHY_AGC_B, + IGP01E1000_PHY_AGC_C, + IGP01E1000_PHY_AGC_D}; + + DEBUGFUNC("e1000_get_cable_length_igp_82541"); + + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data); + if (ret_val) + goto out; + + cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT; + + /* Bounds checking */ + if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || + (cur_agc_value == 0)) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + agc_value += cur_agc_value; + + if (min_agc_value > cur_agc_value) + min_agc_value = cur_agc_value; + } + + /* Remove the minimal AGC result for length < 50m */ + if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) { + agc_value -= min_agc_value; + /* Average the three remaining channels for the length. */ + agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); + } else { + /* Average the channels for the length. */ + agc_value /= IGP01E1000_PHY_CHANNEL_NUM; + } + + phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] > + IGP01E1000_AGC_RANGE) + ? (e1000_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) + : 0; + phy->max_cable_length = e1000_igp_cable_length_table[agc_value] + + IGP01E1000_AGC_RANGE; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + +out: + return ret_val; +} + +/** + * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is true, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_82541"); + + switch (hw->mac.type) { + case e1000_82541_rev_2: + case e1000_82547_rev_2: + break; + default: + ret_val = e1000_set_d3_lplu_state_generic(hw, active); + goto out; + break; + } + + ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data); + if (ret_val) + goto out; + + if (!active) { + data &= ~IGP01E1000_GMII_FLEX_SPD; + ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data); + if (ret_val) + goto out; + + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= IGP01E1000_GMII_FLEX_SPD; + ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data); + if (ret_val) + goto out; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + } + +out: + return ret_val; +} + +/** + * e1000_setup_led_82541 - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. + **/ +STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + s32 ret_val; + + DEBUGFUNC("e1000_setup_led_82541"); + + ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO, + &dev_spec->spd_default); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO, + (u16)(dev_spec->spd_default & + ~IGP01E1000_GMII_SPD)); + if (ret_val) + goto out; + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + +out: + return ret_val; +} + +/** + * e1000_cleanup_led_82541 - Set LED config to default operation + * @hw: pointer to the HW structure + * + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. + **/ +STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + s32 ret_val; + + DEBUGFUNC("e1000_cleanup_led_82541"); + + ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO, + dev_spec->spd_default); + if (ret_val) + goto out; + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); + +out: + return ret_val; +} + +/** + * e1000_phy_init_script_82541 - Initialize GbE PHY + * @hw: pointer to the HW structure + * + * Initializes the IGP PHY. + **/ +STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + u32 ret_val; + u16 phy_saved_data; + + DEBUGFUNC("e1000_phy_init_script_82541"); + + if (!dev_spec->phy_init_script) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* Delay after phy reset to enable NVM configuration to load */ + msec_delay(20); + + /* + * Save off the current value of register 0x2F5B to be restored at + * the end of this routine. + */ + ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data); + + /* Disabled the PHY transmitter */ + hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003); + + msec_delay(20); + + hw->phy.ops.write_reg(hw, 0x0000, 0x0140); + + msec_delay(5); + + switch (hw->mac.type) { + case e1000_82541: + case e1000_82547: + hw->phy.ops.write_reg(hw, 0x1F95, 0x0001); + + hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21); + + hw->phy.ops.write_reg(hw, 0x1F79, 0x0018); + + hw->phy.ops.write_reg(hw, 0x1F30, 0x1600); + + hw->phy.ops.write_reg(hw, 0x1F31, 0x0014); + + hw->phy.ops.write_reg(hw, 0x1F32, 0x161C); + + hw->phy.ops.write_reg(hw, 0x1F94, 0x0003); + + hw->phy.ops.write_reg(hw, 0x1F96, 0x003F); + + hw->phy.ops.write_reg(hw, 0x2010, 0x0008); + break; + case e1000_82541_rev_2: + case e1000_82547_rev_2: + hw->phy.ops.write_reg(hw, 0x1F73, 0x0099); + break; + default: + break; + } + + hw->phy.ops.write_reg(hw, 0x0000, 0x3300); + + msec_delay(20); + + /* Now enable the transmitter */ + hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data); + + if (hw->mac.type == e1000_82547) { + u16 fused, fine, coarse; + + /* Move to analog registers page */ + hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, + &fused); + + if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, + &fused); + + fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; + coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; + + if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; + fine -= IGP01E1000_ANALOG_FUSE_FINE_1; + } else if (coarse == + IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + fine -= IGP01E1000_ANALOG_FUSE_FINE_10; + + fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | + (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | + (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); + + hw->phy.ops.write_reg(hw, + IGP01E1000_ANALOG_FUSE_CONTROL, + fused); + hw->phy.ops.write_reg(hw, + IGP01E1000_ANALOG_FUSE_BYPASS, + IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); + } + } + +out: + return ret_val; +} + +/** + * e1000_init_script_state_82541 - Enable/Disable PHY init script + * @hw: pointer to the HW structure + * @state: boolean value used to enable/disable PHY init script + * + * Allows the driver to enable/disable the PHY init script, if the PHY is an + * IGP PHY. + **/ +void e1000_init_script_state_82541(struct e1000_hw *hw, bool state) +{ + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + + DEBUGFUNC("e1000_init_script_state_82541"); + + if (hw->phy.type != e1000_phy_igp) { + DEBUGOUT("Initialization script not necessary.\n"); + goto out; + } + + dev_spec->phy_init_script = state; + +out: + return; +} + +/** + * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82541"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); +} diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_82541.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82541.h new file mode 100644 index 00000000..e0bee7ce --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82541.h @@ -0,0 +1,91 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_82541_H_ +#define _E1000_82541_H_ + +#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1) + +#define IGP01E1000_PHY_CHANNEL_NUM 4 + +#define IGP01E1000_PHY_AGC_A 0x1172 +#define IGP01E1000_PHY_AGC_B 0x1272 +#define IGP01E1000_PHY_AGC_C 0x1472 +#define IGP01E1000_PHY_AGC_D 0x1872 + +#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 +#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 +#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 +#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 + +#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 +#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 + +#define IGP01E1000_PHY_DSP_RESET 0x1F33 + +#define IGP01E1000_PHY_DSP_FFE 0x1F35 +#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 +#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A + +#define IGP01E1000_IEEE_FORCE_GIG 0x0140 +#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 + +#define IGP01E1000_AGC_LENGTH_SHIFT 7 +#define IGP01E1000_AGC_RANGE 10 + +#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 +#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 + +#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 +#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 +#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC +#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE + +#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 +#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 +#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 +#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 +#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 +#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 +#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 +#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 +#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 + +#define IGP01E1000_MSE_CHANNEL_D 0x000F +#define IGP01E1000_MSE_CHANNEL_C 0x00F0 +#define IGP01E1000_MSE_CHANNEL_B 0x0F00 +#define IGP01E1000_MSE_CHANNEL_A 0xF000 + + +void e1000_init_script_state_82541(struct e1000_hw *hw, bool state); +#endif diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_82542.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82542.c new file mode 100644 index 00000000..4f1183af --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82542.c @@ -0,0 +1,590 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +/* + * 82542 Gigabit Ethernet Controller + */ + +#include "e1000_api.h" + +STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw); +STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw); +STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw); +STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw); +STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw); +STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw); +STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw); +STATIC s32 e1000_led_on_82542(struct e1000_hw *hw); +STATIC s32 e1000_led_off_82542(struct e1000_hw *hw); +STATIC int e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index); +STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw); +STATIC s32 e1000_read_mac_addr_82542(struct e1000_hw *hw); + +/** + * e1000_init_phy_params_82542 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_phy_params_82542"); + + phy->type = e1000_phy_none; + + return ret_val; +} + +/** + * e1000_init_nvm_params_82542 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + + DEBUGFUNC("e1000_init_nvm_params_82542"); + + nvm->address_bits = 6; + nvm->delay_usec = 50; + nvm->opcode_bits = 3; + nvm->type = e1000_nvm_eeprom_microwire; + nvm->word_size = 64; + + /* Function Pointers */ + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_stop_nvm; + nvm->ops.write = e1000_write_nvm_microwire; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82542 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_init_mac_params_82542"); + + /* Set media type */ + hw->phy.media_type = e1000_media_type_fiber; + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_82542; + /* function id */ + mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82542; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82542; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_82542; + /* phy/fiber/serdes setup */ + mac->ops.setup_physical_interface = + e1000_setup_fiber_serdes_link_generic; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_fiber_link_generic; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82542; + /* set RAR */ + mac->ops.rar_set = e1000_rar_set_82542; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_82542; + mac->ops.led_off = e1000_led_off_82542; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542; + /* link info */ + mac->ops.get_link_up_info = + e1000_get_speed_and_duplex_fiber_serdes_generic; + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_82542 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82542(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82542"); + + hw->mac.ops.init_params = e1000_init_mac_params_82542; + hw->nvm.ops.init_params = e1000_init_nvm_params_82542; + hw->phy.ops.init_params = e1000_init_phy_params_82542; +} + +/** + * e1000_get_bus_info_82542 - Obtain bus information for adapter + * @hw: pointer to the HW structure + * + * This will obtain information about the HW bus for which the + * adapter is attached and stores it in the hw structure. + **/ +STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_get_bus_info_82542"); + + hw->bus.type = e1000_bus_type_pci; + hw->bus.speed = e1000_bus_speed_unknown; + hw->bus.width = e1000_bus_width_unknown; + + return E1000_SUCCESS; +} + +/** + * e1000_reset_hw_82542 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + s32 ret_val = E1000_SUCCESS; + u32 ctrl; + + DEBUGFUNC("e1000_reset_hw_82542"); + + if (hw->revision_id == E1000_REVISION_2) { + DEBUGOUT("Disabling MWI on 82542 rev 2\n"); + e1000_pci_clear_mwi(hw); + } + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* + * Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + hw->nvm.ops.reload(hw); + msec_delay(2); + + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + if (hw->revision_id == E1000_REVISION_2) { + if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + return ret_val; +} + +/** + * e1000_init_hw_82542 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542; + s32 ret_val = E1000_SUCCESS; + u32 ctrl; + u16 i; + + DEBUGFUNC("e1000_init_hw_82542"); + + /* Disabling VLAN filtering */ + E1000_WRITE_REG(hw, E1000_VET, 0); + mac->ops.clear_vfta(hw); + + /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ + if (hw->revision_id == E1000_REVISION_2) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + e1000_pci_clear_mwi(hw); + E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST); + E1000_WRITE_FLUSH(hw); + msec_delay(5); + } + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ + if (hw->revision_id == E1000_REVISION_2) { + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* + * Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. + */ + if (dev_spec->dma_fairness) { + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR); + } + + /* Setup link and flow control */ + ret_val = e1000_setup_link_82542(hw); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82542(hw); + + return ret_val; +} + +/** + * e1000_setup_link_82542 - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + + DEBUGFUNC("e1000_setup_link_82542"); + + ret_val = e1000_set_default_fc_generic(hw); + if (ret_val) + goto out; + + hw->fc.requested_mode &= ~e1000_fc_tx_pause; + + if (mac->report_tx_early) + hw->fc.requested_mode &= ~e1000_fc_rx_pause; + + /* + * Save off the requested flow control mode for use later. Depending + * on the link partner's capabilities, we may or may not use this mode. + */ + hw->fc.current_mode = hw->fc.requested_mode; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", + hw->fc.current_mode); + + /* Call the necessary subroutine to configure the link. */ + ret_val = mac->ops.setup_physical_interface(hw); + if (ret_val) + goto out; + + /* + * Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT("Initializing Flow Control address, type and timer regs\n"); + + E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); + E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); + + E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); + + ret_val = e1000_set_fc_watermarks_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_led_on_82542 - Turn on SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED on. + **/ +STATIC s32 e1000_led_on_82542(struct e1000_hw *hw) +{ + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_on_82542"); + + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_led_off_82542 - Turn off SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED off. + **/ +STATIC s32 e1000_led_off_82542(struct e1000_hw *hw) +{ + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_off_82542"); + + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_rar_set_82542 - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +STATIC int e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + DEBUGFUNC("e1000_rar_set_82542"); + + /* + * HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); + E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); + + return E1000_SUCCESS; +} + +/** + * e1000_translate_register_82542 - Translate the proper register offset + * @reg: e1000 register to be read + * + * Registers in 82542 are located in different offsets than other adapters + * even though they function in the same manner. This function takes in + * the name of the register to read and returns the correct offset for + * 82542 silicon. + **/ +u32 e1000_translate_register_82542(u32 reg) +{ + /* + * Some of the 82542 registers are located at different + * offsets than they are in newer adapters. + * Despite the difference in location, the registers + * function in the same manner. + */ + switch (reg) { + case E1000_RA: + reg = 0x00040; + break; + case E1000_RDTR: + reg = 0x00108; + break; + case E1000_RDBAL(0): + reg = 0x00110; + break; + case E1000_RDBAH(0): + reg = 0x00114; + break; + case E1000_RDLEN(0): + reg = 0x00118; + break; + case E1000_RDH(0): + reg = 0x00120; + break; + case E1000_RDT(0): + reg = 0x00128; + break; + case E1000_RDBAL(1): + reg = 0x00138; + break; + case E1000_RDBAH(1): + reg = 0x0013C; + break; + case E1000_RDLEN(1): + reg = 0x00140; + break; + case E1000_RDH(1): + reg = 0x00148; + break; + case E1000_RDT(1): + reg = 0x00150; + break; + case E1000_FCRTH: + reg = 0x00160; + break; + case E1000_FCRTL: + reg = 0x00168; + break; + case E1000_MTA: + reg = 0x00200; + break; + case E1000_TDBAL(0): + reg = 0x00420; + break; + case E1000_TDBAH(0): + reg = 0x00424; + break; + case E1000_TDLEN(0): + reg = 0x00428; + break; + case E1000_TDH(0): + reg = 0x00430; + break; + case E1000_TDT(0): + reg = 0x00438; + break; + case E1000_TIDV: + reg = 0x00440; + break; + case E1000_VFTA: + reg = 0x00600; + break; + case E1000_TDFH: + reg = 0x08010; + break; + case E1000_TDFT: + reg = 0x08018; + break; + default: + break; + } + + return reg; +} + +/** + * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82542"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); +} + +/** + * e1000_read_mac_addr_82542 - Read device MAC address + * @hw: pointer to the HW structure + * + * Reads the device MAC address from the EEPROM and stores the value. + **/ +s32 e1000_read_mac_addr_82542(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 offset, nvm_data, i; + + DEBUGFUNC("e1000_read_mac_addr"); + + for (i = 0; i < ETH_ADDR_LEN; i += 2) { + offset = i >> 1; + ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); + hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); + } + + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + +out: + return ret_val; +} diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_82543.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82543.c new file mode 100644 index 00000000..fc96199d --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82543.c @@ -0,0 +1,1553 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +/* + * 82543GC Gigabit Ethernet Controller (Fiber) + * 82543GC Gigabit Ethernet Controller (Copper) + * 82544EI Gigabit Ethernet Controller (Copper) + * 82544EI Gigabit Ethernet Controller (Fiber) + * 82544GC Gigabit Ethernet Controller (Copper) + * 82544GC Gigabit Ethernet Controller (LOM) + */ + +#include "e1000_api.h" + +STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw); +STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw); +STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw); +STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, + u16 *data); +STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, + u16 data); +STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw); +STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw); +STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw); +STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw); +STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw); +STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw); +STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw); +STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw); +STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw); +STATIC s32 e1000_led_on_82543(struct e1000_hw *hw); +STATIC s32 e1000_led_off_82543(struct e1000_hw *hw); +STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, + u32 value); +STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw); +STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw); +STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw); +STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); +STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw); +STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); +STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw); +STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, + u16 count); +STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw); +STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state); + +/** + * e1000_init_phy_params_82543 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_phy_params_82543"); + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + goto out; + } else { + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper; + } + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_m88; + + /* Function Pointers */ + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.read_reg = (hw->mac.type == e1000_82543) + ? e1000_read_phy_reg_82543 + : e1000_read_phy_reg_m88; + phy->ops.reset = (hw->mac.type == e1000_82543) + ? e1000_phy_hw_reset_82543 + : e1000_phy_hw_reset_generic; + phy->ops.write_reg = (hw->mac.type == e1000_82543) + ? e1000_write_phy_reg_82543 + : e1000_write_phy_reg_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + + /* + * The external PHY of the 82543 can be in a funky state. + * Resetting helps us read the PHY registers for acquiring + * the PHY ID. + */ + if (!e1000_init_phy_disabled_82543(hw)) { + ret_val = phy->ops.reset(hw); + if (ret_val) { + DEBUGOUT("Resetting PHY during init failed.\n"); + goto out; + } + msec_delay(20); + } + + ret_val = e1000_get_phy_id(hw); + if (ret_val) + goto out; + + /* Verify phy id */ + switch (hw->mac.type) { + case e1000_82543: + if (phy->id != M88E1000_E_PHY_ID) { + ret_val = -E1000_ERR_PHY; + goto out; + } + break; + case e1000_82544: + if (phy->id != M88E1000_I_PHY_ID) { + ret_val = -E1000_ERR_PHY; + goto out; + } + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + break; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82543 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + + DEBUGFUNC("e1000_init_nvm_params_82543"); + + nvm->type = e1000_nvm_eeprom_microwire; + nvm->word_size = 64; + nvm->delay_usec = 50; + nvm->address_bits = 6; + nvm->opcode_bits = 3; + + /* Function Pointers */ + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82543 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_init_mac_params_82543"); + + /* Set media type */ + switch (hw->device_id) { + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82544EI_FIBER: + hw->phy.media_type = e1000_media_type_fiber; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; + /* function id */ + mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82543; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82543; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_82543; + /* physical interface setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543; + /* check for link */ + mac->ops.check_for_link = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_check_for_copper_link_82543 + : e1000_check_for_fiber_link_82543; + /* link info */ + mac->ops.get_link_up_info = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_get_speed_and_duplex_copper_generic + : e1000_get_speed_and_duplex_fiber_serdes_generic; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_82543; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_82543; + mac->ops.led_off = e1000_led_off_82543; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543; + + /* Set tbi compatibility */ + if ((hw->mac.type != e1000_82543) || + (hw->phy.media_type == e1000_media_type_fiber)) + e1000_set_tbi_compatibility_82543(hw, false); + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_82543 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82543(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82543"); + + hw->mac.ops.init_params = e1000_init_mac_params_82543; + hw->nvm.ops.init_params = e1000_init_nvm_params_82543; + hw->phy.ops.init_params = e1000_init_phy_params_82543; +} + +/** + * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status + * @hw: pointer to the HW structure + * + * Returns the current status of 10-bit Interface (TBI) compatibility + * (enabled/disabled). + **/ +STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + bool state = false; + + DEBUGFUNC("e1000_tbi_compatibility_enabled_82543"); + + if (hw->mac.type != e1000_82543) { + DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); + goto out; + } + + state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED); + +out: + return state; +} + +/** + * e1000_set_tbi_compatibility_82543 - Set TBI compatibility + * @hw: pointer to the HW structure + * @state: enable/disable TBI compatibility + * + * Enables or disabled 10-bit Interface (TBI) compatibility. + **/ +void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state) +{ + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + + DEBUGFUNC("e1000_set_tbi_compatibility_82543"); + + if (hw->mac.type != e1000_82543) { + DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); + goto out; + } + + if (state) + dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED; + else + dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED; + +out: + return; +} + +/** + * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status + * @hw: pointer to the HW structure + * + * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP) + * (enabled/disabled). + **/ +bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + bool state = false; + + DEBUGFUNC("e1000_tbi_sbp_enabled_82543"); + + if (hw->mac.type != e1000_82543) { + DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); + goto out; + } + + state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED); + +out: + return state; +} + +/** + * e1000_set_tbi_sbp_82543 - Set TBI SBP + * @hw: pointer to the HW structure + * @state: enable/disable TBI store bad packet + * + * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP). + **/ +STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state) +{ + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + + DEBUGFUNC("e1000_set_tbi_sbp_82543"); + + if (state && e1000_tbi_compatibility_enabled_82543(hw)) + dev_spec->tbi_compatibility |= TBI_SBP_ENABLED; + else + dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED; + + return; +} + +/** + * e1000_init_phy_disabled_82543 - Returns init PHY status + * @hw: pointer to the HW structure + * + * Returns the current status of whether PHY initialization is disabled. + * True if PHY initialization is disabled else false. + **/ +STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + bool ret_val; + + DEBUGFUNC("e1000_init_phy_disabled_82543"); + + if (hw->mac.type != e1000_82543) { + ret_val = false; + goto out; + } + + ret_val = dev_spec->init_phy_disabled; + +out: + return ret_val; +} + +/** + * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled + * @hw: pointer to the HW structure + * @stats: Struct containing statistic register values + * @frame_len: The length of the frame in question + * @mac_addr: The Ethernet destination address of the frame in question + * @max_frame_size: The maximum frame size + * + * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT + **/ +void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, + struct e1000_hw_stats *stats, u32 frame_len, + u8 *mac_addr, u32 max_frame_size) +{ + if (!(e1000_tbi_sbp_enabled_82543(hw))) + goto out; + + /* First adjust the frame length. */ + frame_len--; + /* + * We need to adjust the statistics counters, since the hardware + * counters overcount this packet as a CRC error and undercount + * the packet as a good packet + */ + /* This packet should not be counted as a CRC error. */ + stats->crcerrs--; + /* This packet does count as a Good Packet Received. */ + stats->gprc++; + + /* Adjust the Good Octets received counters */ + stats->gorc += frame_len; + + /* + * Is this a broadcast or multicast? Check broadcast first, + * since the test for a multicast frame will test positive on + * a broadcast frame. + */ + if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff)) + /* Broadcast packet */ + stats->bprc++; + else if (*mac_addr & 0x01) + /* Multicast packet */ + stats->mprc++; + + /* + * In this case, the hardware has over counted the number of + * oversize frames. + */ + if ((frame_len == max_frame_size) && (stats->roc > 0)) + stats->roc--; + + /* + * Adjust the bin counters when the extra byte put the frame in the + * wrong bin. Remember that the frame_len was adjusted above. + */ + if (frame_len == 64) { + stats->prc64++; + stats->prc127--; + } else if (frame_len == 127) { + stats->prc127++; + stats->prc255--; + } else if (frame_len == 255) { + stats->prc255++; + stats->prc511--; + } else if (frame_len == 511) { + stats->prc511++; + stats->prc1023--; + } else if (frame_len == 1023) { + stats->prc1023++; + stats->prc1522--; + } else if (frame_len == 1522) { + stats->prc1522++; + } + +out: + return; +} + +/** + * e1000_read_phy_reg_82543 - Read PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY at offset and stores the information read to data. + **/ +STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data) +{ + u32 mdic; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_phy_reg_82543"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + ret_val = -E1000_ERR_PARAM; + goto out; + } + + /* + * We must first send a preamble through the MDIO pin to signal the + * beginning of an MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* + * Now combine the next few fields that are required for a read + * operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine five different times. The format + * of an MII read instruction consists of a shift out of 14 bits and + * is defined as follows: + * <Preamble><SOF><Op Code><Phy Addr><Offset> + * followed by a shift in of 18 bits. This first two bits shifted in + * are TurnAround bits used to avoid contention on the MDIO pin when a + * READ operation is performed. These two bits are thrown away + * followed by a shift in of 16 bits which contains the desired data. + */ + mdic = (offset | (hw->phy.addr << 5) | + (PHY_OP_READ << 10) | (PHY_SOF << 12)); + + e1000_shift_out_mdi_bits_82543(hw, mdic, 14); + + /* + * Now that we've shifted out the read command to the MII, we need to + * "shift in" the 16-bit value (18 total bits) of the requested PHY + * register address. + */ + *data = e1000_shift_in_mdi_bits_82543(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_82543 - Write PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be written + * @data: pointer to the data to be written at offset + * + * Writes data to the PHY at offset. + **/ +STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data) +{ + u32 mdic; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_82543"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + ret_val = -E1000_ERR_PARAM; + goto out; + } + + /* + * We'll need to use the SW defined pins to shift the write command + * out to the PHY. We first send a preamble to the PHY to signal the + * beginning of the MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* + * Now combine the remaining required fields that will indicate a + * write operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine for each field in the command. The + * format of a MII write instruction is as follows: + * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. + */ + mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) | + (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); + mdic <<= 16; + mdic |= (u32)data; + + e1000_shift_out_mdi_bits_82543(hw, mdic, 32); + +out: + return ret_val; +} + +/** + * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock + * @hw: pointer to the HW structure + * @ctrl: pointer to the control register + * + * Raise the management data input clock by setting the MDC bit in the control + * register. + **/ +STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) +{ + /* + * Raise the clock input to the Management Data Clock (by setting the + * MDC bit), and then delay a sufficient amount of time. + */ + E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + usec_delay(10); +} + +/** + * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock + * @hw: pointer to the HW structure + * @ctrl: pointer to the control register + * + * Lower the management data input clock by clearing the MDC bit in the + * control register. + **/ +STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) +{ + /* + * Lower the clock input to the Management Data Clock (by clearing the + * MDC bit), and then delay a sufficient amount of time. + */ + E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + usec_delay(10); +} + +/** + * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY + * @hw: pointer to the HW structure + * @data: data to send to the PHY + * @count: number of bits to shift out + * + * We need to shift 'count' bits out to the PHY. So, the value in the + * "data" parameter will be shifted out to the PHY one bit at a time. + * In order to do this, "data" must be broken down into bits. + **/ +STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, + u16 count) +{ + u32 ctrl, mask; + + /* + * We need to shift "count" number of bits out to the PHY. So, the + * value in the "data" parameter will be shifted out to the PHY one + * bit at a time. In order to do this, "data" must be broken down + * into bits. + */ + mask = 0x01; + mask <<= (count - 1); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ + ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + + while (mask) { + /* + * A "1" is shifted out to the PHY by setting the MDIO bit to + * "1" and then raising and lowering the Management Data Clock. + * A "0" is shifted out to the PHY by setting the MDIO bit to + * "0" and then raising and lowering the clock. + */ + if (data & mask) + ctrl |= E1000_CTRL_MDIO; + else + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + usec_delay(10); + + e1000_raise_mdi_clk_82543(hw, &ctrl); + e1000_lower_mdi_clk_82543(hw, &ctrl); + + mask >>= 1; + } +} + +/** + * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY + * @hw: pointer to the HW structure + * + * In order to read a register from the PHY, we need to shift 18 bits + * in from the PHY. Bits are "shifted in" by raising the clock input to + * the PHY (setting the MDC bit), and then reading the value of the data out + * MDIO bit. + **/ +STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw) +{ + u32 ctrl; + u16 data = 0; + u8 i; + + /* + * In order to read a register from the PHY, we need to shift in a + * total of 18 bits from the PHY. The first two bit (turnaround) + * times are used to avoid contention on the MDIO pin when a read + * operation is performed. These two bits are ignored by us and + * thrown away. Bits are "shifted in" by raising the input to the + * Management Data Clock (setting the MDC bit) and then reading the + * value of the MDIO bit. + */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* + * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as + * input. + */ + ctrl &= ~E1000_CTRL_MDIO_DIR; + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + /* + * Raise and lower the clock before reading in the data. This accounts + * for the turnaround bits. The first clock occurred when we clocked + * out the last bit of the Register Address. + */ + e1000_raise_mdi_clk_82543(hw, &ctrl); + e1000_lower_mdi_clk_82543(hw, &ctrl); + + for (data = 0, i = 0; i < 16; i++) { + data <<= 1; + e1000_raise_mdi_clk_82543(hw, &ctrl); + ctrl = E1000_READ_REG(hw, E1000_CTRL); + /* Check to see if we shifted in a "1". */ + if (ctrl & E1000_CTRL_MDIO) + data |= 1; + e1000_lower_mdi_clk_82543(hw, &ctrl); + } + + e1000_raise_mdi_clk_82543(hw, &ctrl); + e1000_lower_mdi_clk_82543(hw, &ctrl); + + return data; +} + +/** + * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY + * @hw: pointer to the HW structure + * + * Calls the function to force speed and duplex for the m88 PHY, and + * if the PHY is not auto-negotiating and the speed is forced to 10Mbit, + * then call the function for polarity reversal workaround. + **/ +STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_phy_force_speed_duplex_82543"); + + ret_val = e1000_phy_force_speed_duplex_m88(hw); + if (ret_val) + goto out; + + if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex & + E1000_ALL_10_SPEED)) + ret_val = e1000_polarity_reversal_workaround_82543(hw); + +out: + return ret_val; +} + +/** + * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal + * @hw: pointer to the HW structure + * + * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity + * inadvertently. To workaround the issue, we disable the transmitter on + * the PHY until we have established the link partner's link parameters. + **/ +STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 mii_status_reg; + u16 i; + bool link; + + if (!(hw->phy.ops.write_reg)) + goto out; + + /* Polarity reversal workaround for forced 10F/10H links. */ + + /* Disable the transmitter on the PHY */ + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + goto out; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + goto out; + + /* + * This loop will early-out if the NO link condition has been met. + * In other words, DO NOT use e1000_phy_has_link_generic() here. + */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* + * Read the MII Status Register and wait for Link Status bit + * to be clear. + */ + + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + goto out; + + if (!(mii_status_reg & ~MII_SR_LINK_STATUS)) + break; + msec_delay_irq(100); + } + + /* Recommended delay time after link has been lost */ + msec_delay_irq(1000); + + /* Now we will re-enable the transmitter on the PHY */ + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + goto out; + msec_delay_irq(50); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); + if (ret_val) + goto out; + msec_delay_irq(50); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); + if (ret_val) + goto out; + msec_delay_irq(50); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + goto out; + + /* + * Read the MII Status Register and wait for Link Status bit + * to be set. + */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link); + if (ret_val) + goto out; + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_82543 - PHY hardware reset + * @hw: pointer to the HW structure + * + * Sets the PHY_RESET_DIR bit in the extended device control register + * to put the PHY into a reset and waits for completion. Once the reset + * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out + * of reset. + **/ +STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw) +{ + u32 ctrl_ext; + s32 ret_val; + + DEBUGFUNC("e1000_phy_hw_reset_82543"); + + /* + * Read the Extended Device Control Register, assert the PHY_RESET_DIR + * bit to put the PHY into reset... + */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; + ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* ...then take it out of reset. */ + ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + usec_delay(150); + + if (!(hw->phy.ops.get_cfg_done)) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.get_cfg_done(hw); + + return ret_val; +} + +/** + * e1000_reset_hw_82543 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_reset_hw_82543"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + e1000_set_tbi_sbp_82543(hw, false); + + /* + * Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n"); + if (hw->mac.type == e1000_82543) { + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + } else { + /* + * The 82544 can't ACK the 64-bit write when issuing the + * reset, so use IO-mapping as a workaround. + */ + E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + } + + /* + * After MAC reset, force reload of NVM to restore power-on + * settings to device. + */ + hw->nvm.ops.reload(hw); + msec_delay(2); + + /* Masking off and clearing any pending interrupts */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + return ret_val; +} + +/** + * e1000_init_hw_82543 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + u32 ctrl; + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_init_hw_82543"); + + /* Disabling VLAN filtering */ + E1000_WRITE_REG(hw, E1000_VET, 0); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + E1000_WRITE_FLUSH(hw); + } + + /* + * Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. + */ + if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) { + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR); + } + + e1000_pcix_mmrbc_workaround_generic(hw); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82543(hw); + + return ret_val; +} + +/** + * e1000_setup_link_82543 - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Read the EEPROM to determine the initial polarity value and write the + * extended device control register with the information before calling + * the generic setup link function, which does the following: + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw) +{ + u32 ctrl_ext; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_setup_link_82543"); + + /* + * Take the 4 bits from NVM word 0xF that determine the initial + * polarity value for the SW controlled pins, and setup the + * Extended Device Control reg with that info. + * This is needed because one of the SW controlled pins is used for + * signal detection. So this should be done before phy setup. + */ + if (hw->mac.type == e1000_82543) { + ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) << + NVM_SWDPIO_EXT_SHIFT); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + } + + ret_val = e1000_setup_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_setup_copper_link_82543 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_setup_copper_link_82543"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU; + /* + * With 82543, we need to force speed and duplex on the MAC + * equal to what the PHY speed and duplex configuration is. + * In addition, we need to perform a hardware reset on the + * PHY to take it out of reset. + */ + if (hw->mac.type == e1000_82543) { + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + ret_val = hw->phy.ops.reset(hw); + if (ret_val) + goto out; + } else { + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + } + + /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */ + ret_val = e1000_copper_link_setup_m88(hw); + if (ret_val) + goto out; + + if (hw->mac.autoneg) { + /* + * Setup autoneg and flow control advertisement and perform + * autonegotiation. + */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + goto out; + } else { + /* + * PHY will be set to 10H, 10F, 100H or 100F + * depending on user settings. + */ + DEBUGOUT("Forcing Speed and Duplex\n"); + ret_val = e1000_phy_force_speed_duplex_82543(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + goto out; + } + } + + /* + * Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, + &link); + if (ret_val) + goto out; + + + if (link) { + DEBUGOUT("Valid link established!!!\n"); + /* Config the MAC and PHY after link is up */ + if (hw->mac.type == e1000_82544) { + hw->mac.ops.config_collision_dist(hw); + } else { + ret_val = e1000_config_mac_to_phy_82543(hw); + if (ret_val) + goto out; + } + ret_val = e1000_config_fc_after_link_up_generic(hw); + } else { + DEBUGOUT("Unable to establish link!!!\n"); + } + +out: + return ret_val; +} + +/** + * e1000_setup_fiber_link_82543 - Setup link for fiber + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber links. Upon + * successful setup, poll for link. + **/ +STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_setup_fiber_link_82543"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + hw->mac.ops.config_collision_dist(hw); + + ret_val = e1000_commit_fc_settings_generic(hw); + if (ret_val) + goto out; + + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + + /* + * For these adapters, the SW definable pin 1 is cleared when the + * optics detect a signal. If we have a signal, then poll for a + * "Link-Up" indication. + */ + if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) + ret_val = e1000_poll_fiber_serdes_link_generic(hw); + else + DEBUGOUT("No signal detected\n"); + +out: + return ret_val; +} + +/** + * e1000_check_for_copper_link_82543 - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks the phy for link, if link exists, do the following: + * - check for downshift + * - do polarity workaround (if necessary) + * - configure collision distance + * - configure flow control after link up + * - configure tbi compatibility + **/ +STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 icr, rctl; + s32 ret_val; + u16 speed, duplex; + bool link; + + DEBUGFUNC("e1000_check_for_copper_link_82543"); + + if (!mac->get_link_status) { + ret_val = E1000_SUCCESS; + goto out; + } + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) + goto out; /* No link detected */ + + mac->get_link_status = false; + + e1000_check_downshift_generic(hw); + + /* + * If we are forcing speed/duplex, then we can return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) { + /* + * If speed and duplex are forced to 10H or 10F, then we will + * implement the polarity reversal workaround. We disable + * interrupts first, and upon returning, place the devices + * interrupt state to its previous value except for the link + * status change interrupt which will happened due to the + * execution of this workaround. + */ + if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) { + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + ret_val = e1000_polarity_reversal_workaround_82543(hw); + icr = E1000_READ_REG(hw, E1000_ICR); + E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC)); + E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); + } + + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* + * We have a M88E1000 PHY and Auto-Neg is enabled. If we + * have Si on board that is 82544 or newer, Auto + * Speed Detection takes care of MAC speed/duplex + * configuration. So we only need to configure Collision + * Distance in the MAC. Otherwise, we need to force + * speed/duplex on the MAC to the current PHY speed/duplex + * settings. + */ + if (mac->type == e1000_82544) + hw->mac.ops.config_collision_dist(hw); + else { + ret_val = e1000_config_mac_to_phy_82543(hw); + if (ret_val) { + DEBUGOUT("Error configuring MAC to PHY settings\n"); + goto out; + } + } + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) + DEBUGOUT("Error configuring flow control\n"); + + /* + * At this point we know that we are on copper and we have + * auto-negotiated link. These are conditions for checking the link + * partner capability register. We use the link speed to determine if + * TBI compatibility needs to be turned on or off. If the link is not + * at gigabit speed, then TBI compatibility is not needed. If we are + * at gigabit speed, we turn on TBI compatibility. + */ + if (e1000_tbi_compatibility_enabled_82543(hw)) { + ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + if (speed != SPEED_1000) { + /* + * If link speed is not set to gigabit speed, + * we do not need to enable TBI compatibility. + */ + if (e1000_tbi_sbp_enabled_82543(hw)) { + /* + * If we previously were in the mode, + * turn it off. + */ + e1000_set_tbi_sbp_82543(hw, false); + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl &= ~E1000_RCTL_SBP; + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + } + } else { + /* + * If TBI compatibility is was previously off, + * turn it on. For compatibility with a TBI link + * partner, we will store bad packets. Some + * frames have an additional byte on the end and + * will look like CRC errors to to the hardware. + */ + if (!e1000_tbi_sbp_enabled_82543(hw)) { + e1000_set_tbi_sbp_82543(hw, true); + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl |= E1000_RCTL_SBP; + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + } + } + } +out: + return ret_val; +} + +/** + * e1000_check_for_fiber_link_82543 - Check for link (Fiber) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw, ctrl, status; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_check_for_fiber_link_82543"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* + * If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */ + if ((!(ctrl & E1000_CTRL_SWDPIN1)) && + (!(status & E1000_STATUS_LU)) && + (!(rxcw & E1000_RXCW_C))) { + if (!mac->autoneg_failed) { + mac->autoneg_failed = true; + ret_val = 0; + goto out; + } + DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + goto out; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* + * If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } + +out: + return ret_val; +} + +/** + * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings + * @hw: pointer to the HW structure + * + * For the 82543 silicon, we need to set the MAC to match the settings + * of the PHY, even if the PHY is auto-negotiating. + **/ +STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val = E1000_SUCCESS; + u16 phy_data; + + DEBUGFUNC("e1000_config_mac_to_phy_82543"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + /* Set the bits to force speed and duplex */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); + + /* + * Set up duplex in the Device Control and Transmit Control + * registers depending on negotiated values. + */ + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + goto out; + + ctrl &= ~E1000_CTRL_FD; + if (phy_data & M88E1000_PSSR_DPLX) + ctrl |= E1000_CTRL_FD; + + hw->mac.ops.config_collision_dist(hw); + + /* + * Set up speed in the Device Control register depending on + * negotiated values. + */ + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + ctrl |= E1000_CTRL_SPD_1000; + else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + ctrl |= E1000_CTRL_SPD_100; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + +out: + return ret_val; +} + +/** + * e1000_write_vfta_82543 - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: the 32-bit offset in which to write the value to. + * @value: the 32-bit value to write at location offset. + * + * This writes a 32-bit value to a 32-bit offset in the VLAN filter + * table. + **/ +STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value) +{ + u32 temp; + + DEBUGFUNC("e1000_write_vfta_82543"); + + if ((hw->mac.type == e1000_82544) && (offset & 1)) { + temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1); + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp); + E1000_WRITE_FLUSH(hw); + } else { + e1000_write_vfta_generic(hw, offset, value); + } +} + +/** + * e1000_led_on_82543 - Turn on SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED on. + **/ +STATIC s32 e1000_led_on_82543(struct e1000_hw *hw) +{ + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_on_82543"); + + if (hw->mac.type == e1000_82544 && + hw->phy.media_type == e1000_media_type_copper) { + /* Clear SW-definable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + /* Fiber 82544 and all 82543 use this method */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_led_off_82543 - Turn off SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED off. + **/ +STATIC s32 e1000_led_off_82543(struct e1000_hw *hw) +{ + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_off_82543"); + + if (hw->mac.type == e1000_82544 && + hw->phy.media_type == e1000_media_type_copper) { + /* Set SW-definable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82543"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); +} diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_82543.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82543.h new file mode 100644 index 00000000..4eb3f624 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82543.h @@ -0,0 +1,56 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_82543_H_ +#define _E1000_82543_H_ + +#define PHY_PREAMBLE 0xFFFFFFFF +#define PHY_PREAMBLE_SIZE 32 +#define PHY_SOF 0x1 +#define PHY_OP_READ 0x2 +#define PHY_OP_WRITE 0x1 +#define PHY_TURNAROUND 0x2 + +#define TBI_COMPAT_ENABLED 0x1 /* Global "knob" for the workaround */ +/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */ +#define TBI_SBP_ENABLED 0x2 + +void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, + struct e1000_hw_stats *stats, + u32 frame_len, u8 *mac_addr, + u32 max_frame_size); +void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, + bool state); +bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw); + +#endif diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_82571.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82571.c new file mode 100644 index 00000000..7c279dbb --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82571.c @@ -0,0 +1,2030 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +/* 82571EB Gigabit Ethernet Controller + * 82571EB Gigabit Ethernet Controller (Copper) + * 82571EB Gigabit Ethernet Controller (Fiber) + * 82571EB Dual Port Gigabit Mezzanine Adapter + * 82571EB Quad Port Gigabit Mezzanine Adapter + * 82571PT Gigabit PT Quad Port Server ExpressModule + * 82572EI Gigabit Ethernet Controller (Copper) + * 82572EI Gigabit Ethernet Controller (Fiber) + * 82572EI Gigabit Ethernet Controller + * 82573V Gigabit Ethernet Controller (Copper) + * 82573E Gigabit Ethernet Controller (Copper) + * 82573L Gigabit Ethernet Controller + * 82574L Gigabit Network Connection + * 82583V Gigabit Network Connection + */ + +#include "e1000_api.h" + +STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw); +STATIC void e1000_release_nvm_82571(struct e1000_hw *hw); +STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw); +STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw); +STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw); +STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, + bool active); +STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw); +STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw); +STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw); +STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw); +STATIC s32 e1000_led_on_82574(struct e1000_hw *hw); +STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw); +STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); +STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); +STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); +STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data); +STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); +STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw); +STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); +STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw); +STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); +STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); +STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); +STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); +STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, + bool active); +STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, + bool active); +STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); +STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw); +STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); + +/** + * e1000_init_phy_params_82571 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + + DEBUGFUNC("e1000_init_phy_params_82571"); + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + return E1000_SUCCESS; + } + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + + phy->ops.check_reset_block = e1000_check_reset_block_generic; + phy->ops.reset = e1000_phy_hw_reset_generic; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82571; + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + phy->type = e1000_phy_igp_2; + phy->ops.get_cfg_done = e1000_get_cfg_done_82571; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + phy->ops.get_cable_length = e1000_get_cable_length_igp_2; + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.write_reg = e1000_write_phy_reg_igp; + phy->ops.acquire = e1000_get_hw_semaphore_82571; + phy->ops.release = e1000_put_hw_semaphore_82571; + break; + case e1000_82573: + phy->type = e1000_phy_m88; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.read_reg = e1000_read_phy_reg_m88; + phy->ops.write_reg = e1000_write_phy_reg_m88; + phy->ops.acquire = e1000_get_hw_semaphore_82571; + phy->ops.release = e1000_put_hw_semaphore_82571; + break; + case e1000_82574: + case e1000_82583: + E1000_MUTEX_INIT(&hw->dev_spec._82571.swflag_mutex); + + phy->type = e1000_phy_bm; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.read_reg = e1000_read_phy_reg_bm2; + phy->ops.write_reg = e1000_write_phy_reg_bm2; + phy->ops.acquire = e1000_get_hw_semaphore_82574; + phy->ops.release = e1000_put_hw_semaphore_82574; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; + break; + default: + return -E1000_ERR_PHY; + break; + } + + /* This can only be done after all function pointers are setup. */ + ret_val = e1000_get_phy_id_82571(hw); + if (ret_val) { + DEBUGOUT("Error getting PHY ID\n"); + return ret_val; + } + + /* Verify phy id */ + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + if (phy->id != IGP01E1000_I_PHY_ID) + ret_val = -E1000_ERR_PHY; + break; + case e1000_82573: + if (phy->id != M88E1111_I_PHY_ID) + ret_val = -E1000_ERR_PHY; + break; + case e1000_82574: + case e1000_82583: + if (phy->id != BME1000_E_PHY_ID_R2) + ret_val = -E1000_ERR_PHY; + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + + if (ret_val) + DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id); + + return ret_val; +} + +/** + * e1000_init_nvm_params_82571 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_82571"); + + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->page_size = 32; + nvm->address_bits = 16; + break; + case e1000_nvm_override_spi_small: + nvm->page_size = 8; + nvm->address_bits = 8; + break; + default: + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; + break; + } + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (((eecd >> 15) & 0x3) == 0x3) { + nvm->type = e1000_nvm_flash_hw; + nvm->word_size = 2048; + /* Autonomous Flash update bit must be cleared due + * to Flash update issue. + */ + eecd &= ~E1000_EECD_AUPDEN; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + break; + } + /* Fall Through */ + default: + nvm->type = e1000_nvm_eeprom_spi; + size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + /* Added to a constant, "size" becomes the left-shift value + * for setting word_size. + */ + size += NVM_WORD_SIZE_BASE_SHIFT; + + /* EEPROM access above 16k is unsupported */ + if (size > 14) + size = 14; + nvm->word_size = 1 << size; + break; + } + + /* Function Pointers */ + switch (hw->mac.type) { + case e1000_82574: + case e1000_82583: + nvm->ops.acquire = e1000_get_hw_semaphore_82574; + nvm->ops.release = e1000_put_hw_semaphore_82574; + break; + default: + nvm->ops.acquire = e1000_acquire_nvm_82571; + nvm->ops.release = e1000_release_nvm_82571; + break; + } + nvm->ops.read = e1000_read_nvm_eerd; + nvm->ops.update = e1000_update_nvm_checksum_82571; + nvm->ops.validate = e1000_validate_nvm_checksum_82571; + nvm->ops.valid_led_default = e1000_valid_led_default_82571; + nvm->ops.write = e1000_write_nvm_82571; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82571 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 swsm = 0; + u32 swsm2 = 0; + bool force_clear_smbi = false; + + DEBUGFUNC("e1000_init_mac_params_82571"); + + /* Set media type and media-dependent function pointers */ + switch (hw->device_id) { + case E1000_DEV_ID_82571EB_FIBER: + case E1000_DEV_ID_82572EI_FIBER: + case E1000_DEV_ID_82571EB_QUAD_FIBER: + hw->phy.media_type = e1000_media_type_fiber; + mac->ops.setup_physical_interface = + e1000_setup_fiber_serdes_link_82571; + mac->ops.check_for_link = e1000_check_for_fiber_link_generic; + mac->ops.get_link_up_info = + e1000_get_speed_and_duplex_fiber_serdes_generic; + break; + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_SERDES_DUAL: + case E1000_DEV_ID_82571EB_SERDES_QUAD: + case E1000_DEV_ID_82572EI_SERDES: + hw->phy.media_type = e1000_media_type_internal_serdes; + mac->ops.setup_physical_interface = + e1000_setup_fiber_serdes_link_82571; + mac->ops.check_for_link = e1000_check_for_serdes_link_82571; + mac->ops.get_link_up_info = + e1000_get_speed_and_duplex_fiber_serdes_generic; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + mac->ops.setup_physical_interface = + e1000_setup_copper_link_82571; + mac->ops.check_for_link = e1000_check_for_copper_link_generic; + mac->ops.get_link_up_info = + e1000_get_speed_and_duplex_copper_generic; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = true; + /* Adaptive IFS supported */ + mac->adaptive_ifs = true; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82571; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82571; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_82571; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_82571; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82571; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn off LED */ + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571; + + /* MAC-specific function pointers */ + switch (hw->mac.type) { + case e1000_82573: + mac->ops.set_lan_id = e1000_set_lan_id_single_port; + mac->ops.check_mng_mode = e1000_check_mng_mode_generic; + mac->ops.led_on = e1000_led_on_generic; + mac->ops.blink_led = e1000_blink_led_generic; + + /* FWSM register */ + mac->has_fwsm = true; + /* ARC supported; valid only if manageability features are + * enabled. + */ + mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) & + E1000_FWSM_MODE_MASK); + break; + case e1000_82574: + case e1000_82583: + mac->ops.set_lan_id = e1000_set_lan_id_single_port; + mac->ops.check_mng_mode = e1000_check_mng_mode_82574; + mac->ops.led_on = e1000_led_on_82574; + break; + default: + mac->ops.check_mng_mode = e1000_check_mng_mode_generic; + mac->ops.led_on = e1000_led_on_generic; + mac->ops.blink_led = e1000_blink_led_generic; + + /* FWSM register */ + mac->has_fwsm = true; + break; + } + + /* Ensure that the inter-port SWSM.SMBI lock bit is clear before + * first NVM or PHY access. This should be done for single-port + * devices, and for one port only on dual-port devices so that + * for those devices we can still use the SMBI lock to synchronize + * inter-port accesses to the PHY & NVM. + */ + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + swsm2 = E1000_READ_REG(hw, E1000_SWSM2); + + if (!(swsm2 & E1000_SWSM2_LOCK)) { + /* Only do this for the first interface on this card */ + E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 | + E1000_SWSM2_LOCK); + force_clear_smbi = true; + } else { + force_clear_smbi = false; + } + break; + default: + force_clear_smbi = true; + break; + } + + if (force_clear_smbi) { + /* Make sure SWSM.SMBI is clear */ + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (swsm & E1000_SWSM_SMBI) { + /* This bit should not be set on a first interface, and + * indicates that the bootagent or EFI code has + * improperly left this bit enabled + */ + DEBUGOUT("Please update your 82571 Bootagent\n"); + } + E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI); + } + + /* Initialze device specific counter of SMBI acquisition timeouts. */ + hw->dev_spec._82571.smb_counter = 0; + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_82571 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82571"); + + hw->mac.ops.init_params = e1000_init_mac_params_82571; + hw->nvm.ops.init_params = e1000_init_nvm_params_82571; + hw->phy.ops.init_params = e1000_init_phy_params_82571; +} + +/** + * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision + * @hw: pointer to the HW structure + * + * Reads the PHY registers and stores the PHY ID and possibly the PHY + * revision in the hardware structure. + **/ +STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_id = 0; + + DEBUGFUNC("e1000_get_phy_id_82571"); + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + /* The 82571 firmware may still be configuring the PHY. + * In this case, we cannot access the PHY until the + * configuration is done. So we explicitly set the + * PHY ID. + */ + phy->id = IGP01E1000_I_PHY_ID; + break; + case e1000_82573: + return e1000_get_phy_id(hw); + break; + case e1000_82574: + case e1000_82583: + ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); + if (ret_val) + return ret_val; + + phy->id = (u32)(phy_id << 16); + usec_delay(20); + ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); + if (ret_val) + return ret_val; + + phy->id |= (u32)(phy_id); + phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); + break; + default: + return -E1000_ERR_PHY; + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) +{ + u32 swsm; + s32 sw_timeout = hw->nvm.word_size + 1; + s32 fw_timeout = hw->nvm.word_size + 1; + s32 i = 0; + + DEBUGFUNC("e1000_get_hw_semaphore_82571"); + + /* If we have timedout 3 times on trying to acquire + * the inter-port SMBI semaphore, there is old code + * operating on the other port, and it is not + * releasing SMBI. Modify the number of times that + * we try for the semaphore to interwork with this + * older code. + */ + if (hw->dev_spec._82571.smb_counter > 2) + sw_timeout = 1; + + /* Get the SW semaphore */ + while (i < sw_timeout) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + usec_delay(50); + i++; + } + + if (i == sw_timeout) { + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + hw->dev_spec._82571.smb_counter++; + } + /* Get the FW semaphore. */ + for (i = 0; i < fw_timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) + break; + + usec_delay(50); + } + + if (i == fw_timeout) { + /* Release semaphores */ + e1000_put_hw_semaphore_82571(hw); + DEBUGOUT("Driver can't access the NVM\n"); + return -E1000_ERR_NVM; + } + + return E1000_SUCCESS; +} + +/** + * e1000_put_hw_semaphore_82571 - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) +{ + u32 swsm; + + DEBUGFUNC("e1000_put_hw_semaphore_generic"); + + swsm = E1000_READ_REG(hw, E1000_SWSM); + + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + + E1000_WRITE_REG(hw, E1000_SWSM, swsm); +} + +/** + * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore during reset. + * + **/ +STATIC s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) +{ + u32 extcnf_ctrl; + s32 i = 0; + + DEBUGFUNC("e1000_get_hw_semaphore_82573"); + + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + do { + extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + + if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) + break; + + msec_delay(2); + i++; + } while (i < MDIO_OWNERSHIP_TIMEOUT); + + if (i == MDIO_OWNERSHIP_TIMEOUT) { + /* Release semaphores */ + e1000_put_hw_semaphore_82573(hw); + DEBUGOUT("Driver can't access the PHY\n"); + return -E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} + +/** + * e1000_put_hw_semaphore_82573 - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used during reset. + * + **/ +STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) +{ + u32 extcnf_ctrl; + + DEBUGFUNC("e1000_put_hw_semaphore_82573"); + + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); +} + +/** + * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM. + * + **/ +STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_hw_semaphore_82574"); + + E1000_MUTEX_LOCK(&hw->dev_spec._82571.swflag_mutex); + ret_val = e1000_get_hw_semaphore_82573(hw); + if (ret_val) + E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex); + return ret_val; +} + +/** + * e1000_put_hw_semaphore_82574 - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + * + **/ +STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_put_hw_semaphore_82574"); + + e1000_put_hw_semaphore_82573(hw); + E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex); +} + +/** + * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D0 state according to the active flag. + * LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) +{ + u32 data = E1000_READ_REG(hw, E1000_POEMB); + + DEBUGFUNC("e1000_set_d0_lplu_state_82574"); + + if (active) + data |= E1000_PHY_CTRL_D0A_LPLU; + else + data &= ~E1000_PHY_CTRL_D0A_LPLU; + + E1000_WRITE_REG(hw, E1000_POEMB, data); + return E1000_SUCCESS; +} + +/** + * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * The low power link up (lplu) state is set to the power management level D3 + * when active is true, else clear lplu for D3. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) +{ + u32 data = E1000_READ_REG(hw, E1000_POEMB); + + DEBUGFUNC("e1000_set_d3_lplu_state_82574"); + + if (!active) { + data &= ~E1000_PHY_CTRL_NOND0A_LPLU; + } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || + (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= E1000_PHY_CTRL_NOND0A_LPLU; + } + + E1000_WRITE_REG(hw, E1000_POEMB, data); + return E1000_SUCCESS; +} + +/** + * e1000_acquire_nvm_82571 - Request for access to the EEPROM + * @hw: pointer to the HW structure + * + * To gain access to the EEPROM, first we must obtain a hardware semaphore. + * Then for non-82573 hardware, set the EEPROM access request bit and wait + * for EEPROM access grant bit. If the access grant bit is not set, release + * hardware semaphore. + **/ +STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_acquire_nvm_82571"); + + ret_val = e1000_get_hw_semaphore_82571(hw); + if (ret_val) + return ret_val; + + switch (hw->mac.type) { + case e1000_82573: + break; + default: + ret_val = e1000_acquire_nvm_generic(hw); + break; + } + + if (ret_val) + e1000_put_hw_semaphore_82571(hw); + + return ret_val; +} + +/** + * e1000_release_nvm_82571 - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +STATIC void e1000_release_nvm_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_82571"); + + e1000_release_nvm_generic(hw); + e1000_put_hw_semaphore_82571(hw); +} + +/** + * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * For non-82573 silicon, write data to EEPROM at offset using SPI interface. + * + * If e1000_update_nvm_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + **/ +STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_write_nvm_82571"); + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); + break; + case e1000_82571: + case e1000_82572: + ret_val = e1000_write_nvm_spi(hw, offset, words, data); + break; + default: + ret_val = -E1000_ERR_NVM; + break; + } + + return ret_val; +} + +/** + * e1000_update_nvm_checksum_82571 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) +{ + u32 eecd; + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_update_nvm_checksum_82571"); + + ret_val = e1000_update_nvm_checksum_generic(hw); + if (ret_val) + return ret_val; + + /* If our nvm is an EEPROM, then we're done + * otherwise, commit the checksum to the flash NVM. + */ + if (hw->nvm.type != e1000_nvm_flash_hw) + return E1000_SUCCESS; + + /* Check for pending operations. */ + for (i = 0; i < E1000_FLASH_UPDATES; i++) { + msec_delay(1); + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD)) + break; + } + + if (i == E1000_FLASH_UPDATES) + return -E1000_ERR_NVM; + + /* Reset the firmware if using STM opcode. */ + if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) { + /* The enabling of and the actual reset must be done + * in two write cycles. + */ + E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET); + } + + /* Commit the write to flash */ + eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + + for (i = 0; i < E1000_FLASH_UPDATES; i++) { + msec_delay(1); + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD)) + break; + } + + if (i == E1000_FLASH_UPDATES) + return -E1000_ERR_NVM; + + return E1000_SUCCESS; +} + +/** + * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_validate_nvm_checksum_82571"); + + if (hw->nvm.type == e1000_nvm_flash_hw) + e1000_fix_nvm_checksum_82571(hw); + + return e1000_validate_nvm_checksum_generic(hw); +} + +/** + * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * After checking for invalid values, poll the EEPROM to ensure the previous + * command has completed before trying to write the next word. After write + * poll for completion. + * + * If e1000_update_nvm_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + **/ +STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, eewr = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_nvm_eewr_82571"); + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + for (i = 0; i < words; i++) { + eewr = ((data[i] << E1000_NVM_RW_REG_DATA) | + ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) | + E1000_NVM_RW_REG_START); + + ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); + if (ret_val) + break; + + E1000_WRITE_REG(hw, E1000_EEWR, eewr); + + ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); + if (ret_val) + break; + } + + return ret_val; +} + +/** + * e1000_get_cfg_done_82571 - Poll for configuration done + * @hw: pointer to the HW structure + * + * Reads the management control register for the config done bit to be set. + **/ +STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + + DEBUGFUNC("e1000_get_cfg_done_82571"); + + while (timeout) { + if (E1000_READ_REG(hw, E1000_EEMNGCTL) & + E1000_NVM_CFG_DONE_PORT_0) + break; + msec_delay(1); + timeout--; + } + if (!timeout) { + DEBUGOUT("MNG configuration cycle has not completed.\n"); + return -E1000_ERR_RESET; + } + + return E1000_SUCCESS; +} + +/** + * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D0 state according to the active flag. When activating LPLU + * this function also disables smart speed and vice versa. LPLU will not be + * activated unless the device autonegotiation advertisement meets standards + * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function + * pointer entry point only called by PHY setup routines. + **/ +STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_82571"); + + if (!(phy->ops.read_reg)) + return E1000_SUCCESS; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + return ret_val; + + if (active) { + data |= IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + return ret_val; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else { + data &= ~IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_reset_hw_82571 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw) +{ + u32 ctrl, ctrl_ext, eecd, tctl; + s32 ret_val; + + DEBUGFUNC("e1000_reset_hw_82571"); + + /* Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + tctl = E1000_READ_REG(hw, E1000_TCTL); + tctl &= ~E1000_TCTL_EN; + E1000_WRITE_REG(hw, E1000_TCTL, tctl); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* Must acquire the MDIO ownership before MAC reset. + * Ownership defaults to firmware after a reset. + */ + switch (hw->mac.type) { + case e1000_82573: + ret_val = e1000_get_hw_semaphore_82573(hw); + break; + case e1000_82574: + case e1000_82583: + ret_val = e1000_get_hw_semaphore_82574(hw); + break; + default: + break; + } + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + /* Must release MDIO ownership and mutex after MAC reset. */ + switch (hw->mac.type) { + case e1000_82573: + /* Release mutex only if the hw semaphore is acquired */ + if (!ret_val) + e1000_put_hw_semaphore_82573(hw); + break; + case e1000_82574: + case e1000_82583: + /* Release mutex only if the hw semaphore is acquired */ + if (!ret_val) + e1000_put_hw_semaphore_82574(hw); + break; + default: + break; + } + + if (hw->nvm.type == e1000_nvm_flash_hw) { + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + } + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) + /* We don't want to continue accessing MAC registers. */ + return ret_val; + + /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. + * Need to wait for Phy configuration completion before accessing + * NVM and Phy. + */ + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + /* REQ and GNT bits need to be cleared when using AUTO_RD + * to access the EEPROM. + */ + eecd = E1000_READ_REG(hw, E1000_EECD); + eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + break; + case e1000_82573: + case e1000_82574: + case e1000_82583: + msec_delay(25); + break; + default: + break; + } + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + if (hw->mac.type == e1000_82571) { + /* Install any alternate MAC address into RAR0 */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + if (ret_val) + return ret_val; + + e1000_set_laa_state_82571(hw, true); + } + + /* Reinitialize the 82571 serdes link state machine */ + if (hw->phy.media_type == e1000_media_type_internal_serdes) + hw->mac.serdes_link_state = e1000_serdes_link_down; + + return E1000_SUCCESS; +} + +/** + * e1000_init_hw_82571 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 reg_data; + s32 ret_val; + u16 i, rar_count = mac->rar_entry_count; + + DEBUGFUNC("e1000_init_hw_82571"); + + e1000_initialize_hw_bits_82571(hw); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + /* An error is not fatal and we should not stop init due to this */ + if (ret_val) + DEBUGOUT("Error initializing identification LED\n"); + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. + * If, however, a locally administered address was assigned to the + * 82571, we must reserve a RAR for it to work around an issue where + * resetting one port will reload the MAC on the other port. + */ + if (e1000_get_laa_state_82571(hw)) + rar_count--; + e1000_init_rx_addrs_generic(hw, rar_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the transmit descriptor write-back policy */ + reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); + + /* ...for both queues. */ + switch (mac->type) { + case e1000_82573: + e1000_enable_tx_pkt_filtering_generic(hw); + /* fall through */ + case e1000_82574: + case e1000_82583: + reg_data = E1000_READ_REG(hw, E1000_GCR); + reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; + E1000_WRITE_REG(hw, E1000_GCR, reg_data); + break; + default: + reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | + E1000_TXDCTL_COUNT_DESC); + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); + break; + } + + /* Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82571(hw); + + return ret_val; +} + +/** + * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits + * @hw: pointer to the HW structure + * + * Initializes required hardware-dependent bits needed for normal operation. + **/ +STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_initialize_hw_bits_82571"); + + /* Transmit Descriptor Control 0 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); + + /* Transmit Descriptor Control 1 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); + + /* Transmit Arbitration Control 0 */ + reg = E1000_READ_REG(hw, E1000_TARC(0)); + reg &= ~(0xF << 27); /* 30:27 */ + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); + break; + case e1000_82574: + case e1000_82583: + reg |= (1 << 26); + break; + default: + break; + } + E1000_WRITE_REG(hw, E1000_TARC(0), reg); + + /* Transmit Arbitration Control 1 */ + reg = E1000_READ_REG(hw, E1000_TARC(1)); + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + reg &= ~((1 << 29) | (1 << 30)); + reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); + if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) + reg &= ~(1 << 28); + else + reg |= (1 << 28); + E1000_WRITE_REG(hw, E1000_TARC(1), reg); + break; + default: + break; + } + + /* Device Control */ + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + reg = E1000_READ_REG(hw, E1000_CTRL); + reg &= ~(1 << 29); + E1000_WRITE_REG(hw, E1000_CTRL, reg); + break; + default: + break; + } + + /* Extended Device Control */ + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg &= ~(1 << 23); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + break; + default: + break; + } + + if (hw->mac.type == e1000_82571) { + reg = E1000_READ_REG(hw, E1000_PBA_ECC); + reg |= E1000_PBA_ECC_CORR_EN; + E1000_WRITE_REG(hw, E1000_PBA_ECC, reg); + } + + /* Workaround for hardware errata. + * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 + */ + if ((hw->mac.type == e1000_82571) || + (hw->mac.type == e1000_82572)) { + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + } + + /* Disable IPv6 extension header parsing because some malformed + * IPv6 headers can hang the Rx. + */ + if (hw->mac.type <= e1000_82573) { + reg = E1000_READ_REG(hw, E1000_RFCTL); + reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); + E1000_WRITE_REG(hw, E1000_RFCTL, reg); + } + + /* PCI-Ex Control Registers */ + switch (hw->mac.type) { + case e1000_82574: + case e1000_82583: + reg = E1000_READ_REG(hw, E1000_GCR); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_GCR, reg); + + /* Workaround for hardware errata. + * apply workaround for hardware errata documented in errata + * docs Fixes issue where some error prone or unreliable PCIe + * completions are occurring, particularly with ASPM enabled. + * Without fix, issue can cause Tx timeouts. + */ + reg = E1000_READ_REG(hw, E1000_GCR2); + reg |= 1; + E1000_WRITE_REG(hw, E1000_GCR2, reg); + break; + default: + break; + } + + return; +} + +/** + * e1000_clear_vfta_82571 - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw) +{ + u32 offset; + u32 vfta_value = 0; + u32 vfta_offset = 0; + u32 vfta_bit_in_reg = 0; + + DEBUGFUNC("e1000_clear_vfta_82571"); + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (hw->mng_cookie.vlan_id != 0) { + /* The VFTA is a 4096b bit-field, each identifying + * a single VLAN ID. The following operations + * determine which 32b entry (i.e. offset) into the + * array we want to set the VLAN ID (i.e. bit) of + * the manageability unit. + */ + vfta_offset = (hw->mng_cookie.vlan_id >> + E1000_VFTA_ENTRY_SHIFT) & + E1000_VFTA_ENTRY_MASK; + vfta_bit_in_reg = + 1 << (hw->mng_cookie.vlan_id & + E1000_VFTA_ENTRY_BIT_SHIFT_MASK); + } + break; + default: + break; + } + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + /* If the offset we want to clear is the same offset of the + * manageability VLAN ID, then clear all bits except that of + * the manageability unit. + */ + vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_check_mng_mode_82574 - Check manageability is enabled + * @hw: pointer to the HW structure + * + * Reads the NVM Initialization Control Word 2 and returns true + * (>0) if any manageability is enabled, else false (0). + **/ +STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw) +{ + u16 data; + s32 ret_val; + + DEBUGFUNC("e1000_check_mng_mode_82574"); + + ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data); + if (ret_val) + return false; + + return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; +} + +/** + * e1000_led_on_82574 - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +STATIC s32 e1000_led_on_82574(struct e1000_hw *hw) +{ + u32 ctrl; + u32 i; + + DEBUGFUNC("e1000_led_on_82574"); + + ctrl = hw->mac.ledctl_mode2; + if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) { + /* If no link, then turn LED on by setting the invert bit + * for each LED that's "on" (0x0E) in ledctl_mode2. + */ + for (i = 0; i < 4; i++) + if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); + } + E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_check_phy_82574 - check 82574 phy hung state + * @hw: pointer to the HW structure + * + * Returns whether phy is hung or not + **/ +bool e1000_check_phy_82574(struct e1000_hw *hw) +{ + u16 status_1kbt = 0; + u16 receive_errors = 0; + s32 ret_val; + + DEBUGFUNC("e1000_check_phy_82574"); + + /* Read PHY Receive Error counter first, if its is max - all F's then + * read the Base1000T status register If both are max then PHY is hung. + */ + ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER, + &receive_errors); + if (ret_val) + return false; + if (receive_errors == E1000_RECEIVE_ERROR_MAX) { + ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS, + &status_1kbt); + if (ret_val) + return false; + if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == + E1000_IDLE_ERROR_COUNT_MASK) + return true; + } + + return false; +} + + +/** + * e1000_setup_link_82571 - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_setup_link_82571"); + + /* 82573 does not have a word in the NVM to determine + * the default flow control setting, so we explicitly + * set it to full. + */ + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (hw->fc.requested_mode == e1000_fc_default) + hw->fc.requested_mode = e1000_fc_full; + break; + default: + break; + } + + return e1000_setup_link_generic(hw); +} + +/** + * e1000_setup_copper_link_82571 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_setup_copper_link_82571"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + switch (hw->phy.type) { + case e1000_phy_m88: + case e1000_phy_bm: + ret_val = e1000_copper_link_setup_m88(hw); + break; + case e1000_phy_igp_2: + ret_val = e1000_copper_link_setup_igp(hw); + break; + default: + return -E1000_ERR_PHY; + break; + } + + if (ret_val) + return ret_val; + + return e1000_setup_copper_link_generic(hw); +} + +/** + * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes links. + * Upon successful setup, poll for link. + **/ +STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_setup_fiber_serdes_link_82571"); + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + /* If SerDes loopback mode is entered, there is no form + * of reset to take the adapter out of that mode. So we + * have to explicitly take the adapter out of loopback + * mode. This prevents drivers from twiddling their thumbs + * if another tool failed to take it out of loopback mode. + */ + E1000_WRITE_REG(hw, E1000_SCTL, + E1000_SCTL_DISABLE_SERDES_LOOPBACK); + break; + default: + break; + } + + return e1000_setup_fiber_serdes_link_generic(hw); +} + +/** + * e1000_check_for_serdes_link_82571 - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Reports the link state as up or down. + * + * If autonegotiation is supported by the link partner, the link state is + * determined by the result of autonegotiation. This is the most likely case. + * If autonegotiation is not supported by the link partner, and the link + * has a valid signal, force the link up. + * + * The link state is represented internally here by 4 states: + * + * 1) down + * 2) autoneg_progress + * 3) autoneg_complete (the link successfully autonegotiated) + * 4) forced_up (the link has been forced up, it did not autonegotiate) + * + **/ +STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + u32 txcw; + u32 i; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_check_for_serdes_link_82571"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + E1000_READ_REG(hw, E1000_RXCW); + /* SYNCH bit and IV bit are sticky */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { + /* Receiver is synchronized with no invalid bits. */ + switch (mac->serdes_link_state) { + case e1000_serdes_link_autoneg_complete: + if (!(status & E1000_STATUS_LU)) { + /* We have lost link, retry autoneg before + * reporting link failure + */ + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = false; + DEBUGOUT("AN_UP -> AN_PROG\n"); + } else { + mac->serdes_has_link = true; + } + break; + + case e1000_serdes_link_forced_up: + /* If we are receiving /C/ ordered sets, re-enable + * auto-negotiation in the TXCW register and disable + * forced link in the Device Control register in an + * attempt to auto-negotiate with our link partner. + */ + if (rxcw & E1000_RXCW_C) { + /* Enable autoneg, and unforce link up */ + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, + (ctrl & ~E1000_CTRL_SLU)); + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = false; + DEBUGOUT("FORCED_UP -> AN_PROG\n"); + } else { + mac->serdes_has_link = true; + } + break; + + case e1000_serdes_link_autoneg_progress: + if (rxcw & E1000_RXCW_C) { + /* We received /C/ ordered sets, meaning the + * link partner has autonegotiated, and we can + * trust the Link Up (LU) status bit. + */ + if (status & E1000_STATUS_LU) { + mac->serdes_link_state = + e1000_serdes_link_autoneg_complete; + DEBUGOUT("AN_PROG -> AN_UP\n"); + mac->serdes_has_link = true; + } else { + /* Autoneg completed, but failed. */ + mac->serdes_link_state = + e1000_serdes_link_down; + DEBUGOUT("AN_PROG -> DOWN\n"); + } + } else { + /* The link partner did not autoneg. + * Force link up and full duplex, and change + * state to forced. + */ + E1000_WRITE_REG(hw, E1000_TXCW, + (mac->txcw & ~E1000_TXCW_ANE)); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after link up. */ + ret_val = + e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error config flow control\n"); + break; + } + mac->serdes_link_state = + e1000_serdes_link_forced_up; + mac->serdes_has_link = true; + DEBUGOUT("AN_PROG -> FORCED_UP\n"); + } + break; + + case e1000_serdes_link_down: + default: + /* The link was down but the receiver has now gained + * valid sync, so lets see if we can bring the link + * up. + */ + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & + ~E1000_CTRL_SLU)); + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = false; + DEBUGOUT("DOWN -> AN_PROG\n"); + break; + } + } else { + if (!(rxcw & E1000_RXCW_SYNCH)) { + mac->serdes_has_link = false; + mac->serdes_link_state = e1000_serdes_link_down; + DEBUGOUT("ANYSTATE -> DOWN\n"); + } else { + /* Check several times, if SYNCH bit and CONFIG + * bit both are consistently 1 then simply ignore + * the IV bit and restart Autoneg + */ + for (i = 0; i < AN_RETRY_COUNT; i++) { + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if ((rxcw & E1000_RXCW_SYNCH) && + (rxcw & E1000_RXCW_C)) + continue; + + if (rxcw & E1000_RXCW_IV) { + mac->serdes_has_link = false; + mac->serdes_link_state = + e1000_serdes_link_down; + DEBUGOUT("ANYSTATE -> DOWN\n"); + break; + } + } + + if (i == AN_RETRY_COUNT) { + txcw = E1000_READ_REG(hw, E1000_TXCW); + txcw |= E1000_TXCW_ANE; + E1000_WRITE_REG(hw, E1000_TXCW, txcw); + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = false; + DEBUGOUT("ANYSTATE -> AN_PROG\n"); + } + } + } + + return ret_val; +} + +/** + * e1000_valid_led_default_82571 - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_82571"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (*data == ID_LED_RESERVED_F746) + *data = ID_LED_DEFAULT_82573; + break; + default: + if (*data == ID_LED_RESERVED_0000 || + *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_laa_state_82571 - Get locally administered address state + * @hw: pointer to the HW structure + * + * Retrieve and return the current locally administered address state. + **/ +bool e1000_get_laa_state_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_get_laa_state_82571"); + + if (hw->mac.type != e1000_82571) + return false; + + return hw->dev_spec._82571.laa_is_present; +} + +/** + * e1000_set_laa_state_82571 - Set locally administered address state + * @hw: pointer to the HW structure + * @state: enable/disable locally administered address + * + * Enable/Disable the current locally administered address state. + **/ +void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state) +{ + DEBUGFUNC("e1000_set_laa_state_82571"); + + if (hw->mac.type != e1000_82571) + return; + + hw->dev_spec._82571.laa_is_present = state; + + /* If workaround is activated... */ + if (state) + /* Hold a copy of the LAA in RAR[14] This is done so that + * between the time RAR[0] gets clobbered and the time it + * gets fixed, the actual LAA is in one of the RARs and no + * incoming packets directed to this port are dropped. + * Eventually the LAA will be in RAR[0] and RAR[14]. + */ + hw->mac.ops.rar_set(hw, hw->mac.addr, + hw->mac.rar_entry_count - 1); + return; +} + +/** + * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum + * @hw: pointer to the HW structure + * + * Verifies that the EEPROM has completed the update. After updating the + * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If + * the checksum fix is not implemented, we need to set the bit and update + * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, + * we need to return bad checksum. + **/ +STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_fix_nvm_checksum_82571"); + + if (nvm->type != e1000_nvm_flash_hw) + return E1000_SUCCESS; + + /* Check bit 4 of word 10h. If it is 0, firmware is done updating + * 10h-12h. Checksum may need to be fixed. + */ + ret_val = nvm->ops.read(hw, 0x10, 1, &data); + if (ret_val) + return ret_val; + + if (!(data & 0x10)) { + /* Read 0x23 and check bit 15. This bit is a 1 + * when the checksum has already been fixed. If + * the checksum is still wrong and this bit is a + * 1, we need to return bad checksum. Otherwise, + * we need to set this bit to a 1 and update the + * checksum. + */ + ret_val = nvm->ops.read(hw, 0x23, 1, &data); + if (ret_val) + return ret_val; + + if (!(data & 0x8000)) { + data |= 0x8000; + ret_val = nvm->ops.write(hw, 0x23, 1, &data); + if (ret_val) + return ret_val; + ret_val = nvm->ops.update(hw); + if (ret_val) + return ret_val; + } + } + + return E1000_SUCCESS; +} + + +/** + * e1000_read_mac_addr_82571 - Read device MAC address + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_read_mac_addr_82571"); + + if (hw->mac.type == e1000_82571) { + s32 ret_val; + + /* If there's an alternate MAC address place it in RAR0 + * so that it will override the Si installed default perm + * address. + */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + if (ret_val) + return ret_val; + } + + return e1000_read_mac_addr_generic(hw); +} + +/** + * e1000_power_down_phy_copper_82571 - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_mac_info *mac = &hw->mac; + + if (!phy->ops.check_reset_block) + return; + + /* If the management interface is not enabled, then power down */ + if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82571"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); + + E1000_READ_REG(hw, E1000_IAC); + E1000_READ_REG(hw, E1000_ICRXOC); + + E1000_READ_REG(hw, E1000_ICRXPTC); + E1000_READ_REG(hw, E1000_ICRXATC); + E1000_READ_REG(hw, E1000_ICTXPTC); + E1000_READ_REG(hw, E1000_ICTXATC); + E1000_READ_REG(hw, E1000_ICTXQEC); + E1000_READ_REG(hw, E1000_ICTXQMTC); + E1000_READ_REG(hw, E1000_ICRXDMTC); +} diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_82571.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82571.h new file mode 100644 index 00000000..c8037b61 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82571.h @@ -0,0 +1,65 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_82571_H_ +#define _E1000_82571_H_ + +#define ID_LED_RESERVED_F746 0xF746 +#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_OFF1_ON2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) + +#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 +#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */ + +/* Intr Throttling - RW */ +#define E1000_EITR_82574(_n) (0x000E8 + (0x4 * (_n))) + +#define E1000_EIAC_82574 0x000DC /* Ext. Interrupt Auto Clear - RW */ +#define E1000_EIAC_MASK_82574 0x01F00000 + +#define E1000_IVAR_INT_ALLOC_VALID 0x8 + +/* Manageability Operation Mode mask */ +#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 + +#define E1000_BASE1000T_STATUS 10 +#define E1000_IDLE_ERROR_COUNT_MASK 0xFF +#define E1000_RECEIVE_ERROR_COUNTER 21 +#define E1000_RECEIVE_ERROR_MAX 0xFFFF +bool e1000_check_phy_82574(struct e1000_hw *hw); +bool e1000_get_laa_state_82571(struct e1000_hw *hw); +void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state); + +#endif diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_82575.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82575.c new file mode 100644 index 00000000..da1a9a70 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82575.c @@ -0,0 +1,3782 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +/* + * 82575EB Gigabit Network Connection + * 82575EB Gigabit Backplane Connection + * 82575GB Gigabit Network Connection + * 82576 Gigabit Network Connection + * 82576 Quad Port Gigabit Mezzanine Adapter + * 82580 Gigabit Network Connection + * I350 Gigabit Network Connection + */ + +#include "e1000_api.h" +#include "e1000_i210.h" + +STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw); +STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw); +STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw); +STATIC void e1000_release_phy_82575(struct e1000_hw *hw); +STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw); +STATIC void e1000_release_nvm_82575(struct e1000_hw *hw); +STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw); +STATIC s32 e1000_check_for_link_media_swap(struct e1000_hw *hw); +STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw); +STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw); +STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 *data); +STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw); +STATIC s32 e1000_reset_hw_82580(struct e1000_hw *hw); +STATIC s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, + u32 offset, u16 *data); +STATIC s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, + u32 offset, u16 data); +STATIC s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, + bool active); +STATIC s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, + bool active); +STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, + bool active); +STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw); +STATIC s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw); +STATIC s32 e1000_get_media_type_82575(struct e1000_hw *hw); +STATIC s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw); +STATIC s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data); +STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, + u32 offset, u16 data); +STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw); +STATIC s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask); +STATIC s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +STATIC s32 e1000_get_phy_id_82575(struct e1000_hw *hw); +STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask); +STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw); +STATIC s32 e1000_reset_init_script_82575(struct e1000_hw *hw); +STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw); +STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw); +STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw); +STATIC void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw); +STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw); +STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw); +STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw); +STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw); +STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw); +STATIC s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, + u16 offset); +STATIC s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, + u16 offset); +STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw); +STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw); +STATIC void e1000_clear_vfta_i350(struct e1000_hw *hw); + +STATIC void e1000_i2c_start(struct e1000_hw *hw); +STATIC void e1000_i2c_stop(struct e1000_hw *hw); +STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data); +STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data); +STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw); +STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data); +STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data); +STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); +STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); +STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data); +STATIC bool e1000_get_i2c_data(u32 *i2cctl); + +STATIC const u16 e1000_82580_rxpbs_table[] = { + 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; +#define E1000_82580_RXPBS_TABLE_SIZE \ + (sizeof(e1000_82580_rxpbs_table) / \ + sizeof(e1000_82580_rxpbs_table[0])) + + +/** + * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO + * @hw: pointer to the HW structure + * + * Called to determine if the I2C pins are being used for I2C or as an + * external MDIO interface since the two options are mutually exclusive. + **/ +STATIC bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw) +{ + u32 reg = 0; + bool ext_mdio = false; + + DEBUGFUNC("e1000_sgmii_uses_mdio_82575"); + + switch (hw->mac.type) { + case e1000_82575: + case e1000_82576: + reg = E1000_READ_REG(hw, E1000_MDIC); + ext_mdio = !!(reg & E1000_MDIC_DEST); + break; + case e1000_82580: + case e1000_i350: + case e1000_i354: + case e1000_i210: + case e1000_i211: + reg = E1000_READ_REG(hw, E1000_MDICNFG); + ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); + break; + default: + break; + } + return ext_mdio; +} + +/** + * e1000_init_phy_params_82575 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext; + + DEBUGFUNC("e1000_init_phy_params_82575"); + + phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic; + phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic; + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + goto out; + } + + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82575; + + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + + phy->ops.acquire = e1000_acquire_phy_82575; + phy->ops.check_reset_block = e1000_check_reset_block_generic; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.get_cfg_done = e1000_get_cfg_done_82575; + phy->ops.release = e1000_release_phy_82575; + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + + if (e1000_sgmii_active_82575(hw)) { + phy->ops.reset = e1000_phy_hw_reset_sgmii_82575; + ctrl_ext |= E1000_CTRL_I2C_ENA; + } else { + phy->ops.reset = e1000_phy_hw_reset_generic; + ctrl_ext &= ~E1000_CTRL_I2C_ENA; + } + + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + e1000_reset_mdicnfg_82580(hw); + + if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) { + phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575; + phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575; + } else { + switch (hw->mac.type) { + case e1000_82580: + case e1000_i350: + case e1000_i354: + phy->ops.read_reg = e1000_read_phy_reg_82580; + phy->ops.write_reg = e1000_write_phy_reg_82580; + break; + case e1000_i210: + case e1000_i211: + phy->ops.read_reg = e1000_read_phy_reg_gs40g; + phy->ops.write_reg = e1000_write_phy_reg_gs40g; + break; + default: + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.write_reg = e1000_write_phy_reg_igp; + } + } + + /* Set phy->phy_addr and phy->id. */ + ret_val = e1000_get_phy_id_82575(hw); + + /* Verify phy id and set remaining function pointers */ + switch (phy->id) { + case M88E1543_E_PHY_ID: + case M88E1512_E_PHY_ID: + case I347AT4_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case M88E1111_I_PHY_ID: + phy->type = e1000_phy_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + if (phy->id == I347AT4_E_PHY_ID || + phy->id == M88E1112_E_PHY_ID || + phy->id == M88E1340M_E_PHY_ID) + phy->ops.get_cable_length = + e1000_get_cable_length_m88_gen2; + else if (phy->id == M88E1543_E_PHY_ID || + phy->id == M88E1512_E_PHY_ID) + phy->ops.get_cable_length = + e1000_get_cable_length_m88_gen2; + else + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + /* Check if this PHY is confgured for media swap. */ + if (phy->id == M88E1112_E_PHY_ID) { + u16 data; + + ret_val = phy->ops.write_reg(hw, + E1000_M88E1112_PAGE_ADDR, + 2); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, + E1000_M88E1112_MAC_CTRL_1, + &data); + if (ret_val) + goto out; + + data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >> + E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT; + if (data == E1000_M88E1112_AUTO_COPPER_SGMII || + data == E1000_M88E1112_AUTO_COPPER_BASEX) + hw->mac.ops.check_for_link = + e1000_check_for_link_media_swap; + } + if (phy->id == M88E1512_E_PHY_ID) { + ret_val = e1000_initialize_M88E1512_phy(hw); + if (ret_val) + goto out; + } + if (phy->id == M88E1543_E_PHY_ID) { + ret_val = e1000_initialize_M88E1543_phy(hw); + if (ret_val) + goto out; + } + break; + case IGP03E1000_E_PHY_ID: + case IGP04E1000_E_PHY_ID: + phy->type = e1000_phy_igp_3; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.get_cable_length = e1000_get_cable_length_igp_2; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; + break; + case I82580_I_PHY_ID: + case I350_I_PHY_ID: + phy->type = e1000_phy_82580; + phy->ops.check_polarity = e1000_check_polarity_82577; + phy->ops.force_speed_duplex = + e1000_phy_force_speed_duplex_82577; + phy->ops.get_cable_length = e1000_get_cable_length_82577; + phy->ops.get_info = e1000_get_phy_info_82577; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; + break; + case I210_I_PHY_ID: + phy->type = e1000_phy_i210; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + break; + case BCM54616_E_PHY_ID: + phy->type = e1000_phy_none; + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82575 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +s32 e1000_init_nvm_params_82575(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_82575"); + + size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + /* + * Added to a constant, "size" becomes the left-shift value + * for setting word_size. + */ + size += NVM_WORD_SIZE_BASE_SHIFT; + + /* Just in case size is out of range, cap it to the largest + * EEPROM size supported + */ + if (size > 15) + size = 15; + + nvm->word_size = 1 << size; + if (hw->mac.type < e1000_i210) { + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->page_size = 32; + nvm->address_bits = 16; + break; + case e1000_nvm_override_spi_small: + nvm->page_size = 8; + nvm->address_bits = 8; + break; + default: + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? + 16 : 8; + break; + } + if (nvm->word_size == (1 << 15)) + nvm->page_size = 128; + + nvm->type = e1000_nvm_eeprom_spi; + } else { + nvm->type = e1000_nvm_flash_hw; + } + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_82575; + nvm->ops.release = e1000_release_nvm_82575; + if (nvm->word_size < (1 << 15)) + nvm->ops.read = e1000_read_nvm_eerd; + else + nvm->ops.read = e1000_read_nvm_spi; + + nvm->ops.write = e1000_write_nvm_spi; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_82575; + + /* override generic family function pointers for specific descendants */ + switch (hw->mac.type) { + case e1000_82580: + nvm->ops.validate = e1000_validate_nvm_checksum_82580; + nvm->ops.update = e1000_update_nvm_checksum_82580; + break; + case e1000_i350: + case e1000_i354: + nvm->ops.validate = e1000_validate_nvm_checksum_i350; + nvm->ops.update = e1000_update_nvm_checksum_i350; + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82575 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + + DEBUGFUNC("e1000_init_mac_params_82575"); + + /* Derives media type */ + e1000_get_media_type_82575(hw); + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set uta register count */ + mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES_82575; + if (mac->type == e1000_82576) + mac->rar_entry_count = E1000_RAR_ENTRIES_82576; + if (mac->type == e1000_82580) + mac->rar_entry_count = E1000_RAR_ENTRIES_82580; + if (mac->type == e1000_i350 || mac->type == e1000_i354) + mac->rar_entry_count = E1000_RAR_ENTRIES_I350; + + /* Enable EEE default settings for EEE supported devices */ + if (mac->type >= e1000_i350) + dev_spec->eee_disable = false; + + /* Allow a single clear of the SW semaphore on I210 and newer */ + if (mac->type >= e1000_i210) + dev_spec->clear_semaphore_once = true; + + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = true; + /* FWSM register */ + mac->has_fwsm = true; + /* ARC supported; valid only if manageability features are enabled. */ + mac->arc_subsystem_valid = + !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK); + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; + /* reset */ + if (mac->type >= e1000_82580) + mac->ops.reset_hw = e1000_reset_hw_82580; + else + mac->ops.reset_hw = e1000_reset_hw_82575; + /* hw initialization */ + if ((mac->type == e1000_i210) || (mac->type == e1000_i211)) + mac->ops.init_hw = e1000_init_hw_i210; + else + mac->ops.init_hw = e1000_init_hw_82575; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface link setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575; + /* physical interface shutdown */ + mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575; + /* physical interface power up */ + mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_link_82575; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82575; + /* configure collision distance */ + mac->ops.config_collision_dist = e1000_config_collision_dist_82575; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) { + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_i350; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_i350; + } else { + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + } + if (hw->mac.type >= e1000_82580) + mac->ops.validate_mdi_setting = + e1000_validate_mdi_setting_crossover_generic; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* blink LED */ + mac->ops.blink_led = e1000_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_82575; + /* acquire SW_FW sync */ + mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575; + mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575; + if (mac->type >= e1000_i210) { + mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210; + mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210; + } + + /* set lan id for port to determine which phy lock to use */ + hw->mac.ops.set_lan_id(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_82575 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82575"); + + hw->mac.ops.init_params = e1000_init_mac_params_82575; + hw->nvm.ops.init_params = e1000_init_nvm_params_82575; + hw->phy.ops.init_params = e1000_init_phy_params_82575; + hw->mbx.ops.init_params = e1000_init_mbx_params_pf; +} + +/** + * e1000_acquire_phy_82575 - Acquire rights to access PHY + * @hw: pointer to the HW structure + * + * Acquire access rights to the correct PHY. + **/ +STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw) +{ + u16 mask = E1000_SWFW_PHY0_SM; + + DEBUGFUNC("e1000_acquire_phy_82575"); + + if (hw->bus.func == E1000_FUNC_1) + mask = E1000_SWFW_PHY1_SM; + else if (hw->bus.func == E1000_FUNC_2) + mask = E1000_SWFW_PHY2_SM; + else if (hw->bus.func == E1000_FUNC_3) + mask = E1000_SWFW_PHY3_SM; + + return hw->mac.ops.acquire_swfw_sync(hw, mask); +} + +/** + * e1000_release_phy_82575 - Release rights to access PHY + * @hw: pointer to the HW structure + * + * A wrapper to release access rights to the correct PHY. + **/ +STATIC void e1000_release_phy_82575(struct e1000_hw *hw) +{ + u16 mask = E1000_SWFW_PHY0_SM; + + DEBUGFUNC("e1000_release_phy_82575"); + + if (hw->bus.func == E1000_FUNC_1) + mask = E1000_SWFW_PHY1_SM; + else if (hw->bus.func == E1000_FUNC_2) + mask = E1000_SWFW_PHY2_SM; + else if (hw->bus.func == E1000_FUNC_3) + mask = E1000_SWFW_PHY3_SM; + + hw->mac.ops.release_swfw_sync(hw, mask); +} + +/** + * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the serial gigabit media independent + * interface and stores the retrieved information in data. + **/ +STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 *data) +{ + s32 ret_val = -E1000_ERR_PARAM; + + DEBUGFUNC("e1000_read_phy_reg_sgmii_82575"); + + if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { + DEBUGOUT1("PHY Address %u is out of range\n", offset); + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_read_phy_reg_i2c(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset using the serial gigabit + * media independent interface. + **/ +STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 data) +{ + s32 ret_val = -E1000_ERR_PARAM; + + DEBUGFUNC("e1000_write_phy_reg_sgmii_82575"); + + if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_write_phy_reg_i2c(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_get_phy_id_82575 - Retrieve PHY addr and id + * @hw: pointer to the HW structure + * + * Retrieves the PHY address and ID for both PHY's which do and do not use + * sgmi interface. + **/ +STATIC s32 e1000_get_phy_id_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_id; + u32 ctrl_ext; + u32 mdic; + + DEBUGFUNC("e1000_get_phy_id_82575"); + + /* some i354 devices need an extra read for phy id */ + if (hw->mac.type == e1000_i354) + e1000_get_phy_id(hw); + + /* + * For SGMII PHYs, we try the list of possible addresses until + * we find one that works. For non-SGMII PHYs + * (e.g. integrated copper PHYs), an address of 1 should + * work. The result of this function should mean phy->phy_addr + * and phy->id are set correctly. + */ + if (!e1000_sgmii_active_82575(hw)) { + phy->addr = 1; + ret_val = e1000_get_phy_id(hw); + goto out; + } + + if (e1000_sgmii_uses_mdio_82575(hw)) { + switch (hw->mac.type) { + case e1000_82575: + case e1000_82576: + mdic = E1000_READ_REG(hw, E1000_MDIC); + mdic &= E1000_MDIC_PHY_MASK; + phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; + break; + case e1000_82580: + case e1000_i350: + case e1000_i354: + case e1000_i210: + case e1000_i211: + mdic = E1000_READ_REG(hw, E1000_MDICNFG); + mdic &= E1000_MDICNFG_PHY_MASK; + phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + break; + } + ret_val = e1000_get_phy_id(hw); + goto out; + } + + /* Power on sgmii phy if it is disabled */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, + ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); + E1000_WRITE_FLUSH(hw); + msec_delay(300); + + /* + * The address field in the I2CCMD register is 3 bits and 0 is invalid. + * Therefore, we need to test 1-7 + */ + for (phy->addr = 1; phy->addr < 8; phy->addr++) { + ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); + if (ret_val == E1000_SUCCESS) { + DEBUGOUT2("Vendor ID 0x%08X read at address %u\n", + phy_id, phy->addr); + /* + * At the time of this writing, The M88 part is + * the only supported SGMII PHY product. + */ + if (phy_id == M88_VENDOR) + break; + } else { + DEBUGOUT1("PHY address %u was unreadable\n", + phy->addr); + } + } + + /* A valid PHY type couldn't be found. */ + if (phy->addr == 8) { + phy->addr = 0; + ret_val = -E1000_ERR_PHY; + } else { + ret_val = e1000_get_phy_id(hw); + } + + /* restore previous sfp cage power state */ + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset + * @hw: pointer to the HW structure + * + * Resets the PHY using the serial gigabit media independent interface. + **/ +STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + struct e1000_phy_info *phy = &hw->phy; + + DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575"); + + /* + * This isn't a true "hard" reset, but is the only reset + * available to us at this time. + */ + + DEBUGOUT("Soft resetting SGMII attached PHY...\n"); + + if (!(hw->phy.ops.write_reg)) + goto out; + + /* + * SFP documentation requires the following to configure the SPF module + * to work on SGMII. No further documentation is given. + */ + ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.commit(hw); + if (ret_val) + goto out; + + if (phy->id == M88E1512_E_PHY_ID) + ret_val = e1000_initialize_M88E1512_phy(hw); +out: + return ret_val; +} + +/** + * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D0 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_82575"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + goto out; + + if (active) { + data |= IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + goto out; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else { + data &= ~IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } + +out: + return ret_val; +} + +/** + * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D0 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +STATIC s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_82580"); + + data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + + if (active) { + data |= E1000_82580_PM_D0_LPLU; + + /* When LPLU is enabled, we should disable SmartSpeed */ + data &= ~E1000_82580_PM_SPD; + } else { + data &= ~E1000_82580_PM_D0_LPLU; + + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) + data |= E1000_82580_PM_SPD; + else if (phy->smart_speed == e1000_smart_speed_off) + data &= ~E1000_82580_PM_SPD; + } + + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); + return E1000_SUCCESS; +} + +/** + * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is true, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_82580"); + + data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + + if (!active) { + data &= ~E1000_82580_PM_D3_LPLU; + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) + data |= E1000_82580_PM_SPD; + else if (phy->smart_speed == e1000_smart_speed_off) + data &= ~E1000_82580_PM_SPD; + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= E1000_82580_PM_D3_LPLU; + /* When LPLU is enabled, we should disable SmartSpeed */ + data &= ~E1000_82580_PM_SPD; + } + + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); + return E1000_SUCCESS; +} + +/** + * e1000_acquire_nvm_82575 - Request for access to EEPROM + * @hw: pointer to the HW structure + * + * Acquire the necessary semaphores for exclusive access to the EEPROM. + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_acquire_nvm_82575"); + + ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); + if (ret_val) + goto out; + + /* + * Check if there is some access + * error this access may hook on + */ + if (hw->mac.type == e1000_i350) { + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT | + E1000_EECD_TIMEOUT)) { + /* Clear all access error flags */ + E1000_WRITE_REG(hw, E1000_EECD, eecd | + E1000_EECD_ERROR_CLR); + DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); + } + } + + if (hw->mac.type == e1000_82580) { + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & E1000_EECD_BLOCKED) { + /* Clear access error flag */ + E1000_WRITE_REG(hw, E1000_EECD, eecd | + E1000_EECD_BLOCKED); + DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); + } + } + + ret_val = e1000_acquire_nvm_generic(hw); + if (ret_val) + e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); + +out: + return ret_val; +} + +/** + * e1000_release_nvm_82575 - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit, + * then release the semaphores acquired. + **/ +STATIC void e1000_release_nvm_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_82575"); + + e1000_release_nvm_generic(hw); + + e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); +} + +/** + * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Acquire the SW/FW semaphore to access the PHY or NVM. The mask + * will also specify which port we're acquiring the lock for. + **/ +STATIC s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + u32 swmask = mask; + u32 fwmask = mask << 16; + s32 ret_val = E1000_SUCCESS; + s32 i = 0, timeout = 200; + + DEBUGFUNC("e1000_acquire_swfw_sync_82575"); + + while (i < timeout) { + if (e1000_get_hw_semaphore_generic(hw)) { + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) + break; + + /* + * Firmware currently using resource (fwmask) + * or other software thread using resource (swmask) + */ + e1000_put_hw_semaphore_generic(hw); + msec_delay_irq(5); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync |= swmask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_release_swfw_sync_82575 - Release SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Release the SW/FW semaphore used to access the PHY or NVM. The mask + * will also specify which port we're releasing the lock for. + **/ +STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + + DEBUGFUNC("e1000_release_swfw_sync_82575"); + + while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) + ; /* Empty */ + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + swfw_sync &= ~mask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); +} + +/** + * e1000_get_cfg_done_82575 - Read config done bit + * @hw: pointer to the HW structure + * + * Read the management control register for the config done bit for + * completion status. NOTE: silicon which is EEPROM-less will fail trying + * to read the config done bit, so an error is *ONLY* logged and returns + * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon + * would not be able to be reset or change link. + **/ +STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + u32 mask = E1000_NVM_CFG_DONE_PORT_0; + + DEBUGFUNC("e1000_get_cfg_done_82575"); + + if (hw->bus.func == E1000_FUNC_1) + mask = E1000_NVM_CFG_DONE_PORT_1; + else if (hw->bus.func == E1000_FUNC_2) + mask = E1000_NVM_CFG_DONE_PORT_2; + else if (hw->bus.func == E1000_FUNC_3) + mask = E1000_NVM_CFG_DONE_PORT_3; + while (timeout) { + if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) + break; + msec_delay(1); + timeout--; + } + if (!timeout) + DEBUGOUT("MNG configuration cycle has not completed.\n"); + + /* If EEPROM is not marked present, init the PHY manually */ + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && + (hw->phy.type == e1000_phy_igp_3)) + e1000_phy_init_script_igp3(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_get_link_up_info_82575 - Get link speed/duplex info + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * This is a wrapper function, if using the serial gigabit media independent + * interface, use PCS to retrieve the link speed and duplex information. + * Otherwise, use the generic function to get the link speed and duplex info. + **/ +STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_link_up_info_82575"); + + if (hw->phy.media_type != e1000_media_type_copper) + ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed, + duplex); + else + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, + duplex); + + return ret_val; +} + +/** + * e1000_check_for_link_82575 - Check for link + * @hw: pointer to the HW structure + * + * If sgmii is enabled, then use the pcs register to determine link, otherwise + * use the generic interface for determining link. + **/ +STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw) +{ + s32 ret_val; + u16 speed, duplex; + + DEBUGFUNC("e1000_check_for_link_82575"); + + if (hw->phy.media_type != e1000_media_type_copper) { + ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed, + &duplex); + /* + * Use this flag to determine if link needs to be checked or + * not. If we have link clear the flag so that we do not + * continue to check for link. + */ + hw->mac.get_link_status = !hw->mac.serdes_has_link; + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) + DEBUGOUT("Error configuring flow control\n"); + } else { + ret_val = e1000_check_for_copper_link_generic(hw); + } + + return ret_val; +} + +/** + * e1000_check_for_link_media_swap - Check which M88E1112 interface linked + * @hw: pointer to the HW structure + * + * Poll the M88E1112 interfaces to see which interface achieved link. + */ +STATIC s32 e1000_check_for_link_media_swap(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + u8 port = 0; + + DEBUGFUNC("e1000_check_for_link_media_swap"); + + /* Check for copper. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); + if (ret_val) + return ret_val; + + if (data & E1000_M88E1112_STATUS_LINK) + port = E1000_MEDIA_PORT_COPPER; + + /* Check for other. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); + if (ret_val) + return ret_val; + + if (data & E1000_M88E1112_STATUS_LINK) + port = E1000_MEDIA_PORT_OTHER; + + /* Determine if a swap needs to happen. */ + if (port && (hw->dev_spec._82575.media_port != port)) { + hw->dev_spec._82575.media_port = port; + hw->dev_spec._82575.media_changed = true; + } + + if (port == E1000_MEDIA_PORT_COPPER) { + /* reset page to 0 */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); + if (ret_val) + return ret_val; + e1000_check_for_link_82575(hw); + } else { + e1000_check_for_link_82575(hw); + /* reset page to 0 */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown + * @hw: pointer to the HW structure + **/ +STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_power_up_serdes_link_82575"); + + if ((hw->phy.media_type != e1000_media_type_internal_serdes) && + !e1000_sgmii_active_82575(hw)) + return; + + /* Enable PCS to turn on link */ + reg = E1000_READ_REG(hw, E1000_PCS_CFG0); + reg |= E1000_PCS_CFG_PCS_EN; + E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); + + /* Power up the laser */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg &= ~E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* flush the write to verify completion */ + E1000_WRITE_FLUSH(hw); + msec_delay(1); +} + +/** + * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Using the physical coding sub-layer (PCS), retrieve the current speed and + * duplex, then store the values in the pointers provided. + **/ +STATIC s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, + u16 *speed, u16 *duplex) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 pcs; + u32 status; + + DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575"); + + /* + * Read the PCS Status register for link state. For non-copper mode, + * the status register is not accurate. The PCS status register is + * used instead. + */ + pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT); + + /* + * The link up bit determines when link is up on autoneg. + */ + if (pcs & E1000_PCS_LSTS_LINK_OK) { + mac->serdes_has_link = true; + + /* Detect and store PCS speed */ + if (pcs & E1000_PCS_LSTS_SPEED_1000) + *speed = SPEED_1000; + else if (pcs & E1000_PCS_LSTS_SPEED_100) + *speed = SPEED_100; + else + *speed = SPEED_10; + + /* Detect and store PCS duplex */ + if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) + *duplex = FULL_DUPLEX; + else + *duplex = HALF_DUPLEX; + + /* Check if it is an I354 2.5Gb backplane connection. */ + if (mac->type == e1000_i354) { + status = E1000_READ_REG(hw, E1000_STATUS); + if ((status & E1000_STATUS_2P5_SKU) && + !(status & E1000_STATUS_2P5_SKU_OVER)) { + *speed = SPEED_2500; + *duplex = FULL_DUPLEX; + DEBUGOUT("2500 Mbs, "); + DEBUGOUT("Full Duplex\n"); + } + } + + } else { + mac->serdes_has_link = false; + *speed = 0; + *duplex = 0; + } + + return E1000_SUCCESS; +} + +/** + * e1000_shutdown_serdes_link_82575 - Remove link during power down + * @hw: pointer to the HW structure + * + * In the case of serdes shut down sfp and PCS on driver unload + * when management pass thru is not enabled. + **/ +void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_shutdown_serdes_link_82575"); + + if ((hw->phy.media_type != e1000_media_type_internal_serdes) && + !e1000_sgmii_active_82575(hw)) + return; + + if (!e1000_enable_mng_pass_thru(hw)) { + /* Disable PCS to turn off link */ + reg = E1000_READ_REG(hw, E1000_PCS_CFG0); + reg &= ~E1000_PCS_CFG_PCS_EN; + E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); + + /* shutdown the laser */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg |= E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* flush the write to verify completion */ + E1000_WRITE_FLUSH(hw); + msec_delay(1); + } + + return; +} + +/** + * e1000_reset_hw_82575 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_reset_hw_82575"); + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + + /* set the completion timeout for interface */ + ret_val = e1000_set_pcie_completion_timeout(hw); + if (ret_val) + DEBUGOUT("PCI-E Set completion timeout has failed.\n"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) { + /* + * When auto config read does not complete, do not + * return with an error. This can happen in situations + * where there is no eeprom and prevents getting link. + */ + DEBUGOUT("Auto Read Done did not complete\n"); + } + + /* If EEPROM is not present, run manual init scripts */ + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES)) + e1000_reset_init_script_82575(hw); + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + /* Install any alternate MAC address into RAR0 */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + + return ret_val; +} + +/** + * e1000_init_hw_82575 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +s32 e1000_init_hw_82575(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + u16 i, rar_count = mac->rar_entry_count; + + DEBUGFUNC("e1000_init_hw_82575"); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address */ + e1000_init_rx_addrs_generic(hw, rar_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Zero out the Unicast HASH table */ + DEBUGOUT("Zeroing the UTA\n"); + for (i = 0; i < mac->uta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the default MTU size */ + hw->dev_spec._82575.mtu = 1500; + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82575(hw); + + return ret_val; +} + +/** + * e1000_setup_copper_link_82575 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u32 phpm_reg; + + DEBUGFUNC("e1000_setup_copper_link_82575"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Clear Go Link Disconnect bit on supported devices */ + switch (hw->mac.type) { + case e1000_82580: + case e1000_i350: + case e1000_i210: + case e1000_i211: + phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + phpm_reg &= ~E1000_82580_PM_GO_LINKD; + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); + break; + default: + break; + } + + ret_val = e1000_setup_serdes_link_82575(hw); + if (ret_val) + goto out; + + if (e1000_sgmii_active_82575(hw)) { + /* allow time for SFP cage time to power up phy */ + msec_delay(300); + + ret_val = hw->phy.ops.reset(hw); + if (ret_val) { + DEBUGOUT("Error resetting the PHY.\n"); + goto out; + } + } + switch (hw->phy.type) { + case e1000_phy_i210: + case e1000_phy_m88: + switch (hw->phy.id) { + case I347AT4_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case M88E1543_E_PHY_ID: + case M88E1512_E_PHY_ID: + case I210_I_PHY_ID: + ret_val = e1000_copper_link_setup_m88_gen2(hw); + break; + default: + ret_val = e1000_copper_link_setup_m88(hw); + break; + } + break; + case e1000_phy_igp_3: + ret_val = e1000_copper_link_setup_igp(hw); + break; + case e1000_phy_82580: + ret_val = e1000_copper_link_setup_82577(hw); + break; + case e1000_phy_none: + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + + if (ret_val) + goto out; + + ret_val = e1000_setup_copper_link_generic(hw); +out: + return ret_val; +} + +/** + * e1000_setup_serdes_link_82575 - Setup link for serdes + * @hw: pointer to the HW structure + * + * Configure the physical coding sub-layer (PCS) link. The PCS link is + * used on copper connections where the serialized gigabit media independent + * interface (sgmii), or serdes fiber is being used. Configures the link + * for auto-negotiation or forces speed/duplex. + **/ +STATIC s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw) +{ + u32 ctrl_ext, ctrl_reg, reg, anadv_reg; + bool pcs_autoneg; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_setup_serdes_link_82575"); + + if ((hw->phy.media_type != e1000_media_type_internal_serdes) && + !e1000_sgmii_active_82575(hw)) + return ret_val; + + /* + * On the 82575, SerDes loopback mode persists until it is + * explicitly turned off or a power cycle is performed. A read to + * the register does not indicate its status. Therefore, we ensure + * loopback mode is disabled during initialization. + */ + E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); + + /* power on the sfp cage if present */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); + ctrl_reg |= E1000_CTRL_SLU; + + /* set both sw defined pins on 82575/82576*/ + if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) + ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; + + reg = E1000_READ_REG(hw, E1000_PCS_LCTL); + + /* default pcs_autoneg to the same setting as mac autoneg */ + pcs_autoneg = hw->mac.autoneg; + + switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { + case E1000_CTRL_EXT_LINK_MODE_SGMII: + /* sgmii mode lets the phy handle forcing speed/duplex */ + pcs_autoneg = true; + /* autoneg time out should be disabled for SGMII mode */ + reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); + break; + case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: + /* disable PCS autoneg and support parallel detect only */ + pcs_autoneg = false; + /* fall through to default case */ + default: + if (hw->mac.type == e1000_82575 || + hw->mac.type == e1000_82576) { + ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) + pcs_autoneg = false; + } + + /* + * non-SGMII modes only supports a speed of 1000/Full for the + * link so it is best to just force the MAC and let the pcs + * link either autoneg or be forced to 1000/Full + */ + ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | + E1000_CTRL_FD | E1000_CTRL_FRCDPX; + + /* set speed of 1000/Full if speed/duplex is forced */ + reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; + break; + } + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); + + /* + * New SerDes mode allows for forcing speed or autonegotiating speed + * at 1gb. Autoneg should be default set by most drivers. This is the + * mode that will be compatible with older link partners and switches. + * However, both are supported by the hardware and some drivers/tools. + */ + reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | + E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); + + if (pcs_autoneg) { + /* Set PCS register for autoneg */ + reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ + E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ + + /* Disable force flow control for autoneg */ + reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; + + /* Configure flow control advertisement for autoneg */ + anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); + anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); + + switch (hw->fc.requested_mode) { + case e1000_fc_full: + case e1000_fc_rx_pause: + anadv_reg |= E1000_TXCW_ASM_DIR; + anadv_reg |= E1000_TXCW_PAUSE; + break; + case e1000_fc_tx_pause: + anadv_reg |= E1000_TXCW_ASM_DIR; + break; + default: + break; + } + + E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg); + + DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); + } else { + /* Set PCS register for forced link */ + reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ + + /* Force flow control for forced link */ + reg |= E1000_PCS_LCTL_FORCE_FCTRL; + + DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); + } + + E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); + + if (!pcs_autoneg && !e1000_sgmii_active_82575(hw)) + e1000_force_mac_fc_generic(hw); + + return ret_val; +} + +/** + * e1000_get_media_type_82575 - derives current media type. + * @hw: pointer to the HW structure + * + * The media type is chosen reflecting few settings. + * The following are taken into account: + * - link mode set in the current port Init Control Word #3 + * - current link mode settings in CSR register + * - MDIO vs. I2C PHY control interface chosen + * - SFP module media type + **/ +STATIC s32 e1000_get_media_type_82575(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext = 0; + u32 link_mode = 0; + + /* Set internal phy as default */ + dev_spec->sgmii_active = false; + dev_spec->module_plugged = false; + + /* Get CSR setting */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + + /* extract link mode setting */ + link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; + + switch (link_mode) { + case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: + hw->phy.media_type = e1000_media_type_internal_serdes; + break; + case E1000_CTRL_EXT_LINK_MODE_GMII: + hw->phy.media_type = e1000_media_type_copper; + break; + case E1000_CTRL_EXT_LINK_MODE_SGMII: + /* Get phy control interface type set (MDIO vs. I2C)*/ + if (e1000_sgmii_uses_mdio_82575(hw)) { + hw->phy.media_type = e1000_media_type_copper; + dev_spec->sgmii_active = true; + break; + } + /* fall through for I2C based SGMII */ + case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: + /* read media type from SFP EEPROM */ + ret_val = e1000_set_sfp_media_type_82575(hw); + if ((ret_val != E1000_SUCCESS) || + (hw->phy.media_type == e1000_media_type_unknown)) { + /* + * If media type was not identified then return media + * type defined by the CTRL_EXT settings. + */ + hw->phy.media_type = e1000_media_type_internal_serdes; + + if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { + hw->phy.media_type = e1000_media_type_copper; + dev_spec->sgmii_active = true; + } + + break; + } + + /* do not change link mode for 100BaseFX */ + if (dev_spec->eth_flags.e100_base_fx) + break; + + /* change current link mode setting */ + ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; + + if (hw->phy.media_type == e1000_media_type_copper) + ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; + else + ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; + + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + break; + } + + return ret_val; +} + +/** + * e1000_set_sfp_media_type_82575 - derives SFP module media type. + * @hw: pointer to the HW structure + * + * The media type is chosen based on SFP module. + * compatibility flags retrieved from SFP ID EEPROM. + **/ +STATIC s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_ERR_CONFIG; + u32 ctrl_ext = 0; + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags; + u8 tranceiver_type = 0; + s32 timeout = 3; + + /* Turn I2C interface ON and power on sfp cage */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); + + E1000_WRITE_FLUSH(hw); + + /* Read SFP module data */ + while (timeout) { + ret_val = e1000_read_sfp_data_byte(hw, + E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), + &tranceiver_type); + if (ret_val == E1000_SUCCESS) + break; + msec_delay(100); + timeout--; + } + if (ret_val != E1000_SUCCESS) + goto out; + + ret_val = e1000_read_sfp_data_byte(hw, + E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), + (u8 *)eth_flags); + if (ret_val != E1000_SUCCESS) + goto out; + + /* Check if there is some SFP module plugged and powered */ + if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || + (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { + dev_spec->module_plugged = true; + if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { + hw->phy.media_type = e1000_media_type_internal_serdes; + } else if (eth_flags->e100_base_fx) { + dev_spec->sgmii_active = true; + hw->phy.media_type = e1000_media_type_internal_serdes; + } else if (eth_flags->e1000_base_t) { + dev_spec->sgmii_active = true; + hw->phy.media_type = e1000_media_type_copper; + } else { + hw->phy.media_type = e1000_media_type_unknown; + DEBUGOUT("PHY module has not been recognized\n"); + goto out; + } + } else { + hw->phy.media_type = e1000_media_type_unknown; + } + ret_val = E1000_SUCCESS; +out: + /* Restore I2C interface setting */ + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + return ret_val; +} + +/** + * e1000_valid_led_default_82575 - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +STATIC s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_82575"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { + switch (hw->phy.media_type) { + case e1000_media_type_internal_serdes: + *data = ID_LED_DEFAULT_82575_SERDES; + break; + case e1000_media_type_copper: + default: + *data = ID_LED_DEFAULT; + break; + } + } +out: + return ret_val; +} + +/** + * e1000_sgmii_active_82575 - Return sgmii state + * @hw: pointer to the HW structure + * + * 82575 silicon has a serialized gigabit media independent interface (sgmii) + * which can be enabled for use in the embedded applications. Simply + * return the current state of the sgmii interface. + **/ +STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + return dev_spec->sgmii_active; +} + +/** + * e1000_reset_init_script_82575 - Inits HW defaults after reset + * @hw: pointer to the HW structure + * + * Inits recommended HW defaults after a reset when there is no EEPROM + * detected. This is only for the 82575. + **/ +STATIC s32 e1000_reset_init_script_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_reset_init_script_82575"); + + if (hw->mac.type == e1000_82575) { + DEBUGOUT("Running reset init script for 82575\n"); + /* SerDes configuration via SERDESCTRL */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15); + + /* CCM configuration via CCMCTL register */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00); + + /* PCIe lanes configuration */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81); + + /* PCIe PLL Configuration */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00); + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr_82575 - Read device MAC address + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_read_mac_addr_82575"); + + /* + * If there's an alternate MAC address place it in RAR0 + * so that it will override the Si installed default perm + * address. + */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + if (ret_val) + goto out; + + ret_val = e1000_read_mac_addr_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_config_collision_dist_82575 - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw) +{ + u32 tctl_ext; + + DEBUGFUNC("e1000_config_collision_dist_82575"); + + tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT); + + tctl_ext &= ~E1000_TCTL_EXT_COLD; + tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT; + + E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_power_down_phy_copper_82575 - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + + if (!(phy->ops.check_reset_block)) + return; + + /* If the management interface is not enabled, then power down */ + if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82575"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); + + E1000_READ_REG(hw, E1000_IAC); + E1000_READ_REG(hw, E1000_ICRXOC); + + E1000_READ_REG(hw, E1000_ICRXPTC); + E1000_READ_REG(hw, E1000_ICRXATC); + E1000_READ_REG(hw, E1000_ICTXPTC); + E1000_READ_REG(hw, E1000_ICTXATC); + E1000_READ_REG(hw, E1000_ICTXQEC); + E1000_READ_REG(hw, E1000_ICTXQMTC); + E1000_READ_REG(hw, E1000_ICRXDMTC); + + E1000_READ_REG(hw, E1000_CBTMPC); + E1000_READ_REG(hw, E1000_HTDPMC); + E1000_READ_REG(hw, E1000_CBRMPC); + E1000_READ_REG(hw, E1000_RPTHC); + E1000_READ_REG(hw, E1000_HGPTC); + E1000_READ_REG(hw, E1000_HTCBDPC); + E1000_READ_REG(hw, E1000_HGORCL); + E1000_READ_REG(hw, E1000_HGORCH); + E1000_READ_REG(hw, E1000_HGOTCL); + E1000_READ_REG(hw, E1000_HGOTCH); + E1000_READ_REG(hw, E1000_LENERRS); + + /* This register should not be read in copper configurations */ + if ((hw->phy.media_type == e1000_media_type_internal_serdes) || + e1000_sgmii_active_82575(hw)) + E1000_READ_REG(hw, E1000_SCVPC); +} + +/** + * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable + * @hw: pointer to the HW structure + * + * After Rx enable, if manageability is enabled then there is likely some + * bad data at the start of the fifo and possibly in the DMA fifo. This + * function clears the fifos and flushes any packets that came in as rx was + * being enabled. + **/ +void e1000_rx_fifo_flush_82575(struct e1000_hw *hw) +{ + u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; + int i, ms_wait; + + DEBUGFUNC("e1000_rx_fifo_flush_82575"); + + /* disable IPv6 options as per hardware errata */ + rfctl = E1000_READ_REG(hw, E1000_RFCTL); + rfctl |= E1000_RFCTL_IPV6_EX_DIS; + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); + + if (hw->mac.type != e1000_82575 || + !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) + return; + + /* Disable all Rx queues */ + for (i = 0; i < 4; i++) { + rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i)); + E1000_WRITE_REG(hw, E1000_RXDCTL(i), + rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); + } + /* Poll all queues to verify they have shut down */ + for (ms_wait = 0; ms_wait < 10; ms_wait++) { + msec_delay(1); + rx_enabled = 0; + for (i = 0; i < 4; i++) + rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i)); + if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) + break; + } + + if (ms_wait == 10) + DEBUGOUT("Queue disable timed out after 10ms\n"); + + /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all + * incoming packets are rejected. Set enable and wait 2ms so that + * any packet that was coming in as RCTL.EN was set is flushed + */ + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); + + rlpml = E1000_READ_REG(hw, E1000_RLPML); + E1000_WRITE_REG(hw, E1000_RLPML, 0); + + rctl = E1000_READ_REG(hw, E1000_RCTL); + temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); + temp_rctl |= E1000_RCTL_LPE; + + E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl); + E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN); + E1000_WRITE_FLUSH(hw); + msec_delay(2); + + /* Enable Rx queues that were previously enabled and restore our + * previous state + */ + for (i = 0; i < 4; i++) + E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + E1000_WRITE_FLUSH(hw); + + E1000_WRITE_REG(hw, E1000_RLPML, rlpml); + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); + + /* Flush receive errors generated by workaround */ + E1000_READ_REG(hw, E1000_ROC); + E1000_READ_REG(hw, E1000_RNBC); + E1000_READ_REG(hw, E1000_MPC); +} + +/** + * e1000_set_pcie_completion_timeout - set pci-e completion timeout + * @hw: pointer to the HW structure + * + * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, + * however the hardware default for these parts is 500us to 1ms which is less + * than the 10ms recommended by the pci-e spec. To address this we need to + * increase the value to either 10ms to 200ms for capability version 1 config, + * or 16ms to 55ms for version 2. + **/ +STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw) +{ + u32 gcr = E1000_READ_REG(hw, E1000_GCR); + s32 ret_val = E1000_SUCCESS; + u16 pcie_devctl2; + + /* only take action if timeout value is defaulted to 0 */ + if (gcr & E1000_GCR_CMPL_TMOUT_MASK) + goto out; + + /* + * if capababilities version is type 1 we can write the + * timeout of 10ms to 200ms through the GCR register + */ + if (!(gcr & E1000_GCR_CAP_VER2)) { + gcr |= E1000_GCR_CMPL_TMOUT_10ms; + goto out; + } + + /* + * for version 2 capabilities we need to write the config space + * directly in order to set the completion timeout value for + * 16ms to 55ms + */ + ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, + &pcie_devctl2); + if (ret_val) + goto out; + + pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; + + ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, + &pcie_devctl2); +out: + /* disable completion timeout resend */ + gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; + + E1000_WRITE_REG(hw, E1000_GCR, gcr); + return ret_val; +} + +/** + * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing + * @hw: pointer to the hardware struct + * @enable: state to enter, either enabled or disabled + * @pf: Physical Function pool - do not set anti-spoofing for the PF + * + * enables/disables L2 switch anti-spoofing functionality. + **/ +void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) +{ + u32 reg_val, reg_offset; + + switch (hw->mac.type) { + case e1000_82576: + reg_offset = E1000_DTXSWC; + break; + case e1000_i350: + case e1000_i354: + reg_offset = E1000_TXSWC; + break; + default: + return; + } + + reg_val = E1000_READ_REG(hw, reg_offset); + if (enable) { + reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK | + E1000_DTXSWC_VLAN_SPOOF_MASK); + /* The PF can spoof - it has to in order to + * support emulation mode NICs + */ + reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); + } else { + reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | + E1000_DTXSWC_VLAN_SPOOF_MASK); + } + E1000_WRITE_REG(hw, reg_offset, reg_val); +} + +/** + * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback + * @hw: pointer to the hardware struct + * @enable: state to enter, either enabled or disabled + * + * enables/disables L2 switch loopback functionality. + **/ +void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) +{ + u32 dtxswc; + + switch (hw->mac.type) { + case e1000_82576: + dtxswc = E1000_READ_REG(hw, E1000_DTXSWC); + if (enable) + dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; + else + dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; + E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc); + break; + case e1000_i350: + case e1000_i354: + dtxswc = E1000_READ_REG(hw, E1000_TXSWC); + if (enable) + dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; + else + dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; + E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc); + break; + default: + /* Currently no other hardware supports loopback */ + break; + } + + +} + +/** + * e1000_vmdq_set_replication_pf - enable or disable vmdq replication + * @hw: pointer to the hardware struct + * @enable: state to enter, either enabled or disabled + * + * enables/disables replication of packets across multiple pools. + **/ +void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) +{ + u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); + + if (enable) + vt_ctl |= E1000_VT_CTL_VM_REPL_EN; + else + vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; + + E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); +} + +/** + * e1000_read_phy_reg_82580 - Read 82580 MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the MDI control register in the PHY at offset and stores the + * information read to data. + **/ +STATIC s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_read_phy_reg_82580"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_read_phy_reg_mdic(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_82580 - Write 82580 MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write to register at offset + * + * Writes data to MDI control register in the PHY at offset. + **/ +STATIC s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_write_phy_reg_82580"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_write_phy_reg_mdic(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits + * @hw: pointer to the HW structure + * + * This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on + * the values found in the EEPROM. This addresses an issue in which these + * bits are not restored from EEPROM after reset. + **/ +STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 mdicnfg; + u16 nvm_data = 0; + + DEBUGFUNC("e1000_reset_mdicnfg_82580"); + + if (hw->mac.type != e1000_82580) + goto out; + if (!e1000_sgmii_active_82575(hw)) + goto out; + + ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + + NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, + &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); + if (nvm_data & NVM_WORD24_EXT_MDIO) + mdicnfg |= E1000_MDICNFG_EXT_MDIO; + if (nvm_data & NVM_WORD24_COM_MDIO) + mdicnfg |= E1000_MDICNFG_COM_MDIO; + E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); +out: + return ret_val; +} + +/** + * e1000_reset_hw_82580 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets function or entire device (all ports, etc.) + * to a known state. + **/ +STATIC s32 e1000_reset_hw_82580(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + /* BH SW mailbox bit in SW_FW_SYNC */ + u16 swmbsw_mask = E1000_SW_SYNCH_MB; + u32 ctrl; + bool global_device_reset = hw->dev_spec._82575.global_device_reset; + + DEBUGFUNC("e1000_reset_hw_82580"); + + hw->dev_spec._82575.global_device_reset = false; + + /* 82580 does not reliably do global_device_reset due to hw errata */ + if (hw->mac.type == e1000_82580) + global_device_reset = false; + + /* Get current control state. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* Determine whether or not a global dev reset is requested */ + if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw, + swmbsw_mask)) + global_device_reset = false; + + if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) & + E1000_STAT_DEV_RST_SET)) + ctrl |= E1000_CTRL_DEV_RST; + else + ctrl |= E1000_CTRL_RST; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + switch (hw->device_id) { + case E1000_DEV_ID_DH89XXCC_SGMII: + break; + default: + E1000_WRITE_FLUSH(hw); + break; + } + + /* Add delay to insure DEV_RST or RST has time to complete */ + msec_delay(5); + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) { + /* + * When auto config read does not complete, do not + * return with an error. This can happen in situations + * where there is no eeprom and prevents getting link. + */ + DEBUGOUT("Auto Read Done did not complete\n"); + } + + /* clear global device reset status bit */ + E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET); + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + ret_val = e1000_reset_mdicnfg_82580(hw); + if (ret_val) + DEBUGOUT("Could not reset MDICNFG based on EEPROM\n"); + + /* Install any alternate MAC address into RAR0 */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + + /* Release semaphore */ + if (global_device_reset) + hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); + + return ret_val; +} + +/** + * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size + * @data: data received by reading RXPBS register + * + * The 82580 uses a table based approach for packet buffer allocation sizes. + * This function converts the retrieved value into the correct table value + * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 + * 0x0 36 72 144 1 2 4 8 16 + * 0x8 35 70 140 rsv rsv rsv rsv rsv + */ +u16 e1000_rxpbs_adjust_82580(u32 data) +{ + u16 ret_val = 0; + + if (data < E1000_82580_RXPBS_TABLE_SIZE) + ret_val = e1000_82580_rxpbs_table[data]; + + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_with_offset - Validate EEPROM + * checksum + * @hw: pointer to the HW structure + * @offset: offset in words of the checksum protected region + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) +{ + s32 ret_val = E1000_SUCCESS; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_validate_nvm_checksum_with_offset"); + + for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + checksum += nvm_data; + } + + if (checksum != (u16) NVM_SUM) { + DEBUGOUT("NVM Checksum Invalid\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_with_offset - Update EEPROM + * checksum + * @hw: pointer to the HW structure + * @offset: offset in words of the checksum protected region + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_update_nvm_checksum_with_offset"); + + for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error while updating checksum.\n"); + goto out; + } + checksum += nvm_data; + } + checksum = (u16) NVM_SUM - checksum; + ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, + &checksum); + if (ret_val) + DEBUGOUT("NVM Write Error while updating checksum.\n"); + +out: + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM section checksum by reading/adding each word of + * the EEPROM and then verifies that the sum of the EEPROM is + * equal to 0xBABA. + **/ +STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw) +{ + s32 ret_val; + u16 eeprom_regions_count = 1; + u16 j, nvm_data; + u16 nvm_offset; + + DEBUGFUNC("e1000_validate_nvm_checksum_82580"); + + ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { + /* if chekcsums compatibility bit is set validate checksums + * for all 4 ports. */ + eeprom_regions_count = 4; + } + + for (j = 0; j < eeprom_regions_count; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_validate_nvm_checksum_with_offset(hw, + nvm_offset); + if (ret_val != E1000_SUCCESS) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_82580 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM section checksums for all 4 ports by reading/adding + * each word of the EEPROM up to the checksum. Then calculates the EEPROM + * checksum and writes the value to the EEPROM. + **/ +STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw) +{ + s32 ret_val; + u16 j, nvm_data; + u16 nvm_offset; + + DEBUGFUNC("e1000_update_nvm_checksum_82580"); + + ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n"); + goto out; + } + + if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) { + /* set compatibility bit to validate checksums appropriately */ + nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; + ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, + &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n"); + goto out; + } + } + + for (j = 0; j < 4; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM section checksum by reading/adding each word of + * the EEPROM and then verifies that the sum of the EEPROM is + * equal to 0xBABA. + **/ +STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 j; + u16 nvm_offset; + + DEBUGFUNC("e1000_validate_nvm_checksum_i350"); + + for (j = 0; j < 4; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_validate_nvm_checksum_with_offset(hw, + nvm_offset); + if (ret_val != E1000_SUCCESS) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_i350 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM section checksums for all 4 ports by reading/adding + * each word of the EEPROM up to the checksum. Then calculates the EEPROM + * checksum and writes the value to the EEPROM. + **/ +STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 j; + u16 nvm_offset; + + DEBUGFUNC("e1000_update_nvm_checksum_i350"); + + for (j = 0; j < 4; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); + if (ret_val != E1000_SUCCESS) + goto out; + } + +out: + return ret_val; +} + +/** + * __e1000_access_emi_reg - Read/write EMI register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: pointer to value to read/write from/to the EMI address + * @read: boolean flag to indicate read or write + **/ +STATIC s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address, + u16 *data, bool read) +{ + s32 ret_val; + + DEBUGFUNC("__e1000_access_emi_reg"); + + ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address); + if (ret_val) + return ret_val; + + if (read) + ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data); + else + ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data); + + return ret_val; +} + +/** + * e1000_read_emi_reg - Read Extended Management Interface register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: value to be read from the EMI address + **/ +s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data) +{ + DEBUGFUNC("e1000_read_emi_reg"); + + return __e1000_access_emi_reg(hw, addr, data, true); +} + +/** + * e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY + * @hw: pointer to the HW structure + * + * Initialize Marvell 1512 to work correctly with Avoton. + **/ +s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_initialize_M88E1512_phy"); + + /* Check if this is correct PHY. */ + if (phy->id != M88E1512_E_PHY_ID) + goto out; + + /* Switch to PHY page 0xFF. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); + if (ret_val) + goto out; + + /* Switch to PHY page 0xFB. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D); + if (ret_val) + goto out; + + /* Switch to PHY page 0x12. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); + if (ret_val) + goto out; + + /* Change mode to SGMII-to-Copper */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); + if (ret_val) + goto out; + + /* Return the PHY to page 0. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); + if (ret_val) + goto out; + + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + + msec_delay(1000); +out: + return ret_val; +} + +/** + * e1000_initialize_M88E1543_phy - Initialize M88E1543 PHY + * @hw: pointer to the HW structure + * + * Initialize Marvell 1543 to work correctly with Avoton. + **/ +s32 e1000_initialize_M88E1543_phy(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_initialize_M88E1543_phy"); + + /* Check if this is correct PHY. */ + if (phy->id != M88E1543_E_PHY_ID) + goto out; + + /* Switch to PHY page 0xFF. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); + if (ret_val) + goto out; + + /* Switch to PHY page 0xFB. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0xC00D); + if (ret_val) + goto out; + + /* Switch to PHY page 0x12. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); + if (ret_val) + goto out; + + /* Change mode to SGMII-to-Copper */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); + if (ret_val) + goto out; + + /* Switch to PHY page 1. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1); + if (ret_val) + goto out; + + /* Change mode to 1000BASE-X/SGMII and autoneg enable; reset */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140); + if (ret_val) + goto out; + + /* Return the PHY to page 0. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); + if (ret_val) + goto out; + + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + + msec_delay(1000); +out: + return ret_val; +} + +/** + * e1000_set_eee_i350 - Enable/disable EEE support + * @hw: pointer to the HW structure + * @adv1g: boolean flag enabling 1G EEE advertisement + * @adv100m: boolean flag enabling 100M EEE advertisement + * + * Enable/disable EEE based on setting in dev_spec structure. + * + **/ +s32 e1000_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M) +{ + u32 ipcnfg, eeer; + + DEBUGFUNC("e1000_set_eee_i350"); + + if ((hw->mac.type < e1000_i350) || + (hw->phy.media_type != e1000_media_type_copper)) + goto out; + ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG); + eeer = E1000_READ_REG(hw, E1000_EEER); + + /* enable or disable per user setting */ + if (!(hw->dev_spec._82575.eee_disable)) { + u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU); + + if (adv100M) + ipcnfg |= E1000_IPCNFG_EEE_100M_AN; + else + ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN; + + if (adv1G) + ipcnfg |= E1000_IPCNFG_EEE_1G_AN; + else + ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN; + + eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | + E1000_EEER_LPI_FC); + + /* This bit should not be set in normal operation. */ + if (eee_su & E1000_EEE_SU_LPI_CLK_STP) + DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); + } else { + ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); + eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | + E1000_EEER_LPI_FC); + } + E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg); + E1000_WRITE_REG(hw, E1000_EEER, eeer); + E1000_READ_REG(hw, E1000_IPCNFG); + E1000_READ_REG(hw, E1000_EEER); +out: + + return E1000_SUCCESS; +} + +/** + * e1000_set_eee_i354 - Enable/disable EEE support + * @hw: pointer to the HW structure + * @adv1g: boolean flag enabling 1G EEE advertisement + * @adv100m: boolean flag enabling 100M EEE advertisement + * + * Enable/disable EEE legacy mode based on setting in dev_spec structure. + * + **/ +s32 e1000_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_data; + + DEBUGFUNC("e1000_set_eee_i354"); + + if ((hw->phy.media_type != e1000_media_type_copper) || + ((phy->id != M88E1543_E_PHY_ID) && + (phy->id != M88E1512_E_PHY_ID))) + goto out; + + if (!hw->dev_spec._82575.eee_disable) { + /* Switch to PHY page 18. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1, + &phy_data); + if (ret_val) + goto out; + + phy_data |= E1000_M88E1543_EEE_CTRL_1_MS; + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1, + phy_data); + if (ret_val) + goto out; + + /* Return the PHY to page 0. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); + if (ret_val) + goto out; + + /* Turn on EEE advertisement. */ + ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + &phy_data); + if (ret_val) + goto out; + + if (adv100M) + phy_data |= E1000_EEE_ADV_100_SUPPORTED; + else + phy_data &= ~E1000_EEE_ADV_100_SUPPORTED; + + if (adv1G) + phy_data |= E1000_EEE_ADV_1000_SUPPORTED; + else + phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED; + + ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + phy_data); + } else { + /* Turn off EEE advertisement. */ + ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + &phy_data); + if (ret_val) + goto out; + + phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED | + E1000_EEE_ADV_1000_SUPPORTED); + ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + phy_data); + } + +out: + return ret_val; +} + +/** + * e1000_get_eee_status_i354 - Get EEE status + * @hw: pointer to the HW structure + * @status: EEE status + * + * Get EEE status by guessing based on whether Tx or Rx LPI indications have + * been received. + **/ +s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_data; + + DEBUGFUNC("e1000_get_eee_status_i354"); + + /* Check if EEE is supported on this device. */ + if ((hw->phy.media_type != e1000_media_type_copper) || + ((phy->id != M88E1543_E_PHY_ID) && + (phy->id != M88E1512_E_PHY_ID))) + goto out; + + ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354, + E1000_PCS_STATUS_DEV_I354, + &phy_data); + if (ret_val) + goto out; + + *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD | + E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false; + +out: + return ret_val; +} + +/* Due to a hw errata, if the host tries to configure the VFTA register + * while performing queries from the BMC or DMA, then the VFTA in some + * cases won't be written. + */ + +/** + * e1000_clear_vfta_i350 - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void e1000_clear_vfta_i350(struct e1000_hw *hw) +{ + u32 offset; + int i; + + DEBUGFUNC("e1000_clear_vfta_350"); + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + for (i = 0; i < 10; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); + + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_write_vfta_i350 - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) +{ + int i; + + DEBUGFUNC("e1000_write_vfta_350"); + + for (i = 0; i < 10; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + + E1000_WRITE_FLUSH(hw); +} + + +/** + * e1000_set_i2c_bb - Enable I2C bit-bang + * @hw: pointer to the HW structure + * + * Enable I2C bit-bang interface + * + **/ +s32 e1000_set_i2c_bb(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext, i2cparams; + + DEBUGFUNC("e1000_set_i2c_bb"); + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_I2C_ENA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS); + i2cparams |= E1000_I2CBB_EN; + i2cparams |= E1000_I2C_DATA_OE_N; + i2cparams |= E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams); + E1000_WRITE_FLUSH(hw); + + return ret_val; +} + +/** + * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C + * @hw: pointer to hardware structure + * @byte_offset: byte offset to read + * @dev_addr: device address + * @data: value read + * + * Performs byte read operation over I2C interface at + * a specified device address. + **/ +s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 *data) +{ + s32 status = E1000_SUCCESS; + u32 max_retry = 10; + u32 retry = 1; + u16 swfw_mask = 0; + + bool nack = true; + + DEBUGFUNC("e1000_read_i2c_byte_generic"); + + swfw_mask = E1000_SWFW_PHY0_SM; + + do { + if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) + != E1000_SUCCESS) { + status = E1000_ERR_SWFW_SYNC; + goto read_byte_out; + } + + e1000_i2c_start(hw); + + /* Device Address and write indication */ + status = e1000_clock_out_i2c_byte(hw, dev_addr); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, byte_offset); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_start(hw); + + /* Device Address and read indication */ + status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1)); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_in_i2c_byte(hw, data); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_bit(hw, nack); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_stop(hw); + break; + +fail: + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + msec_delay(100); + e1000_i2c_bus_clear(hw); + retry++; + if (retry < max_retry) + DEBUGOUT("I2C byte read error - Retrying.\n"); + else + DEBUGOUT("I2C byte read error.\n"); + + } while (retry < max_retry); + + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + +read_byte_out: + + return status; +} + +/** + * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: value to write + * + * Performs byte write operation over I2C interface at + * a specified device address. + **/ +s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 data) +{ + s32 status = E1000_SUCCESS; + u32 max_retry = 1; + u32 retry = 0; + u16 swfw_mask = 0; + + DEBUGFUNC("e1000_write_i2c_byte_generic"); + + swfw_mask = E1000_SWFW_PHY0_SM; + + if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) { + status = E1000_ERR_SWFW_SYNC; + goto write_byte_out; + } + + do { + e1000_i2c_start(hw); + + status = e1000_clock_out_i2c_byte(hw, dev_addr); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, byte_offset); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, data); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_stop(hw); + break; + +fail: + e1000_i2c_bus_clear(hw); + retry++; + if (retry < max_retry) + DEBUGOUT("I2C byte write error - Retrying.\n"); + else + DEBUGOUT("I2C byte write error.\n"); + } while (retry < max_retry); + + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + +write_byte_out: + + return status; +} + +/** + * e1000_i2c_start - Sets I2C start condition + * @hw: pointer to hardware structure + * + * Sets I2C start condition (High -> Low on SDA while SCL is High) + **/ +STATIC void e1000_i2c_start(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_i2c_start"); + + /* Start condition must begin with data and clock high */ + e1000_set_i2c_data(hw, &i2cctl, 1); + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Setup time for start condition (4.7us) */ + usec_delay(E1000_I2C_T_SU_STA); + + e1000_set_i2c_data(hw, &i2cctl, 0); + + /* Hold time for start condition (4us) */ + usec_delay(E1000_I2C_T_HD_STA); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + +} + +/** + * e1000_i2c_stop - Sets I2C stop condition + * @hw: pointer to hardware structure + * + * Sets I2C stop condition (Low -> High on SDA while SCL is High) + **/ +STATIC void e1000_i2c_stop(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_i2c_stop"); + + /* Stop condition must begin with data low and clock high */ + e1000_set_i2c_data(hw, &i2cctl, 0); + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Setup time for stop condition (4us) */ + usec_delay(E1000_I2C_T_SU_STO); + + e1000_set_i2c_data(hw, &i2cctl, 1); + + /* bus free time between stop and start (4.7us)*/ + usec_delay(E1000_I2C_T_BUF); +} + +/** + * e1000_clock_in_i2c_byte - Clocks in one byte via I2C + * @hw: pointer to hardware structure + * @data: data byte to clock in + * + * Clocks in one byte data via I2C data/clock + **/ +STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data) +{ + s32 i; + bool bit = 0; + + DEBUGFUNC("e1000_clock_in_i2c_byte"); + + *data = 0; + for (i = 7; i >= 0; i--) { + e1000_clock_in_i2c_bit(hw, &bit); + *data |= bit << i; + } + + return E1000_SUCCESS; +} + +/** + * e1000_clock_out_i2c_byte - Clocks out one byte via I2C + * @hw: pointer to hardware structure + * @data: data byte clocked out + * + * Clocks out one byte data via I2C data/clock + **/ +STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data) +{ + s32 status = E1000_SUCCESS; + s32 i; + u32 i2cctl; + bool bit = 0; + + DEBUGFUNC("e1000_clock_out_i2c_byte"); + + for (i = 7; i >= 0; i--) { + bit = (data >> i) & 0x1; + status = e1000_clock_out_i2c_bit(hw, bit); + + if (status != E1000_SUCCESS) + break; + } + + /* Release SDA line (set high) */ + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + i2cctl |= E1000_I2C_DATA_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl); + E1000_WRITE_FLUSH(hw); + + return status; +} + +/** + * e1000_get_i2c_ack - Polls for I2C ACK + * @hw: pointer to hardware structure + * + * Clocks in/out one bit via I2C data/clock + **/ +STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw) +{ + s32 status = E1000_SUCCESS; + u32 i = 0; + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + u32 timeout = 10; + bool ack = true; + + DEBUGFUNC("e1000_get_i2c_ack"); + + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + /* Wait until SCL returns high */ + for (i = 0; i < timeout; i++) { + usec_delay(1); + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + if (i2cctl & E1000_I2C_CLK_IN) + break; + } + if (!(i2cctl & E1000_I2C_CLK_IN)) + return E1000_ERR_I2C; + + ack = e1000_get_i2c_data(&i2cctl); + if (ack) { + DEBUGOUT("I2C ack was not received.\n"); + status = E1000_ERR_I2C; + } + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + + return status; +} + +/** + * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock + * @hw: pointer to hardware structure + * @data: read data value + * + * Clocks in one bit via I2C data/clock + **/ +STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_clock_in_i2c_bit"); + + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + *data = e1000_get_i2c_data(&i2cctl); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + + return E1000_SUCCESS; +} + +/** + * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock + * @hw: pointer to hardware structure + * @data: data value to write + * + * Clocks out one bit via I2C data/clock + **/ +STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data) +{ + s32 status; + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_clock_out_i2c_bit"); + + status = e1000_set_i2c_data(hw, &i2cctl, data); + if (status == E1000_SUCCESS) { + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us. + * This also takes care of the data hold time. + */ + usec_delay(E1000_I2C_T_LOW); + } else { + status = E1000_ERR_I2C; + DEBUGOUT1("I2C data was not set to %X\n", data); + } + + return status; +} +/** + * e1000_raise_i2c_clk - Raises the I2C SCL clock + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Raises the I2C clock line '0'->'1' + **/ +STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) +{ + DEBUGFUNC("e1000_raise_i2c_clk"); + + *i2cctl |= E1000_I2C_CLK_OUT; + *i2cctl &= ~E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* SCL rise time (1000ns) */ + usec_delay(E1000_I2C_T_RISE); +} + +/** + * e1000_lower_i2c_clk - Lowers the I2C SCL clock + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Lowers the I2C clock line '1'->'0' + **/ +STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) +{ + + DEBUGFUNC("e1000_lower_i2c_clk"); + + *i2cctl &= ~E1000_I2C_CLK_OUT; + *i2cctl &= ~E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* SCL fall time (300ns) */ + usec_delay(E1000_I2C_T_FALL); +} + +/** + * e1000_set_i2c_data - Sets the I2C data bit + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * @data: I2C data value (0 or 1) to set + * + * Sets the I2C data bit + **/ +STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data) +{ + s32 status = E1000_SUCCESS; + + DEBUGFUNC("e1000_set_i2c_data"); + + if (data) + *i2cctl |= E1000_I2C_DATA_OUT; + else + *i2cctl &= ~E1000_I2C_DATA_OUT; + + *i2cctl &= ~E1000_I2C_DATA_OE_N; + *i2cctl |= E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */ + usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA); + + *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + if (data != e1000_get_i2c_data(i2cctl)) { + status = E1000_ERR_I2C; + DEBUGOUT1("Error - I2C data was not set to %X.\n", data); + } + + return status; +} + +/** + * e1000_get_i2c_data - Reads the I2C SDA data bit + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Returns the I2C data bit value + **/ +STATIC bool e1000_get_i2c_data(u32 *i2cctl) +{ + bool data; + + DEBUGFUNC("e1000_get_i2c_data"); + + if (*i2cctl & E1000_I2C_DATA_IN) + data = 1; + else + data = 0; + + return data; +} + +/** + * e1000_i2c_bus_clear - Clears the I2C bus + * @hw: pointer to hardware structure + * + * Clears the I2C bus by sending nine clock pulses. + * Used when data line is stuck low. + **/ +void e1000_i2c_bus_clear(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + u32 i; + + DEBUGFUNC("e1000_i2c_bus_clear"); + + e1000_i2c_start(hw); + + e1000_set_i2c_data(hw, &i2cctl, 1); + + for (i = 0; i < 9; i++) { + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Min high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Min low period of clock is 4.7us*/ + usec_delay(E1000_I2C_T_LOW); + } + + e1000_i2c_start(hw); + + /* Put the i2c bus back to default state */ + e1000_i2c_stop(hw); +} + diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_82575.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82575.h new file mode 100644 index 00000000..4133cdd8 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_82575.h @@ -0,0 +1,522 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_82575_H_ +#define _E1000_82575_H_ + +#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_DEF1_DEF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_OFF1_ON2)) +/* + * Receive Address Register Count + * Number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. + * These entries are also used for MAC-based filtering. + */ +/* + * For 82576, there are an additional set of RARs that begin at an offset + * separate from the first set of RARs. + */ +#define E1000_RAR_ENTRIES_82575 16 +#define E1000_RAR_ENTRIES_82576 24 +#define E1000_RAR_ENTRIES_82580 24 +#define E1000_RAR_ENTRIES_I350 32 +#define E1000_SW_SYNCH_MB 0x00000100 +#define E1000_STAT_DEV_RST_SET 0x00100000 +#define E1000_CTRL_DEV_RST 0x20000000 + +#ifdef E1000_BIT_FIELDS +struct e1000_adv_data_desc { + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + union { + u32 data; + struct { + u32 datalen:16; /* Data buffer length */ + u32 rsvd:4; + u32 dtyp:4; /* Descriptor type */ + u32 dcmd:8; /* Descriptor command */ + } config; + } lower; + union { + u32 data; + struct { + u32 status:4; /* Descriptor status */ + u32 idx:4; + u32 popts:6; /* Packet Options */ + u32 paylen:18; /* Payload length */ + } options; + } upper; +}; + +#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */ +#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */ +#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */ +#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */ +#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */ +#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */ +#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */ +#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */ +#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */ +#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */ +#define E1000_ADV_DCMD_RS 0x8 /* Report Status */ +#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */ +#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */ +/* Extended Device Control */ +#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */ + +struct e1000_adv_context_desc { + union { + u32 ip_config; + struct { + u32 iplen:9; + u32 maclen:7; + u32 vlan_tag:16; + } fields; + } ip_setup; + u32 seq_num; + union { + u64 l4_config; + struct { + u32 mkrloc:9; + u32 tucmd:11; + u32 dtyp:4; + u32 adv:8; + u32 rsvd:4; + u32 idx:4; + u32 l4len:8; + u32 mss:16; + } fields; + } l4_setup; +}; +#endif + +/* SRRCTL bit definitions */ +#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ +#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00 +#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ +#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000 +#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000 +#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000 +#define E1000_SRRCTL_TIMESTAMP 0x40000000 +#define E1000_SRRCTL_DROP_EN 0x80000000 + +#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F +#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00 + +#define E1000_TX_HEAD_WB_ENABLE 0x1 +#define E1000_TX_SEQNUM_WB_ENABLE 0x2 + +#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002 +#define E1000_MRQC_ENABLE_VMDQ 0x00000003 +#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005 +#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000 +#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000 +#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000 +#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002 + +#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8 +#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << \ + E1000_VMRCTL_MIRROR_PORT_SHIFT) +#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0) +#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1) +#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2) + +#define E1000_EICR_TX_QUEUE ( \ + E1000_EICR_TX_QUEUE0 | \ + E1000_EICR_TX_QUEUE1 | \ + E1000_EICR_TX_QUEUE2 | \ + E1000_EICR_TX_QUEUE3) + +#define E1000_EICR_RX_QUEUE ( \ + E1000_EICR_RX_QUEUE0 | \ + E1000_EICR_RX_QUEUE1 | \ + E1000_EICR_RX_QUEUE2 | \ + E1000_EICR_RX_QUEUE3) + +#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE +#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE + +#define EIMS_ENABLE_MASK ( \ + E1000_EIMS_RX_QUEUE | \ + E1000_EIMS_TX_QUEUE | \ + E1000_EIMS_TCP_TIMER | \ + E1000_EIMS_OTHER) + +/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */ +#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */ +#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */ +#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */ +#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */ +#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */ +#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */ +#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */ +#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */ +#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */ +#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */ + +/* Receive Descriptor - Advanced */ +union e1000_adv_rx_desc { + struct { + __le64 pkt_addr; /* Packet buffer address */ + __le64 hdr_addr; /* Header buffer address */ + } read; + struct { + struct { + union { + __le32 data; + struct { + __le16 pkt_info; /*RSS type, Pkt type*/ + /* Split Header, header buffer len */ + __le16 hdr_info; + } hs_rss; + } lo_dword; + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length; /* Packet length */ + __le16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ +}; + +#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F +#define E1000_RXDADV_RSSTYPE_SHIFT 12 +#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 +#define E1000_RXDADV_HDRBUFLEN_SHIFT 5 +#define E1000_RXDADV_SPLITHEADER_EN 0x00001000 +#define E1000_RXDADV_SPH 0x8000 +#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */ +#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */ +#define E1000_RXDADV_ERR_HBO 0x00800000 + +/* RSS Hash results */ +#define E1000_RXDADV_RSSTYPE_NONE 0x00000000 +#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001 +#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002 +#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003 +#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004 +#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005 +#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006 +#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007 +#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008 +#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009 + +/* RSS Packet Types as indicated in the receive descriptor */ +#define E1000_RXDADV_PKTTYPE_ILMASK 0x000000F0 +#define E1000_RXDADV_PKTTYPE_TLMASK 0x00000F00 +#define E1000_RXDADV_PKTTYPE_NONE 0x00000000 +#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */ +#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */ +#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */ +#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */ +#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */ +#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */ +#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */ +#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */ + +#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */ +#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */ +#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */ +#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */ +#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */ +#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */ + +/* LinkSec results */ +/* Security Processing bit Indication */ +#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000 +#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000 +#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000 +#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000 +#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000 + +#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000 +#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000 +#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000 +#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000 +#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000 + +/* Transmit Descriptor - Advanced */ +union e1000_adv_tx_desc { + struct { + __le64 buffer_addr; /* Address of descriptor's data buf */ + __le32 cmd_type_len; + __le32 olinfo_status; + } read; + struct { + __le64 rsvd; /* Reserved */ + __le32 nxtseq_seed; + __le32 status; + } wb; +}; + +/* Adv Transmit Descriptor Config Masks */ +#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ +#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ +#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */ +#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */ +#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */ +#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ +#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ +#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ +#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on pkt */ +#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp pkt */ +#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED prsnt in WB */ +#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */ +#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */ +#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */ +#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */ +/* 1st & Last TSO-full iSCSI PDU*/ +#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 +#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */ +#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ + +/* Context descriptors */ +struct e1000_adv_tx_context_desc { + __le32 vlan_macip_lens; + __le32 seqnum_seed; + __le32 type_tucmd_mlhl; + __le32 mss_l4len_idx; +}; + +#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ +#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */ +#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ +#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */ +#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */ +#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ +#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */ +#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */ +/* IPSec Encrypt Enable for ESP */ +#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000 +/* Req requires Markers and CRC */ +#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 +#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ +#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ +/* Adv ctxt IPSec SA IDX mask */ +#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF +/* Adv ctxt IPSec ESP len mask */ +#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF + +/* Additional Transmit Descriptor Control definitions */ +#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */ +#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. wbk flushing */ +/* Tx Queue Arbitration Priority 0=low, 1=high */ +#define E1000_TXDCTL_PRIORITY 0x08000000 + +/* Additional Receive Descriptor Control definitions */ +#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */ +#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. wbk flushing */ + +/* Direct Cache Access (DCA) definitions */ +#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */ +#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */ + +#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */ +#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */ + +#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */ +#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */ +#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header ena */ +#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload ena */ +#define E1000_DCA_RXCTRL_DESC_RRO_EN (1 << 9) /* DCA Rx Desc Relax Order */ + +#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */ +#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */ +#define E1000_DCA_TXCTRL_DESC_RRO_EN (1 << 9) /* Tx rd Desc Relax Order */ +#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */ +#define E1000_DCA_TXCTRL_DATA_RRO_EN (1 << 13) /* Tx rd data Relax Order */ + +#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */ +#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */ +#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */ +#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */ + +/* Additional interrupt register bit definitions */ +#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */ +#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ +#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ + +/* ETQF register bit definitions */ +#define E1000_ETQF_FILTER_ENABLE (1 << 26) +#define E1000_ETQF_IMM_INT (1 << 29) +#define E1000_ETQF_1588 (1 << 30) +#define E1000_ETQF_QUEUE_ENABLE (1 << 31) +/* + * ETQF filter list: one static filter per filter consumer. This is + * to avoid filter collisions later. Add new filters + * here!! + * + * Current filters: + * EAPOL 802.1x (0x888e): Filter 0 + */ +#define E1000_ETQF_FILTER_EAPOL 0 + +#define E1000_FTQF_VF_BP 0x00008000 +#define E1000_FTQF_1588_TIME_STAMP 0x08000000 +#define E1000_FTQF_MASK 0xF0000000 +#define E1000_FTQF_MASK_PROTO_BP 0x10000000 +#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000 +#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000 +#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000 + +#define E1000_NVM_APME_82575 0x0400 +#define MAX_NUM_VFS 7 + +#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof cntrl */ +#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof cntrl */ +#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */ +#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8 +#define E1000_DTXSWC_LLE_SHIFT 16 +#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */ + +/* Easy defines for setting default pool, would normally be left a zero */ +#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7 +#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT) + +/* Other useful VMD_CTL register defines */ +#define E1000_VT_CTL_IGNORE_MAC (1 << 28) +#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29) +#define E1000_VT_CTL_VM_REPL_EN (1 << 30) + +/* Per VM Offload register setup */ +#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */ +#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */ +#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */ +#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */ +#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */ +#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */ +#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */ +#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */ +#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ +#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */ + +#define E1000_VMOLR_VPE 0x00800000 /* VLAN promiscuous enable */ +#define E1000_VMOLR_UPE 0x20000000 /* Unicast promisuous enable */ +#define E1000_DVMOLR_HIDVLAN 0x20000000 /* Vlan hiding enable */ +#define E1000_DVMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ +#define E1000_DVMOLR_STRCRC 0x80000000 /* CRC stripping enable */ + +#define E1000_PBRWAC_WALPB 0x00000007 /* Wrap around event on LAN Rx PB */ +#define E1000_PBRWAC_PBE 0x00000008 /* Rx packet buffer empty */ + +#define E1000_VLVF_ARRAY_SIZE 32 +#define E1000_VLVF_VLANID_MASK 0x00000FFF +#define E1000_VLVF_POOLSEL_SHIFT 12 +#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT) +#define E1000_VLVF_LVLAN 0x00100000 +#define E1000_VLVF_VLANID_ENABLE 0x80000000 + +#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */ +#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */ + +#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */ + +#define E1000_IOVCTL 0x05BBC +#define E1000_IOVCTL_REUSE_VFQ 0x00000001 + +#define E1000_RPLOLR_STRVLAN 0x40000000 +#define E1000_RPLOLR_STRCRC 0x80000000 + +#define E1000_TCTL_EXT_COLD 0x000FFC00 +#define E1000_TCTL_EXT_COLD_SHIFT 10 + +#define E1000_DTXCTL_8023LL 0x0004 +#define E1000_DTXCTL_VLAN_ADDED 0x0008 +#define E1000_DTXCTL_OOS_ENABLE 0x0010 +#define E1000_DTXCTL_MDP_EN 0x0020 +#define E1000_DTXCTL_SPOOF_INT 0x0040 + +#define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT (1 << 14) + +#define ALL_QUEUES 0xFFFF + +/* Rx packet buffer size defines */ +#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F +void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable); +void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf); +void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable); +s32 e1000_init_nvm_params_82575(struct e1000_hw *hw); +s32 e1000_init_hw_82575(struct e1000_hw *hw); + +enum e1000_promisc_type { + e1000_promisc_disabled = 0, /* all promisc modes disabled */ + e1000_promisc_unicast = 1, /* unicast promiscuous enabled */ + e1000_promisc_multicast = 2, /* multicast promiscuous enabled */ + e1000_promisc_enabled = 3, /* both uni and multicast promisc */ + e1000_num_promisc_types +}; + +void e1000_vfta_set_vf(struct e1000_hw *, u16, bool); +void e1000_rlpml_set_vf(struct e1000_hw *, u16); +s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type); +void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value); +u16 e1000_rxpbs_adjust_82580(u32 data); +s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data); +s32 e1000_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M); +s32 e1000_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M); +s32 e1000_get_eee_status_i354(struct e1000_hw *, bool *); +s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw); +s32 e1000_initialize_M88E1543_phy(struct e1000_hw *hw); + +/* I2C SDA and SCL timing parameters for standard mode */ +#define E1000_I2C_T_HD_STA 4 +#define E1000_I2C_T_LOW 5 +#define E1000_I2C_T_HIGH 4 +#define E1000_I2C_T_SU_STA 5 +#define E1000_I2C_T_HD_DATA 5 +#define E1000_I2C_T_SU_DATA 1 +#define E1000_I2C_T_RISE 1 +#define E1000_I2C_T_FALL 1 +#define E1000_I2C_T_SU_STO 4 +#define E1000_I2C_T_BUF 5 + +s32 e1000_set_i2c_bb(struct e1000_hw *hw); +s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 *data); +s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 data); +void e1000_i2c_bus_clear(struct e1000_hw *hw); +#endif /* _E1000_82575_H_ */ diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_api.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_api.c new file mode 100644 index 00000000..f7cf83b6 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_api.c @@ -0,0 +1,1382 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#include "e1000_api.h" + +/** + * e1000_init_mac_params - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the MAC + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_mac_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->mac.ops.init_params) { + ret_val = hw->mac.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("MAC Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("mac.init_mac_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the NVM + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_nvm_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->nvm.ops.init_params) { + ret_val = hw->nvm.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("NVM Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("nvm.init_nvm_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_phy_params - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the PHY + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_phy_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->phy.ops.init_params) { + ret_val = hw->phy.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("PHY Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("phy.init_phy_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_mbx_params - Initialize mailbox function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the PHY + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_mbx_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->mbx.ops.init_params) { + ret_val = hw->mbx.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("Mailbox Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("mbx.init_mbx_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_set_mac_type - Sets MAC type + * @hw: pointer to the HW structure + * + * This function sets the mac type of the adapter based on the + * device ID stored in the hw structure. + * MUST BE FIRST FUNCTION CALLED (explicitly or through + * e1000_setup_init_funcs()). + **/ +s32 e1000_set_mac_type(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_set_mac_type"); + + switch (hw->device_id) { + case E1000_DEV_ID_82542: + mac->type = e1000_82542; + break; + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + mac->type = e1000_82543; + break; + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + mac->type = e1000_82544; + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82540EP: + case E1000_DEV_ID_82540EP_LOM: + case E1000_DEV_ID_82540EP_LP: + mac->type = e1000_82540; + break; + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + mac->type = e1000_82545; + break; + case E1000_DEV_ID_82545GM_COPPER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82545GM_SERDES: + mac->type = e1000_82545_rev_3; + break; + case E1000_DEV_ID_82546EB_COPPER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546EB_QUAD_COPPER: + mac->type = e1000_82546; + break; + case E1000_DEV_ID_82546GB_COPPER: + case E1000_DEV_ID_82546GB_FIBER: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82546GB_PCIE: + case E1000_DEV_ID_82546GB_QUAD_COPPER: + case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: + mac->type = e1000_82546_rev_3; + break; + case E1000_DEV_ID_82541EI: + case E1000_DEV_ID_82541EI_MOBILE: + case E1000_DEV_ID_82541ER_LOM: + mac->type = e1000_82541; + break; + case E1000_DEV_ID_82541ER: + case E1000_DEV_ID_82541GI: + case E1000_DEV_ID_82541GI_LF: + case E1000_DEV_ID_82541GI_MOBILE: + mac->type = e1000_82541_rev_2; + break; + case E1000_DEV_ID_82547EI: + case E1000_DEV_ID_82547EI_MOBILE: + mac->type = e1000_82547; + break; + case E1000_DEV_ID_82547GI: + mac->type = e1000_82547_rev_2; + break; + case E1000_DEV_ID_82571EB_COPPER: + case E1000_DEV_ID_82571EB_FIBER: + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_SERDES_DUAL: + case E1000_DEV_ID_82571EB_SERDES_QUAD: + case E1000_DEV_ID_82571EB_QUAD_COPPER: + case E1000_DEV_ID_82571PT_QUAD_COPPER: + case E1000_DEV_ID_82571EB_QUAD_FIBER: + case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: + mac->type = e1000_82571; + break; + case E1000_DEV_ID_82572EI: + case E1000_DEV_ID_82572EI_COPPER: + case E1000_DEV_ID_82572EI_FIBER: + case E1000_DEV_ID_82572EI_SERDES: + mac->type = e1000_82572; + break; + case E1000_DEV_ID_82573E: + case E1000_DEV_ID_82573E_IAMT: + case E1000_DEV_ID_82573L: + mac->type = e1000_82573; + break; + case E1000_DEV_ID_82574L: + case E1000_DEV_ID_82574LA: + mac->type = e1000_82574; + break; + case E1000_DEV_ID_82583V: + mac->type = e1000_82583; + break; + case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: + mac->type = e1000_80003es2lan; + break; + case E1000_DEV_ID_ICH8_IFE: + case E1000_DEV_ID_ICH8_IFE_GT: + case E1000_DEV_ID_ICH8_IFE_G: + case E1000_DEV_ID_ICH8_IGP_M: + case E1000_DEV_ID_ICH8_IGP_M_AMT: + case E1000_DEV_ID_ICH8_IGP_AMT: + case E1000_DEV_ID_ICH8_IGP_C: + case E1000_DEV_ID_ICH8_82567V_3: + mac->type = e1000_ich8lan; + break; + case E1000_DEV_ID_ICH9_IFE: + case E1000_DEV_ID_ICH9_IFE_GT: + case E1000_DEV_ID_ICH9_IFE_G: + case E1000_DEV_ID_ICH9_IGP_M: + case E1000_DEV_ID_ICH9_IGP_M_AMT: + case E1000_DEV_ID_ICH9_IGP_M_V: + case E1000_DEV_ID_ICH9_IGP_AMT: + case E1000_DEV_ID_ICH9_BM: + case E1000_DEV_ID_ICH9_IGP_C: + case E1000_DEV_ID_ICH10_R_BM_LM: + case E1000_DEV_ID_ICH10_R_BM_LF: + case E1000_DEV_ID_ICH10_R_BM_V: + mac->type = e1000_ich9lan; + break; + case E1000_DEV_ID_ICH10_D_BM_LM: + case E1000_DEV_ID_ICH10_D_BM_LF: + case E1000_DEV_ID_ICH10_D_BM_V: + mac->type = e1000_ich10lan; + break; + case E1000_DEV_ID_PCH_D_HV_DM: + case E1000_DEV_ID_PCH_D_HV_DC: + case E1000_DEV_ID_PCH_M_HV_LM: + case E1000_DEV_ID_PCH_M_HV_LC: + mac->type = e1000_pchlan; + break; + case E1000_DEV_ID_PCH2_LV_LM: + case E1000_DEV_ID_PCH2_LV_V: + mac->type = e1000_pch2lan; + break; + case E1000_DEV_ID_PCH_LPT_I217_LM: + case E1000_DEV_ID_PCH_LPT_I217_V: + case E1000_DEV_ID_PCH_LPTLP_I218_LM: + case E1000_DEV_ID_PCH_LPTLP_I218_V: + case E1000_DEV_ID_PCH_I218_LM2: + case E1000_DEV_ID_PCH_I218_V2: + case E1000_DEV_ID_PCH_I218_LM3: + case E1000_DEV_ID_PCH_I218_V3: + mac->type = e1000_pch_lpt; + break; + case E1000_DEV_ID_PCH_SPT_I219_LM: + case E1000_DEV_ID_PCH_SPT_I219_V: + case E1000_DEV_ID_PCH_SPT_I219_LM2: + case E1000_DEV_ID_PCH_SPT_I219_V2: + case E1000_DEV_ID_PCH_LBG_I219_LM3: + case E1000_DEV_ID_PCH_SPT_I219_LM4: + case E1000_DEV_ID_PCH_SPT_I219_V4: + case E1000_DEV_ID_PCH_SPT_I219_LM5: + case E1000_DEV_ID_PCH_SPT_I219_V5: + mac->type = e1000_pch_spt; + break; + case E1000_DEV_ID_PCH_CNP_I219_LM6: + case E1000_DEV_ID_PCH_CNP_I219_V6: + case E1000_DEV_ID_PCH_CNP_I219_LM7: + case E1000_DEV_ID_PCH_CNP_I219_V7: + mac->type = e1000_pch_cnp; + break; + case E1000_DEV_ID_82575EB_COPPER: + case E1000_DEV_ID_82575EB_FIBER_SERDES: + case E1000_DEV_ID_82575GB_QUAD_COPPER: + mac->type = e1000_82575; + break; + case E1000_DEV_ID_82576: + case E1000_DEV_ID_82576_FIBER: + case E1000_DEV_ID_82576_SERDES: + case E1000_DEV_ID_82576_QUAD_COPPER: + case E1000_DEV_ID_82576_QUAD_COPPER_ET2: + case E1000_DEV_ID_82576_NS: + case E1000_DEV_ID_82576_NS_SERDES: + case E1000_DEV_ID_82576_SERDES_QUAD: + mac->type = e1000_82576; + break; + case E1000_DEV_ID_82580_COPPER: + case E1000_DEV_ID_82580_FIBER: + case E1000_DEV_ID_82580_SERDES: + case E1000_DEV_ID_82580_SGMII: + case E1000_DEV_ID_82580_COPPER_DUAL: + case E1000_DEV_ID_82580_QUAD_FIBER: + case E1000_DEV_ID_DH89XXCC_SGMII: + case E1000_DEV_ID_DH89XXCC_SERDES: + case E1000_DEV_ID_DH89XXCC_BACKPLANE: + case E1000_DEV_ID_DH89XXCC_SFP: + mac->type = e1000_82580; + break; + case E1000_DEV_ID_I350_COPPER: + case E1000_DEV_ID_I350_FIBER: + case E1000_DEV_ID_I350_SERDES: + case E1000_DEV_ID_I350_SGMII: + case E1000_DEV_ID_I350_DA4: + mac->type = e1000_i350; + break; + case E1000_DEV_ID_I210_COPPER_FLASHLESS: + case E1000_DEV_ID_I210_SERDES_FLASHLESS: + case E1000_DEV_ID_I210_COPPER: + case E1000_DEV_ID_I210_COPPER_OEM1: + case E1000_DEV_ID_I210_COPPER_IT: + case E1000_DEV_ID_I210_FIBER: + case E1000_DEV_ID_I210_SERDES: + case E1000_DEV_ID_I210_SGMII: + mac->type = e1000_i210; + break; + case E1000_DEV_ID_I211_COPPER: + mac->type = e1000_i211; + break; + case E1000_DEV_ID_82576_VF: + case E1000_DEV_ID_82576_VF_HV: + mac->type = e1000_vfadapt; + break; + case E1000_DEV_ID_I350_VF: + case E1000_DEV_ID_I350_VF_HV: + mac->type = e1000_vfadapt_i350; + break; + + case E1000_DEV_ID_I354_BACKPLANE_1GBPS: + case E1000_DEV_ID_I354_SGMII: + case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: + mac->type = e1000_i354; + break; + default: + /* Should never have loaded on this device */ + ret_val = -E1000_ERR_MAC_INIT; + break; + } + + return ret_val; +} + +/** + * e1000_setup_init_funcs - Initializes function pointers + * @hw: pointer to the HW structure + * @init_device: true will initialize the rest of the function pointers + * getting the device ready for use. false will only set + * MAC type and the function pointers for the other init + * functions. Passing false will not generate any hardware + * reads or writes. + * + * This function must be called by a driver in order to use the rest + * of the 'shared' code files. Called by drivers only. + **/ +s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) +{ + s32 ret_val; + + /* Can't do much good without knowing the MAC type. */ + ret_val = e1000_set_mac_type(hw); + if (ret_val) { + DEBUGOUT("ERROR: MAC type could not be set properly.\n"); + goto out; + } + + if (!hw->hw_addr) { + DEBUGOUT("ERROR: Registers not mapped\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* + * Init function pointers to generic implementations. We do this first + * allowing a driver module to override it afterward. + */ + e1000_init_mac_ops_generic(hw); + e1000_init_phy_ops_generic(hw); + e1000_init_nvm_ops_generic(hw); + e1000_init_mbx_ops_generic(hw); + + /* + * Set up the init function pointers. These are functions within the + * adapter family file that sets up function pointers for the rest of + * the functions in that family. + */ + switch (hw->mac.type) { + case e1000_82542: + e1000_init_function_pointers_82542(hw); + break; + case e1000_82543: + case e1000_82544: + e1000_init_function_pointers_82543(hw); + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + e1000_init_function_pointers_82540(hw); + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + e1000_init_function_pointers_82541(hw); + break; + case e1000_82571: + case e1000_82572: + case e1000_82573: + case e1000_82574: + case e1000_82583: + e1000_init_function_pointers_82571(hw); + break; + case e1000_80003es2lan: + e1000_init_function_pointers_80003es2lan(hw); + break; + case e1000_ich8lan: + case e1000_ich9lan: + case e1000_ich10lan: + case e1000_pchlan: + case e1000_pch2lan: + case e1000_pch_lpt: + case e1000_pch_spt: + case e1000_pch_cnp: + e1000_init_function_pointers_ich8lan(hw); + break; + case e1000_82575: + case e1000_82576: + case e1000_82580: + case e1000_i350: + case e1000_i354: + e1000_init_function_pointers_82575(hw); + break; + case e1000_i210: + case e1000_i211: + e1000_init_function_pointers_i210(hw); + break; + case e1000_vfadapt: + e1000_init_function_pointers_vf(hw); + break; + case e1000_vfadapt_i350: + e1000_init_function_pointers_vf(hw); + break; + default: + DEBUGOUT("Hardware not supported\n"); + ret_val = -E1000_ERR_CONFIG; + break; + } + + /* + * Initialize the rest of the function pointers. These require some + * register reads/writes in some cases. + */ + if (!(ret_val) && init_device) { + ret_val = e1000_init_mac_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_nvm_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_phy_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_mbx_params(hw); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_get_bus_info - Obtain bus information for adapter + * @hw: pointer to the HW structure + * + * This will obtain information about the HW bus for which the + * adapter is attached and stores it in the hw structure. This is a + * function pointer entry point called by drivers. + **/ +s32 e1000_get_bus_info(struct e1000_hw *hw) +{ + if (hw->mac.ops.get_bus_info) + return hw->mac.ops.get_bus_info(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_clear_vfta - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * This clears the VLAN filter table on the adapter. This is a function + * pointer entry point called by drivers. + **/ +void e1000_clear_vfta(struct e1000_hw *hw) +{ + if (hw->mac.ops.clear_vfta) + hw->mac.ops.clear_vfta(hw); +} + +/** + * e1000_write_vfta - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: the 32-bit offset in which to write the value to. + * @value: the 32-bit value to write at location offset. + * + * This writes a 32-bit value to a 32-bit offset in the VLAN filter + * table. This is a function pointer entry point called by drivers. + **/ +void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) +{ + if (hw->mac.ops.write_vfta) + hw->mac.ops.write_vfta(hw, offset, value); +} + +/** + * e1000_update_mc_addr_list - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates the Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, + u32 mc_addr_count) +{ + if (hw->mac.ops.update_mc_addr_list) + hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, + mc_addr_count); +} + +/** + * e1000_force_mac_fc - Force MAC flow control + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Currently no func pointer exists + * and all implementations are handled in the generic version of this + * function. + **/ +s32 e1000_force_mac_fc(struct e1000_hw *hw) +{ + return e1000_force_mac_fc_generic(hw); +} + +/** + * e1000_check_for_link - Check/Store link connection + * @hw: pointer to the HW structure + * + * This checks the link condition of the adapter and stores the + * results in the hw->mac structure. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_check_for_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.check_for_link) + return hw->mac.ops.check_for_link(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_check_mng_mode - Check management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has manageability enabled. + * This is a function pointer entry point called by drivers. + **/ +bool e1000_check_mng_mode(struct e1000_hw *hw) +{ + if (hw->mac.ops.check_mng_mode) + return hw->mac.ops.check_mng_mode(hw); + + return false; +} + +/** + * e1000_mng_write_dhcp_info - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) +{ + return e1000_mng_write_dhcp_info_generic(hw, buffer, length); +} + +/** + * e1000_reset_hw - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_reset_hw(struct e1000_hw *hw) +{ + if (hw->mac.ops.reset_hw) + return hw->mac.ops.reset_hw(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_init_hw - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_init_hw(struct e1000_hw *hw) +{ + if (hw->mac.ops.init_hw) + return hw->mac.ops.init_hw(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_setup_link - Configures link and flow control + * @hw: pointer to the HW structure + * + * This configures link and flow control settings for the adapter. This + * is a function pointer entry point called by drivers. While modules can + * also call this, they probably call their own version of this function. + **/ +s32 e1000_setup_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.setup_link) + return hw->mac.ops.setup_link(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_get_speed_and_duplex - Returns current speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to a 16-bit value to store the speed + * @duplex: pointer to a 16-bit value to store the duplex. + * + * This returns the speed and duplex of the adapter in the two 'out' + * variables passed in. This is a function pointer entry point called + * by drivers. + **/ +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) +{ + if (hw->mac.ops.get_link_up_info) + return hw->mac.ops.get_link_up_info(hw, speed, duplex); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_setup_led - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_setup_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.setup_led) + return hw->mac.ops.setup_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_cleanup_led - Restores SW controllable LED + * @hw: pointer to the HW structure + * + * This restores the SW controllable LED to the value saved off by + * e1000_setup_led. This is a function pointer entry point called by drivers. + **/ +s32 e1000_cleanup_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.cleanup_led) + return hw->mac.ops.cleanup_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_blink_led - Blink SW controllable LED + * @hw: pointer to the HW structure + * + * This starts the adapter LED blinking. Request the LED to be setup first + * and cleaned up after. This is a function pointer entry point called by + * drivers. + **/ +s32 e1000_blink_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.blink_led) + return hw->mac.ops.blink_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_id_led_init - store LED configurations in SW + * @hw: pointer to the HW structure + * + * Initializes the LED config in SW. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_id_led_init(struct e1000_hw *hw) +{ + if (hw->mac.ops.id_led_init) + return hw->mac.ops.id_led_init(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_led_on - Turn on SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED on. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_led_on(struct e1000_hw *hw) +{ + if (hw->mac.ops.led_on) + return hw->mac.ops.led_on(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_led_off - Turn off SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED off. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_led_off(struct e1000_hw *hw) +{ + if (hw->mac.ops.led_off) + return hw->mac.ops.led_off(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_reset_adaptive - Reset adaptive IFS + * @hw: pointer to the HW structure + * + * Resets the adaptive IFS. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_reset_adaptive(struct e1000_hw *hw) +{ + e1000_reset_adaptive_generic(hw); +} + +/** + * e1000_update_adaptive - Update adaptive IFS + * @hw: pointer to the HW structure + * + * Updates adapter IFS. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_update_adaptive(struct e1000_hw *hw) +{ + e1000_update_adaptive_generic(hw); +} + +/** + * e1000_disable_pcie_master - Disable PCI-Express master access + * @hw: pointer to the HW structure + * + * Disables PCI-Express master access and verifies there are no pending + * requests. Currently no func pointer exists and all implementations are + * handled in the generic version of this function. + **/ +s32 e1000_disable_pcie_master(struct e1000_hw *hw) +{ + return e1000_disable_pcie_master_generic(hw); +} + +/** + * e1000_config_collision_dist - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +void e1000_config_collision_dist(struct e1000_hw *hw) +{ + if (hw->mac.ops.config_collision_dist) + hw->mac.ops.config_collision_dist(hw); +} + +/** + * e1000_rar_set - Sets a receive address register + * @hw: pointer to the HW structure + * @addr: address to set the RAR to + * @index: the RAR to set + * + * Sets a Receive Address Register (RAR) to the specified address. + **/ +int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) +{ + if (hw->mac.ops.rar_set) + return hw->mac.ops.rar_set(hw, addr, index); + + return E1000_SUCCESS; +} + +/** + * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state + * @hw: pointer to the HW structure + * + * Ensures that the MDI/MDIX SW state is valid. + **/ +s32 e1000_validate_mdi_setting(struct e1000_hw *hw) +{ + if (hw->mac.ops.validate_mdi_setting) + return hw->mac.ops.validate_mdi_setting(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_hash_mc_addr - Determines address location in multicast table + * @hw: pointer to the HW structure + * @mc_addr: Multicast address to hash. + * + * This hashes an address to determine its location in the multicast + * table. Currently no func pointer exists and all implementations + * are handled in the generic version of this function. + **/ +u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +{ + return e1000_hash_mc_addr_generic(hw, mc_addr); +} + +/** + * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) +{ + return e1000_enable_tx_pkt_filtering_generic(hw); +} + +/** + * e1000_mng_host_if_write - Writes to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, + u16 offset, u8 *sum) +{ + return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); +} + +/** + * e1000_mng_write_cmd_header - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr) +{ + return e1000_mng_write_cmd_header_generic(hw, hdr); +} + +/** + * e1000_mng_enable_host_if - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operation + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +s32 e1000_mng_enable_host_if(struct e1000_hw *hw) +{ + return e1000_mng_enable_host_if_generic(hw); +} + +/** + * e1000_check_reset_block - Verifies PHY can be reset + * @hw: pointer to the HW structure + * + * Checks if the PHY is in a state that can be reset or if manageability + * has it tied up. This is a function pointer entry point called by drivers. + **/ +s32 e1000_check_reset_block(struct e1000_hw *hw) +{ + if (hw->phy.ops.check_reset_block) + return hw->phy.ops.check_reset_block(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg - Reads PHY register + * @hw: pointer to the HW structure + * @offset: the register to read + * @data: the buffer to store the 16-bit read. + * + * Reads the PHY register and returns the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + if (hw->phy.ops.read_reg) + return hw->phy.ops.read_reg(hw, offset, data); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg - Writes PHY register + * @hw: pointer to the HW structure + * @offset: the register to write + * @data: the value to write. + * + * Writes the PHY register at offset with the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + if (hw->phy.ops.write_reg) + return hw->phy.ops.write_reg(hw, offset, data); + + return E1000_SUCCESS; +} + +/** + * e1000_release_phy - Generic release PHY + * @hw: pointer to the HW structure + * + * Return if silicon family does not require a semaphore when accessing the + * PHY. + **/ +void e1000_release_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.release) + hw->phy.ops.release(hw); +} + +/** + * e1000_acquire_phy - Generic acquire PHY + * @hw: pointer to the HW structure + * + * Return success if silicon family does not require a semaphore when + * accessing the PHY. + **/ +s32 e1000_acquire_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.acquire) + return hw->phy.ops.acquire(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_cfg_on_link_up - Configure PHY upon link up + * @hw: pointer to the HW structure + **/ +s32 e1000_cfg_on_link_up(struct e1000_hw *hw) +{ + if (hw->phy.ops.cfg_on_link_up) + return hw->phy.ops.cfg_on_link_up(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_kmrn_reg - Reads register using Kumeran interface + * @hw: pointer to the HW structure + * @offset: the register to read + * @data: the location to store the 16-bit value read. + * + * Reads a register out of the Kumeran interface. Currently no func pointer + * exists and all implementations are handled in the generic version of + * this function. + **/ +s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return e1000_read_kmrn_reg_generic(hw, offset, data); +} + +/** + * e1000_write_kmrn_reg - Writes register using Kumeran interface + * @hw: pointer to the HW structure + * @offset: the register to write + * @data: the value to write. + * + * Writes a register to the Kumeran interface. Currently no func pointer + * exists and all implementations are handled in the generic version of + * this function. + **/ +s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + return e1000_write_kmrn_reg_generic(hw, offset, data); +} + +/** + * e1000_get_cable_length - Retrieves cable length estimation + * @hw: pointer to the HW structure + * + * This function estimates the cable length and stores them in + * hw->phy.min_length and hw->phy.max_length. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_get_cable_length(struct e1000_hw *hw) +{ + if (hw->phy.ops.get_cable_length) + return hw->phy.ops.get_cable_length(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_info - Retrieves PHY information from registers + * @hw: pointer to the HW structure + * + * This function gets some information from various PHY registers and + * populates hw->phy values with it. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_get_phy_info(struct e1000_hw *hw) +{ + if (hw->phy.ops.get_info) + return hw->phy.ops.get_info(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_hw_reset - Hard PHY reset + * @hw: pointer to the HW structure + * + * Performs a hard PHY reset. This is a function pointer entry point called + * by drivers. + **/ +s32 e1000_phy_hw_reset(struct e1000_hw *hw) +{ + if (hw->phy.ops.reset) + return hw->phy.ops.reset(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_commit - Soft PHY reset + * @hw: pointer to the HW structure + * + * Performs a soft PHY reset on those that apply. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_phy_commit(struct e1000_hw *hw) +{ + if (hw->phy.ops.commit) + return hw->phy.ops.commit(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_set_d0_lplu_state - Sets low power link up state for D0 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D0 + * and SmartSpeed is disabled when active is true, else clear lplu for D0 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by drivers. + **/ +s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) +{ + if (hw->phy.ops.set_d0_lplu_state) + return hw->phy.ops.set_d0_lplu_state(hw, active); + + return E1000_SUCCESS; +} + +/** + * e1000_set_d3_lplu_state - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is true, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by drivers. + **/ +s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) +{ + if (hw->phy.ops.set_d3_lplu_state) + return hw->phy.ops.set_d3_lplu_state(hw, active); + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr - Reads MAC address + * @hw: pointer to the HW structure + * + * Reads the MAC address out of the adapter and stores it in the HW structure. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_mac_addr(struct e1000_hw *hw) +{ + if (hw->mac.ops.read_mac_addr) + return hw->mac.ops.read_mac_addr(hw); + + return e1000_read_mac_addr_generic(hw); +} + +/** + * e1000_read_pba_string - Read device part number string + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) +{ + return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); +} + +/** + * e1000_read_pba_length - Read device part number string length + * @hw: pointer to the HW structure + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number length from the EEPROM and + * stores the value in pba_num. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) +{ + return e1000_read_pba_length_generic(hw, pba_num_size); +} + +/** + * e1000_read_pba_num - Read device part number + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) +{ + return e1000_read_pba_num_generic(hw, pba_num); +} + +/** + * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum + * @hw: pointer to the HW structure + * + * Validates the NVM checksum is correct. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) +{ + if (hw->nvm.ops.validate) + return hw->nvm.ops.validate(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum + * @hw: pointer to the HW structure + * + * Updates the NVM checksum. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +s32 e1000_update_nvm_checksum(struct e1000_hw *hw) +{ + if (hw->nvm.ops.update) + return hw->nvm.ops.update(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_reload_nvm - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +void e1000_reload_nvm(struct e1000_hw *hw) +{ + if (hw->nvm.ops.reload) + hw->nvm.ops.reload(hw); +} + +/** + * e1000_read_nvm - Reads NVM (EEPROM) + * @hw: pointer to the HW structure + * @offset: the word offset to read + * @words: number of 16-bit words to read + * @data: pointer to the properly sized buffer for the data. + * + * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + if (hw->nvm.ops.read) + return hw->nvm.ops.read(hw, offset, words, data); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_write_nvm - Writes to NVM (EEPROM) + * @hw: pointer to the HW structure + * @offset: the word offset to read + * @words: number of 16-bit words to write + * @data: pointer to the properly sized buffer for the data. + * + * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + if (hw->nvm.ops.write) + return hw->nvm.ops.write(hw, offset, words, data); + + return E1000_SUCCESS; +} + +/** + * e1000_write_8bit_ctrl_reg - Writes 8bit Control register + * @hw: pointer to the HW structure + * @reg: 32bit register offset + * @offset: the register to write + * @data: the value to write. + * + * Writes the PHY register at offset with the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, + u8 data) +{ + return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); +} + +/** + * e1000_power_up_phy - Restores link in case of PHY power down + * @hw: pointer to the HW structure + * + * The phy may be powered down to save power, to turn off link when the + * driver is unloaded, or wake on lan is not enabled (among others). + **/ +void e1000_power_up_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.power_up) + hw->phy.ops.power_up(hw); + + e1000_setup_link(hw); +} + +/** + * e1000_power_down_phy - Power down PHY + * @hw: pointer to the HW structure + * + * The phy may be powered down to save power, to turn off link when the + * driver is unloaded, or wake on lan is not enabled (among others). + **/ +void e1000_power_down_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.power_down) + hw->phy.ops.power_down(hw); +} + +/** + * e1000_power_up_fiber_serdes_link - Power up serdes link + * @hw: pointer to the HW structure + * + * Power on the optics and PCS. + **/ +void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.power_up_serdes) + hw->mac.ops.power_up_serdes(hw); +} + +/** + * e1000_shutdown_fiber_serdes_link - Remove link during power down + * @hw: pointer to the HW structure + * + * Shutdown the optics and PCS on driver unload. + **/ +void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.shutdown_serdes) + hw->mac.ops.shutdown_serdes(hw); +} + diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_api.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_api.h new file mode 100644 index 00000000..0bc471d9 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_api.h @@ -0,0 +1,167 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_API_H_ +#define _E1000_API_H_ + +#include "e1000_hw.h" + +extern void e1000_init_function_pointers_82542(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82543(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82540(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82571(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82541(struct e1000_hw *hw); +extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw); +extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82575(struct e1000_hw *hw); +extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw); +extern void e1000_init_function_pointers_vf(struct e1000_hw *hw); +extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw); +extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw); +extern void e1000_init_function_pointers_i210(struct e1000_hw *hw); + +s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr); +s32 e1000_set_mac_type(struct e1000_hw *hw); +s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device); +s32 e1000_init_mac_params(struct e1000_hw *hw); +s32 e1000_init_nvm_params(struct e1000_hw *hw); +s32 e1000_init_phy_params(struct e1000_hw *hw); +s32 e1000_init_mbx_params(struct e1000_hw *hw); +s32 e1000_get_bus_info(struct e1000_hw *hw); +void e1000_clear_vfta(struct e1000_hw *hw); +void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); +s32 e1000_force_mac_fc(struct e1000_hw *hw); +s32 e1000_check_for_link(struct e1000_hw *hw); +s32 e1000_reset_hw(struct e1000_hw *hw); +s32 e1000_init_hw(struct e1000_hw *hw); +s32 e1000_setup_link(struct e1000_hw *hw); +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex); +s32 e1000_disable_pcie_master(struct e1000_hw *hw); +void e1000_config_collision_dist(struct e1000_hw *hw); +int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); +u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); +void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, + u32 mc_addr_count); +s32 e1000_setup_led(struct e1000_hw *hw); +s32 e1000_cleanup_led(struct e1000_hw *hw); +s32 e1000_check_reset_block(struct e1000_hw *hw); +s32 e1000_blink_led(struct e1000_hw *hw); +s32 e1000_led_on(struct e1000_hw *hw); +s32 e1000_led_off(struct e1000_hw *hw); +s32 e1000_id_led_init(struct e1000_hw *hw); +void e1000_reset_adaptive(struct e1000_hw *hw); +void e1000_update_adaptive(struct e1000_hw *hw); +s32 e1000_get_cable_length(struct e1000_hw *hw); +s32 e1000_validate_mdi_setting(struct e1000_hw *hw); +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, + u8 data); +s32 e1000_get_phy_info(struct e1000_hw *hw); +void e1000_release_phy(struct e1000_hw *hw); +s32 e1000_acquire_phy(struct e1000_hw *hw); +s32 e1000_cfg_on_link_up(struct e1000_hw *hw); +s32 e1000_phy_hw_reset(struct e1000_hw *hw); +s32 e1000_phy_commit(struct e1000_hw *hw); +void e1000_power_up_phy(struct e1000_hw *hw); +void e1000_power_down_phy(struct e1000_hw *hw); +s32 e1000_read_mac_addr(struct e1000_hw *hw); +s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num); +s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size); +s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size); +void e1000_reload_nvm(struct e1000_hw *hw); +s32 e1000_update_nvm_checksum(struct e1000_hw *hw); +s32 e1000_validate_nvm_checksum(struct e1000_hw *hw); +s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); +s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); +bool e1000_check_mng_mode(struct e1000_hw *hw); +bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); +s32 e1000_mng_enable_host_if(struct e1000_hw *hw); +s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, + u16 offset, u8 *sum); +s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr); +s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length); +u32 e1000_translate_register_82542(u32 reg); + + + +/* + * TBI_ACCEPT macro definition: + * + * This macro requires: + * a = a pointer to struct e1000_hw + * status = the 8 bit status field of the Rx descriptor with EOP set + * errors = the 8 bit error field of the Rx descriptor with EOP set + * length = the sum of all the length fields of the Rx descriptors that + * make up the current frame + * last_byte = the last byte of the frame DMAed by the hardware + * min_frame_size = the minimum frame length we want to accept. + * max_frame_size = the maximum frame length we want to accept. + * + * This macro is a conditional that should be used in the interrupt + * handler's Rx processing routine when RxErrors have been detected. + * + * Typical use: + * ... + * if (TBI_ACCEPT) { + * accept_frame = true; + * e1000_tbi_adjust_stats(adapter, MacAddress); + * frame_length--; + * } else { + * accept_frame = false; + * } + * ... + */ + +/* The carrier extension symbol, as received by the NIC. */ +#define CARRIER_EXTENSION 0x0F + +#define TBI_ACCEPT(a, status, errors, length, last_byte, \ + min_frame_size, max_frame_size) \ + (e1000_tbi_sbp_enabled_82543(a) && \ + (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ + ((last_byte) == CARRIER_EXTENSION) && \ + (((status) & E1000_RXD_STAT_VP) ? \ + (((length) > ((min_frame_size) - VLAN_TAG_SIZE)) && \ + ((length) <= ((max_frame_size) + 1))) : \ + (((length) > (min_frame_size)) && \ + ((length) <= ((max_frame_size) + VLAN_TAG_SIZE + 1))))) + +#define E1000_MAX(a, b) ((a) > (b) ? (a) : (b)) +#define E1000_DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) /* ceil(a/b) */ +#endif /* _E1000_API_H_ */ diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_defines.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_defines.h new file mode 100644 index 00000000..e2101c17 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_defines.h @@ -0,0 +1,1514 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_DEFINES_H_ +#define _E1000_DEFINES_H_ + +/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ +#define REQ_TX_DESCRIPTOR_MULTIPLE 8 +#define REQ_RX_DESCRIPTOR_MULTIPLE 8 + +/* Definitions for power management and wakeup registers */ +/* Wake Up Control */ +#define E1000_WUC_APME 0x00000001 /* APM Enable */ +#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ +#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ +#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ + +/* Wake Up Filter Control */ +#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ +#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ +#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ + +/* Wake Up Status */ +#define E1000_WUS_LNKC E1000_WUFC_LNKC +#define E1000_WUS_MAG E1000_WUFC_MAG +#define E1000_WUS_EX E1000_WUFC_EX +#define E1000_WUS_MC E1000_WUFC_MC +#define E1000_WUS_BC E1000_WUFC_BC + +/* Extended Device Control */ +#define E1000_CTRL_EXT_LPCD 0x00000004 /* LCD Power Cycle Done */ +#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* SW Definable Pin 4 data */ +#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* SW Definable Pin 6 data */ +#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* SW Definable Pin 3 data */ +/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */ +#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ +#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ +#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */ +#define E1000_CTRL_EXT_FORCE_SMBUS 0x00000800 /* Force SMBus mode */ +#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ +/* Physical Func Reset Done Indication */ +#define E1000_CTRL_EXT_PFRSTD 0x00004000 +#define E1000_CTRL_EXT_SDLPE 0X00040000 /* SerDes Low Power Enable */ +#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ +#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ +#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clk Gating */ +#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 +/* Offset of the link mode field in Ctrl Ext register */ +#define E1000_CTRL_EXT_LINK_MODE_OFFSET 22 +#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000 +#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 +#define E1000_CTRL_EXT_EIAME 0x01000000 +#define E1000_CTRL_EXT_IRCA 0x00000001 +#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Drv loaded bit for FW */ +#define E1000_CTRL_EXT_IAME 0x08000000 /* Int ACK Auto-mask */ +#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ +#define E1000_CTRL_EXT_LSECCK 0x00001000 +#define E1000_CTRL_EXT_PHYPDEN 0x00100000 +#define E1000_I2CCMD_REG_ADDR_SHIFT 16 +#define E1000_I2CCMD_PHY_ADDR_SHIFT 24 +#define E1000_I2CCMD_OPCODE_READ 0x08000000 +#define E1000_I2CCMD_OPCODE_WRITE 0x00000000 +#define E1000_I2CCMD_READY 0x20000000 +#define E1000_I2CCMD_ERROR 0x80000000 +#define E1000_I2CCMD_SFP_DATA_ADDR(a) (0x0000 + (a)) +#define E1000_I2CCMD_SFP_DIAG_ADDR(a) (0x0100 + (a)) +#define E1000_MAX_SGMII_PHY_REG_ADDR 255 +#define E1000_I2CCMD_PHY_TIMEOUT 200 +#define E1000_IVAR_VALID 0x80 +#define E1000_GPIE_NSICR 0x00000001 +#define E1000_GPIE_MSIX_MODE 0x00000010 +#define E1000_GPIE_EIAME 0x40000000 +#define E1000_GPIE_PBA 0x80000000 + +/* Receive Descriptor bit definitions */ +#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ +#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ +#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ +#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ +#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ +#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ +#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ +#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ +#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ +#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ +#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */ +#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ +#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ +#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ +#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ +#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ + +#define E1000_RXDEXT_STATERR_TST 0x00000100 /* Time Stamp taken */ +#define E1000_RXDEXT_STATERR_LB 0x00040000 +#define E1000_RXDEXT_STATERR_CE 0x01000000 +#define E1000_RXDEXT_STATERR_SE 0x02000000 +#define E1000_RXDEXT_STATERR_SEQ 0x04000000 +#define E1000_RXDEXT_STATERR_CXE 0x10000000 +#define E1000_RXDEXT_STATERR_TCPE 0x20000000 +#define E1000_RXDEXT_STATERR_IPE 0x40000000 +#define E1000_RXDEXT_STATERR_RXE 0x80000000 + +/* mask to determine if packets should be dropped due to frame errors */ +#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ + E1000_RXD_ERR_CE | \ + E1000_RXD_ERR_SE | \ + E1000_RXD_ERR_SEQ | \ + E1000_RXD_ERR_CXE | \ + E1000_RXD_ERR_RXE) + +/* Same mask, but for extended and packet split descriptors */ +#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ + E1000_RXDEXT_STATERR_CE | \ + E1000_RXDEXT_STATERR_SE | \ + E1000_RXDEXT_STATERR_SEQ | \ + E1000_RXDEXT_STATERR_CXE | \ + E1000_RXDEXT_STATERR_RXE) + +#if !defined(EXTERNAL_RELEASE) || defined(E1000E_MQ) +#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001 +#endif /* !EXTERNAL_RELEASE || E1000E_MQ */ +#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 +#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 +#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 +#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 + +#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 + +/* Management Control */ +#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ +#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ +#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ +#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ +/* Enable MAC address filtering */ +#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 +/* Enable MNG packets to host memory */ +#define E1000_MANC_EN_MNG2HOST 0x00200000 + +#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */ +#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */ +#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */ +#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */ + +/* Receive Control */ +#define E1000_RCTL_RST 0x00000001 /* Software reset */ +#define E1000_RCTL_EN 0x00000002 /* enable */ +#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ +#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */ +#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */ +#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ +#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ +#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ +#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ +#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ +#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min thresh size */ +#define E1000_RCTL_RDMTS_HEX 0x00010000 +#define E1000_RCTL_RDMTS1_HEX E1000_RCTL_RDMTS_HEX +#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ +#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ +#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ +#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */ +#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */ +#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ +#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */ +#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ +#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ +#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ +#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ +#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ +#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ +#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ + +/* Use byte values for the following shift parameters + * Usage: + * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & + * E1000_PSRCTL_BSIZE0_MASK) | + * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & + * E1000_PSRCTL_BSIZE1_MASK) | + * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & + * E1000_PSRCTL_BSIZE2_MASK) | + * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; + * E1000_PSRCTL_BSIZE3_MASK)) + * where value0 = [128..16256], default=256 + * value1 = [1024..64512], default=4096 + * value2 = [0..64512], default=4096 + * value3 = [0..64512], default=0 + */ + +#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F +#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 +#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 +#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 + +#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ +#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ +#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ +#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ + +/* SWFW_SYNC Definitions */ +#define E1000_SWFW_EEP_SM 0x01 +#define E1000_SWFW_PHY0_SM 0x02 +#define E1000_SWFW_PHY1_SM 0x04 +#define E1000_SWFW_CSR_SM 0x08 +#define E1000_SWFW_PHY2_SM 0x20 +#define E1000_SWFW_PHY3_SM 0x40 +#define E1000_SWFW_SW_MNG_SM 0x400 + +/* Device Control */ +#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ +#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ +#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */ +#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ +#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ +#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ +#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ +#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ +#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ +#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ +#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */ +#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */ +#define E1000_CTRL_MEHE 0x00080000 /* Memory Error Handling Enable */ +#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ +#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */ +#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 /* PHY PM enable */ +#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ +#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ +#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ +#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ +#define E1000_CTRL_RST 0x04000000 /* Global reset */ +#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ +#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ +#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ +#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ + +#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 +#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 +#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 +#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 + +#define E1000_CONNSW_ENRGSRC 0x4 +#define E1000_CONNSW_PHYSD 0x400 +#define E1000_CONNSW_PHY_PDN 0x800 +#define E1000_CONNSW_SERDESD 0x200 +#define E1000_CONNSW_AUTOSENSE_CONF 0x2 +#define E1000_CONNSW_AUTOSENSE_EN 0x1 +#define E1000_PCS_CFG_PCS_EN 8 +#define E1000_PCS_LCTL_FLV_LINK_UP 1 +#define E1000_PCS_LCTL_FSV_10 0 +#define E1000_PCS_LCTL_FSV_100 2 +#define E1000_PCS_LCTL_FSV_1000 4 +#define E1000_PCS_LCTL_FDV_FULL 8 +#define E1000_PCS_LCTL_FSD 0x10 +#define E1000_PCS_LCTL_FORCE_LINK 0x20 +#define E1000_PCS_LCTL_FORCE_FCTRL 0x80 +#define E1000_PCS_LCTL_AN_ENABLE 0x10000 +#define E1000_PCS_LCTL_AN_RESTART 0x20000 +#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 +#define E1000_ENABLE_SERDES_LOOPBACK 0x0410 + +#define E1000_PCS_LSTS_LINK_OK 1 +#define E1000_PCS_LSTS_SPEED_100 2 +#define E1000_PCS_LSTS_SPEED_1000 4 +#define E1000_PCS_LSTS_DUPLEX_FULL 8 +#define E1000_PCS_LSTS_SYNK_OK 0x10 +#define E1000_PCS_LSTS_AN_COMPLETE 0x10000 + +/* Device Status */ +#define E1000_STATUS_FD 0x00000001 /* Duplex 0=half 1=full */ +#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ +#define E1000_STATUS_FUNC_SHIFT 2 +#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ +#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ +#define E1000_STATUS_SPEED_MASK 0x000000C0 +#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Compltn by NVM */ +#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */ +#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */ +#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ +#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ +#define E1000_STATUS_2P5_SKU 0x00001000 /* Val of 2.5GBE SKU strap */ +#define E1000_STATUS_2P5_SKU_OVER 0x00002000 /* Val of 2.5GBE SKU Over */ +#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ +#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ + +/* Constants used to interpret the masked PCI-X bus speed. */ +#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus spd 50-66MHz */ +#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus spd 66-100MHz */ +#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus spd 100-133MHz*/ + +#define SPEED_10 10 +#define SPEED_100 100 +#define SPEED_1000 1000 +#define SPEED_2500 2500 +#define HALF_DUPLEX 1 +#define FULL_DUPLEX 2 + +#define PHY_FORCE_TIME 20 + +#define ADVERTISE_10_HALF 0x0001 +#define ADVERTISE_10_FULL 0x0002 +#define ADVERTISE_100_HALF 0x0004 +#define ADVERTISE_100_FULL 0x0008 +#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ +#define ADVERTISE_1000_FULL 0x0020 + +/* 1000/H is not supported, nor spec-compliant. */ +#define E1000_ALL_SPEED_DUPLEX ( \ + ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ + ADVERTISE_100_FULL | ADVERTISE_1000_FULL) +#define E1000_ALL_NOT_GIG ( \ + ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ + ADVERTISE_100_FULL) +#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) +#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) +#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) + +#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX + +/* LED Control */ +#define E1000_PHY_LED0_MODE_MASK 0x00000007 +#define E1000_PHY_LED0_IVRT 0x00000008 +#define E1000_PHY_LED0_MASK 0x0000001F + +#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F +#define E1000_LEDCTL_LED0_MODE_SHIFT 0 +#define E1000_LEDCTL_LED0_IVRT 0x00000040 +#define E1000_LEDCTL_LED0_BLINK 0x00000080 + +#define E1000_LEDCTL_MODE_LINK_UP 0x2 +#define E1000_LEDCTL_MODE_LED_ON 0xE +#define E1000_LEDCTL_MODE_LED_OFF 0xF + +/* Transmit Descriptor bit definitions */ +#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ +#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Desc extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ +#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */ + +/* Transmit Control */ +#define E1000_TCTL_EN 0x00000002 /* enable Tx */ +#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ +#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ +#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ +#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ + +/* Transmit Arbitration Count */ +#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */ + +/* SerDes Control */ +#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 +#define E1000_SCTL_ENABLE_SERDES_LOOPBACK 0x0410 + +/* Receive Checksum Control */ +#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ +#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ +#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ +#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ +#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ + +/* Header split receive */ +#define E1000_RFCTL_NFSW_DIS 0x00000040 +#define E1000_RFCTL_NFSR_DIS 0x00000080 +#define E1000_RFCTL_ACK_DIS 0x00001000 +#define E1000_RFCTL_EXTEN 0x00008000 +#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 +#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 +#define E1000_RFCTL_LEF 0x00040000 + +/* Collision related configuration parameters */ +#define E1000_COLLISION_THRESHOLD 15 +#define E1000_CT_SHIFT 4 +#define E1000_COLLISION_DISTANCE 63 +#define E1000_COLD_SHIFT 12 + +/* Default values for the transmit IPG register */ +#define DEFAULT_82542_TIPG_IPGT 10 +#define DEFAULT_82543_TIPG_IPGT_FIBER 9 +#define DEFAULT_82543_TIPG_IPGT_COPPER 8 + +#define E1000_TIPG_IPGT_MASK 0x000003FF + +#define DEFAULT_82542_TIPG_IPGR1 2 +#define DEFAULT_82543_TIPG_IPGR1 8 +#define E1000_TIPG_IPGR1_SHIFT 10 + +#define DEFAULT_82542_TIPG_IPGR2 10 +#define DEFAULT_82543_TIPG_IPGR2 6 +#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 +#define E1000_TIPG_IPGR2_SHIFT 20 + +/* Ethertype field values */ +#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ + +#define ETHERNET_FCS_SIZE 4 +#define MAX_JUMBO_FRAME_SIZE 0x3F00 +/* The datasheet maximum supported RX size is 9.5KB (9728 bytes) */ +#define MAX_RX_JUMBO_FRAME_SIZE 0x2600 +#define E1000_TX_PTR_GAP 0x1F + +/* Extended Configuration Control and Size */ +#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 +#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 +#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008 +#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 +#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 + +#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 +#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 +#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 +#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 + +#define E1000_KABGTXD_BGSQLBIAS 0x00050000 + +/* Low Power IDLE Control */ +#define E1000_LPIC_LPIET_SHIFT 24 /* Low Power Idle Entry Time */ + +/* PBA constants */ +#define E1000_PBA_8K 0x0008 /* 8KB */ +#define E1000_PBA_10K 0x000A /* 10KB */ +#define E1000_PBA_12K 0x000C /* 12KB */ +#define E1000_PBA_14K 0x000E /* 14KB */ +#define E1000_PBA_16K 0x0010 /* 16KB */ +#define E1000_PBA_18K 0x0012 +#define E1000_PBA_20K 0x0014 +#define E1000_PBA_22K 0x0016 +#define E1000_PBA_24K 0x0018 +#define E1000_PBA_26K 0x001A +#define E1000_PBA_30K 0x001E +#define E1000_PBA_32K 0x0020 +#define E1000_PBA_34K 0x0022 +#define E1000_PBA_35K 0x0023 +#define E1000_PBA_38K 0x0026 +#define E1000_PBA_40K 0x0028 +#define E1000_PBA_48K 0x0030 /* 48KB */ +#define E1000_PBA_64K 0x0040 /* 64KB */ + +#define E1000_PBA_RXA_MASK 0xFFFF + +#define E1000_PBS_16K E1000_PBA_16K + +/* Uncorrectable/correctable ECC Error counts and enable bits */ +#define E1000_PBECCSTS_CORR_ERR_CNT_MASK 0x000000FF +#define E1000_PBECCSTS_UNCORR_ERR_CNT_MASK 0x0000FF00 +#define E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT 8 +#define E1000_PBECCSTS_ECC_ENABLE 0x00010000 + +#define IFS_MAX 80 +#define IFS_MIN 40 +#define IFS_RATIO 4 +#define IFS_STEP 10 +#define MIN_NUM_XMITS 1000 + +/* SW Semaphore Register */ +#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ +#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ +#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ + +#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */ + +/* Interrupt Cause Read */ +#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ +#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ +#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ +#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */ +#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */ +#define E1000_ICR_RXO 0x00000040 /* Rx overrun */ +#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */ +#define E1000_ICR_VMMB 0x00000100 /* VM MB event */ +#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */ +#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ +#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ +#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ +#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ +#define E1000_ICR_TXD_LOW 0x00008000 +#define E1000_ICR_MNG 0x00040000 /* Manageability event */ +#define E1000_ICR_ECCER 0x00400000 /* Uncorrectable ECC Error */ +#define E1000_ICR_TS 0x00080000 /* Time Sync Interrupt */ +#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */ +/* If this bit asserted, the driver should claim the interrupt */ +#define E1000_ICR_INT_ASSERTED 0x80000000 +#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */ +#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */ +#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */ +#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */ +#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */ +#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */ +#define E1000_ICR_FER 0x00400000 /* Fatal Error */ + +#define E1000_ICR_THS 0x00800000 /* ICR.THS: Thermal Sensor Event*/ +#define E1000_ICR_MDDET 0x10000000 /* Malicious Driver Detect */ + +/* PBA ECC Register */ +#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */ +#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */ +#define E1000_PBA_ECC_CORR_EN 0x00000001 /* Enable ECC error correction */ +#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */ +#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 on ECC error */ + +/* Extended Interrupt Cause Read */ +#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */ +#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */ +#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */ +#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */ +#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */ +#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */ +#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */ +#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */ +#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */ +#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */ +/* TCP Timer */ +#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */ +#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */ +#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */ +#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */ + +/* This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXT0 = Receiver Timer Interrupt (ring 0) + * o TXDW = Transmit Descriptor Written Back + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + * o LSC = Link Status Change + */ +#define IMS_ENABLE_MASK ( \ + E1000_IMS_RXT0 | \ + E1000_IMS_TXDW | \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ | \ + E1000_IMS_LSC) + +/* Interrupt Mask Set */ +#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */ +#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ +#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ +#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ +#define E1000_IMS_RXO E1000_ICR_RXO /* Rx overrun */ +#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */ +#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMS_ECCER E1000_ICR_ECCER /* Uncorrectable ECC Error */ +#define E1000_IMS_TS E1000_ICR_TS /* Time Sync Interrupt */ +#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */ +#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ +#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */ +#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */ +#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */ +#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */ +#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */ +#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */ + +#define E1000_IMS_THS E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/ +#define E1000_IMS_MDDET E1000_ICR_MDDET /* Malicious Driver Detect */ +/* Extended Interrupt Mask Set */ +#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ +#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ +#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ +#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ +#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ +#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ +#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ +#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ +#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ +#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ + +/* Interrupt Cause Set */ +#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ +#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ + +/* Extended Interrupt Cause Set */ +#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ +#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ +#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ +#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ +#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ +#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ +#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ +#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ +#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ +#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ + +#define E1000_EITR_ITR_INT_MASK 0x0000FFFF +/* E1000_EITR_CNT_IGNR is only for 82576 and newer */ +#define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */ +#define E1000_EITR_INTERVAL 0x00007FFC + +/* Transmit Descriptor Control */ +#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ +#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ +#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ +/* Enable the counting of descriptors still to be processed. */ +#define E1000_TXDCTL_COUNT_DESC 0x00400000 + +/* Flow Control Constants */ +#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 +#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 +#define FLOW_CONTROL_TYPE 0x8808 + +/* 802.1q VLAN Packet Size */ +#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ +#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ + +/* Receive Address + * Number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. + * Technically, we have 16 spots. However, we reserve one of these spots + * (RAR[15]) for our directed address used by controllers with + * manageability enabled, allowing us room for 15 multicast addresses. + */ +#define E1000_RAR_ENTRIES 15 +#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ +#define E1000_RAL_MAC_ADDR_LEN 4 +#define E1000_RAH_MAC_ADDR_LEN 2 +#define E1000_RAH_QUEUE_MASK_82575 0x000C0000 +#define E1000_RAH_POOL_1 0x00040000 + +/* Error Codes */ +#define E1000_SUCCESS 0 +#define E1000_ERR_NVM 1 +#define E1000_ERR_PHY 2 +#define E1000_ERR_CONFIG 3 +#define E1000_ERR_PARAM 4 +#define E1000_ERR_MAC_INIT 5 +#define E1000_ERR_PHY_TYPE 6 +#define E1000_ERR_RESET 9 +#define E1000_ERR_MASTER_REQUESTS_PENDING 10 +#define E1000_ERR_HOST_INTERFACE_COMMAND 11 +#define E1000_BLK_PHY_RESET 12 +#define E1000_ERR_SWFW_SYNC 13 +#define E1000_NOT_IMPLEMENTED 14 +#define E1000_ERR_MBX 15 +#define E1000_ERR_INVALID_ARGUMENT 16 +#define E1000_ERR_NO_SPACE 17 +#define E1000_ERR_NVM_PBA_SECTION 18 +#define E1000_ERR_I2C 19 +#define E1000_ERR_INVM_VALUE_NOT_FOUND 20 + +/* Loop limit on how long we wait for auto-negotiation to complete */ +#define FIBER_LINK_UP_LIMIT 50 +#define COPPER_LINK_UP_LIMIT 10 +#define PHY_AUTO_NEG_LIMIT 45 +#define PHY_FORCE_LIMIT 20 +/* Number of 100 microseconds we wait for PCI Express master disable */ +#define MASTER_DISABLE_TIMEOUT 800 +/* Number of milliseconds we wait for PHY configuration done after MAC reset */ +#define PHY_CFG_TIMEOUT 100 +/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ +#define MDIO_OWNERSHIP_TIMEOUT 10 +/* Number of milliseconds for NVM auto read done after MAC reset. */ +#define AUTO_READ_DONE_TIMEOUT 10 + +/* Flow Control */ +#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ +#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ + +/* Transmit Configuration Word */ +#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ +#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ +#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ + +/* Receive Configuration Word */ +#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ +#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ +#define E1000_RXCW_C 0x20000000 /* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ + +#define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */ +#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */ + +/* HH Time Sync */ +#define E1000_TSYNCTXCTL_MAX_ALLOWED_DLY_MASK 0x0000F000 /* max delay */ +#define E1000_TSYNCTXCTL_SYNC_COMP_ERR 0x20000000 /* sync err */ +#define E1000_TSYNCTXCTL_SYNC_COMP 0x40000000 /* sync complete */ +#define E1000_TSYNCTXCTL_START_SYNC 0x80000000 /* initiate sync */ + +#define E1000_TSYNCRXCTL_VALID 0x00000001 /* Rx timestamp valid */ +#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* Rx type mask */ +#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00 +#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02 +#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04 +#define E1000_TSYNCRXCTL_TYPE_ALL 0x08 +#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A +#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable Rx timestamping */ +#define E1000_TSYNCRXCTL_SYSCFI 0x00000020 /* Sys clock frequency */ + +#define E1000_RXMTRL_PTP_V1_SYNC_MESSAGE 0x00000000 +#define E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE 0x00010000 + +#define E1000_RXMTRL_PTP_V2_SYNC_MESSAGE 0x00000000 +#define E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE 0x01000000 + +#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF +#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00 +#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01 +#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02 +#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03 +#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04 + +#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00 +#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000 +#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100 +#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200 +#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300 +#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800 +#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900 +#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00 +#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00 +#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00 +#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00 + +#define E1000_TIMINCA_16NS_SHIFT 24 +#define E1000_TIMINCA_INCPERIOD_SHIFT 24 +#define E1000_TIMINCA_INCVALUE_MASK 0x00FFFFFF + +#define E1000_TSICR_TXTS 0x00000002 +#define E1000_TSIM_TXTS 0x00000002 +/* TUPLE Filtering Configuration */ +#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */ +#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */ +#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */ +/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */ +#define E1000_TTQF_PROTOCOL_TCP 0x0 +/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ +#define E1000_TTQF_PROTOCOL_UDP 0x1 +/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ +#define E1000_TTQF_PROTOCOL_SCTP 0x2 +#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */ +#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */ +#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */ +#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */ +#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */ +#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */ +#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */ +#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */ + +#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */ +#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */ +#define E1000_MDICNFG_PHY_MASK 0x03E00000 +#define E1000_MDICNFG_PHY_SHIFT 21 + +#define E1000_MEDIA_PORT_COPPER 1 +#define E1000_MEDIA_PORT_OTHER 2 +#define E1000_M88E1112_AUTO_COPPER_SGMII 0x2 +#define E1000_M88E1112_AUTO_COPPER_BASEX 0x3 +#define E1000_M88E1112_STATUS_LINK 0x0004 /* Interface Link Bit */ +#define E1000_M88E1112_MAC_CTRL_1 0x10 +#define E1000_M88E1112_MAC_CTRL_1_MODE_MASK 0x0380 /* Mode Select */ +#define E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT 7 +#define E1000_M88E1112_PAGE_ADDR 0x16 +#define E1000_M88E1112_STATUS 0x01 + +#define E1000_THSTAT_LOW_EVENT 0x20000000 /* Low thermal threshold */ +#define E1000_THSTAT_MID_EVENT 0x00200000 /* Mid thermal threshold */ +#define E1000_THSTAT_HIGH_EVENT 0x00002000 /* High thermal threshold */ +#define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */ +#define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Spd Throttle Event */ + +/* I350 EEE defines */ +#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Ena 1G AN */ +#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Ena 100M AN */ +#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */ +#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */ +#define E1000_EEER_LPI_FC 0x00040000 /* EEER Ena on Flow Cntrl */ +/* EEE status */ +#define E1000_EEER_EEE_NEG 0x20000000 /* EEE capability nego */ +#define E1000_EEER_RX_LPI_STATUS 0x40000000 /* Rx in LPI state */ +#define E1000_EEER_TX_LPI_STATUS 0x80000000 /* Tx in LPI state */ +#define E1000_EEE_LP_ADV_ADDR_I350 0x040F /* EEE LP Advertisement */ +#define E1000_M88E1543_PAGE_ADDR 0x16 /* Page Offset Register */ +#define E1000_M88E1543_EEE_CTRL_1 0x0 +#define E1000_M88E1543_EEE_CTRL_1_MS 0x0001 /* EEE Master/Slave */ +#define E1000_M88E1543_FIBER_CTRL 0x0 /* Fiber Control Register */ +#define E1000_EEE_ADV_DEV_I354 7 +#define E1000_EEE_ADV_ADDR_I354 60 +#define E1000_EEE_ADV_100_SUPPORTED (1 << 1) /* 100BaseTx EEE Supported */ +#define E1000_EEE_ADV_1000_SUPPORTED (1 << 2) /* 1000BaseT EEE Supported */ +#define E1000_PCS_STATUS_DEV_I354 3 +#define E1000_PCS_STATUS_ADDR_I354 1 +#define E1000_PCS_STATUS_RX_LPI_RCVD 0x0400 +#define E1000_PCS_STATUS_TX_LPI_RCVD 0x0800 +#define E1000_M88E1512_CFG_REG_1 0x0010 +#define E1000_M88E1512_CFG_REG_2 0x0011 +#define E1000_M88E1512_CFG_REG_3 0x0007 +#define E1000_M88E1512_MODE 0x0014 +#define E1000_EEE_SU_LPI_CLK_STP 0x00800000 /* EEE LPI Clock Stop */ +#define E1000_EEE_LP_ADV_DEV_I210 7 /* EEE LP Adv Device */ +#define E1000_EEE_LP_ADV_ADDR_I210 61 /* EEE LP Adv Register */ +/* PCI Express Control */ +#define E1000_GCR_RXD_NO_SNOOP 0x00000001 +#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 +#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 +#define E1000_GCR_TXD_NO_SNOOP 0x00000008 +#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 +#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 +#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000 +#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000 +#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000 +#define E1000_GCR_CAP_VER2 0x00040000 + +#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ + E1000_GCR_RXDSCW_NO_SNOOP | \ + E1000_GCR_RXDSCR_NO_SNOOP | \ + E1000_GCR_TXD_NO_SNOOP | \ + E1000_GCR_TXDSCW_NO_SNOOP | \ + E1000_GCR_TXDSCR_NO_SNOOP) + +#define E1000_MMDAC_FUNC_DATA 0x4000 /* Data, no post increment */ + +/* mPHY address control and data registers */ +#define E1000_MPHY_ADDR_CTL 0x0024 /* Address Control Reg */ +#define E1000_MPHY_ADDR_CTL_OFFSET_MASK 0xFFFF0000 +#define E1000_MPHY_DATA 0x0E10 /* Data Register */ + +/* AFE CSR Offset for PCS CLK */ +#define E1000_MPHY_PCS_CLK_REG_OFFSET 0x0004 +/* Override for near end digital loopback. */ +#define E1000_MPHY_PCS_CLK_REG_DIGINELBEN 0x10 + +/* PHY Control Register */ +#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ +#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ +#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ +#define MII_CR_POWER_DOWN 0x0800 /* Power down */ +#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ +#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ +#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ +#define MII_CR_SPEED_1000 0x0040 +#define MII_CR_SPEED_100 0x2000 +#define MII_CR_SPEED_10 0x0000 + +/* PHY Status Register */ +#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ +#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ +#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ +#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ +#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ +#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ +#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ +#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ +#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ +#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ +#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ +#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ +#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ +#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ +#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ + +/* Autoneg Advertisement Register */ +#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ +#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ +#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ +#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ +#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ +#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ +#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Link Partner Ability Register (Base Page) */ +#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ +#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP 10T Half Dplx Capable */ +#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP 10T Full Dplx Capable */ +#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP 100TX Half Dplx Capable */ +#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP 100TX Full Dplx Capable */ +#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ +#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asym Pause Direction bit */ +#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP detected Remote Fault */ +#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP rx'd link code word */ +#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Autoneg Expansion Register */ +#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ +#define NWAY_ER_PAGE_RXD 0x0002 /* LP 10T Half Dplx Capable */ +#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP 10T Full Dplx Capable */ +#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP 100TX Half Dplx Capable */ +#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP 100TX Full Dplx Capable */ + +/* 1000BASE-T Control Register */ +#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ +#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ +/* 1=Repeater/switch device port 0=DTE device */ +#define CR_1000T_REPEATER_DTE 0x0400 +/* 1=Configure PHY as Master 0=Configure PHY as Slave */ +#define CR_1000T_MS_VALUE 0x0800 +/* 1=Master/Slave manual config value 0=Automatic Master/Slave config */ +#define CR_1000T_MS_ENABLE 0x1000 +#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ +#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ +#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ +#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ +#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ + +/* 1000BASE-T Status Register */ +#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle err since last rd */ +#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asym pause direction bit */ +#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ +#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ +#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx Master, 0=Slave */ +#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ + +#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 + +/* PHY 1000 MII Register/Bit Definitions */ +/* PHY Registers defined by IEEE */ +#define PHY_CONTROL 0x00 /* Control Register */ +#define PHY_STATUS 0x01 /* Status Register */ +#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ +#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ +#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ +#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */ +#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ +#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ + +#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */ + +/* NVM Control */ +#define E1000_EECD_SK 0x00000001 /* NVM Clock */ +#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ +#define E1000_EECD_DI 0x00000004 /* NVM Data In */ +#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ +#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ +#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ +#define E1000_EECD_PRES 0x00000100 /* NVM Present */ +#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ +#define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */ +#define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */ +#define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */ +#define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */ +/* NVM Addressing bits based on type 0=small, 1=large */ +#define E1000_EECD_ADDR_BITS 0x00000400 +#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */ +#ifndef E1000_NVM_GRANT_ATTEMPTS +#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ +#endif +#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ +#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ +#define E1000_EECD_SIZE_EX_SHIFT 11 +#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ +#define E1000_EECD_AUPDEN 0x00100000 /* Ena Auto FLASH update */ +#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ +#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES) +#define E1000_EECD_FLUPD_I210 0x00800000 /* Update FLASH */ +#define E1000_EECD_FLUDONE_I210 0x04000000 /* Update FLASH done */ +#define E1000_EECD_FLASH_DETECTED_I210 0x00080000 /* FLASH detected */ +#define E1000_EECD_SEC1VAL_I210 0x02000000 /* Sector One Valid */ +#define E1000_FLUDONE_ATTEMPTS 20000 +#define E1000_EERD_EEWR_MAX_COUNT 512 /* buffered EEPROM words rw */ +#define E1000_I210_FIFO_SEL_RX 0x00 +#define E1000_I210_FIFO_SEL_TX_QAV(_i) (0x02 + (_i)) +#define E1000_I210_FIFO_SEL_TX_LEGACY E1000_I210_FIFO_SEL_TX_QAV(0) +#define E1000_I210_FIFO_SEL_BMC2OS_TX 0x06 +#define E1000_I210_FIFO_SEL_BMC2OS_RX 0x01 + +#define E1000_I210_FLASH_SECTOR_SIZE 0x1000 /* 4KB FLASH sector unit size */ +/* Secure FLASH mode requires removing MSb */ +#define E1000_I210_FW_PTR_MASK 0x7FFF +/* Firmware code revision field word offset*/ +#define E1000_I210_FW_VER_OFFSET 328 + +#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */ +#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ +#define E1000_NVM_RW_REG_START 1 /* Start operation */ +#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ +#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ +#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ +#define E1000_FLASH_UPDATES 2000 + +/* NVM Word Offsets */ +#define NVM_COMPAT 0x0003 +#define NVM_ID_LED_SETTINGS 0x0004 +#define NVM_VERSION 0x0005 +#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */ +#define NVM_PHY_CLASS_WORD 0x0007 +#define E1000_I210_NVM_FW_MODULE_PTR 0x0010 +#define E1000_I350_NVM_FW_MODULE_PTR 0x0051 +#define NVM_FUTURE_INIT_WORD1 0x0019 +#define NVM_ETRACK_WORD 0x0042 +#define NVM_ETRACK_HIWORD 0x0043 +#define NVM_COMB_VER_OFF 0x0083 +#define NVM_COMB_VER_PTR 0x003d + +/* NVM version defines */ +#define NVM_MAJOR_MASK 0xF000 +#define NVM_MINOR_MASK 0x0FF0 +#define NVM_IMAGE_ID_MASK 0x000F +#define NVM_COMB_VER_MASK 0x00FF +#define NVM_MAJOR_SHIFT 12 +#define NVM_MINOR_SHIFT 4 +#define NVM_COMB_VER_SHFT 8 +#define NVM_VER_INVALID 0xFFFF +#define NVM_ETRACK_SHIFT 16 +#define NVM_ETRACK_VALID 0x8000 +#define NVM_NEW_DEC_MASK 0x0F00 +#define NVM_HEX_CONV 16 +#define NVM_HEX_TENS 10 + +/* FW version defines */ +/* Offset of "Loader patch ptr" in Firmware Header */ +#define E1000_I350_NVM_FW_LOADER_PATCH_PTR_OFFSET 0x01 +/* Patch generation hour & minutes */ +#define E1000_I350_NVM_FW_VER_WORD1_OFFSET 0x04 +/* Patch generation month & day */ +#define E1000_I350_NVM_FW_VER_WORD2_OFFSET 0x05 +/* Patch generation year */ +#define E1000_I350_NVM_FW_VER_WORD3_OFFSET 0x06 +/* Patch major & minor numbers */ +#define E1000_I350_NVM_FW_VER_WORD4_OFFSET 0x07 + +#define NVM_MAC_ADDR 0x0000 +#define NVM_SUB_DEV_ID 0x000B +#define NVM_SUB_VEN_ID 0x000C +#define NVM_DEV_ID 0x000D +#define NVM_VEN_ID 0x000E +#define NVM_INIT_CTRL_2 0x000F +#define NVM_INIT_CTRL_4 0x0013 +#define NVM_LED_1_CFG 0x001C +#define NVM_LED_0_2_CFG 0x001F + +#define NVM_COMPAT_VALID_CSUM 0x0001 +#define NVM_FUTURE_INIT_WORD1_VALID_CSUM 0x0040 + +#define NVM_INIT_CONTROL2_REG 0x000F +#define NVM_INIT_CONTROL3_PORT_B 0x0014 +#define NVM_INIT_3GIO_3 0x001A +#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020 +#define NVM_INIT_CONTROL3_PORT_A 0x0024 +#define NVM_CFG 0x0012 +#define NVM_ALT_MAC_ADDR_PTR 0x0037 +#define NVM_CHECKSUM_REG 0x003F +#define NVM_COMPATIBILITY_REG_3 0x0003 +#define NVM_COMPATIBILITY_BIT_MASK 0x8000 + +#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */ +#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */ +#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */ +#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */ + +#define NVM_82580_LAN_FUNC_OFFSET(a) ((a) ? (0x40 + (0x40 * (a))) : 0) + +/* Mask bits for fields in Word 0x24 of the NVM */ +#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */ +#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed extrnl */ +/* Offset of Link Mode bits for 82575/82576 */ +#define NVM_WORD24_LNK_MODE_OFFSET 8 +/* Offset of Link Mode bits for 82580 up */ +#define NVM_WORD24_82580_LNK_MODE_OFFSET 4 + + +/* Mask bits for fields in Word 0x0f of the NVM */ +#define NVM_WORD0F_PAUSE_MASK 0x3000 +#define NVM_WORD0F_PAUSE 0x1000 +#define NVM_WORD0F_ASM_DIR 0x2000 +#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0 + +/* Mask bits for fields in Word 0x1a of the NVM */ +#define NVM_WORD1A_ASPM_MASK 0x000C + +/* Mask bits for fields in Word 0x03 of the EEPROM */ +#define NVM_COMPAT_LOM 0x0800 + +/* length of string needed to store PBA number */ +#define E1000_PBANUM_LENGTH 11 + +/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ +#define NVM_SUM 0xBABA + +/* PBA (printed board assembly) number words */ +#define NVM_PBA_OFFSET_0 8 +#define NVM_PBA_OFFSET_1 9 +#define NVM_PBA_PTR_GUARD 0xFAFA +#define NVM_RESERVED_WORD 0xFFFF +#define NVM_PHY_CLASS_A 0x8000 +#define NVM_SERDES_AMPLITUDE_MASK 0x000F +#define NVM_SIZE_MASK 0x1C00 +#define NVM_SIZE_SHIFT 10 +#define NVM_WORD_SIZE_BASE_SHIFT 6 +#define NVM_SWDPIO_EXT_SHIFT 4 + +/* NVM Commands - Microwire */ +#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */ +#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */ +#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */ +#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */ +#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */ + +/* NVM Commands - SPI */ +#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ +#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ +#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ +#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ +#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ +#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ + +/* SPI NVM Status Register */ +#define NVM_STATUS_RDY_SPI 0x01 + +/* Word definitions for ID LED Settings */ +#define ID_LED_RESERVED_0000 0x0000 +#define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) +#define ID_LED_DEF1_DEF2 0x1 +#define ID_LED_DEF1_ON2 0x2 +#define ID_LED_DEF1_OFF2 0x3 +#define ID_LED_ON1_DEF2 0x4 +#define ID_LED_ON1_ON2 0x5 +#define ID_LED_ON1_OFF2 0x6 +#define ID_LED_OFF1_DEF2 0x7 +#define ID_LED_OFF1_ON2 0x8 +#define ID_LED_OFF1_OFF2 0x9 + +#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF +#define IGP_ACTIVITY_LED_ENABLE 0x0300 +#define IGP_LED3_MODE 0x07000000 + +/* PCI/PCI-X/PCI-EX Config space */ +#define PCIX_COMMAND_REGISTER 0xE6 +#define PCIX_STATUS_REGISTER_LO 0xE8 +#define PCIX_STATUS_REGISTER_HI 0xEA +#define PCI_HEADER_TYPE_REGISTER 0x0E +#define PCIE_LINK_STATUS 0x12 +#define PCIE_DEVICE_CONTROL2 0x28 + +#define PCIX_COMMAND_MMRBC_MASK 0x000C +#define PCIX_COMMAND_MMRBC_SHIFT 0x2 +#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 +#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 +#define PCIX_STATUS_HI_MMRBC_4K 0x3 +#define PCIX_STATUS_HI_MMRBC_2K 0x2 +#define PCIX_STATUS_LO_FUNC_MASK 0x7 +#define PCI_HEADER_TYPE_MULTIFUNC 0x80 +#define PCIE_LINK_WIDTH_MASK 0x3F0 +#define PCIE_LINK_WIDTH_SHIFT 4 +#define PCIE_LINK_SPEED_MASK 0x0F +#define PCIE_LINK_SPEED_2500 0x01 +#define PCIE_LINK_SPEED_5000 0x02 +#define PCIE_DEVICE_CONTROL2_16ms 0x0005 + +#ifndef ETH_ADDR_LEN +#define ETH_ADDR_LEN 6 +#endif + +#define PHY_REVISION_MASK 0xFFFFFFF0 +#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ +#define MAX_PHY_MULTI_PAGE_REG 0xF + +/* Bit definitions for valid PHY IDs. + * I = Integrated + * E = External + */ +#define M88E1000_E_PHY_ID 0x01410C50 +#define M88E1000_I_PHY_ID 0x01410C30 +#define M88E1011_I_PHY_ID 0x01410C20 +#define IGP01E1000_I_PHY_ID 0x02A80380 +#define M88E1111_I_PHY_ID 0x01410CC0 +#define M88E1543_E_PHY_ID 0x01410EA0 +#define M88E1512_E_PHY_ID 0x01410DD0 +#define M88E1112_E_PHY_ID 0x01410C90 +#define I347AT4_E_PHY_ID 0x01410DC0 +#define M88E1340M_E_PHY_ID 0x01410DF0 +#define GG82563_E_PHY_ID 0x01410CA0 +#define IGP03E1000_E_PHY_ID 0x02A80390 +#define IFE_E_PHY_ID 0x02A80330 +#define IFE_PLUS_E_PHY_ID 0x02A80320 +#define IFE_C_E_PHY_ID 0x02A80310 +#define BME1000_E_PHY_ID 0x01410CB0 +#define BME1000_E_PHY_ID_R2 0x01410CB1 +#define I82577_E_PHY_ID 0x01540050 +#define I82578_E_PHY_ID 0x004DD040 +#define I82579_E_PHY_ID 0x01540090 +#define I217_E_PHY_ID 0x015400A0 +#define I82580_I_PHY_ID 0x015403A0 +#define I350_I_PHY_ID 0x015403B0 +#define I210_I_PHY_ID 0x01410C00 +#define IGP04E1000_E_PHY_ID 0x02A80391 +#define BCM54616_E_PHY_ID 0x03625D10 +#define M88_VENDOR 0x0141 + +/* M88E1000 Specific Registers */ +#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Reg */ +#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Reg */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Cntrl */ +#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ + +#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ +#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for pg number setting */ +#define M88E1000_PHY_GEN_CONTROL 0x1E /* meaning depends on reg 29 */ +#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ +#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ + +/* M88E1000 PHY Specific Control Register */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */ +/* MDI Crossover Mode bits 6:5 Manual MDI configuration */ +#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ +/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ +#define M88E1000_PSCR_AUTO_X_1000T 0x0040 +/* Auto crossover enabled all speeds */ +#define M88E1000_PSCR_AUTO_X_MODE 0x0060 +#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */ + +/* M88E1000 PHY Specific Status Register */ +#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ +#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ +#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ +/* 0 = <50M + * 1 = 50-80M + * 2 = 80-110M + * 3 = 110-140M + * 4 = >140M + */ +#define M88E1000_PSSR_CABLE_LENGTH 0x0380 +#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ +#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ +#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ +#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ +#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ +#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ + +#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 + +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the master + */ +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the slave + */ +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 +#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ + +/* Intel I347AT4 Registers */ +#define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */ +#define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */ +#define I347AT4_PAGE_SELECT 0x16 + +/* I347AT4 Extended PHY Specific Control Register */ + +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the master + */ +#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800 +#define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000 +#define I347AT4_PSCR_DOWNSHIFT_1X 0x0000 +#define I347AT4_PSCR_DOWNSHIFT_2X 0x1000 +#define I347AT4_PSCR_DOWNSHIFT_3X 0x2000 +#define I347AT4_PSCR_DOWNSHIFT_4X 0x3000 +#define I347AT4_PSCR_DOWNSHIFT_5X 0x4000 +#define I347AT4_PSCR_DOWNSHIFT_6X 0x5000 +#define I347AT4_PSCR_DOWNSHIFT_7X 0x6000 +#define I347AT4_PSCR_DOWNSHIFT_8X 0x7000 + +/* I347AT4 PHY Cable Diagnostics Control */ +#define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */ + +/* M88E1112 only registers */ +#define M88E1112_VCT_DSP_DISTANCE 0x001A + +/* M88EC018 Rev 2 specific DownShift settings */ +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 + +#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020 +#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C + +/* BME1000 PHY Specific Control Register */ +#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */ + +/* Bits... + * 15-5: page + * 4-0: register offset + */ +#define GG82563_PAGE_SHIFT 5 +#define GG82563_REG(page, reg) \ + (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) +#define GG82563_MIN_ALT_REG 30 + +/* GG82563 Specific Registers */ +#define GG82563_PHY_SPEC_CTRL GG82563_REG(0, 16) /* PHY Spec Cntrl */ +#define GG82563_PHY_PAGE_SELECT GG82563_REG(0, 22) /* Page Select */ +#define GG82563_PHY_SPEC_CTRL_2 GG82563_REG(0, 26) /* PHY Spec Cntrl2 */ +#define GG82563_PHY_PAGE_SELECT_ALT GG82563_REG(0, 29) /* Alt Page Select */ + +/* MAC Specific Control Register */ +#define GG82563_PHY_MAC_SPEC_CTRL GG82563_REG(2, 21) + +#define GG82563_PHY_DSP_DISTANCE GG82563_REG(5, 26) /* DSP Distance */ + +/* Page 193 - Port Control Registers */ +/* Kumeran Mode Control */ +#define GG82563_PHY_KMRN_MODE_CTRL GG82563_REG(193, 16) +#define GG82563_PHY_PWR_MGMT_CTRL GG82563_REG(193, 20) /* Pwr Mgt Ctrl */ + +/* Page 194 - KMRN Registers */ +#define GG82563_PHY_INBAND_CTRL GG82563_REG(194, 18) /* Inband Ctrl */ + +/* MDI Control */ +#define E1000_MDIC_REG_MASK 0x001F0000 +#define E1000_MDIC_REG_SHIFT 16 +#define E1000_MDIC_PHY_MASK 0x03E00000 +#define E1000_MDIC_PHY_SHIFT 21 +#define E1000_MDIC_OP_WRITE 0x04000000 +#define E1000_MDIC_OP_READ 0x08000000 +#define E1000_MDIC_READY 0x10000000 +#define E1000_MDIC_ERROR 0x40000000 +#define E1000_MDIC_DEST 0x80000000 + +/* SerDes Control */ +#define E1000_GEN_CTL_READY 0x80000000 +#define E1000_GEN_CTL_ADDRESS_SHIFT 8 +#define E1000_GEN_POLL_TIMEOUT 640 + +/* LinkSec register fields */ +#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000 +#define E1000_LSECTXCAP_SUM_SHIFT 16 +#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000 +#define E1000_LSECRXCAP_SUM_SHIFT 16 + +#define E1000_LSECTXCTRL_EN_MASK 0x00000003 +#define E1000_LSECTXCTRL_DISABLE 0x0 +#define E1000_LSECTXCTRL_AUTH 0x1 +#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2 +#define E1000_LSECTXCTRL_AISCI 0x00000020 +#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00 +#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8 + +#define E1000_LSECRXCTRL_EN_MASK 0x0000000C +#define E1000_LSECRXCTRL_EN_SHIFT 2 +#define E1000_LSECRXCTRL_DISABLE 0x0 +#define E1000_LSECRXCTRL_CHECK 0x1 +#define E1000_LSECRXCTRL_STRICT 0x2 +#define E1000_LSECRXCTRL_DROP 0x3 +#define E1000_LSECRXCTRL_PLSH 0x00000040 +#define E1000_LSECRXCTRL_RP 0x00000080 +#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33 + +/* Tx Rate-Scheduler Config fields */ +#define E1000_RTTBCNRC_RS_ENA 0x80000000 +#define E1000_RTTBCNRC_RF_DEC_MASK 0x00003FFF +#define E1000_RTTBCNRC_RF_INT_SHIFT 14 +#define E1000_RTTBCNRC_RF_INT_MASK \ + (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT) + +/* DMA Coalescing register fields */ +/* DMA Coalescing Watchdog Timer */ +#define E1000_DMACR_DMACWT_MASK 0x00003FFF +/* DMA Coalescing Rx Threshold */ +#define E1000_DMACR_DMACTHR_MASK 0x00FF0000 +#define E1000_DMACR_DMACTHR_SHIFT 16 +/* Lx when no PCIe transactions */ +#define E1000_DMACR_DMAC_LX_MASK 0x30000000 +#define E1000_DMACR_DMAC_LX_SHIFT 28 +#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */ +/* DMA Coalescing BMC-to-OS Watchdog Enable */ +#define E1000_DMACR_DC_BMC2OSW_EN 0x00008000 + +/* DMA Coalescing Transmit Threshold */ +#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF + +#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */ + +/* Rx Traffic Rate Threshold */ +#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF +/* Rx packet rate in current window */ +#define E1000_DMCRTRH_LRPRCW 0x80000000 + +/* DMA Coal Rx Traffic Current Count */ +#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF + +/* Flow ctrl Rx Threshold High val */ +#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 +#define E1000_FCRTC_RTH_COAL_SHIFT 4 +/* Lx power decision based on DMA coal */ +#define E1000_PCIEMISC_LX_DECISION 0x00000080 + +#define E1000_RXPBS_CFG_TS_EN 0x80000000 /* Timestamp in Rx buffer */ +#define E1000_RXPBS_SIZE_I210_MASK 0x0000003F /* Rx packet buffer size */ +#define E1000_TXPB0S_SIZE_I210_MASK 0x0000003F /* Tx packet buffer 0 size */ +#define I210_RXPBSIZE_DEFAULT 0x000000A2 /* RXPBSIZE default */ +#define I210_TXPBSIZE_DEFAULT 0x04000014 /* TXPBSIZE default */ + + +/* Proxy Filter Control */ +#define E1000_PROXYFC_D0 0x00000001 /* Enable offload in D0 */ +#define E1000_PROXYFC_EX 0x00000004 /* Directed exact proxy */ +#define E1000_PROXYFC_MC 0x00000008 /* Directed MC Proxy */ +#define E1000_PROXYFC_BC 0x00000010 /* Broadcast Proxy Enable */ +#define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy Ena */ +#define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */ +#define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */ +#define E1000_PROXYFC_NS 0x00000200 /* IPv6 Neighbor Solicitation */ +#define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy Ena */ +/* Proxy Status */ +#define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */ + +/* Firmware Status */ +#define E1000_FWSTS_FWRI 0x80000000 /* FW Reset Indication */ +/* VF Control */ +#define E1000_VTCTRL_RST 0x04000000 /* Reset VF */ + +#define E1000_STATUS_LAN_ID_MASK 0x00000000C /* Mask for Lan ID field */ +/* Lan ID bit field offset in status register */ +#define E1000_STATUS_LAN_ID_OFFSET 2 +#define E1000_VFTA_ENTRIES 128 +#ifndef E1000_UNUSEDARG +#define E1000_UNUSEDARG +#endif /* E1000_UNUSEDARG */ +#ifndef ERROR_REPORT +#define ERROR_REPORT(fmt) do { } while (0) +#endif /* ERROR_REPORT */ +#endif /* _E1000_DEFINES_H_ */ diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_hw.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_hw.h new file mode 100644 index 00000000..d9de9fc1 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_hw.h @@ -0,0 +1,1049 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_HW_H_ +#define _E1000_HW_H_ + +#include "e1000_osdep.h" +#include "e1000_regs.h" +#include "e1000_defines.h" + +struct e1000_hw; + +#define E1000_DEV_ID_82542 0x1000 +#define E1000_DEV_ID_82543GC_FIBER 0x1001 +#define E1000_DEV_ID_82543GC_COPPER 0x1004 +#define E1000_DEV_ID_82544EI_COPPER 0x1008 +#define E1000_DEV_ID_82544EI_FIBER 0x1009 +#define E1000_DEV_ID_82544GC_COPPER 0x100C +#define E1000_DEV_ID_82544GC_LOM 0x100D +#define E1000_DEV_ID_82540EM 0x100E +#define E1000_DEV_ID_82540EM_LOM 0x1015 +#define E1000_DEV_ID_82540EP_LOM 0x1016 +#define E1000_DEV_ID_82540EP 0x1017 +#define E1000_DEV_ID_82540EP_LP 0x101E +#define E1000_DEV_ID_82545EM_COPPER 0x100F +#define E1000_DEV_ID_82545EM_FIBER 0x1011 +#define E1000_DEV_ID_82545GM_COPPER 0x1026 +#define E1000_DEV_ID_82545GM_FIBER 0x1027 +#define E1000_DEV_ID_82545GM_SERDES 0x1028 +#define E1000_DEV_ID_82546EB_COPPER 0x1010 +#define E1000_DEV_ID_82546EB_FIBER 0x1012 +#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D +#define E1000_DEV_ID_82546GB_COPPER 0x1079 +#define E1000_DEV_ID_82546GB_FIBER 0x107A +#define E1000_DEV_ID_82546GB_SERDES 0x107B +#define E1000_DEV_ID_82546GB_PCIE 0x108A +#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 +#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 +#define E1000_DEV_ID_82541EI 0x1013 +#define E1000_DEV_ID_82541EI_MOBILE 0x1018 +#define E1000_DEV_ID_82541ER_LOM 0x1014 +#define E1000_DEV_ID_82541ER 0x1078 +#define E1000_DEV_ID_82541GI 0x1076 +#define E1000_DEV_ID_82541GI_LF 0x107C +#define E1000_DEV_ID_82541GI_MOBILE 0x1077 +#define E1000_DEV_ID_82547EI 0x1019 +#define E1000_DEV_ID_82547EI_MOBILE 0x101A +#define E1000_DEV_ID_82547GI 0x1075 +#define E1000_DEV_ID_82571EB_COPPER 0x105E +#define E1000_DEV_ID_82571EB_FIBER 0x105F +#define E1000_DEV_ID_82571EB_SERDES 0x1060 +#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9 +#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA +#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 +#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5 +#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 +#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC +#define E1000_DEV_ID_82572EI_COPPER 0x107D +#define E1000_DEV_ID_82572EI_FIBER 0x107E +#define E1000_DEV_ID_82572EI_SERDES 0x107F +#define E1000_DEV_ID_82572EI 0x10B9 +#define E1000_DEV_ID_82573E 0x108B +#define E1000_DEV_ID_82573E_IAMT 0x108C +#define E1000_DEV_ID_82573L 0x109A +#define E1000_DEV_ID_82574L 0x10D3 +#define E1000_DEV_ID_82574LA 0x10F6 +#define E1000_DEV_ID_82583V 0x150C +#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 +#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 +#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA +#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB +#define E1000_DEV_ID_ICH8_82567V_3 0x1501 +#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 +#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A +#define E1000_DEV_ID_ICH8_IGP_C 0x104B +#define E1000_DEV_ID_ICH8_IFE 0x104C +#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 +#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 +#define E1000_DEV_ID_ICH8_IGP_M 0x104D +#define E1000_DEV_ID_ICH9_IGP_M 0x10BF +#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5 +#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB +#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD +#define E1000_DEV_ID_ICH9_BM 0x10E5 +#define E1000_DEV_ID_ICH9_IGP_C 0x294C +#define E1000_DEV_ID_ICH9_IFE 0x10C0 +#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3 +#define E1000_DEV_ID_ICH9_IFE_G 0x10C2 +#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC +#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD +#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE +#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE +#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF +#define E1000_DEV_ID_ICH10_D_BM_V 0x1525 +#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA +#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB +#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF +#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0 +#define E1000_DEV_ID_PCH2_LV_LM 0x1502 +#define E1000_DEV_ID_PCH2_LV_V 0x1503 +#define E1000_DEV_ID_PCH_LPT_I217_LM 0x153A +#define E1000_DEV_ID_PCH_LPT_I217_V 0x153B +#define E1000_DEV_ID_PCH_LPTLP_I218_LM 0x155A +#define E1000_DEV_ID_PCH_LPTLP_I218_V 0x1559 +#define E1000_DEV_ID_PCH_I218_LM2 0x15A0 +#define E1000_DEV_ID_PCH_I218_V2 0x15A1 +#define E1000_DEV_ID_PCH_I218_LM3 0x15A2 /* Wildcat Point PCH */ +#define E1000_DEV_ID_PCH_I218_V3 0x15A3 /* Wildcat Point PCH */ +#define E1000_DEV_ID_PCH_SPT_I219_LM 0x156F /* Sunrise Point PCH */ +#define E1000_DEV_ID_PCH_SPT_I219_V 0x1570 /* Sunrise Point PCH */ +#define E1000_DEV_ID_PCH_SPT_I219_LM2 0x15B7 /* Sunrise Point-H PCH */ +#define E1000_DEV_ID_PCH_SPT_I219_V2 0x15B8 /* Sunrise Point-H PCH */ +#define E1000_DEV_ID_PCH_LBG_I219_LM3 0x15B9 /* LEWISBURG PCH */ +#define E1000_DEV_ID_PCH_SPT_I219_LM4 0x15D7 +#define E1000_DEV_ID_PCH_SPT_I219_V4 0x15D8 +#define E1000_DEV_ID_PCH_SPT_I219_LM5 0x15E3 +#define E1000_DEV_ID_PCH_SPT_I219_V5 0x15D6 +#define E1000_DEV_ID_PCH_CNP_I219_LM6 0x15BD +#define E1000_DEV_ID_PCH_CNP_I219_V6 0x15BE +#define E1000_DEV_ID_PCH_CNP_I219_LM7 0x15BB +#define E1000_DEV_ID_PCH_CNP_I219_V7 0x15BC +#define E1000_DEV_ID_82576 0x10C9 +#define E1000_DEV_ID_82576_FIBER 0x10E6 +#define E1000_DEV_ID_82576_SERDES 0x10E7 +#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8 +#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526 +#define E1000_DEV_ID_82576_NS 0x150A +#define E1000_DEV_ID_82576_NS_SERDES 0x1518 +#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D +#define E1000_DEV_ID_82576_VF 0x10CA +#define E1000_DEV_ID_82576_VF_HV 0x152D +#define E1000_DEV_ID_I350_VF 0x1520 +#define E1000_DEV_ID_I350_VF_HV 0x152F +#define E1000_DEV_ID_82575EB_COPPER 0x10A7 +#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9 +#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6 +#define E1000_DEV_ID_82580_COPPER 0x150E +#define E1000_DEV_ID_82580_FIBER 0x150F +#define E1000_DEV_ID_82580_SERDES 0x1510 +#define E1000_DEV_ID_82580_SGMII 0x1511 +#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516 +#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527 +#define E1000_DEV_ID_I350_COPPER 0x1521 +#define E1000_DEV_ID_I350_FIBER 0x1522 +#define E1000_DEV_ID_I350_SERDES 0x1523 +#define E1000_DEV_ID_I350_SGMII 0x1524 +#define E1000_DEV_ID_I350_DA4 0x1546 +#define E1000_DEV_ID_I210_COPPER 0x1533 +#define E1000_DEV_ID_I210_COPPER_OEM1 0x1534 +#define E1000_DEV_ID_I210_COPPER_IT 0x1535 +#define E1000_DEV_ID_I210_FIBER 0x1536 +#define E1000_DEV_ID_I210_SERDES 0x1537 +#define E1000_DEV_ID_I210_SGMII 0x1538 +#define E1000_DEV_ID_I210_COPPER_FLASHLESS 0x157B +#define E1000_DEV_ID_I210_SERDES_FLASHLESS 0x157C +#define E1000_DEV_ID_I211_COPPER 0x1539 +#define E1000_DEV_ID_I354_BACKPLANE_1GBPS 0x1F40 +#define E1000_DEV_ID_I354_SGMII 0x1F41 +#define E1000_DEV_ID_I354_BACKPLANE_2_5GBPS 0x1F45 +#define E1000_DEV_ID_DH89XXCC_SGMII 0x0438 +#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A +#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C +#define E1000_DEV_ID_DH89XXCC_SFP 0x0440 + +#define E1000_REVISION_0 0 +#define E1000_REVISION_1 1 +#define E1000_REVISION_2 2 +#define E1000_REVISION_3 3 +#define E1000_REVISION_4 4 + +#define E1000_FUNC_0 0 +#define E1000_FUNC_1 1 +#define E1000_FUNC_2 2 +#define E1000_FUNC_3 3 + +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6 +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9 + +enum e1000_mac_type { + e1000_undefined = 0, + e1000_82542, + e1000_82543, + e1000_82544, + e1000_82540, + e1000_82545, + e1000_82545_rev_3, + e1000_82546, + e1000_82546_rev_3, + e1000_82541, + e1000_82541_rev_2, + e1000_82547, + e1000_82547_rev_2, + e1000_82571, + e1000_82572, + e1000_82573, + e1000_82574, + e1000_82583, + e1000_80003es2lan, + e1000_ich8lan, + e1000_ich9lan, + e1000_ich10lan, + e1000_pchlan, + e1000_pch2lan, + e1000_pch_lpt, + e1000_pch_spt, + e1000_pch_cnp, + e1000_82575, + e1000_82576, + e1000_82580, + e1000_i350, + e1000_i354, + e1000_i210, + e1000_i211, + e1000_vfadapt, + e1000_vfadapt_i350, + e1000_num_macs /* List is 1-based, so subtract 1 for true count. */ +}; + +enum e1000_media_type { + e1000_media_type_unknown = 0, + e1000_media_type_copper = 1, + e1000_media_type_fiber = 2, + e1000_media_type_internal_serdes = 3, + e1000_num_media_types +}; + +enum e1000_nvm_type { + e1000_nvm_unknown = 0, + e1000_nvm_none, + e1000_nvm_eeprom_spi, + e1000_nvm_eeprom_microwire, + e1000_nvm_flash_hw, + e1000_nvm_invm, + e1000_nvm_flash_sw +}; + +enum e1000_nvm_override { + e1000_nvm_override_none = 0, + e1000_nvm_override_spi_small, + e1000_nvm_override_spi_large, + e1000_nvm_override_microwire_small, + e1000_nvm_override_microwire_large +}; + +enum e1000_phy_type { + e1000_phy_unknown = 0, + e1000_phy_none, + e1000_phy_m88, + e1000_phy_igp, + e1000_phy_igp_2, + e1000_phy_gg82563, + e1000_phy_igp_3, + e1000_phy_ife, + e1000_phy_bm, + e1000_phy_82578, + e1000_phy_82577, + e1000_phy_82579, + e1000_phy_i217, + e1000_phy_82580, + e1000_phy_vf, + e1000_phy_i210, +}; + +enum e1000_bus_type { + e1000_bus_type_unknown = 0, + e1000_bus_type_pci, + e1000_bus_type_pcix, + e1000_bus_type_pci_express, + e1000_bus_type_reserved +}; + +enum e1000_bus_speed { + e1000_bus_speed_unknown = 0, + e1000_bus_speed_33, + e1000_bus_speed_66, + e1000_bus_speed_100, + e1000_bus_speed_120, + e1000_bus_speed_133, + e1000_bus_speed_2500, + e1000_bus_speed_5000, + e1000_bus_speed_reserved +}; + +enum e1000_bus_width { + e1000_bus_width_unknown = 0, + e1000_bus_width_pcie_x1, + e1000_bus_width_pcie_x2, + e1000_bus_width_pcie_x4 = 4, + e1000_bus_width_pcie_x8 = 8, + e1000_bus_width_32, + e1000_bus_width_64, + e1000_bus_width_reserved +}; + +enum e1000_1000t_rx_status { + e1000_1000t_rx_status_not_ok = 0, + e1000_1000t_rx_status_ok, + e1000_1000t_rx_status_undefined = 0xFF +}; + +enum e1000_rev_polarity { + e1000_rev_polarity_normal = 0, + e1000_rev_polarity_reversed, + e1000_rev_polarity_undefined = 0xFF +}; + +enum e1000_fc_mode { + e1000_fc_none = 0, + e1000_fc_rx_pause, + e1000_fc_tx_pause, + e1000_fc_full, + e1000_fc_default = 0xFF +}; + +enum e1000_ffe_config { + e1000_ffe_config_enabled = 0, + e1000_ffe_config_active, + e1000_ffe_config_blocked +}; + +enum e1000_dsp_config { + e1000_dsp_config_disabled = 0, + e1000_dsp_config_enabled, + e1000_dsp_config_activated, + e1000_dsp_config_undefined = 0xFF +}; + +enum e1000_ms_type { + e1000_ms_hw_default = 0, + e1000_ms_force_master, + e1000_ms_force_slave, + e1000_ms_auto +}; + +enum e1000_smart_speed { + e1000_smart_speed_default = 0, + e1000_smart_speed_on, + e1000_smart_speed_off +}; + +enum e1000_serdes_link_state { + e1000_serdes_link_down = 0, + e1000_serdes_link_autoneg_progress, + e1000_serdes_link_autoneg_complete, + e1000_serdes_link_forced_up +}; + +#define __le16 u16 +#define __le32 u32 +#define __le64 u64 +/* Receive Descriptor */ +struct e1000_rx_desc { + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + __le16 length; /* Length of data DMAed into data buffer */ + __le16 csum; /* Packet checksum */ + u8 status; /* Descriptor status */ + u8 errors; /* Descriptor Errors */ + __le16 special; +}; + +/* Receive Descriptor - Extended */ +union e1000_rx_desc_extended { + struct { + __le64 buffer_addr; + __le64 reserved; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length; + __le16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ +}; + +#define MAX_PS_BUFFERS 4 + +/* Number of packet split data buffers (not including the header buffer) */ +#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1) + +/* Receive Descriptor - Packet Split */ +union e1000_rx_desc_packet_split { + struct { + /* one buffer for protocol header(s), three data buffers */ + __le64 buffer_addr[MAX_PS_BUFFERS]; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length0; /* length of buffer 0 */ + __le16 vlan; /* VLAN tag */ + } middle; + struct { + __le16 header_status; + /* length of buffers 1-3 */ + __le16 length[PS_PAGE_BUFFERS]; + } upper; + __le64 reserved; + } wb; /* writeback */ +}; + +/* Transmit Descriptor */ +struct e1000_tx_desc { + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 cso; /* Checksum offset */ + u8 cmd; /* Descriptor control */ + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 css; /* Checksum start */ + __le16 special; + } fields; + } upper; +}; + +/* Offload Context Descriptor */ +struct e1000_context_desc { + union { + __le32 ip_config; + struct { + u8 ipcss; /* IP checksum start */ + u8 ipcso; /* IP checksum offset */ + __le16 ipcse; /* IP checksum end */ + } ip_fields; + } lower_setup; + union { + __le32 tcp_config; + struct { + u8 tucss; /* TCP checksum start */ + u8 tucso; /* TCP checksum offset */ + __le16 tucse; /* TCP checksum end */ + } tcp_fields; + } upper_setup; + __le32 cmd_and_length; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 hdr_len; /* Header length */ + __le16 mss; /* Maximum segment size */ + } fields; + } tcp_seg_setup; +}; + +/* Offload data descriptor */ +struct e1000_data_desc { + __le64 buffer_addr; /* Address of the descriptor's buffer address */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 typ_len_ext; + u8 cmd; + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 popts; /* Packet Options */ + __le16 special; + } fields; + } upper; +}; + +/* Statistics counters collected by the MAC */ +struct e1000_hw_stats { + u64 crcerrs; + u64 algnerrc; + u64 symerrs; + u64 rxerrc; + u64 mpc; + u64 scc; + u64 ecol; + u64 mcc; + u64 latecol; + u64 colc; + u64 dc; + u64 tncrs; + u64 sec; + u64 cexterr; + u64 rlec; + u64 xonrxc; + u64 xontxc; + u64 xoffrxc; + u64 xofftxc; + u64 fcruc; + u64 prc64; + u64 prc127; + u64 prc255; + u64 prc511; + u64 prc1023; + u64 prc1522; + u64 gprc; + u64 bprc; + u64 mprc; + u64 gptc; + u64 gorc; + u64 gotc; + u64 rnbc; + u64 ruc; + u64 rfc; + u64 roc; + u64 rjc; + u64 mgprc; + u64 mgpdc; + u64 mgptc; + u64 tor; + u64 tot; + u64 tpr; + u64 tpt; + u64 ptc64; + u64 ptc127; + u64 ptc255; + u64 ptc511; + u64 ptc1023; + u64 ptc1522; + u64 mptc; + u64 bptc; + u64 tsctc; + u64 tsctfc; + u64 iac; + u64 icrxptc; + u64 icrxatc; + u64 ictxptc; + u64 ictxatc; + u64 ictxqec; + u64 ictxqmtc; + u64 icrxdmtc; + u64 icrxoc; + u64 cbtmpc; + u64 htdpmc; + u64 cbrdpc; + u64 cbrmpc; + u64 rpthc; + u64 hgptc; + u64 htcbdpc; + u64 hgorc; + u64 hgotc; + u64 lenerrs; + u64 scvpc; + u64 hrmpc; + u64 doosync; + u64 o2bgptc; + u64 o2bspc; + u64 b2ospc; + u64 b2ogprc; +}; + +struct e1000_vf_stats { + u64 base_gprc; + u64 base_gptc; + u64 base_gorc; + u64 base_gotc; + u64 base_mprc; + u64 base_gotlbc; + u64 base_gptlbc; + u64 base_gorlbc; + u64 base_gprlbc; + + u32 last_gprc; + u32 last_gptc; + u32 last_gorc; + u32 last_gotc; + u32 last_mprc; + u32 last_gotlbc; + u32 last_gptlbc; + u32 last_gorlbc; + u32 last_gprlbc; + + u64 gprc; + u64 gptc; + u64 gorc; + u64 gotc; + u64 mprc; + u64 gotlbc; + u64 gptlbc; + u64 gorlbc; + u64 gprlbc; +}; + +struct e1000_phy_stats { + u32 idle_errors; + u32 receive_errors; +}; + +struct e1000_host_mng_dhcp_cookie { + u32 signature; + u8 status; + u8 reserved0; + u16 vlan_id; + u32 reserved1; + u16 reserved2; + u8 reserved3; + u8 checksum; +}; + +/* Host Interface "Rev 1" */ +struct e1000_host_command_header { + u8 command_id; + u8 command_length; + u8 command_options; + u8 checksum; +}; + +#define E1000_HI_MAX_DATA_LENGTH 252 +struct e1000_host_command_info { + struct e1000_host_command_header command_header; + u8 command_data[E1000_HI_MAX_DATA_LENGTH]; +}; + +/* Host Interface "Rev 2" */ +struct e1000_host_mng_command_header { + u8 command_id; + u8 checksum; + u16 reserved1; + u16 reserved2; + u16 command_length; +}; + +#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 +struct e1000_host_mng_command_info { + struct e1000_host_mng_command_header command_header; + u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; +}; + +#include "e1000_mac.h" +#include "e1000_phy.h" +#include "e1000_nvm.h" +#include "e1000_manage.h" +#include "e1000_mbx.h" + +/* Function pointers for the MAC. */ +struct e1000_mac_operations { + s32 (*init_params)(struct e1000_hw *); + s32 (*id_led_init)(struct e1000_hw *); + s32 (*blink_led)(struct e1000_hw *); + bool (*check_mng_mode)(struct e1000_hw *); + s32 (*check_for_link)(struct e1000_hw *); + s32 (*cleanup_led)(struct e1000_hw *); + void (*clear_hw_cntrs)(struct e1000_hw *); + void (*clear_vfta)(struct e1000_hw *); + s32 (*get_bus_info)(struct e1000_hw *); + void (*set_lan_id)(struct e1000_hw *); + s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); + s32 (*led_on)(struct e1000_hw *); + s32 (*led_off)(struct e1000_hw *); + void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); + s32 (*reset_hw)(struct e1000_hw *); + s32 (*init_hw)(struct e1000_hw *); + void (*shutdown_serdes)(struct e1000_hw *); + void (*power_up_serdes)(struct e1000_hw *); + s32 (*setup_link)(struct e1000_hw *); + s32 (*setup_physical_interface)(struct e1000_hw *); + s32 (*setup_led)(struct e1000_hw *); + void (*write_vfta)(struct e1000_hw *, u32, u32); + void (*config_collision_dist)(struct e1000_hw *); + int (*rar_set)(struct e1000_hw *, u8*, u32); + s32 (*read_mac_addr)(struct e1000_hw *); + s32 (*validate_mdi_setting)(struct e1000_hw *); + s32 (*acquire_swfw_sync)(struct e1000_hw *, u16); + void (*release_swfw_sync)(struct e1000_hw *, u16); +}; + +/* When to use various PHY register access functions: + * + * Func Caller + * Function Does Does When to use + * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * X_reg L,P,A n/a for simple PHY reg accesses + * X_reg_locked P,A L for multiple accesses of different regs + * on different pages + * X_reg_page A L,P for multiple accesses of different regs + * on the same page + * + * Where X=[read|write], L=locking, P=sets page, A=register access + * + */ +struct e1000_phy_operations { + s32 (*init_params)(struct e1000_hw *); + s32 (*acquire)(struct e1000_hw *); + s32 (*cfg_on_link_up)(struct e1000_hw *); + s32 (*check_polarity)(struct e1000_hw *); + s32 (*check_reset_block)(struct e1000_hw *); + s32 (*commit)(struct e1000_hw *); + s32 (*force_speed_duplex)(struct e1000_hw *); + s32 (*get_cfg_done)(struct e1000_hw *hw); + s32 (*get_cable_length)(struct e1000_hw *); + s32 (*get_info)(struct e1000_hw *); + s32 (*set_page)(struct e1000_hw *, u16); + s32 (*read_reg)(struct e1000_hw *, u32, u16 *); + s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *); + s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *); + void (*release)(struct e1000_hw *); + s32 (*reset)(struct e1000_hw *); + s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); + s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); + s32 (*write_reg)(struct e1000_hw *, u32, u16); + s32 (*write_reg_locked)(struct e1000_hw *, u32, u16); + s32 (*write_reg_page)(struct e1000_hw *, u32, u16); + void (*power_up)(struct e1000_hw *); + void (*power_down)(struct e1000_hw *); + s32 (*read_i2c_byte)(struct e1000_hw *, u8, u8, u8 *); + s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8); +}; + +/* Function pointers for the NVM. */ +struct e1000_nvm_operations { + s32 (*init_params)(struct e1000_hw *); + s32 (*acquire)(struct e1000_hw *); + s32 (*read)(struct e1000_hw *, u16, u16, u16 *); + void (*release)(struct e1000_hw *); + void (*reload)(struct e1000_hw *); + s32 (*update)(struct e1000_hw *); + s32 (*valid_led_default)(struct e1000_hw *, u16 *); + s32 (*validate)(struct e1000_hw *); + s32 (*write)(struct e1000_hw *, u16, u16, u16 *); +}; + +struct e1000_mac_info { + struct e1000_mac_operations ops; + u8 addr[ETH_ADDR_LEN]; + u8 perm_addr[ETH_ADDR_LEN]; + + enum e1000_mac_type type; + + u32 collision_delta; + u32 ledctl_default; + u32 ledctl_mode1; + u32 ledctl_mode2; + u32 mc_filter_type; + u32 tx_packet_delta; + u32 txcw; + + u16 current_ifs_val; + u16 ifs_max_val; + u16 ifs_min_val; + u16 ifs_ratio; + u16 ifs_step_size; + u16 mta_reg_count; + u16 uta_reg_count; + + /* Maximum size of the MTA register table in all supported adapters */ +#define MAX_MTA_REG 128 + u32 mta_shadow[MAX_MTA_REG]; + u16 rar_entry_count; + + u8 forced_speed_duplex; + + bool adaptive_ifs; + bool has_fwsm; + bool arc_subsystem_valid; + bool asf_firmware_present; + bool autoneg; + bool autoneg_failed; + bool get_link_status; + bool in_ifs_mode; + bool report_tx_early; + enum e1000_serdes_link_state serdes_link_state; + bool serdes_has_link; + bool tx_pkt_filtering; +}; + +struct e1000_phy_info { + struct e1000_phy_operations ops; + enum e1000_phy_type type; + + enum e1000_1000t_rx_status local_rx; + enum e1000_1000t_rx_status remote_rx; + enum e1000_ms_type ms_type; + enum e1000_ms_type original_ms_type; + enum e1000_rev_polarity cable_polarity; + enum e1000_smart_speed smart_speed; + + u32 addr; + u32 id; + u32 reset_delay_us; /* in usec */ + u32 revision; + + enum e1000_media_type media_type; + + u16 autoneg_advertised; + u16 autoneg_mask; + u16 cable_length; + u16 max_cable_length; + u16 min_cable_length; + + u8 mdix; + + bool disable_polarity_correction; + bool is_mdix; + bool polarity_correction; + bool speed_downgraded; + bool autoneg_wait_to_complete; +}; + +struct e1000_nvm_info { + struct e1000_nvm_operations ops; + enum e1000_nvm_type type; + enum e1000_nvm_override override; + + u32 flash_bank_size; + u32 flash_base_addr; + + u16 word_size; + u16 delay_usec; + u16 address_bits; + u16 opcode_bits; + u16 page_size; +}; + +struct e1000_bus_info { + enum e1000_bus_type type; + enum e1000_bus_speed speed; + enum e1000_bus_width width; + + u16 func; + u16 pci_cmd_word; +}; + +struct e1000_fc_info { + u32 high_water; /* Flow control high-water mark */ + u32 low_water; /* Flow control low-water mark */ + u16 pause_time; /* Flow control pause timer */ + u16 refresh_time; /* Flow control refresh timer */ + bool send_xon; /* Flow control send XON */ + bool strict_ieee; /* Strict IEEE mode */ + enum e1000_fc_mode current_mode; /* FC mode in effect */ + enum e1000_fc_mode requested_mode; /* FC mode requested by caller */ +}; + +struct e1000_mbx_operations { + s32 (*init_params)(struct e1000_hw *hw); + s32 (*read)(struct e1000_hw *, u32 *, u16, u16); + s32 (*write)(struct e1000_hw *, u32 *, u16, u16); + s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16); + s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16); + s32 (*check_for_msg)(struct e1000_hw *, u16); + s32 (*check_for_ack)(struct e1000_hw *, u16); + s32 (*check_for_rst)(struct e1000_hw *, u16); +}; + +struct e1000_mbx_stats { + u32 msgs_tx; + u32 msgs_rx; + + u32 acks; + u32 reqs; + u32 rsts; +}; + +struct e1000_mbx_info { + struct e1000_mbx_operations ops; + struct e1000_mbx_stats stats; + u32 timeout; + u32 usec_delay; + u16 size; +}; + +struct e1000_dev_spec_82541 { + enum e1000_dsp_config dsp_config; + enum e1000_ffe_config ffe_config; + u16 spd_default; + bool phy_init_script; +}; + +struct e1000_dev_spec_82542 { + bool dma_fairness; +}; + +struct e1000_dev_spec_82543 { + u32 tbi_compatibility; + bool dma_fairness; + bool init_phy_disabled; +}; + +struct e1000_dev_spec_82571 { + bool laa_is_present; + u32 smb_counter; + E1000_MUTEX swflag_mutex; +}; + +struct e1000_dev_spec_80003es2lan { + bool mdic_wa_enable; +}; + +struct e1000_shadow_ram { + u16 value; + bool modified; +}; + +#define E1000_SHADOW_RAM_WORDS 2048 + +#ifdef ULP_SUPPORT +/* I218 PHY Ultra Low Power (ULP) states */ +enum e1000_ulp_state { + e1000_ulp_state_unknown, + e1000_ulp_state_off, + e1000_ulp_state_on, +}; + +#endif /* ULP_SUPPORT */ +struct e1000_dev_spec_ich8lan { + bool kmrn_lock_loss_workaround_enabled; + struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS]; + E1000_MUTEX nvm_mutex; + E1000_MUTEX swflag_mutex; + bool nvm_k1_enabled; + bool disable_k1_off; + bool eee_disable; + u16 eee_lp_ability; +#ifdef ULP_SUPPORT + enum e1000_ulp_state ulp_state; + bool ulp_capability_disabled; + bool during_suspend_flow; + bool during_dpg_exit; +#endif /* ULP_SUPPORT */ + u16 lat_enc; + u16 max_ltr_enc; + bool smbus_disable; +}; + +struct e1000_dev_spec_82575 { + bool sgmii_active; + bool global_device_reset; + bool eee_disable; + bool module_plugged; + bool clear_semaphore_once; + u32 mtu; + struct sfp_e1000_flags eth_flags; + u8 media_port; + bool media_changed; +}; + +struct e1000_dev_spec_vf { + u32 vf_number; + u32 v2p_mailbox; +}; + +struct e1000_hw { + void *back; + + u8 *hw_addr; + u8 *flash_address; + unsigned long io_base; + + struct e1000_mac_info mac; + struct e1000_fc_info fc; + struct e1000_phy_info phy; + struct e1000_nvm_info nvm; + struct e1000_bus_info bus; + struct e1000_mbx_info mbx; + struct e1000_host_mng_dhcp_cookie mng_cookie; + + union { + struct e1000_dev_spec_82541 _82541; + struct e1000_dev_spec_82542 _82542; + struct e1000_dev_spec_82543 _82543; + struct e1000_dev_spec_82571 _82571; + struct e1000_dev_spec_80003es2lan _80003es2lan; + struct e1000_dev_spec_ich8lan ich8lan; + struct e1000_dev_spec_82575 _82575; + struct e1000_dev_spec_vf vf; + } dev_spec; + + u16 device_id; + u16 subsystem_vendor_id; + u16 subsystem_device_id; + u16 vendor_id; + + u8 revision_id; +}; + +#include "e1000_82541.h" +#include "e1000_82543.h" +#include "e1000_82571.h" +#include "e1000_80003es2lan.h" +#include "e1000_ich8lan.h" +#include "e1000_82575.h" +#include "e1000_i210.h" + +/* These functions must be implemented by drivers */ +void e1000_pci_clear_mwi(struct e1000_hw *hw); +void e1000_pci_set_mwi(struct e1000_hw *hw); +s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); +s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); +void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); +void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); + +#endif diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_i210.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_i210.c new file mode 100644 index 00000000..277331c4 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_i210.c @@ -0,0 +1,1033 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#include "e1000_api.h" + + +STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw); +STATIC void e1000_release_nvm_i210(struct e1000_hw *hw); +STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw); +STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +STATIC s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw); +STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data); + +/** + * e1000_acquire_nvm_i210 - Request for access to EEPROM + * @hw: pointer to the HW structure + * + * Acquire the necessary semaphores for exclusive access to the EEPROM. + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_acquire_nvm_i210"); + + ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); + + return ret_val; +} + +/** + * e1000_release_nvm_i210 - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit, + * then release the semaphores acquired. + **/ +STATIC void e1000_release_nvm_i210(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_i210"); + + e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); +} + +/** + * e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Acquire the SW/FW semaphore to access the PHY or NVM. The mask + * will also specify which port we're acquiring the lock for. + **/ +s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + u32 swmask = mask; + u32 fwmask = mask << 16; + s32 ret_val = E1000_SUCCESS; + s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ + + DEBUGFUNC("e1000_acquire_swfw_sync_i210"); + + while (i < timeout) { + if (e1000_get_hw_semaphore_i210(hw)) { + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) + break; + + /* + * Firmware currently using resource (fwmask) + * or other software thread using resource (swmask) + */ + e1000_put_hw_semaphore_generic(hw); + msec_delay_irq(5); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync |= swmask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_release_swfw_sync_i210 - Release SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Release the SW/FW semaphore used to access the PHY or NVM. The mask + * will also specify which port we're releasing the lock for. + **/ +void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + + DEBUGFUNC("e1000_release_swfw_sync_i210"); + + while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS) + ; /* Empty */ + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + swfw_sync &= ~mask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); +} + +/** + * e1000_get_hw_semaphore_i210 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw) +{ + u32 swsm; + s32 timeout = hw->nvm.word_size + 1; + s32 i = 0; + + DEBUGFUNC("e1000_get_hw_semaphore_i210"); + + /* Get the SW semaphore */ + while (i < timeout) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + usec_delay(50); + i++; + } + + if (i == timeout) { + /* In rare circumstances, the SW semaphore may already be held + * unintentionally. Clear the semaphore once before giving up. + */ + if (hw->dev_spec._82575.clear_semaphore_once) { + hw->dev_spec._82575.clear_semaphore_once = false; + e1000_put_hw_semaphore_generic(hw); + for (i = 0; i < timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + usec_delay(50); + } + } + + /* If we do not have the semaphore here, we have to give up. */ + if (i == timeout) { + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_NVM; + } + } + + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) + break; + + usec_delay(50); + } + + if (i == timeout) { + /* Release semaphores */ + e1000_put_hw_semaphore_generic(hw); + DEBUGOUT("Driver can't access the NVM\n"); + return -E1000_ERR_NVM; + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register + * @hw: pointer to the HW structure + * @offset: offset of word in the Shadow Ram to read + * @words: number of words to read + * @data: word read from the Shadow Ram + * + * Reads a 16 bit word from the Shadow Ram using the EERD register. + * Uses necessary synchronization semaphores. + **/ +s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + s32 status = E1000_SUCCESS; + u16 i, count; + + DEBUGFUNC("e1000_read_nvm_srrd_i210"); + + /* We cannot hold synchronization semaphores for too long, + * because of forceful takeover procedure. However it is more efficient + * to read in bursts than synchronizing access for each word. */ + for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { + count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? + E1000_EERD_EEWR_MAX_COUNT : (words - i); + if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { + status = e1000_read_nvm_eerd(hw, offset, count, + data + i); + hw->nvm.ops.release(hw); + } else { + status = E1000_ERR_SWFW_SYNC; + } + + if (status != E1000_SUCCESS) + break; + } + + return status; +} + +/** + * e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR + * @hw: pointer to the HW structure + * @offset: offset within the Shadow RAM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the Shadow RAM + * + * Writes data to Shadow RAM at offset using EEWR register. + * + * If e1000_update_nvm_checksum is not called after this function , the + * data will not be committed to FLASH and also Shadow RAM will most likely + * contain an invalid checksum. + * + * If error code is returned, data and Shadow RAM may be inconsistent - buffer + * partially written. + **/ +s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + s32 status = E1000_SUCCESS; + u16 i, count; + + DEBUGFUNC("e1000_write_nvm_srwr_i210"); + + /* We cannot hold synchronization semaphores for too long, + * because of forceful takeover procedure. However it is more efficient + * to write in bursts than synchronizing access for each word. */ + for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { + count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? + E1000_EERD_EEWR_MAX_COUNT : (words - i); + if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { + status = e1000_write_nvm_srwr(hw, offset, count, + data + i); + hw->nvm.ops.release(hw); + } else { + status = E1000_ERR_SWFW_SYNC; + } + + if (status != E1000_SUCCESS) + break; + } + + return status; +} + +/** + * e1000_write_nvm_srwr - Write to Shadow Ram using EEWR + * @hw: pointer to the HW structure + * @offset: offset within the Shadow Ram to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the Shadow Ram + * + * Writes data to Shadow Ram at offset using EEWR register. + * + * If e1000_update_nvm_checksum is not called after this function , the + * Shadow Ram will most likely contain an invalid checksum. + **/ +STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, k, eewr = 0; + u32 attempts = 100000; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_nvm_srwr"); + + /* + * A check for invalid values: offset too large, too many words, + * too many words for the offset, and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + for (i = 0; i < words; i++) { + eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | + (data[i] << E1000_NVM_RW_REG_DATA) | + E1000_NVM_RW_REG_START; + + E1000_WRITE_REG(hw, E1000_SRWR, eewr); + + for (k = 0; k < attempts; k++) { + if (E1000_NVM_RW_REG_DONE & + E1000_READ_REG(hw, E1000_SRWR)) { + ret_val = E1000_SUCCESS; + break; + } + usec_delay(5); + } + + if (ret_val != E1000_SUCCESS) { + DEBUGOUT("Shadow RAM write EEWR timed out\n"); + break; + } + } + +out: + return ret_val; +} + +/** e1000_read_invm_word_i210 - Reads OTP + * @hw: pointer to the HW structure + * @address: the word address (aka eeprom offset) to read + * @data: pointer to the data read + * + * Reads 16-bit words from the OTP. Return error when the word is not + * stored in OTP. + **/ +STATIC s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data) +{ + s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; + u32 invm_dword; + u16 i; + u8 record_type, word_address; + + DEBUGFUNC("e1000_read_invm_word_i210"); + + for (i = 0; i < E1000_INVM_SIZE; i++) { + invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); + /* Get record type */ + record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); + if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) + break; + if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) + i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; + if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) + i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; + if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { + word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); + if (word_address == address) { + *data = INVM_DWORD_TO_WORD_DATA(invm_dword); + DEBUGOUT2("Read INVM Word 0x%02x = %x", + address, *data); + status = E1000_SUCCESS; + break; + } + } + } + if (status != E1000_SUCCESS) + DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address); + return status; +} + +/** e1000_read_invm_i210 - Read invm wrapper function for I210/I211 + * @hw: pointer to the HW structure + * @address: the word address (aka eeprom offset) to read + * @data: pointer to the data read + * + * Wrapper function to return data formerly found in the NVM. + **/ +STATIC s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset, + u16 E1000_UNUSEDARG words, u16 *data) +{ + s32 ret_val = E1000_SUCCESS; + UNREFERENCED_1PARAMETER(words); + + DEBUGFUNC("e1000_read_invm_i210"); + + /* Only the MAC addr is required to be present in the iNVM */ + switch (offset) { + case NVM_MAC_ADDR: + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]); + ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1, + &data[1]); + ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2, + &data[2]); + if (ret_val != E1000_SUCCESS) + DEBUGOUT("MAC Addr not found in iNVM\n"); + break; + case NVM_INIT_CTRL_2: + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_INIT_CTRL_2_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } + break; + case NVM_INIT_CTRL_4: + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_INIT_CTRL_4_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } + break; + case NVM_LED_1_CFG: + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_LED_1_CFG_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } + break; + case NVM_LED_0_2_CFG: + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_LED_0_2_CFG_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } + break; + case NVM_ID_LED_SETTINGS: + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = ID_LED_RESERVED_FFFF; + ret_val = E1000_SUCCESS; + } + break; + case NVM_SUB_DEV_ID: + *data = hw->subsystem_device_id; + break; + case NVM_SUB_VEN_ID: + *data = hw->subsystem_vendor_id; + break; + case NVM_DEV_ID: + *data = hw->device_id; + break; + case NVM_VEN_ID: + *data = hw->vendor_id; + break; + default: + DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset); + *data = NVM_RESERVED_WORD; + break; + } + return ret_val; +} + +/** + * e1000_read_invm_version - Reads iNVM version and image type + * @hw: pointer to the HW structure + * @invm_ver: version structure for the version read + * + * Reads iNVM version and image type. + **/ +s32 e1000_read_invm_version(struct e1000_hw *hw, + struct e1000_fw_version *invm_ver) +{ + u32 *record = NULL; + u32 *next_record = NULL; + u32 i = 0; + u32 invm_dword = 0; + u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE / + E1000_INVM_RECORD_SIZE_IN_BYTES); + u32 buffer[E1000_INVM_SIZE]; + s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; + u16 version = 0; + + DEBUGFUNC("e1000_read_invm_version"); + + /* Read iNVM memory */ + for (i = 0; i < E1000_INVM_SIZE; i++) { + invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); + buffer[i] = invm_dword; + } + + /* Read version number */ + for (i = 1; i < invm_blocks; i++) { + record = &buffer[invm_blocks - i]; + next_record = &buffer[invm_blocks - i + 1]; + + /* Check if we have first version location used */ + if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) { + version = 0; + status = E1000_SUCCESS; + break; + } + /* Check if we have second version location used */ + else if ((i == 1) && + ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) { + version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; + status = E1000_SUCCESS; + break; + } + /* + * Check if we have odd version location + * used and it is the last one used + */ + else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) && + ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) && + (i != 1))) { + version = (*next_record & E1000_INVM_VER_FIELD_TWO) + >> 13; + status = E1000_SUCCESS; + break; + } + /* + * Check if we have even version location + * used and it is the last one used + */ + else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) && + ((*record & 0x3) == 0)) { + version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; + status = E1000_SUCCESS; + break; + } + } + + if (status == E1000_SUCCESS) { + invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK) + >> E1000_INVM_MAJOR_SHIFT; + invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK; + } + /* Read Image Type */ + for (i = 1; i < invm_blocks; i++) { + record = &buffer[invm_blocks - i]; + next_record = &buffer[invm_blocks - i + 1]; + + /* Check if we have image type in first location used */ + if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) { + invm_ver->invm_img_type = 0; + status = E1000_SUCCESS; + break; + } + /* Check if we have image type in first location used */ + else if ((((*record & 0x3) == 0) && + ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) || + ((((*record & 0x3) != 0) && (i != 1)))) { + invm_ver->invm_img_type = + (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23; + status = E1000_SUCCESS; + break; + } + } + return status; +} + +/** + * e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw) +{ + s32 status = E1000_SUCCESS; + s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *); + + DEBUGFUNC("e1000_validate_nvm_checksum_i210"); + + if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { + + /* + * Replace the read function with semaphore grabbing with + * the one that skips this for a while. + * We have semaphore taken already here. + */ + read_op_ptr = hw->nvm.ops.read; + hw->nvm.ops.read = e1000_read_nvm_eerd; + + status = e1000_validate_nvm_checksum_generic(hw); + + /* Revert original read operation. */ + hw->nvm.ops.read = read_op_ptr; + + hw->nvm.ops.release(hw); + } else { + status = E1000_ERR_SWFW_SYNC; + } + + return status; +} + + +/** + * e1000_update_nvm_checksum_i210 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. Next commit EEPROM data onto the Flash. + **/ +s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_update_nvm_checksum_i210"); + + /* + * Read the first word from the EEPROM. If this times out or fails, do + * not continue or we could be in for a very long wait while every + * EEPROM read fails + */ + ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data); + if (ret_val != E1000_SUCCESS) { + DEBUGOUT("EEPROM read failed\n"); + goto out; + } + + if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { + /* + * Do not use hw->nvm.ops.write, hw->nvm.ops.read + * because we do not want to take the synchronization + * semaphores twice here. + */ + + for (i = 0; i < NVM_CHECKSUM_REG; i++) { + ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data); + if (ret_val) { + hw->nvm.ops.release(hw); + DEBUGOUT("NVM Read Error while updating checksum.\n"); + goto out; + } + checksum += nvm_data; + } + checksum = (u16) NVM_SUM - checksum; + ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, + &checksum); + if (ret_val != E1000_SUCCESS) { + hw->nvm.ops.release(hw); + DEBUGOUT("NVM Write Error while updating checksum.\n"); + goto out; + } + + hw->nvm.ops.release(hw); + + ret_val = e1000_update_flash_i210(hw); + } else { + ret_val = E1000_ERR_SWFW_SYNC; + } +out: + return ret_val; +} + +/** + * e1000_get_flash_presence_i210 - Check if flash device is detected. + * @hw: pointer to the HW structure + * + **/ +bool e1000_get_flash_presence_i210(struct e1000_hw *hw) +{ + u32 eec = 0; + bool ret_val = false; + + DEBUGFUNC("e1000_get_flash_presence_i210"); + + eec = E1000_READ_REG(hw, E1000_EECD); + + if (eec & E1000_EECD_FLASH_DETECTED_I210) + ret_val = true; + + return ret_val; +} + +/** + * e1000_update_flash_i210 - Commit EEPROM to the flash + * @hw: pointer to the HW structure + * + **/ +s32 e1000_update_flash_i210(struct e1000_hw *hw) +{ + s32 ret_val; + u32 flup; + + DEBUGFUNC("e1000_update_flash_i210"); + + ret_val = e1000_pool_flash_update_done_i210(hw); + if (ret_val == -E1000_ERR_NVM) { + DEBUGOUT("Flash update time out\n"); + goto out; + } + + flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210; + E1000_WRITE_REG(hw, E1000_EECD, flup); + + ret_val = e1000_pool_flash_update_done_i210(hw); + if (ret_val == E1000_SUCCESS) + DEBUGOUT("Flash update complete\n"); + else + DEBUGOUT("Flash update time out\n"); + +out: + return ret_val; +} + +/** + * e1000_pool_flash_update_done_i210 - Pool FLUDONE status. + * @hw: pointer to the HW structure + * + **/ +s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw) +{ + s32 ret_val = -E1000_ERR_NVM; + u32 i, reg; + + DEBUGFUNC("e1000_pool_flash_update_done_i210"); + + for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { + reg = E1000_READ_REG(hw, E1000_EECD); + if (reg & E1000_EECD_FLUDONE_I210) { + ret_val = E1000_SUCCESS; + break; + } + usec_delay(5); + } + + return ret_val; +} + +/** + * e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers + * @hw: pointer to the HW structure + * + * Initialize the i210/i211 NVM parameters and function pointers. + **/ +STATIC s32 e1000_init_nvm_params_i210(struct e1000_hw *hw) +{ + s32 ret_val; + struct e1000_nvm_info *nvm = &hw->nvm; + + DEBUGFUNC("e1000_init_nvm_params_i210"); + + ret_val = e1000_init_nvm_params_82575(hw); + nvm->ops.acquire = e1000_acquire_nvm_i210; + nvm->ops.release = e1000_release_nvm_i210; + nvm->ops.valid_led_default = e1000_valid_led_default_i210; + if (e1000_get_flash_presence_i210(hw)) { + hw->nvm.type = e1000_nvm_flash_hw; + nvm->ops.read = e1000_read_nvm_srrd_i210; + nvm->ops.write = e1000_write_nvm_srwr_i210; + nvm->ops.validate = e1000_validate_nvm_checksum_i210; + nvm->ops.update = e1000_update_nvm_checksum_i210; + } else { + hw->nvm.type = e1000_nvm_invm; + nvm->ops.read = e1000_read_invm_i210; + nvm->ops.write = e1000_null_write_nvm; + nvm->ops.validate = e1000_null_ops_generic; + nvm->ops.update = e1000_null_ops_generic; + } + return ret_val; +} + +/** + * e1000_init_function_pointers_i210 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_i210(struct e1000_hw *hw) +{ + e1000_init_function_pointers_82575(hw); + hw->nvm.ops.init_params = e1000_init_nvm_params_i210; + + return; +} + +/** + * e1000_valid_led_default_i210 - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_i210"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { + switch (hw->phy.media_type) { + case e1000_media_type_internal_serdes: + *data = ID_LED_DEFAULT_I210_SERDES; + break; + case e1000_media_type_copper: + default: + *data = ID_LED_DEFAULT_I210; + break; + } + } +out: + return ret_val; +} + +/** + * __e1000_access_xmdio_reg - Read/write XMDIO register + * @hw: pointer to the HW structure + * @address: XMDIO address to program + * @dev_addr: device address to program + * @data: pointer to value to read/write from/to the XMDIO address + * @read: boolean flag to indicate read or write + **/ +STATIC s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address, + u8 dev_addr, u16 *data, bool read) +{ + s32 ret_val; + + DEBUGFUNC("__e1000_access_xmdio_reg"); + + ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA | + dev_addr); + if (ret_val) + return ret_val; + + if (read) + ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data); + else + ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data); + if (ret_val) + return ret_val; + + /* Recalibrate the device back to 0 */ + ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0); + if (ret_val) + return ret_val; + + return ret_val; +} + +/** + * e1000_read_xmdio_reg - Read XMDIO register + * @hw: pointer to the HW structure + * @addr: XMDIO address to program + * @dev_addr: device address to program + * @data: value to be read from the EMI address + **/ +s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data) +{ + DEBUGFUNC("e1000_read_xmdio_reg"); + + return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, true); +} + +/** + * e1000_write_xmdio_reg - Write XMDIO register + * @hw: pointer to the HW structure + * @addr: XMDIO address to program + * @dev_addr: device address to program + * @data: value to be written to the XMDIO address + **/ +s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data) +{ + DEBUGFUNC("e1000_read_xmdio_reg"); + + return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, false); +} + +/** + * e1000_pll_workaround_i210 + * @hw: pointer to the HW structure + * + * Works around an errata in the PLL circuit where it occasionally + * provides the wrong clock frequency after power up. + **/ +STATIC s32 e1000_pll_workaround_i210(struct e1000_hw *hw) +{ + s32 ret_val; + u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val; + u16 nvm_word, phy_word, pci_word, tmp_nvm; + int i; + + /* Get and set needed register values */ + wuc = E1000_READ_REG(hw, E1000_WUC); + mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); + reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO; + E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val); + + /* Get data from NVM, or set default */ + ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD, + &nvm_word); + if (ret_val != E1000_SUCCESS) + nvm_word = E1000_INVM_DEFAULT_AL; + tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL; + for (i = 0; i < E1000_MAX_PLL_TRIES; i++) { + /* check current state directly from internal PHY */ + e1000_read_phy_reg_gs40g(hw, (E1000_PHY_PLL_FREQ_PAGE | + E1000_PHY_PLL_FREQ_REG), &phy_word); + if ((phy_word & E1000_PHY_PLL_UNCONF) + != E1000_PHY_PLL_UNCONF) { + ret_val = E1000_SUCCESS; + break; + } else { + ret_val = -E1000_ERR_PHY; + } + /* directly reset the internal PHY */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl|E1000_CTRL_PHY_RST); + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + E1000_WRITE_REG(hw, E1000_WUC, 0); + reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16); + E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val); + + e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); + pci_word |= E1000_PCI_PMCSR_D3; + e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); + msec_delay(1); + pci_word &= ~E1000_PCI_PMCSR_D3; + e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); + reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16); + E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val); + + /* restore WUC register */ + E1000_WRITE_REG(hw, E1000_WUC, wuc); + } + /* restore MDICNFG setting */ + E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); + return ret_val; +} + +/** + * e1000_get_cfg_done_i210 - Read config done bit + * @hw: pointer to the HW structure + * + * Read the management control register for the config done bit for + * completion status. NOTE: silicon which is EEPROM-less will fail trying + * to read the config done bit, so an error is *ONLY* logged and returns + * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon + * would not be able to be reset or change link. + **/ +STATIC s32 e1000_get_cfg_done_i210(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + u32 mask = E1000_NVM_CFG_DONE_PORT_0; + + DEBUGFUNC("e1000_get_cfg_done_i210"); + + while (timeout) { + if (E1000_READ_REG(hw, E1000_EEMNGCTL_I210) & mask) + break; + msec_delay(1); + timeout--; + } + if (!timeout) + DEBUGOUT("MNG configuration cycle has not completed.\n"); + + return E1000_SUCCESS; +} + +/** + * e1000_init_hw_i210 - Init hw for I210/I211 + * @hw: pointer to the HW structure + * + * Called to initialize hw for i210 hw family. + **/ +s32 e1000_init_hw_i210(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_init_hw_i210"); + if ((hw->mac.type >= e1000_i210) && + !(e1000_get_flash_presence_i210(hw))) { + ret_val = e1000_pll_workaround_i210(hw); + if (ret_val != E1000_SUCCESS) + return ret_val; + } + hw->phy.ops.get_cfg_done = e1000_get_cfg_done_i210; + ret_val = e1000_init_hw_82575(hw); + return ret_val; +} diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_i210.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_i210.h new file mode 100644 index 00000000..1a6f1dd4 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_i210.h @@ -0,0 +1,110 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_I210_H_ +#define _E1000_I210_H_ + +bool e1000_get_flash_presence_i210(struct e1000_hw *hw); +s32 e1000_update_flash_i210(struct e1000_hw *hw); +s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw); +s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw); +s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_read_invm_version(struct e1000_hw *hw, + struct e1000_fw_version *invm_ver); +s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask); +void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask); +s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, + u16 *data); +s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, + u16 data); +s32 e1000_init_hw_i210(struct e1000_hw *hw); + +#define E1000_STM_OPCODE 0xDB00 +#define E1000_EEPROM_FLASH_SIZE_WORD 0x11 + +#define INVM_DWORD_TO_RECORD_TYPE(invm_dword) \ + (u8)((invm_dword) & 0x7) +#define INVM_DWORD_TO_WORD_ADDRESS(invm_dword) \ + (u8)(((invm_dword) & 0x0000FE00) >> 9) +#define INVM_DWORD_TO_WORD_DATA(invm_dword) \ + (u16)(((invm_dword) & 0xFFFF0000) >> 16) + +enum E1000_INVM_STRUCTURE_TYPE { + E1000_INVM_UNINITIALIZED_STRUCTURE = 0x00, + E1000_INVM_WORD_AUTOLOAD_STRUCTURE = 0x01, + E1000_INVM_CSR_AUTOLOAD_STRUCTURE = 0x02, + E1000_INVM_PHY_REGISTER_AUTOLOAD_STRUCTURE = 0x03, + E1000_INVM_RSA_KEY_SHA256_STRUCTURE = 0x04, + E1000_INVM_INVALIDATED_STRUCTURE = 0x0F, +}; + +#define E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS 8 +#define E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS 1 +#define E1000_INVM_ULT_BYTES_SIZE 8 +#define E1000_INVM_RECORD_SIZE_IN_BYTES 4 +#define E1000_INVM_VER_FIELD_ONE 0x1FF8 +#define E1000_INVM_VER_FIELD_TWO 0x7FE000 +#define E1000_INVM_IMGTYPE_FIELD 0x1F800000 + +#define E1000_INVM_MAJOR_MASK 0x3F0 +#define E1000_INVM_MINOR_MASK 0xF +#define E1000_INVM_MAJOR_SHIFT 4 + +#define ID_LED_DEFAULT_I210 ((ID_LED_OFF1_ON2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_OFF1_OFF2)) +#define ID_LED_DEFAULT_I210_SERDES ((ID_LED_DEF1_DEF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_OFF1_ON2)) + +/* NVM offset defaults for I211 devices */ +#define NVM_INIT_CTRL_2_DEFAULT_I211 0X7243 +#define NVM_INIT_CTRL_4_DEFAULT_I211 0x00C1 +#define NVM_LED_1_CFG_DEFAULT_I211 0x0184 +#define NVM_LED_0_2_CFG_DEFAULT_I211 0x200C + +/* PLL Defines */ +#define E1000_PCI_PMCSR 0x44 +#define E1000_PCI_PMCSR_D3 0x03 +#define E1000_MAX_PLL_TRIES 5 +#define E1000_PHY_PLL_UNCONF 0xFF +#define E1000_PHY_PLL_FREQ_PAGE 0xFC0000 +#define E1000_PHY_PLL_FREQ_REG 0x000E +#define E1000_INVM_DEFAULT_AL 0x202F +#define E1000_INVM_AUTOLOAD 0x0A +#define E1000_INVM_PLL_WO_VAL 0x0010 + +#endif diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_ich8lan.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_ich8lan.c new file mode 100644 index 00000000..92ab6fc6 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_ich8lan.c @@ -0,0 +1,6125 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +/* 82562G 10/100 Network Connection + * 82562G-2 10/100 Network Connection + * 82562GT 10/100 Network Connection + * 82562GT-2 10/100 Network Connection + * 82562V 10/100 Network Connection + * 82562V-2 10/100 Network Connection + * 82566DC-2 Gigabit Network Connection + * 82566DC Gigabit Network Connection + * 82566DM-2 Gigabit Network Connection + * 82566DM Gigabit Network Connection + * 82566MC Gigabit Network Connection + * 82566MM Gigabit Network Connection + * 82567LM Gigabit Network Connection + * 82567LF Gigabit Network Connection + * 82567V Gigabit Network Connection + * 82567LM-2 Gigabit Network Connection + * 82567LF-2 Gigabit Network Connection + * 82567V-2 Gigabit Network Connection + * 82567LF-3 Gigabit Network Connection + * 82567LM-3 Gigabit Network Connection + * 82567LM-4 Gigabit Network Connection + * 82577LM Gigabit Network Connection + * 82577LC Gigabit Network Connection + * 82578DM Gigabit Network Connection + * 82578DC Gigabit Network Connection + * 82579LM Gigabit Network Connection + * 82579V Gigabit Network Connection + * Ethernet Connection I217-LM + * Ethernet Connection I217-V + * Ethernet Connection I218-V + * Ethernet Connection I218-LM + * Ethernet Connection (2) I218-LM + * Ethernet Connection (2) I218-V + * Ethernet Connection (3) I218-LM + * Ethernet Connection (3) I218-V + */ + +#include "e1000_api.h" + +STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); +STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw); +STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw); +STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw); +STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); +STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); +STATIC int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); +STATIC int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); +STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw); +#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT +STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, + u8 *mc_addr_list, + u32 mc_addr_count); +#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */ +STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); +STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, + bool active); +STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, + bool active); +STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +STATIC s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw); +STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, + u16 *data); +STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); +STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); +STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); +STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw); +STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); +STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw); +STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw); +STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); +STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8 *data); +STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16 *data); +STATIC s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, + u32 *data); +STATIC s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, + u32 offset, u32 *data); +STATIC s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, + u32 offset, u32 data); +STATIC s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, + u32 offset, u32 dword); +STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, + u32 offset, u16 *data); +STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8 byte); +STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); +STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw); +STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); +STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw); +STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); + +/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ +/* Offset 04h HSFSTS */ +union ich8_hws_flash_status { + struct ich8_hsfsts { + u16 flcdone:1; /* bit 0 Flash Cycle Done */ + u16 flcerr:1; /* bit 1 Flash Cycle Error */ + u16 dael:1; /* bit 2 Direct Access error Log */ + u16 berasesz:2; /* bit 4:3 Sector Erase Size */ + u16 flcinprog:1; /* bit 5 flash cycle in Progress */ + u16 reserved1:2; /* bit 13:6 Reserved */ + u16 reserved2:6; /* bit 13:6 Reserved */ + u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ + u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ + } hsf_status; + u16 regval; +}; + +/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ +/* Offset 06h FLCTL */ +union ich8_hws_flash_ctrl { + struct ich8_hsflctl { + u16 flcgo:1; /* 0 Flash Cycle Go */ + u16 flcycle:2; /* 2:1 Flash Cycle */ + u16 reserved:5; /* 7:3 Reserved */ + u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ + u16 flockdn:6; /* 15:10 Reserved */ + } hsf_ctrl; + u16 regval; +}; + +/* ICH Flash Region Access Permissions */ +union ich8_hws_flash_regacc { + struct ich8_flracc { + u32 grra:8; /* 0:7 GbE region Read Access */ + u32 grwa:8; /* 8:15 GbE region Write Access */ + u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ + u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ + } hsf_flregacc; + u16 regval; +}; + +/** + * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers + * @hw: pointer to the HW structure + * + * Test access to the PHY registers by reading the PHY ID registers. If + * the PHY ID is already known (e.g. resume path) compare it with known ID, + * otherwise assume the read PHY ID is correct if it is valid. + * + * Assumes the sw/fw/hw semaphore is already acquired. + **/ +STATIC bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) +{ + u16 phy_reg = 0; + u32 phy_id = 0; + s32 ret_val = 0; + u16 retry_count; + u32 mac_reg = 0; + + for (retry_count = 0; retry_count < 2; retry_count++) { + ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg); + if (ret_val || (phy_reg == 0xFFFF)) + continue; + phy_id = (u32)(phy_reg << 16); + + ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg); + if (ret_val || (phy_reg == 0xFFFF)) { + phy_id = 0; + continue; + } + phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); + break; + } + + if (hw->phy.id) { + if (hw->phy.id == phy_id) + goto out; + } else if (phy_id) { + hw->phy.id = phy_id; + hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); + goto out; + } + + /* In case the PHY needs to be in mdio slow mode, + * set slow mode and try to get the PHY id again. + */ + if (hw->mac.type < e1000_pch_lpt) { + hw->phy.ops.release(hw); + ret_val = e1000_set_mdio_slow_mode_hv(hw); + if (!ret_val) + ret_val = e1000_get_phy_id(hw); + hw->phy.ops.acquire(hw); + } + + if (ret_val) + return false; +out: + if (hw->mac.type >= e1000_pch_lpt) { + /* Only unforce SMBus if ME is not active */ + if (!(E1000_READ_REG(hw, E1000_FWSM) & + E1000_ICH_FWSM_FW_VALID)) { + /* Unforce SMBus mode in PHY */ + hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg); + phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; + hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg); + + /* Unforce SMBus mode in MAC */ + mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); + } + } + + return true; +} + +/** + * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value + * @hw: pointer to the HW structure + * + * Toggling the LANPHYPC pin value fully power-cycles the PHY and is + * used to reset the PHY to a quiescent state when necessary. + **/ +STATIC void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) +{ + u32 mac_reg; + + DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt"); + + /* Set Phy Config Counter to 50msec */ + mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3); + mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; + mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; + E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg); + + /* Toggle LANPHYPC Value bit */ + mac_reg = E1000_READ_REG(hw, E1000_CTRL); + mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; + mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; + E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; + E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); + E1000_WRITE_FLUSH(hw); + + if (hw->mac.type < e1000_pch_lpt) { + msec_delay(50); + } else { + u16 count = 20; + + do { + msec_delay(5); + } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) & + E1000_CTRL_EXT_LPCD) && count--); + + msec_delay(30); + } +} + +/** + * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds + * @hw: pointer to the HW structure + * + * Workarounds/flow necessary for PHY initialization during driver load + * and resume paths. + **/ +STATIC s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) +{ + u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM); + s32 ret_val; + + DEBUGFUNC("e1000_init_phy_workarounds_pchlan"); + + /* Gate automatic PHY configuration by hardware on managed and + * non-managed 82579 and newer adapters. + */ + e1000_gate_hw_phy_config_ich8lan(hw, true); + +#ifdef ULP_SUPPORT + /* It is not possible to be certain of the current state of ULP + * so forcibly disable it. + */ + hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; + +#endif /* ULP_SUPPORT */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) { + DEBUGOUT("Failed to initialize PHY flow\n"); + goto out; + } + + /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is + * inaccessible and resetting the PHY is not blocked, toggle the + * LANPHYPC Value bit to force the interconnect to PCIe mode. + */ + switch (hw->mac.type) { + case e1000_pch_lpt: + case e1000_pch_spt: + case e1000_pch_cnp: + if (e1000_phy_is_accessible_pchlan(hw)) + break; + + /* Before toggling LANPHYPC, see if PHY is accessible by + * forcing MAC to SMBus mode first. + */ + mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); + + /* Wait 50 milliseconds for MAC to finish any retries + * that it might be trying to perform from previous + * attempts to acknowledge any phy read requests. + */ + msec_delay(50); + + /* fall-through */ + case e1000_pch2lan: + if (e1000_phy_is_accessible_pchlan(hw)) + break; + + /* fall-through */ + case e1000_pchlan: + if ((hw->mac.type == e1000_pchlan) && + (fwsm & E1000_ICH_FWSM_FW_VALID)) + break; + + if (hw->phy.ops.check_reset_block(hw)) { + DEBUGOUT("Required LANPHYPC toggle blocked by ME\n"); + ret_val = -E1000_ERR_PHY; + break; + } + + /* Toggle LANPHYPC Value bit */ + e1000_toggle_lanphypc_pch_lpt(hw); + if (hw->mac.type >= e1000_pch_lpt) { + if (e1000_phy_is_accessible_pchlan(hw)) + break; + + /* Toggling LANPHYPC brings the PHY out of SMBus mode + * so ensure that the MAC is also out of SMBus mode + */ + mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); + + if (e1000_phy_is_accessible_pchlan(hw)) + break; + + ret_val = -E1000_ERR_PHY; + } + break; + default: + break; + } + + hw->phy.ops.release(hw); + if (!ret_val) { + + /* Check to see if able to reset PHY. Print error if not */ + if (hw->phy.ops.check_reset_block(hw)) { + ERROR_REPORT("Reset blocked by ME\n"); + goto out; + } + + /* Reset the PHY before any access to it. Doing so, ensures + * that the PHY is in a known good state before we read/write + * PHY registers. The generic reset is sufficient here, + * because we haven't determined the PHY type yet. + */ + ret_val = e1000_phy_hw_reset_generic(hw); + if (ret_val) + goto out; + + /* On a successful reset, possibly need to wait for the PHY + * to quiesce to an accessible state before returning control + * to the calling function. If the PHY does not quiesce, then + * return E1000E_BLK_PHY_RESET, as this is the condition that + * the PHY is in. + */ + ret_val = hw->phy.ops.check_reset_block(hw); + if (ret_val) + ERROR_REPORT("ME blocked access to PHY after reset\n"); + } + +out: + /* Ungate automatic PHY configuration on non-managed 82579 */ + if ((hw->mac.type == e1000_pch2lan) && + !(fwsm & E1000_ICH_FWSM_FW_VALID)) { + msec_delay(10); + e1000_gate_hw_phy_config_ich8lan(hw, false); + } + + return ret_val; +} + +/** + * e1000_init_phy_params_pchlan - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific PHY parameters and function pointers. + **/ +STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + + DEBUGFUNC("e1000_init_phy_params_pchlan"); + + phy->addr = 1; + phy->reset_delay_us = 100; + + phy->ops.acquire = e1000_acquire_swflag_ich8lan; + phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; + phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; + phy->ops.set_page = e1000_set_page_igp; + phy->ops.read_reg = e1000_read_phy_reg_hv; + phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; + phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; + phy->ops.release = e1000_release_swflag_ich8lan; + phy->ops.reset = e1000_phy_hw_reset_ich8lan; + phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; + phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; + phy->ops.write_reg = e1000_write_phy_reg_hv; + phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; + phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + + phy->id = e1000_phy_unknown; + + ret_val = e1000_init_phy_workarounds_pchlan(hw); + if (ret_val) + return ret_val; + + if (phy->id == e1000_phy_unknown) + switch (hw->mac.type) { + default: + ret_val = e1000_get_phy_id(hw); + if (ret_val) + return ret_val; + if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) + break; + /* fall-through */ + case e1000_pch2lan: + case e1000_pch_lpt: + case e1000_pch_spt: + case e1000_pch_cnp: + /* In case the PHY needs to be in mdio slow mode, + * set slow mode and try to get the PHY id again. + */ + ret_val = e1000_set_mdio_slow_mode_hv(hw); + if (ret_val) + return ret_val; + ret_val = e1000_get_phy_id(hw); + if (ret_val) + return ret_val; + break; + } + phy->type = e1000_get_phy_type_from_id(phy->id); + + switch (phy->type) { + case e1000_phy_82577: + case e1000_phy_82579: + case e1000_phy_i217: + phy->ops.check_polarity = e1000_check_polarity_82577; + phy->ops.force_speed_duplex = + e1000_phy_force_speed_duplex_82577; + phy->ops.get_cable_length = e1000_get_cable_length_82577; + phy->ops.get_info = e1000_get_phy_info_82577; + phy->ops.commit = e1000_phy_sw_reset_generic; + break; + case e1000_phy_82578: + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + + return ret_val; +} + +/** + * e1000_init_phy_params_ich8lan - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific PHY parameters and function pointers. + **/ +STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 i = 0; + + DEBUGFUNC("e1000_init_phy_params_ich8lan"); + + phy->addr = 1; + phy->reset_delay_us = 100; + + phy->ops.acquire = e1000_acquire_swflag_ich8lan; + phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; + phy->ops.get_cable_length = e1000_get_cable_length_igp_2; + phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.release = e1000_release_swflag_ich8lan; + phy->ops.reset = e1000_phy_hw_reset_ich8lan; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan; + phy->ops.write_reg = e1000_write_phy_reg_igp; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; + + /* We may need to do this twice - once for IGP and if that fails, + * we'll set BM func pointers and try again + */ + ret_val = e1000_determine_phy_address(hw); + if (ret_val) { + phy->ops.write_reg = e1000_write_phy_reg_bm; + phy->ops.read_reg = e1000_read_phy_reg_bm; + ret_val = e1000_determine_phy_address(hw); + if (ret_val) { + DEBUGOUT("Cannot determine PHY addr. Erroring out\n"); + return ret_val; + } + } + + phy->id = 0; + while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) && + (i++ < 100)) { + msec_delay(1); + ret_val = e1000_get_phy_id(hw); + if (ret_val) + return ret_val; + } + + /* Verify phy id */ + switch (phy->id) { + case IGP03E1000_E_PHY_ID: + phy->type = e1000_phy_igp_3; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked; + phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + phy->type = e1000_phy_ife; + phy->autoneg_mask = E1000_ALL_NOT_GIG; + phy->ops.get_info = e1000_get_phy_info_ife; + phy->ops.check_polarity = e1000_check_polarity_ife; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; + break; + case BME1000_E_PHY_ID: + phy->type = e1000_phy_bm; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->ops.read_reg = e1000_read_phy_reg_bm; + phy->ops.write_reg = e1000_write_phy_reg_bm; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + break; + default: + return -E1000_ERR_PHY; + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific NVM parameters and function + * pointers. + **/ +STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 gfpreg, sector_base_addr, sector_end_addr; + u16 i; + u32 nvm_size; + + DEBUGFUNC("e1000_init_nvm_params_ich8lan"); + + nvm->type = e1000_nvm_flash_sw; + + if (hw->mac.type >= e1000_pch_spt) { + /* in SPT, gfpreg doesn't exist. NVM size is taken from the + * STRAP register. This is because in SPT the GbE Flash region + * is no longer accessed through the flash registers. Instead, + * the mechanism has changed, and the Flash region access + * registers are now implemented in GbE memory space. + */ + nvm->flash_base_addr = 0; + nvm_size = + (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1) + * NVM_SIZE_MULTIPLIER; + nvm->flash_bank_size = nvm_size / 2; + /* Adjust to word count */ + nvm->flash_bank_size /= sizeof(u16); + /* Set the base address for flash register access */ + hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; + } else { + /* Can't read flash registers if register set isn't mapped. */ + if (!hw->flash_address) { + DEBUGOUT("ERROR: Flash registers not mapped\n"); + return -E1000_ERR_CONFIG; + } + + gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG); + + /* sector_X_addr is a "sector"-aligned address (4096 bytes) + * Add 1 to sector_end_addr since this sector is included in + * the overall size. + */ + sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; + sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; + + /* flash_base_addr is byte-aligned */ + nvm->flash_base_addr = sector_base_addr + << FLASH_SECTOR_ADDR_SHIFT; + + /* find total size of the NVM, then cut in half since the total + * size represents two separate NVM banks. + */ + nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) + << FLASH_SECTOR_ADDR_SHIFT); + nvm->flash_bank_size /= 2; + /* Adjust to word count */ + nvm->flash_bank_size /= sizeof(u16); + } + + nvm->word_size = E1000_SHADOW_RAM_WORDS; + + /* Clear shadow ram */ + for (i = 0; i < nvm->word_size; i++) { + dev_spec->shadow_ram[i].modified = false; + dev_spec->shadow_ram[i].value = 0xFFFF; + } + + E1000_MUTEX_INIT(&dev_spec->nvm_mutex); + E1000_MUTEX_INIT(&dev_spec->swflag_mutex); + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_ich8lan; + nvm->ops.release = e1000_release_nvm_ich8lan; + if (hw->mac.type >= e1000_pch_spt) { + nvm->ops.read = e1000_read_nvm_spt; + nvm->ops.update = e1000_update_nvm_checksum_spt; + } else { + nvm->ops.read = e1000_read_nvm_ich8lan; + nvm->ops.update = e1000_update_nvm_checksum_ich8lan; + } + nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan; + nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan; + nvm->ops.write = e1000_write_nvm_ich8lan; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_ich8lan - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific MAC parameters and function + * pointers. + **/ +STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; +#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) + u16 pci_cfg; +#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */ + + DEBUGFUNC("e1000_init_mac_params_ich8lan"); + + /* Set media type function pointer */ + hw->phy.media_type = e1000_media_type_copper; + + /* Set mta register count */ + mac->mta_reg_count = 32; + /* Set rar entry count */ + mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; + if (mac->type == e1000_ich8lan) + mac->rar_entry_count--; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = true; + /* FWSM register */ + mac->has_fwsm = true; + /* ARC subsystem not supported */ + mac->arc_subsystem_valid = false; + /* Adaptive IFS supported */ + mac->adaptive_ifs = true; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_ich8lan; + /* function id */ + mac->ops.set_lan_id = e1000_set_lan_id_single_port; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_ich8lan; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_ich8lan; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_ich8lan; + /* physical interface setup */ + mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan; + + /* LED and other operations */ + switch (mac->type) { + case e1000_ich8lan: + case e1000_ich9lan: + case e1000_ich10lan: + /* check management mode */ + mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* blink LED */ + mac->ops.blink_led = e1000_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_ich8lan; + mac->ops.led_off = e1000_led_off_ich8lan; + break; + case e1000_pch2lan: + mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; + mac->ops.rar_set = e1000_rar_set_pch2lan; + /* fall-through */ + case e1000_pch_lpt: + case e1000_pch_spt: + case e1000_pch_cnp: +#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT + /* multicast address update for pch2 */ + mac->ops.update_mc_addr_list = + e1000_update_mc_addr_list_pch2lan; + /* fall-through */ +#endif + case e1000_pchlan: +#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) + /* save PCH revision_id */ + e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg); + /* SPT uses full byte for revision ID, + * as opposed to previous generations + */ + if (hw->mac.type >= e1000_pch_spt) + hw->revision_id = (u8)(pci_cfg &= 0x00FF); + else + hw->revision_id = (u8)(pci_cfg &= 0x000F); +#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */ + /* check management mode */ + mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_pchlan; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_pchlan; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_pchlan; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_pchlan; + mac->ops.led_off = e1000_led_off_pchlan; + break; + default: + break; + } + + if (mac->type >= e1000_pch_lpt) { + mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; + mac->ops.rar_set = e1000_rar_set_pch_lpt; + mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt; + } + + /* Enable PCS Lock-loss workaround for ICH8 */ + if (mac->type == e1000_ich8lan) + e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true); + + return E1000_SUCCESS; +} + +/** + * __e1000_access_emi_reg_locked - Read/write EMI register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: pointer to value to read/write from/to the EMI address + * @read: boolean flag to indicate read or write + * + * This helper function assumes the SW/FW/HW Semaphore is already acquired. + **/ +STATIC s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, + u16 *data, bool read) +{ + s32 ret_val; + + DEBUGFUNC("__e1000_access_emi_reg_locked"); + + ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address); + if (ret_val) + return ret_val; + + if (read) + ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA, + data); + else + ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, + *data); + + return ret_val; +} + +/** + * e1000_read_emi_reg_locked - Read Extended Management Interface register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: value to be read from the EMI address + * + * Assumes the SW/FW/HW Semaphore is already acquired. + **/ +s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) +{ + DEBUGFUNC("e1000_read_emi_reg_locked"); + + return __e1000_access_emi_reg_locked(hw, addr, data, true); +} + +/** + * e1000_write_emi_reg_locked - Write Extended Management Interface register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: value to be written to the EMI address + * + * Assumes the SW/FW/HW Semaphore is already acquired. + **/ +s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) +{ + DEBUGFUNC("e1000_read_emi_reg_locked"); + + return __e1000_access_emi_reg_locked(hw, addr, &data, false); +} + +/** + * e1000_set_eee_pchlan - Enable/disable EEE support + * @hw: pointer to the HW structure + * + * Enable/disable EEE based on setting in dev_spec structure, the duplex of + * the link and the EEE capabilities of the link partner. The LPI Control + * register bits will remain set only if/when link is up. + * + * EEE LPI must not be asserted earlier than one second after link is up. + * On 82579, EEE LPI should not be enabled until such time otherwise there + * can be link issues with some switches. Other devices can have EEE LPI + * enabled immediately upon link up since they have a timer in hardware which + * prevents LPI from being asserted too early. + **/ +s32 e1000_set_eee_pchlan(struct e1000_hw *hw) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + s32 ret_val; + u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; + + DEBUGFUNC("e1000_set_eee_pchlan"); + + switch (hw->phy.type) { + case e1000_phy_82579: + lpa = I82579_EEE_LP_ABILITY; + pcs_status = I82579_EEE_PCS_STATUS; + adv_addr = I82579_EEE_ADVERTISEMENT; + break; + case e1000_phy_i217: + lpa = I217_EEE_LP_ABILITY; + pcs_status = I217_EEE_PCS_STATUS; + adv_addr = I217_EEE_ADVERTISEMENT; + break; + default: + return E1000_SUCCESS; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); + if (ret_val) + goto release; + + /* Clear bits that enable EEE in various speeds */ + lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; + + /* Enable EEE if not disabled by user */ + if (!dev_spec->eee_disable) { + /* Save off link partner's EEE ability */ + ret_val = e1000_read_emi_reg_locked(hw, lpa, + &dev_spec->eee_lp_ability); + if (ret_val) + goto release; + + /* Read EEE advertisement */ + ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); + if (ret_val) + goto release; + + /* Enable EEE only for speeds in which the link partner is + * EEE capable and for which we advertise EEE. + */ + if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) + lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; + + if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { + hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data); + if (data & NWAY_LPAR_100TX_FD_CAPS) + lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; + else + /* EEE is not supported in 100Half, so ignore + * partner's EEE in 100 ability if full-duplex + * is not advertised. + */ + dev_spec->eee_lp_ability &= + ~I82579_EEE_100_SUPPORTED; + } + } + + if (hw->phy.type == e1000_phy_82579) { + ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, + &data); + if (ret_val) + goto release; + + data &= ~I82579_LPI_100_PLL_SHUT; + ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, + data); + } + + /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ + ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); + if (ret_val) + goto release; + + ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl); +release: + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP + * @hw: pointer to the HW structure + * @link: link up bool flag + * + * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications + * preventing further DMA write requests. Workaround the issue by disabling + * the de-assertion of the clock request when in 1Gpbs mode. + * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link + * speeds in order to avoid Tx hangs. + **/ +STATIC s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) +{ + u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); + u32 status = E1000_READ_REG(hw, E1000_STATUS); + s32 ret_val = E1000_SUCCESS; + u16 reg; + + if (link && (status & E1000_STATUS_SPEED_1000)) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = + e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, + ®); + if (ret_val) + goto release; + + ret_val = + e1000_write_kmrn_reg_locked(hw, + E1000_KMRNCTRLSTA_K1_CONFIG, + reg & + ~E1000_KMRNCTRLSTA_K1_ENABLE); + if (ret_val) + goto release; + + usec_delay(10); + + E1000_WRITE_REG(hw, E1000_FEXTNVM6, + fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); + + ret_val = + e1000_write_kmrn_reg_locked(hw, + E1000_KMRNCTRLSTA_K1_CONFIG, + reg); +release: + hw->phy.ops.release(hw); + } else { + /* clear FEXTNVM6 bit 8 on link down or 10/100 */ + fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; + + if ((hw->phy.revision > 5) || !link || + ((status & E1000_STATUS_SPEED_100) && + (status & E1000_STATUS_FD))) + goto update_fextnvm6; + + ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, ®); + if (ret_val) + return ret_val; + + /* Clear link status transmit timeout */ + reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; + + if (status & E1000_STATUS_SPEED_100) { + /* Set inband Tx timeout to 5x10us for 100Half */ + reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; + + /* Do not extend the K1 entry latency for 100Half */ + fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; + } else { + /* Set inband Tx timeout to 50x10us for 10Full/Half */ + reg |= 50 << + I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; + + /* Extend the K1 entry latency for 10 Mbps */ + fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; + } + + ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg); + if (ret_val) + return ret_val; + +update_fextnvm6: + E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6); + } + + return ret_val; +} + +#ifdef ULP_SUPPORT +/** + * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP + * @hw: pointer to the HW structure + * @to_sx: boolean indicating a system power state transition to Sx + * + * When link is down, configure ULP mode to significantly reduce the power + * to the PHY. If on a Manageability Engine (ME) enabled system, tell the + * ME firmware to start the ULP configuration. If not on an ME enabled + * system, configure the ULP mode by software. + */ +s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) +{ + u32 mac_reg; + s32 ret_val = E1000_SUCCESS; + u16 phy_reg; + u16 oem_reg = 0; + + if ((hw->mac.type < e1000_pch_lpt) || + (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || + (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || + (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) || + (hw->device_id == E1000_DEV_ID_PCH_I218_V2) || + (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) + return 0; + + if (!to_sx) { + int i = 0; + /* Poll up to 5 seconds for Cable Disconnected indication */ + while (!(E1000_READ_REG(hw, E1000_FEXT) & + E1000_FEXT_PHY_CABLE_DISCONNECTED)) { + /* Bail if link is re-acquired */ + if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) + return -E1000_ERR_PHY; + if (i++ == 100) + break; + + msec_delay(50); + } + DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n", + (E1000_READ_REG(hw, E1000_FEXT) & + E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", + i * 50); + if (!(E1000_READ_REG(hw, E1000_FEXT) & + E1000_FEXT_PHY_CABLE_DISCONNECTED)) + return 0; + } + + if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { + /* Request ME configure ULP mode in the PHY */ + mac_reg = E1000_READ_REG(hw, E1000_H2ME); + mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; + E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); + + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + /* During S0 Idle keep the phy in PCI-E mode */ + if (hw->dev_spec.ich8lan.smbus_disable) + goto skip_smbus; + + /* Force SMBus mode in PHY */ + ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); + if (ret_val) + goto release; + phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; + e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); + + /* Force SMBus mode in MAC */ + mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); + + /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable + * LPLU and disable Gig speed when entering ULP + */ + if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { + ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, + &oem_reg); + if (ret_val) + goto release; + + phy_reg = oem_reg; + phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; + + ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, + phy_reg); + + if (ret_val) + goto release; + } + +skip_smbus: + if (!to_sx) { + /* Change the 'Link Status Change' interrupt to trigger + * on 'Cable Status Change' + */ + ret_val = e1000_read_kmrn_reg_locked(hw, + E1000_KMRNCTRLSTA_OP_MODES, + &phy_reg); + if (ret_val) + goto release; + phy_reg |= E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC; + e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, + phy_reg); + } + + /* Set Inband ULP Exit, Reset to SMBus mode and + * Disable SMBus Release on PERST# in PHY + */ + ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); + if (ret_val) + goto release; + phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | + I218_ULP_CONFIG1_DISABLE_SMB_PERST); + if (to_sx) { + if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC) + phy_reg |= I218_ULP_CONFIG1_WOL_HOST; + else + phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; + + phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; + phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; + } else { + phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; + phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; + phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; + } + e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); + + /* Set Disable SMBus Release on PERST# in MAC */ + mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); + mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; + E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); + + /* Commit ULP changes in PHY by starting auto ULP configuration */ + phy_reg |= I218_ULP_CONFIG1_START; + e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); + + if (!to_sx) { + /* Disable Tx so that the MAC doesn't send any (buffered) + * packets to the PHY. + */ + mac_reg = E1000_READ_REG(hw, E1000_TCTL); + mac_reg &= ~E1000_TCTL_EN; + E1000_WRITE_REG(hw, E1000_TCTL, mac_reg); + } + + if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && + to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { + ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, + oem_reg); + if (ret_val) + goto release; + } + +release: + hw->phy.ops.release(hw); +out: + if (ret_val) + DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val); + else + hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; + + return ret_val; +} + +/** + * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP + * @hw: pointer to the HW structure + * @force: boolean indicating whether or not to force disabling ULP + * + * Un-configure ULP mode when link is up, the system is transitioned from + * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled + * system, poll for an indication from ME that ULP has been un-configured. + * If not on an ME enabled system, un-configure the ULP mode by software. + * + * During nominal operation, this function is called when link is acquired + * to disable ULP mode (force=false); otherwise, for example when unloading + * the driver or during Sx->S0 transitions, this is called with force=true + * to forcibly disable ULP. + + * When the cable is plugged in while the device is in D0, a Cable Status + * Change interrupt is generated which causes this function to be called + * to partially disable ULP mode and restart autonegotiation. This function + * is then called again due to the resulting Link Status Change interrupt + * to finish cleaning up after the ULP flow. + */ +s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) +{ + s32 ret_val = E1000_SUCCESS; + u32 mac_reg; + u16 phy_reg; + int i = 0; + + if ((hw->mac.type < e1000_pch_lpt) || + (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || + (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || + (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) || + (hw->device_id == E1000_DEV_ID_PCH_I218_V2) || + (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) + return 0; + + if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { + if (force) { + /* Request ME un-configure ULP mode in the PHY */ + mac_reg = E1000_READ_REG(hw, E1000_H2ME); + mac_reg &= ~E1000_H2ME_ULP; + mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; + E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); + } + + /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */ + while (E1000_READ_REG(hw, E1000_FWSM) & + E1000_FWSM_ULP_CFG_DONE) { + if (i++ == 30) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + msec_delay(10); + } + DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); + + if (force) { + mac_reg = E1000_READ_REG(hw, E1000_H2ME); + mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; + E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); + } else { + /* Clear H2ME.ULP after ME ULP configuration */ + mac_reg = E1000_READ_REG(hw, E1000_H2ME); + mac_reg &= ~E1000_H2ME_ULP; + E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); + + /* Restore link speed advertisements and restart + * Auto-negotiation + */ + if (hw->mac.autoneg) { + ret_val = e1000_phy_setup_autoneg(hw); + if (ret_val) + goto out; + } else { + ret_val = e1000_setup_copper_link_generic(hw); + if (ret_val) + goto out; + } + ret_val = e1000_oem_bits_config_ich8lan(hw, true); + } + + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + /* Revert the change to the 'Link Status Change' + * interrupt to trigger on 'Cable Status Change' + */ + ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, + &phy_reg); + if (ret_val) + goto release; + phy_reg &= ~E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC; + e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, phy_reg); + + if (force) + /* Toggle LANPHYPC Value bit */ + e1000_toggle_lanphypc_pch_lpt(hw); + + /* Unforce SMBus mode in PHY */ + ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); + if (ret_val) { + /* The MAC might be in PCIe mode, so temporarily force to + * SMBus mode in order to access the PHY. + */ + mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); + + msec_delay(50); + + ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, + &phy_reg); + if (ret_val) + goto release; + } + phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; + e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); + + /* Unforce SMBus mode in MAC */ + mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); + + /* When ULP mode was previously entered, K1 was disabled by the + * hardware. Re-Enable K1 in the PHY when exiting ULP. + */ + ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); + if (ret_val) + goto release; + phy_reg |= HV_PM_CTRL_K1_ENABLE; + e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); + + /* Clear ULP enabled configuration */ + ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); + if (ret_val) + goto release; + /* CSC interrupt received due to ULP Indication */ + if ((phy_reg & I218_ULP_CONFIG1_IND) || force) { + phy_reg &= ~(I218_ULP_CONFIG1_IND | + I218_ULP_CONFIG1_STICKY_ULP | + I218_ULP_CONFIG1_RESET_TO_SMBUS | + I218_ULP_CONFIG1_WOL_HOST | + I218_ULP_CONFIG1_INBAND_EXIT | + I218_ULP_CONFIG1_EN_ULP_LANPHYPC | + I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | + I218_ULP_CONFIG1_DISABLE_SMB_PERST); + e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); + + /* Commit ULP changes by starting auto ULP configuration */ + phy_reg |= I218_ULP_CONFIG1_START; + e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); + + /* Clear Disable SMBus Release on PERST# in MAC */ + mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); + mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; + E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); + + if (!force) { + hw->phy.ops.release(hw); + + if (hw->mac.autoneg) + e1000_phy_setup_autoneg(hw); + else + e1000_setup_copper_link_generic(hw); + + e1000_sw_lcd_config_ich8lan(hw); + + e1000_oem_bits_config_ich8lan(hw, true); + + /* Set ULP state to unknown and return non-zero to + * indicate no link (yet) and re-enter on the next LSC + * to finish disabling ULP flow. + */ + hw->dev_spec.ich8lan.ulp_state = + e1000_ulp_state_unknown; + + return 1; + } + } + + /* Re-enable Tx */ + mac_reg = E1000_READ_REG(hw, E1000_TCTL); + mac_reg |= E1000_TCTL_EN; + E1000_WRITE_REG(hw, E1000_TCTL, mac_reg); + +release: + hw->phy.ops.release(hw); + if (force) { + hw->phy.ops.reset(hw); + msec_delay(50); + } +out: + if (ret_val) + DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val); + else + hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; + + return ret_val; +} + +#endif /* ULP_SUPPORT */ + + +/** + * e1000_check_for_copper_link_ich8lan - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks to see of the link status of the hardware has changed. If a + * change in link status has been detected, then we read the PHY registers + * to get the current speed/duplex if link exists. + **/ +STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val, tipg_reg = 0; + u16 emi_addr, emi_val = 0; + bool link = false; + u16 phy_reg; + + DEBUGFUNC("e1000_check_for_copper_link_ich8lan"); + + /* We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) + return E1000_SUCCESS; + + if ((hw->mac.type < e1000_pch_lpt) || + (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || + (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V)) { + /* First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + } else { + /* Check the MAC's STATUS register to determine link state + * since the PHY could be inaccessible while in ULP mode. + */ + link = !!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU); + if (link) + ret_val = e1000_disable_ulp_lpt_lp(hw, false); + else + ret_val = e1000_enable_ulp_lpt_lp(hw, false); + if (ret_val) + return ret_val; + } + + if (hw->mac.type == e1000_pchlan) { + ret_val = e1000_k1_gig_workaround_hv(hw, link); + if (ret_val) + return ret_val; + } + + /* When connected at 10Mbps half-duplex, some parts are excessively + * aggressive resulting in many collisions. To avoid this, increase + * the IPG and reduce Rx latency in the PHY. + */ + if ((hw->mac.type >= e1000_pch2lan) && link) { + u16 speed, duplex; + + e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex); + tipg_reg = E1000_READ_REG(hw, E1000_TIPG); + tipg_reg &= ~E1000_TIPG_IPGT_MASK; + + if (duplex == HALF_DUPLEX && speed == SPEED_10) { + tipg_reg |= 0xFF; + /* Reduce Rx latency in analog PHY */ + emi_val = 0; + } else if (hw->mac.type >= e1000_pch_spt && + duplex == FULL_DUPLEX && speed != SPEED_1000) { + tipg_reg |= 0xC; + emi_val = 1; + } else { + /* Roll back the default values */ + tipg_reg |= 0x08; + emi_val = 1; + } + + E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + if (hw->mac.type == e1000_pch2lan) + emi_addr = I82579_RX_CONFIG; + else + emi_addr = I217_RX_CONFIG; + ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); + + + if (hw->mac.type >= e1000_pch_lpt) { + u16 phy_reg; + + hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG, + &phy_reg); + phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; + if (speed == SPEED_100 || speed == SPEED_10) + phy_reg |= 0x3E8; + else + phy_reg |= 0xFA; + hw->phy.ops.write_reg_locked(hw, + I217_PLL_CLOCK_GATE_REG, + phy_reg); + + if (speed == SPEED_1000) { + hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, + &phy_reg); + + phy_reg |= HV_PM_CTRL_K1_CLK_REQ; + + hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, + phy_reg); + } + } + hw->phy.ops.release(hw); + + if (ret_val) + return ret_val; + + if (hw->mac.type >= e1000_pch_spt) { + u16 data; + u16 ptr_gap; + + if (speed == SPEED_1000) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.read_reg_locked(hw, + PHY_REG(776, 20), + &data); + if (ret_val) { + hw->phy.ops.release(hw); + return ret_val; + } + + ptr_gap = (data & (0x3FF << 2)) >> 2; + if (ptr_gap < 0x18) { + data &= ~(0x3FF << 2); + data |= (0x18 << 2); + ret_val = + hw->phy.ops.write_reg_locked(hw, + PHY_REG(776, 20), data); + } + hw->phy.ops.release(hw); + if (ret_val) + return ret_val; + } else { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.write_reg_locked(hw, + PHY_REG(776, 20), + 0xC023); + hw->phy.ops.release(hw); + if (ret_val) + return ret_val; + + } + } + } + + /* I217 Packet Loss issue: + * ensure that FEXTNVM4 Beacon Duration is set correctly + * on power up. + * Set the Beacon Duration for I217 to 8 usec + */ + if (hw->mac.type >= e1000_pch_lpt) { + u32 mac_reg; + + mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); + mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; + mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; + E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); + } + + /* Work-around I218 hang issue */ + if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || + (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || + (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) || + (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) { + ret_val = e1000_k1_workaround_lpt_lp(hw, link); + if (ret_val) + return ret_val; + } + /* Clear link partner's EEE ability */ + hw->dev_spec.ich8lan.eee_lp_ability = 0; + + /* Configure K0s minimum time */ + if (hw->mac.type >= e1000_pch_lpt) { + e1000_configure_k0s_lpt(hw, K1_ENTRY_LATENCY, K1_MIN_TIME); + } + + if (hw->mac.type >= e1000_pch_lpt) { + u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); + + if (hw->mac.type == e1000_pch_spt) { + /* FEXTNVM6 K1-off workaround - for SPT only */ + u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG); + + if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) + fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; + else + fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; + } + + if (hw->dev_spec.ich8lan.disable_k1_off == true) + fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; + + E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6); + } + + if (!link) + return E1000_SUCCESS; /* No link detected */ + + mac->get_link_status = false; + + switch (hw->mac.type) { + case e1000_pch2lan: + ret_val = e1000_k1_workaround_lv(hw); + if (ret_val) + return ret_val; + /* fall-thru */ + case e1000_pchlan: + if (hw->phy.type == e1000_phy_82578) { + ret_val = e1000_link_stall_workaround_hv(hw); + if (ret_val) + return ret_val; + } + + /* Workaround for PCHx parts in half-duplex: + * Set the number of preambles removed from the packet + * when it is passed from the PHY to the MAC to prevent + * the MAC from misinterpreting the packet type. + */ + hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); + phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; + + if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) != + E1000_STATUS_FD) + phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); + + hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); + break; + default: + break; + } + + /* Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000_check_downshift_generic(hw); + + /* Enable/Disable EEE after link up */ + if (hw->phy.type > e1000_phy_82579) { + ret_val = e1000_set_eee_pchlan(hw); + if (ret_val) + return ret_val; + } + + /* If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) + return -E1000_ERR_CONFIG; + + /* Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + mac->ops.config_collision_dist(hw); + + /* Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) + DEBUGOUT("Error configuring flow control\n"); + + return ret_val; +} + +/** + * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific function pointers for PHY, MAC, and NVM. + **/ +void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_ich8lan"); + + hw->mac.ops.init_params = e1000_init_mac_params_ich8lan; + hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan; + switch (hw->mac.type) { + case e1000_ich8lan: + case e1000_ich9lan: + case e1000_ich10lan: + hw->phy.ops.init_params = e1000_init_phy_params_ich8lan; + break; + case e1000_pchlan: + case e1000_pch2lan: + case e1000_pch_lpt: + case e1000_pch_spt: + case e1000_pch_cnp: + hw->phy.ops.init_params = e1000_init_phy_params_pchlan; + break; + default: + break; + } +} + +/** + * e1000_acquire_nvm_ich8lan - Acquire NVM mutex + * @hw: pointer to the HW structure + * + * Acquires the mutex for performing NVM operations. + **/ +STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_acquire_nvm_ich8lan"); + + E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex); + + return E1000_SUCCESS; +} + +/** + * e1000_release_nvm_ich8lan - Release NVM mutex + * @hw: pointer to the HW structure + * + * Releases the mutex used while performing NVM operations. + **/ +STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_ich8lan"); + + E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex); + + return; +} + +/** + * e1000_acquire_swflag_ich8lan - Acquire software control flag + * @hw: pointer to the HW structure + * + * Acquires the software control flag for performing PHY and select + * MAC CSR accesses. + **/ +STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) +{ + u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_acquire_swflag_ich8lan"); + + E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex); + + while (timeout) { + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) + break; + + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("SW has already locked the resource.\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + timeout = SW_FLAG_TIMEOUT; + + extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + + while (timeout) { + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) + break; + + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", + E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + +out: + if (ret_val) + E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); + + return ret_val; +} + +/** + * e1000_release_swflag_ich8lan - Release software control flag + * @hw: pointer to the HW structure + * + * Releases the software control flag for performing PHY and select + * MAC CSR accesses. + **/ +STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw) +{ + u32 extcnf_ctrl; + + DEBUGFUNC("e1000_release_swflag_ich8lan"); + + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + } else { + DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n"); + } + + E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); + + return; +} + +/** + * e1000_check_mng_mode_ich8lan - Checks management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has any manageability enabled. + * This is a function pointer entry point only called by read/write + * routines for the PHY and NVM parts. + **/ +STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) +{ + u32 fwsm; + + DEBUGFUNC("e1000_check_mng_mode_ich8lan"); + + fwsm = E1000_READ_REG(hw, E1000_FWSM); + + return (fwsm & E1000_ICH_FWSM_FW_VALID) && + ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); +} + +/** + * e1000_check_mng_mode_pchlan - Checks management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has iAMT enabled. + * This is a function pointer entry point only called by read/write + * routines for the PHY and NVM parts. + **/ +STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) +{ + u32 fwsm; + + DEBUGFUNC("e1000_check_mng_mode_pchlan"); + + fwsm = E1000_READ_REG(hw, E1000_FWSM); + + return (fwsm & E1000_ICH_FWSM_FW_VALID) && + (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); +} + +/** + * e1000_rar_set_pch2lan - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. For 82579, RAR[0] is the base address register that is to + * contain the MAC address but RAR[1-6] are reserved for manageability (ME). + * Use SHRA[0-3] in place of those reserved for ME. + **/ +STATIC int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + DEBUGFUNC("e1000_rar_set_pch2lan"); + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | + ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + if (index == 0) { + E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); + E1000_WRITE_FLUSH(hw); + return E1000_SUCCESS; + } + + /* RAR[1-6] are owned by manageability. Skip those and program the + * next address into the SHRA register array. + */ + if (index < (u32) (hw->mac.rar_entry_count)) { + s32 ret_val; + + ret_val = e1000_acquire_swflag_ich8lan(hw); + if (ret_val) + goto out; + + E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high); + E1000_WRITE_FLUSH(hw); + + e1000_release_swflag_ich8lan(hw); + + /* verify the register updates */ + if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) && + (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high)) + return E1000_SUCCESS; + + DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", + (index - 1), E1000_READ_REG(hw, E1000_FWSM)); + } + +out: + DEBUGOUT1("Failed to write receive address at index %d\n", index); + return -E1000_ERR_CONFIG; +} + +/** + * e1000_rar_set_pch_lpt - Set receive address registers + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address register array at index to the address passed + * in by addr. For LPT, RAR[0] is the base address register that is to + * contain the MAC address. SHRA[0-10] are the shared receive address + * registers that are shared between the Host and manageability engine (ME). + **/ +STATIC int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + u32 wlock_mac; + + DEBUGFUNC("e1000_rar_set_pch_lpt"); + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + if (index == 0) { + E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); + E1000_WRITE_FLUSH(hw); + return E1000_SUCCESS; + } + + /* The manageability engine (ME) can lock certain SHRAR registers that + * it is using - those registers are unavailable for use. + */ + if (index < hw->mac.rar_entry_count) { + wlock_mac = E1000_READ_REG(hw, E1000_FWSM) & + E1000_FWSM_WLOCK_MAC_MASK; + wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; + + /* Check if all SHRAR registers are locked */ + if (wlock_mac == 1) + goto out; + + if ((wlock_mac == 0) || (index <= wlock_mac)) { + s32 ret_val; + + ret_val = e1000_acquire_swflag_ich8lan(hw); + + if (ret_val) + goto out; + + E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1), + rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1), + rar_high); + E1000_WRITE_FLUSH(hw); + + e1000_release_swflag_ich8lan(hw); + + /* verify the register updates */ + if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) && + (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high)) + return E1000_SUCCESS; + } + } + +out: + DEBUGOUT1("Failed to write receive address at index %d\n", index); + return -E1000_ERR_CONFIG; +} + +#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT +/** + * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates entire Multicast Table Array of the PCH2 MAC and PHY. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, + u8 *mc_addr_list, + u32 mc_addr_count) +{ + u16 phy_reg = 0; + int i; + s32 ret_val; + + DEBUGFUNC("e1000_update_mc_addr_list_pch2lan"); + + e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + + ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); + if (ret_val) + goto release; + + for (i = 0; i < hw->mac.mta_reg_count; i++) { + hw->phy.ops.write_reg_page(hw, BM_MTA(i), + (u16)(hw->mac.mta_shadow[i] & + 0xFFFF)); + hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1), + (u16)((hw->mac.mta_shadow[i] >> 16) & + 0xFFFF)); + } + + e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); + +release: + hw->phy.ops.release(hw); +} + +#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */ +/** + * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked + * @hw: pointer to the HW structure + * + * Checks if firmware is blocking the reset of the PHY. + * This is a function pointer entry point only called by + * reset routines. + **/ +STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) +{ + u32 fwsm; + bool blocked = false; + int i = 0; + + DEBUGFUNC("e1000_check_reset_block_ich8lan"); + + do { + fwsm = E1000_READ_REG(hw, E1000_FWSM); + if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) { + blocked = true; + msec_delay(10); + continue; + } + blocked = false; + } while (blocked && (i++ < 30)); + return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS; +} + +/** + * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states + * @hw: pointer to the HW structure + * + * Assumes semaphore already acquired. + * + **/ +STATIC s32 e1000_write_smbus_addr(struct e1000_hw *hw) +{ + u16 phy_data; + u32 strap = E1000_READ_REG(hw, E1000_STRAP); + u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> + E1000_STRAP_SMT_FREQ_SHIFT; + s32 ret_val; + + strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; + + ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~HV_SMB_ADDR_MASK; + phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); + phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; + + if (hw->phy.type == e1000_phy_i217) { + /* Restore SMBus frequency */ + if (freq--) { + phy_data &= ~HV_SMB_ADDR_FREQ_MASK; + phy_data |= (freq & (1 << 0)) << + HV_SMB_ADDR_FREQ_LOW_SHIFT; + phy_data |= (freq & (1 << 1)) << + (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); + } else { + DEBUGOUT("Unsupported SMB frequency in PHY\n"); + } + } + + return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); +} + +/** + * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration + * @hw: pointer to the HW structure + * + * SW should configure the LCD from the NVM extended configuration region + * as a workaround for certain parts. + **/ +STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; + s32 ret_val = E1000_SUCCESS; + u16 word_addr, reg_data, reg_addr, phy_page = 0; + + DEBUGFUNC("e1000_sw_lcd_config_ich8lan"); + + /* Initialize the PHY from the NVM on ICH platforms. This + * is needed due to an issue where the NVM configuration is + * not properly autoloaded after power transitions. + * Therefore, after each PHY reset, we will load the + * configuration data out of the NVM manually. + */ + switch (hw->mac.type) { + case e1000_ich8lan: + if (phy->type != e1000_phy_igp_3) + return ret_val; + + if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) || + (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) { + sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; + break; + } + /* Fall-thru */ + case e1000_pchlan: + case e1000_pch2lan: + case e1000_pch_lpt: + case e1000_pch_spt: + case e1000_pch_cnp: + sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; + break; + default: + return ret_val; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + data = E1000_READ_REG(hw, E1000_FEXTNVM); + if (!(data & sw_cfg_mask)) + goto release; + + /* Make sure HW does not configure LCD from PHY + * extended configuration before SW configuration + */ + data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + if ((hw->mac.type < e1000_pch2lan) && + (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) + goto release; + + cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE); + cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; + cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; + if (!cnf_size) + goto release; + + cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; + cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; + + if (((hw->mac.type == e1000_pchlan) && + !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || + (hw->mac.type > e1000_pchlan)) { + /* HW configures the SMBus address and LEDs when the + * OEM and LCD Write Enable bits are set in the NVM. + * When both NVM bits are cleared, SW will configure + * them instead. + */ + ret_val = e1000_write_smbus_addr(hw); + if (ret_val) + goto release; + + data = E1000_READ_REG(hw, E1000_LEDCTL); + ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, + (u16)data); + if (ret_val) + goto release; + } + + /* Configure LCD from extended configuration region. */ + + /* cnf_base_addr is in DWORD */ + word_addr = (u16)(cnf_base_addr << 1); + + for (i = 0; i < cnf_size; i++) { + ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1, + ®_data); + if (ret_val) + goto release; + + ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1), + 1, ®_addr); + if (ret_val) + goto release; + + /* Save off the PHY page for future writes. */ + if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { + phy_page = reg_data; + continue; + } + + reg_addr &= PHY_REG_MASK; + reg_addr |= phy_page; + + ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, + reg_data); + if (ret_val) + goto release; + } + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_k1_gig_workaround_hv - K1 Si workaround + * @hw: pointer to the HW structure + * @link: link up bool flag + * + * If K1 is enabled for 1Gbps, the MAC might stall when transitioning + * from a lower speed. This workaround disables K1 whenever link is at 1Gig + * If link is down, the function will restore the default K1 setting located + * in the NVM. + **/ +STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) +{ + s32 ret_val = E1000_SUCCESS; + u16 status_reg = 0; + bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; + + DEBUGFUNC("e1000_k1_gig_workaround_hv"); + + if (hw->mac.type != e1000_pchlan) + return E1000_SUCCESS; + + /* Wrap the whole flow with the sw flag */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ + if (link) { + if (hw->phy.type == e1000_phy_82578) { + ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, + &status_reg); + if (ret_val) + goto release; + + status_reg &= (BM_CS_STATUS_LINK_UP | + BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_MASK); + + if (status_reg == (BM_CS_STATUS_LINK_UP | + BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_1000)) + k1_enable = false; + } + + if (hw->phy.type == e1000_phy_82577) { + ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, + &status_reg); + if (ret_val) + goto release; + + status_reg &= (HV_M_STATUS_LINK_UP | + HV_M_STATUS_AUTONEG_COMPLETE | + HV_M_STATUS_SPEED_MASK); + + if (status_reg == (HV_M_STATUS_LINK_UP | + HV_M_STATUS_AUTONEG_COMPLETE | + HV_M_STATUS_SPEED_1000)) + k1_enable = false; + } + + /* Link stall fix for link up */ + ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), + 0x0100); + if (ret_val) + goto release; + + } else { + /* Link stall fix for link down */ + ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), + 0x4100); + if (ret_val) + goto release; + } + + ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); + +release: + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_configure_k1_ich8lan - Configure K1 power state + * @hw: pointer to the HW structure + * @enable: K1 state to configure + * + * Configure the K1 power state based on the provided parameter. + * Assumes semaphore already acquired. + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + **/ +s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) +{ + s32 ret_val; + u32 ctrl_reg = 0; + u32 ctrl_ext = 0; + u32 reg = 0; + u16 kmrn_reg = 0; + + DEBUGFUNC("e1000_configure_k1_ich8lan"); + + ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, + &kmrn_reg); + if (ret_val) + return ret_val; + + if (k1_enable) + kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; + else + kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; + + ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, + kmrn_reg); + if (ret_val) + return ret_val; + + usec_delay(20); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); + + reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + reg |= E1000_CTRL_FRCSPD; + E1000_WRITE_REG(hw, E1000_CTRL, reg); + + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); + E1000_WRITE_FLUSH(hw); + usec_delay(20); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + usec_delay(20); + + return E1000_SUCCESS; +} + +/** + * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration + * @hw: pointer to the HW structure + * @d0_state: boolean if entering d0 or d3 device state + * + * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are + * collectively called OEM bits. The OEM Write Enable bit and SW Config bit + * in NVM determines whether HW should configure LPLU and Gbe Disable. + **/ +STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) +{ + s32 ret_val = 0; + u32 mac_reg; + u16 oem_reg; + + DEBUGFUNC("e1000_oem_bits_config_ich8lan"); + + if (hw->mac.type < e1000_pchlan) + return ret_val; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + if (hw->mac.type == e1000_pchlan) { + mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) + goto release; + } + + mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM); + if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) + goto release; + + mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL); + + ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); + if (ret_val) + goto release; + + oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); + + if (d0_state) { + if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) + oem_reg |= HV_OEM_BITS_GBE_DIS; + + if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) + oem_reg |= HV_OEM_BITS_LPLU; + } else { + if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) + oem_reg |= HV_OEM_BITS_GBE_DIS; + + if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | + E1000_PHY_CTRL_NOND0A_LPLU)) + oem_reg |= HV_OEM_BITS_LPLU; + } + + /* Set Restart auto-neg to activate the bits */ + if ((d0_state || (hw->mac.type != e1000_pchlan)) && + !hw->phy.ops.check_reset_block(hw)) + oem_reg |= HV_OEM_BITS_RESTART_AN; + + ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); + +release: + hw->phy.ops.release(hw); + + return ret_val; +} + + +/** + * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) +{ + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_set_mdio_slow_mode_hv"); + + ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data); + if (ret_val) + return ret_val; + + data |= HV_KMRN_MDIO_SLOW; + + ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data); + + return ret_val; +} + +/** + * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be + * done after every PHY reset. + **/ +STATIC s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 phy_data; + + DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan"); + + if (hw->mac.type != e1000_pchlan) + return E1000_SUCCESS; + + /* Set MDIO slow mode before any other MDIO access */ + if (hw->phy.type == e1000_phy_82577) { + ret_val = e1000_set_mdio_slow_mode_hv(hw); + if (ret_val) + return ret_val; + } + + if (((hw->phy.type == e1000_phy_82577) && + ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || + ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { + /* Disable generation of early preamble */ + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431); + if (ret_val) + return ret_val; + + /* Preamble tuning for SSC */ + ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, + 0xA204); + if (ret_val) + return ret_val; + } + + if (hw->phy.type == e1000_phy_82578) { + /* Return registers to default by doing a soft reset then + * writing 0x3140 to the control register. + */ + if (hw->phy.revision < 2) { + e1000_phy_sw_reset_generic(hw); + ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, + 0x3140); + } + } + + /* Select page 0 */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + hw->phy.addr = 1; + ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); + hw->phy.ops.release(hw); + if (ret_val) + return ret_val; + + /* Configure the K1 Si workaround during phy reset assuming there is + * link so that it disables K1 if link is in 1Gbps. + */ + ret_val = e1000_k1_gig_workaround_hv(hw, true); + if (ret_val) + return ret_val; + + /* Workaround for link disconnects on a busy hub in half duplex */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); + if (ret_val) + goto release; + ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, + phy_data & 0x00FF); + if (ret_val) + goto release; + + /* set MSE higher to enable link to stay up when noise is high */ + ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); +release: + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY + * @hw: pointer to the HW structure + **/ +void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) +{ + u32 mac_reg; + u16 i, phy_reg = 0; + s32 ret_val; + + DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); + if (ret_val) + goto release; + + /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ + for (i = 0; i < (hw->mac.rar_entry_count); i++) { + mac_reg = E1000_READ_REG(hw, E1000_RAL(i)); + hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), + (u16)(mac_reg & 0xFFFF)); + hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), + (u16)((mac_reg >> 16) & 0xFFFF)); + + mac_reg = E1000_READ_REG(hw, E1000_RAH(i)); + hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), + (u16)(mac_reg & 0xFFFF)); + hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), + (u16)((mac_reg & E1000_RAH_AV) + >> 16)); + } + + e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); + +release: + hw->phy.ops.release(hw); +} + +#ifndef CRC32_OS_SUPPORT +STATIC u32 e1000_calc_rx_da_crc(u8 mac[]) +{ + u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */ + u32 i, j, mask, crc; + + DEBUGFUNC("e1000_calc_rx_da_crc"); + + crc = 0xffffffff; + for (i = 0; i < 6; i++) { + crc = crc ^ mac[i]; + for (j = 8; j > 0; j--) { + mask = (crc & 1) * (-1); + crc = (crc >> 1) ^ (poly & mask); + } + } + return ~crc; +} + +#endif /* CRC32_OS_SUPPORT */ +/** + * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation + * with 82579 PHY + * @hw: pointer to the HW structure + * @enable: flag to enable/disable workaround when enabling/disabling jumbos + **/ +s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) +{ + s32 ret_val = E1000_SUCCESS; + u16 phy_reg, data; + u32 mac_reg; + u16 i; + + DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan"); + + if (hw->mac.type < e1000_pch2lan) + return E1000_SUCCESS; + + /* disable Rx path while enabling/disabling workaround */ + hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), + phy_reg | (1 << 14)); + if (ret_val) + return ret_val; + + if (enable) { + /* Write Rx addresses (rar_entry_count for RAL/H, and + * SHRAL/H) and initial CRC values to the MAC + */ + for (i = 0; i < hw->mac.rar_entry_count; i++) { + u8 mac_addr[ETH_ADDR_LEN] = {0}; + u32 addr_high, addr_low; + + addr_high = E1000_READ_REG(hw, E1000_RAH(i)); + if (!(addr_high & E1000_RAH_AV)) + continue; + addr_low = E1000_READ_REG(hw, E1000_RAL(i)); + mac_addr[0] = (addr_low & 0xFF); + mac_addr[1] = ((addr_low >> 8) & 0xFF); + mac_addr[2] = ((addr_low >> 16) & 0xFF); + mac_addr[3] = ((addr_low >> 24) & 0xFF); + mac_addr[4] = (addr_high & 0xFF); + mac_addr[5] = ((addr_high >> 8) & 0xFF); + +#ifndef CRC32_OS_SUPPORT + E1000_WRITE_REG(hw, E1000_PCH_RAICC(i), + e1000_calc_rx_da_crc(mac_addr)); +#else /* CRC32_OS_SUPPORT */ + E1000_WRITE_REG(hw, E1000_PCH_RAICC(i), + E1000_CRC32(ETH_ADDR_LEN, mac_addr)); +#endif /* CRC32_OS_SUPPORT */ + } + + /* Write Rx addresses to the PHY */ + e1000_copy_rx_addrs_to_phy_ich8lan(hw); + + /* Enable jumbo frame workaround in the MAC */ + mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); + mac_reg &= ~(1 << 14); + mac_reg |= (7 << 15); + E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); + + mac_reg = E1000_READ_REG(hw, E1000_RCTL); + mac_reg |= E1000_RCTL_SECRC; + E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); + + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + &data); + if (ret_val) + return ret_val; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + data | (1 << 0)); + if (ret_val) + return ret_val; + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + &data); + if (ret_val) + return ret_val; + data &= ~(0xF << 8); + data |= (0xB << 8); + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + data); + if (ret_val) + return ret_val; + + /* Enable jumbo frame workaround in the PHY */ + hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); + data &= ~(0x7F << 5); + data |= (0x37 << 5); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); + data &= ~(1 << 13); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); + data &= ~(0x3FF << 2); + data |= (E1000_TX_PTR_GAP << 2); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); + ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data | + (1 << 10)); + if (ret_val) + return ret_val; + } else { + /* Write MAC register values back to h/w defaults */ + mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); + mac_reg &= ~(0xF << 14); + E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); + + mac_reg = E1000_READ_REG(hw, E1000_RCTL); + mac_reg &= ~E1000_RCTL_SECRC; + E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); + + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + &data); + if (ret_val) + return ret_val; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + data & ~(1 << 0)); + if (ret_val) + return ret_val; + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + &data); + if (ret_val) + return ret_val; + data &= ~(0xF << 8); + data |= (0xB << 8); + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + data); + if (ret_val) + return ret_val; + + /* Write PHY register values back to h/w defaults */ + hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); + data &= ~(0x7F << 5); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); + data |= (1 << 13); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); + data &= ~(0x3FF << 2); + data |= (0x8 << 2); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); + ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data & + ~(1 << 10)); + if (ret_val) + return ret_val; + } + + /* re-enable Rx path after enabling/disabling workaround */ + return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg & + ~(1 << 14)); +} + +/** + * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be + * done after every PHY reset. + **/ +STATIC s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan"); + + if (hw->mac.type != e1000_pch2lan) + return E1000_SUCCESS; + + /* Set MDIO slow mode before any other MDIO access */ + ret_val = e1000_set_mdio_slow_mode_hv(hw); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + /* set MSE higher to enable link to stay up when noise is high */ + ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); + if (ret_val) + goto release; + /* drop link after 5 times MSE threshold was reached */ + ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); +release: + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_k1_gig_workaround_lv - K1 Si workaround + * @hw: pointer to the HW structure + * + * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps + * Disable K1 for 1000 and 100 speeds + **/ +STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 status_reg = 0; + + DEBUGFUNC("e1000_k1_workaround_lv"); + + if (hw->mac.type != e1000_pch2lan) + return E1000_SUCCESS; + + /* Set K1 beacon duration based on 10Mbs speed */ + ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg); + if (ret_val) + return ret_val; + + if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) + == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { + if (status_reg & + (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { + u16 pm_phy_reg; + + /* LV 1G/100 Packet drop issue wa */ + ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL, + &pm_phy_reg); + if (ret_val) + return ret_val; + pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; + ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, + pm_phy_reg); + if (ret_val) + return ret_val; + } else { + u32 mac_reg; + mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); + mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; + mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; + E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); + } + } + + return ret_val; +} + +/** + * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware + * @hw: pointer to the HW structure + * @gate: boolean set to true to gate, false to ungate + * + * Gate/ungate the automatic PHY configuration via hardware; perform + * the configuration via software instead. + **/ +STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) +{ + u32 extcnf_ctrl; + + DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan"); + + if (hw->mac.type < e1000_pch2lan) + return; + + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + + if (gate) + extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; + else + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; + + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); +} + +/** + * e1000_lan_init_done_ich8lan - Check for PHY config completion + * @hw: pointer to the HW structure + * + * Check the appropriate indication the MAC has finished configuring the + * PHY after a software reset. + **/ +STATIC void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) +{ + u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; + + DEBUGFUNC("e1000_lan_init_done_ich8lan"); + + /* Wait for basic configuration completes before proceeding */ + do { + data = E1000_READ_REG(hw, E1000_STATUS); + data &= E1000_STATUS_LAN_INIT_DONE; + usec_delay(100); + } while ((!data) && --loop); + + /* If basic configuration is incomplete before the above loop + * count reaches 0, loading the configuration from NVM will + * leave the PHY in a bad state possibly resulting in no link. + */ + if (loop == 0) + DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n"); + + /* Clear the Init Done bit for the next init event */ + data = E1000_READ_REG(hw, E1000_STATUS); + data &= ~E1000_STATUS_LAN_INIT_DONE; + E1000_WRITE_REG(hw, E1000_STATUS, data); +} + +/** + * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 reg; + + DEBUGFUNC("e1000_post_phy_reset_ich8lan"); + + if (hw->phy.ops.check_reset_block(hw)) + return E1000_SUCCESS; + + /* Allow time for h/w to get to quiescent state after reset */ + msec_delay(10); + + /* Perform any necessary post-reset workarounds */ + switch (hw->mac.type) { + case e1000_pchlan: + ret_val = e1000_hv_phy_workarounds_ich8lan(hw); + if (ret_val) + return ret_val; + break; + case e1000_pch2lan: + ret_val = e1000_lv_phy_workarounds_ich8lan(hw); + if (ret_val) + return ret_val; + break; + default: + break; + } + + /* Clear the host wakeup bit after lcd reset */ + if (hw->mac.type >= e1000_pchlan) { + hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, ®); + reg &= ~BM_WUC_HOST_WU_BIT; + hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg); + } + + /* Configure the LCD with the extended configuration region in NVM */ + ret_val = e1000_sw_lcd_config_ich8lan(hw); + if (ret_val) + return ret_val; + + /* Configure the LCD with the OEM bits in NVM */ + ret_val = e1000_oem_bits_config_ich8lan(hw, true); + + if (hw->mac.type == e1000_pch2lan) { + /* Ungate automatic PHY configuration on non-managed 82579 */ + if (!(E1000_READ_REG(hw, E1000_FWSM) & + E1000_ICH_FWSM_FW_VALID)) { + msec_delay(10); + e1000_gate_hw_phy_config_ich8lan(hw, false); + } + + /* Set EEE LPI Update Timer to 200usec */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + ret_val = e1000_write_emi_reg_locked(hw, + I82579_LPI_UPDATE_TIMER, + 0x1387); + hw->phy.ops.release(hw); + } + + return ret_val; +} + +/** + * e1000_phy_hw_reset_ich8lan - Performs a PHY reset + * @hw: pointer to the HW structure + * + * Resets the PHY + * This is a function pointer entry point called by drivers + * or other shared routines. + **/ +STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_phy_hw_reset_ich8lan"); + + /* Gate automatic PHY configuration by hardware on non-managed 82579 */ + if ((hw->mac.type == e1000_pch2lan) && + !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) + e1000_gate_hw_phy_config_ich8lan(hw, true); + + ret_val = e1000_phy_hw_reset_generic(hw); + if (ret_val) + return ret_val; + + return e1000_post_phy_reset_ich8lan(hw); +} + +/** + * e1000_set_lplu_state_pchlan - Set Low Power Link Up state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU state according to the active flag. For PCH, if OEM write + * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set + * the phy speed. This function will manually set the LPLU bit and restart + * auto-neg as hw would do. D3 and D0 LPLU will call the same function + * since it configures the same bit. + **/ +STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) +{ + s32 ret_val; + u16 oem_reg; + + DEBUGFUNC("e1000_set_lplu_state_pchlan"); + ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg); + if (ret_val) + return ret_val; + + if (active) + oem_reg |= HV_OEM_BITS_LPLU; + else + oem_reg &= ~HV_OEM_BITS_LPLU; + + if (!hw->phy.ops.check_reset_block(hw)) + oem_reg |= HV_OEM_BITS_RESTART_AN; + + return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg); +} + +/** + * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D0 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 phy_ctrl; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan"); + + if (phy->type == e1000_phy_ife) + return E1000_SUCCESS; + + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + + if (active) { + phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return E1000_SUCCESS; + + /* Call gig speed drop workaround on LPLU before accessing + * any PHY registers + */ + if (hw->mac.type == e1000_ich8lan) + e1000_gig_downshift_workaround_ich8lan(hw); + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else { + phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return E1000_SUCCESS; + + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D3 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 phy_ctrl; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan"); + + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + + if (!active) { + phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return E1000_SUCCESS; + + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return E1000_SUCCESS; + + /* Call gig speed drop workaround on LPLU before accessing + * any PHY registers + */ + if (hw->mac.type == e1000_ich8lan) + e1000_gig_downshift_workaround_ich8lan(hw); + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + } + + return ret_val; +} + +/** + * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 + * @hw: pointer to the HW structure + * @bank: pointer to the variable that returns the active bank + * + * Reads signature byte from the NVM using the flash access registers. + * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. + **/ +STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) +{ + u32 eecd; + struct e1000_nvm_info *nvm = &hw->nvm; + u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); + u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; + u32 nvm_dword = 0; + u8 sig_byte = 0; + s32 ret_val; + + DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan"); + + switch (hw->mac.type) { + case e1000_pch_spt: + case e1000_pch_cnp: + bank1_offset = nvm->flash_bank_size; + act_offset = E1000_ICH_NVM_SIG_WORD; + + /* set bank to 0 in case flash read fails */ + *bank = 0; + + /* Check bank 0 */ + ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, + &nvm_dword); + if (ret_val) + return ret_val; + sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); + if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == + E1000_ICH_NVM_SIG_VALUE) { + *bank = 0; + return E1000_SUCCESS; + } + + /* Check bank 1 */ + ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + + bank1_offset, + &nvm_dword); + if (ret_val) + return ret_val; + sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); + if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == + E1000_ICH_NVM_SIG_VALUE) { + *bank = 1; + return E1000_SUCCESS; + } + + DEBUGOUT("ERROR: No valid NVM bank present\n"); + return -E1000_ERR_NVM; + case e1000_ich8lan: + case e1000_ich9lan: + eecd = E1000_READ_REG(hw, E1000_EECD); + if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == + E1000_EECD_SEC1VAL_VALID_MASK) { + if (eecd & E1000_EECD_SEC1VAL) + *bank = 1; + else + *bank = 0; + + return E1000_SUCCESS; + } + DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n"); + /* fall-thru */ + default: + /* set bank to 0 in case flash read fails */ + *bank = 0; + + /* Check bank 0 */ + ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, + &sig_byte); + if (ret_val) + return ret_val; + if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == + E1000_ICH_NVM_SIG_VALUE) { + *bank = 0; + return E1000_SUCCESS; + } + + /* Check bank 1 */ + ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + + bank1_offset, + &sig_byte); + if (ret_val) + return ret_val; + if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == + E1000_ICH_NVM_SIG_VALUE) { + *bank = 1; + return E1000_SUCCESS; + } + + DEBUGOUT("ERROR: No valid NVM bank present\n"); + return -E1000_ERR_NVM; + } +} + +/** + * e1000_read_nvm_spt - NVM access for SPT + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the word(s) to read. + * @words: Size of data to read in words. + * @data: pointer to the word(s) to read at offset. + * + * Reads a word(s) from the NVM + **/ +STATIC s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 act_offset; + s32 ret_val = E1000_SUCCESS; + u32 bank = 0; + u32 dword = 0; + u16 offset_to_read; + u16 i; + + DEBUGFUNC("e1000_read_nvm_spt"); + + if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + nvm->ops.acquire(hw); + + ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); + if (ret_val != E1000_SUCCESS) { + DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); + bank = 0; + } + + act_offset = (bank) ? nvm->flash_bank_size : 0; + act_offset += offset; + + ret_val = E1000_SUCCESS; + + for (i = 0; i < words; i += 2) { + if (words - i == 1) { + if (dev_spec->shadow_ram[offset+i].modified) { + data[i] = dev_spec->shadow_ram[offset+i].value; + } else { + offset_to_read = act_offset + i - + ((act_offset + i) % 2); + ret_val = + e1000_read_flash_dword_ich8lan(hw, + offset_to_read, + &dword); + if (ret_val) + break; + if ((act_offset + i) % 2 == 0) + data[i] = (u16)(dword & 0xFFFF); + else + data[i] = (u16)((dword >> 16) & 0xFFFF); + } + } else { + offset_to_read = act_offset + i; + if (!(dev_spec->shadow_ram[offset+i].modified) || + !(dev_spec->shadow_ram[offset+i+1].modified)) { + ret_val = + e1000_read_flash_dword_ich8lan(hw, + offset_to_read, + &dword); + if (ret_val) + break; + } + if (dev_spec->shadow_ram[offset+i].modified) + data[i] = dev_spec->shadow_ram[offset+i].value; + else + data[i] = (u16) (dword & 0xFFFF); + if (dev_spec->shadow_ram[offset+i].modified) + data[i+1] = + dev_spec->shadow_ram[offset+i+1].value; + else + data[i+1] = (u16) (dword >> 16 & 0xFFFF); + } + } + + nvm->ops.release(hw); + +out: + if (ret_val) + DEBUGOUT1("NVM read error: %d\n", ret_val); + + return ret_val; +} + +/** + * e1000_read_nvm_ich8lan - Read word(s) from the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the word(s) to read. + * @words: Size of data to read in words + * @data: Pointer to the word(s) to read at offset. + * + * Reads a word(s) from the NVM using the flash access registers. + **/ +STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 act_offset; + s32 ret_val = E1000_SUCCESS; + u32 bank = 0; + u16 i, word; + + DEBUGFUNC("e1000_read_nvm_ich8lan"); + + if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + nvm->ops.acquire(hw); + + ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); + if (ret_val != E1000_SUCCESS) { + DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); + bank = 0; + } + + act_offset = (bank) ? nvm->flash_bank_size : 0; + act_offset += offset; + + ret_val = E1000_SUCCESS; + for (i = 0; i < words; i++) { + if (dev_spec->shadow_ram[offset+i].modified) { + data[i] = dev_spec->shadow_ram[offset+i].value; + } else { + ret_val = e1000_read_flash_word_ich8lan(hw, + act_offset + i, + &word); + if (ret_val) + break; + data[i] = word; + } + } + + nvm->ops.release(hw); + +out: + if (ret_val) + DEBUGOUT1("NVM read error: %d\n", ret_val); + + return ret_val; +} + +/** + * e1000_flash_cycle_init_ich8lan - Initialize flash + * @hw: pointer to the HW structure + * + * This function does initial flash setup so that a new read/write/erase cycle + * can be started. + **/ +STATIC s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) +{ + union ich8_hws_flash_status hsfsts; + s32 ret_val = -E1000_ERR_NVM; + + DEBUGFUNC("e1000_flash_cycle_init_ich8lan"); + + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + + /* Check if the flash descriptor is valid */ + if (!hsfsts.hsf_status.fldesvalid) { + DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n"); + return -E1000_ERR_NVM; + } + + /* Clear FCERR and DAEL in hw status by writing 1 */ + hsfsts.hsf_status.flcerr = 1; + hsfsts.hsf_status.dael = 1; + if (hw->mac.type >= e1000_pch_spt) + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, + hsfsts.regval & 0xFFFF); + else + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); + + /* Either we should have a hardware SPI cycle in progress + * bit to check against, in order to start a new cycle or + * FDONE bit should be changed in the hardware so that it + * is 1 after hardware reset, which can then be used as an + * indication whether a cycle is in progress or has been + * completed. + */ + + if (!hsfsts.hsf_status.flcinprog) { + /* There is no cycle running at present, + * so we can start a cycle. + * Begin by setting Flash Cycle Done. + */ + hsfsts.hsf_status.flcdone = 1; + if (hw->mac.type >= e1000_pch_spt) + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, + hsfsts.regval & 0xFFFF); + else + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, + hsfsts.regval); + ret_val = E1000_SUCCESS; + } else { + s32 i; + + /* Otherwise poll for sometime so the current + * cycle has a chance to end before giving up. + */ + for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { + hsfsts.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (!hsfsts.hsf_status.flcinprog) { + ret_val = E1000_SUCCESS; + break; + } + usec_delay(1); + } + if (ret_val == E1000_SUCCESS) { + /* Successful in waiting for previous cycle to timeout, + * now set the Flash Cycle Done. + */ + hsfsts.hsf_status.flcdone = 1; + if (hw->mac.type >= e1000_pch_spt) + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, + hsfsts.regval & 0xFFFF); + else + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, + hsfsts.regval); + } else { + DEBUGOUT("Flash controller busy, cannot get access\n"); + } + } + + return ret_val; +} + +/** + * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) + * @hw: pointer to the HW structure + * @timeout: maximum time to wait for completion + * + * This function starts a flash cycle and waits for its completion. + **/ +STATIC s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) +{ + union ich8_hws_flash_ctrl hsflctl; + union ich8_hws_flash_status hsfsts; + u32 i = 0; + + DEBUGFUNC("e1000_flash_cycle_ich8lan"); + + /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ + if (hw->mac.type >= e1000_pch_spt) + hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; + else + hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcgo = 1; + + if (hw->mac.type >= e1000_pch_spt) + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, + hsflctl.regval << 16); + else + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + /* wait till FDONE bit is set to 1 */ + do { + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcdone) + break; + usec_delay(1); + } while (i++ < timeout); + + if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) + return E1000_SUCCESS; + + return -E1000_ERR_NVM; +} + +/** + * e1000_read_flash_dword_ich8lan - Read dword from flash + * @hw: pointer to the HW structure + * @offset: offset to data location + * @data: pointer to the location for storing the data + * + * Reads the flash dword at offset into data. Offset is converted + * to bytes before read. + **/ +STATIC s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, + u32 *data) +{ + DEBUGFUNC("e1000_read_flash_dword_ich8lan"); + + if (!data) + return -E1000_ERR_NVM; + + /* Must convert word offset into bytes. */ + offset <<= 1; + + return e1000_read_flash_data32_ich8lan(hw, offset, data); +} + +/** + * e1000_read_flash_word_ich8lan - Read word from flash + * @hw: pointer to the HW structure + * @offset: offset to data location + * @data: pointer to the location for storing the data + * + * Reads the flash word at offset into data. Offset is converted + * to bytes before read. + **/ +STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, + u16 *data) +{ + DEBUGFUNC("e1000_read_flash_word_ich8lan"); + + if (!data) + return -E1000_ERR_NVM; + + /* Must convert offset into bytes. */ + offset <<= 1; + + return e1000_read_flash_data_ich8lan(hw, offset, 2, data); +} + +/** + * e1000_read_flash_byte_ich8lan - Read byte from flash + * @hw: pointer to the HW structure + * @offset: The offset of the byte to read. + * @data: Pointer to a byte to store the value read. + * + * Reads a single byte from the NVM using the flash access registers. + **/ +STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, + u8 *data) +{ + s32 ret_val; + u16 word = 0; + + /* In SPT, only 32 bits access is supported, + * so this function should not be called. + */ + if (hw->mac.type >= e1000_pch_spt) + return -E1000_ERR_NVM; + else + ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); + + if (ret_val) + return ret_val; + + *data = (u8)word; + + return E1000_SUCCESS; +} + +/** + * e1000_read_flash_data_ich8lan - Read byte or word from NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the byte or word to read. + * @size: Size of data to read, 1=byte 2=word + * @data: Pointer to the word to store the value read. + * + * Reads a byte or word from the NVM using the flash access registers. + **/ +STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16 *data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + u32 flash_data = 0; + s32 ret_val = -E1000_ERR_NVM; + u8 count = 0; + + DEBUGFUNC("e1000_read_flash_data_ich8lan"); + + if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) + return -E1000_ERR_NVM; + flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + + hw->nvm.flash_base_addr); + + do { + usec_delay(1); + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val != E1000_SUCCESS) + break; + hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); + + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_READ_COMMAND_TIMEOUT); + + /* Check if FCERR is set to 1, if set to 1, clear it + * and try the whole sequence a few more times, else + * read in (shift in) the Flash Data0, the order is + * least significant byte first msb to lsb + */ + if (ret_val == E1000_SUCCESS) { + flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); + if (size == 1) + *data = (u8)(flash_data & 0x000000FF); + else if (size == 2) + *data = (u16)(flash_data & 0x0000FFFF); + break; + } else { + /* If we've gotten here, then things are probably + * completely hosed, but if the error condition is + * detected, it won't hurt to give it another try... + * ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr) { + /* Repeat for some time before giving up. */ + continue; + } else if (!hsfsts.hsf_status.flcdone) { + DEBUGOUT("Timeout error - flash cycle did not complete.\n"); + break; + } + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return ret_val; +} + +/** + * e1000_read_flash_data32_ich8lan - Read dword from NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the dword to read. + * @data: Pointer to the dword to store the value read. + * + * Reads a byte or word from the NVM using the flash access registers. + **/ +STATIC s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, + u32 *data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + s32 ret_val = -E1000_ERR_NVM; + u8 count = 0; + + DEBUGFUNC("e1000_read_flash_data_ich8lan"); + + if (offset > ICH_FLASH_LINEAR_ADDR_MASK || + hw->mac.type < e1000_pch_spt) + return -E1000_ERR_NVM; + flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + + hw->nvm.flash_base_addr); + + do { + usec_delay(1); + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val != E1000_SUCCESS) + break; + /* In SPT, This register is in Lan memory space, not flash. + * Therefore, only 32 bit access is supported + */ + hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; + + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; + /* In SPT, This register is in Lan memory space, not flash. + * Therefore, only 32 bit access is supported + */ + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, + (u32)hsflctl.regval << 16); + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); + + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_READ_COMMAND_TIMEOUT); + + /* Check if FCERR is set to 1, if set to 1, clear it + * and try the whole sequence a few more times, else + * read in (shift in) the Flash Data0, the order is + * least significant byte first msb to lsb + */ + if (ret_val == E1000_SUCCESS) { + *data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); + break; + } else { + /* If we've gotten here, then things are probably + * completely hosed, but if the error condition is + * detected, it won't hurt to give it another try... + * ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr) { + /* Repeat for some time before giving up. */ + continue; + } else if (!hsfsts.hsf_status.flcdone) { + DEBUGOUT("Timeout error - flash cycle did not complete.\n"); + break; + } + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return ret_val; +} + +/** + * e1000_write_nvm_ich8lan - Write word(s) to the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the word(s) to write. + * @words: Size of data to write in words + * @data: Pointer to the word(s) to write at offset. + * + * Writes a byte or word to the NVM using the flash access registers. + **/ +STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u16 i; + + DEBUGFUNC("e1000_write_nvm_ich8lan"); + + if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + nvm->ops.acquire(hw); + + for (i = 0; i < words; i++) { + dev_spec->shadow_ram[offset+i].modified = true; + dev_spec->shadow_ram[offset+i].value = data[i]; + } + + nvm->ops.release(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_update_nvm_checksum_spt - Update the checksum for NVM + * @hw: pointer to the HW structure + * + * The NVM checksum is updated by calling the generic update_nvm_checksum, + * which writes the checksum to the shadow ram. The changes in the shadow + * ram are then committed to the EEPROM by processing each bank at a time + * checking for the modified bit and writing only the pending changes. + * After a successful commit, the shadow ram is cleared and is ready for + * future writes. + **/ +STATIC s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 i, act_offset, new_bank_offset, old_bank_offset, bank; + s32 ret_val; + u32 dword = 0; + + DEBUGFUNC("e1000_update_nvm_checksum_spt"); + + ret_val = e1000_update_nvm_checksum_generic(hw); + if (ret_val) + goto out; + + if (nvm->type != e1000_nvm_flash_sw) + goto out; + + nvm->ops.acquire(hw); + + /* We're writing to the opposite bank so if we're on bank 1, + * write to bank 0 etc. We also need to erase the segment that + * is going to be written + */ + ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); + if (ret_val != E1000_SUCCESS) { + DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); + bank = 0; + } + + if (bank == 0) { + new_bank_offset = nvm->flash_bank_size; + old_bank_offset = 0; + ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); + if (ret_val) + goto release; + } else { + old_bank_offset = nvm->flash_bank_size; + new_bank_offset = 0; + ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); + if (ret_val) + goto release; + } + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) { + /* Determine whether to write the value stored + * in the other NVM bank or a modified value stored + * in the shadow RAM + */ + ret_val = e1000_read_flash_dword_ich8lan(hw, + i + old_bank_offset, + &dword); + + if (dev_spec->shadow_ram[i].modified) { + dword &= 0xffff0000; + dword |= (dev_spec->shadow_ram[i].value & 0xffff); + } + if (dev_spec->shadow_ram[i + 1].modified) { + dword &= 0x0000ffff; + dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) + << 16); + } + if (ret_val) + break; + + /* If the word is 0x13, then make sure the signature bits + * (15:14) are 11b until the commit has completed. + * This will allow us to write 10b which indicates the + * signature is valid. We want to do this after the write + * has completed so that we don't mark the segment valid + * while the write is still in progress + */ + if (i == E1000_ICH_NVM_SIG_WORD - 1) + dword |= E1000_ICH_NVM_SIG_MASK << 16; + + /* Convert offset to bytes. */ + act_offset = (i + new_bank_offset) << 1; + + usec_delay(100); + + /* Write the data to the new bank. Offset in words*/ + act_offset = i + new_bank_offset; + ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, + dword); + if (ret_val) + break; + } + + /* Don't bother writing the segment valid bits if sector + * programming failed. + */ + if (ret_val) { + DEBUGOUT("Flash commit failed.\n"); + goto release; + } + + /* Finally validate the new segment by setting bit 15:14 + * to 10b in word 0x13 , this can be done without an + * erase as well since these bits are 11 to start with + * and we need to change bit 14 to 0b + */ + act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; + + /*offset in words but we read dword*/ + --act_offset; + ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); + + if (ret_val) + goto release; + + dword &= 0xBFFFFFFF; + ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); + + if (ret_val) + goto release; + + /* And invalidate the previously valid segment by setting + * its signature word (0x13) high_byte to 0b. This can be + * done without an erase because flash erase sets all bits + * to 1's. We can write 1's to 0's without an erase + */ + act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; + + /* offset in words but we read dword*/ + act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; + ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); + + if (ret_val) + goto release; + + dword &= 0x00FFFFFF; + ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); + + if (ret_val) + goto release; + + /* Great! Everything worked, we can now clear the cached entries. */ + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + dev_spec->shadow_ram[i].modified = false; + dev_spec->shadow_ram[i].value = 0xFFFF; + } + +release: + nvm->ops.release(hw); + + /* Reload the EEPROM, or else modifications will not appear + * until after the next adapter reset. + */ + if (!ret_val) { + nvm->ops.reload(hw); + msec_delay(10); + } + +out: + if (ret_val) + DEBUGOUT1("NVM update error: %d\n", ret_val); + + return ret_val; +} + +/** + * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM + * @hw: pointer to the HW structure + * + * The NVM checksum is updated by calling the generic update_nvm_checksum, + * which writes the checksum to the shadow ram. The changes in the shadow + * ram are then committed to the EEPROM by processing each bank at a time + * checking for the modified bit and writing only the pending changes. + * After a successful commit, the shadow ram is cleared and is ready for + * future writes. + **/ +STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 i, act_offset, new_bank_offset, old_bank_offset, bank; + s32 ret_val; + u16 data = 0; + + DEBUGFUNC("e1000_update_nvm_checksum_ich8lan"); + + ret_val = e1000_update_nvm_checksum_generic(hw); + if (ret_val) + goto out; + + if (nvm->type != e1000_nvm_flash_sw) + goto out; + + nvm->ops.acquire(hw); + + /* We're writing to the opposite bank so if we're on bank 1, + * write to bank 0 etc. We also need to erase the segment that + * is going to be written + */ + ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); + if (ret_val != E1000_SUCCESS) { + DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); + bank = 0; + } + + if (bank == 0) { + new_bank_offset = nvm->flash_bank_size; + old_bank_offset = 0; + ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); + if (ret_val) + goto release; + } else { + old_bank_offset = nvm->flash_bank_size; + new_bank_offset = 0; + ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); + if (ret_val) + goto release; + } + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + if (dev_spec->shadow_ram[i].modified) { + data = dev_spec->shadow_ram[i].value; + } else { + ret_val = e1000_read_flash_word_ich8lan(hw, i + + old_bank_offset, + &data); + if (ret_val) + break; + } + /* If the word is 0x13, then make sure the signature bits + * (15:14) are 11b until the commit has completed. + * This will allow us to write 10b which indicates the + * signature is valid. We want to do this after the write + * has completed so that we don't mark the segment valid + * while the write is still in progress + */ + if (i == E1000_ICH_NVM_SIG_WORD) + data |= E1000_ICH_NVM_SIG_MASK; + + /* Convert offset to bytes. */ + act_offset = (i + new_bank_offset) << 1; + + usec_delay(100); + + /* Write the bytes to the new bank. */ + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, + act_offset, + (u8)data); + if (ret_val) + break; + + usec_delay(100); + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, + act_offset + 1, + (u8)(data >> 8)); + if (ret_val) + break; + } + + /* Don't bother writing the segment valid bits if sector + * programming failed. + */ + if (ret_val) { + DEBUGOUT("Flash commit failed.\n"); + goto release; + } + + /* Finally validate the new segment by setting bit 15:14 + * to 10b in word 0x13 , this can be done without an + * erase as well since these bits are 11 to start with + * and we need to change bit 14 to 0b + */ + act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; + ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); + if (ret_val) + goto release; + + data &= 0xBFFF; + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1, + (u8)(data >> 8)); + if (ret_val) + goto release; + + /* And invalidate the previously valid segment by setting + * its signature word (0x13) high_byte to 0b. This can be + * done without an erase because flash erase sets all bits + * to 1's. We can write 1's to 0's without an erase + */ + act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; + + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); + + if (ret_val) + goto release; + + /* Great! Everything worked, we can now clear the cached entries. */ + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + dev_spec->shadow_ram[i].modified = false; + dev_spec->shadow_ram[i].value = 0xFFFF; + } + +release: + nvm->ops.release(hw); + + /* Reload the EEPROM, or else modifications will not appear + * until after the next adapter reset. + */ + if (!ret_val) { + nvm->ops.reload(hw); + msec_delay(10); + } + +out: + if (ret_val) + DEBUGOUT1("NVM update error: %d\n", ret_val); + + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. + * If the bit is 0, that the EEPROM had been modified, but the checksum was not + * calculated, in which case we need to calculate the checksum and set bit 6. + **/ +STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val; + u16 data; + u16 word; + u16 valid_csum_mask; + + DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan"); + + /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, + * the checksum needs to be fixed. This bit is an indication that + * the NVM was prepared by OEM software and did not calculate + * the checksum...a likely scenario. + */ + switch (hw->mac.type) { + case e1000_pch_lpt: + case e1000_pch_spt: + case e1000_pch_cnp: + word = NVM_COMPAT; + valid_csum_mask = NVM_COMPAT_VALID_CSUM; + break; + default: + word = NVM_FUTURE_INIT_WORD1; + valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; + break; + } + + ret_val = hw->nvm.ops.read(hw, word, 1, &data); + if (ret_val) + return ret_val; + + if (!(data & valid_csum_mask)) { + data |= valid_csum_mask; + ret_val = hw->nvm.ops.write(hw, word, 1, &data); + if (ret_val) + return ret_val; + ret_val = hw->nvm.ops.update(hw); + if (ret_val) + return ret_val; + } + + return e1000_validate_nvm_checksum_generic(hw); +} + +/** + * e1000_write_flash_data_ich8lan - Writes bytes to the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the byte/word to read. + * @size: Size of data to read, 1=byte 2=word + * @data: The byte(s) to write to the NVM. + * + * Writes one/two bytes to the NVM using the flash access registers. + **/ +STATIC s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16 data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + u32 flash_data = 0; + s32 ret_val; + u8 count = 0; + + DEBUGFUNC("e1000_write_ich8_data"); + + if (hw->mac.type >= e1000_pch_spt) { + if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) + return -E1000_ERR_NVM; + } else { + if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) + return -E1000_ERR_NVM; + } + + flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + + hw->nvm.flash_base_addr); + + do { + usec_delay(1); + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val != E1000_SUCCESS) + break; + /* In SPT, This register is in Lan memory space, not + * flash. Therefore, only 32 bit access is supported + */ + if (hw->mac.type >= e1000_pch_spt) + hsflctl.regval = + E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; + else + hsflctl.regval = + E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; + /* In SPT, This register is in Lan memory space, + * not flash. Therefore, only 32 bit access is + * supported + */ + if (hw->mac.type >= e1000_pch_spt) + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, + hsflctl.regval << 16); + else + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, + hsflctl.regval); + + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); + + if (size == 1) + flash_data = (u32)data & 0x00FF; + else + flash_data = (u32)data; + + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); + + /* check if FCERR is set to 1 , if set to 1, clear it + * and try the whole sequence a few more times else done + */ + ret_val = + e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_WRITE_COMMAND_TIMEOUT); + if (ret_val == E1000_SUCCESS) + break; + + /* If we're here, then things are most likely + * completely hosed, but if the error condition + * is detected, it won't hurt to give it another + * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr) + /* Repeat for some time before giving up. */ + continue; + if (!hsfsts.hsf_status.flcdone) { + DEBUGOUT("Timeout error - flash cycle did not complete.\n"); + break; + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return ret_val; +} + +/** +* e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM +* @hw: pointer to the HW structure +* @offset: The offset (in bytes) of the dwords to read. +* @data: The 4 bytes to write to the NVM. +* +* Writes one/two/four bytes to the NVM using the flash access registers. +**/ +STATIC s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, + u32 data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + s32 ret_val; + u8 count = 0; + + DEBUGFUNC("e1000_write_flash_data32_ich8lan"); + + if (hw->mac.type >= e1000_pch_spt) { + if (offset > ICH_FLASH_LINEAR_ADDR_MASK) + return -E1000_ERR_NVM; + } + flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + + hw->nvm.flash_base_addr); + do { + usec_delay(1); + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val != E1000_SUCCESS) + break; + + /* In SPT, This register is in Lan memory space, not + * flash. Therefore, only 32 bit access is supported + */ + if (hw->mac.type >= e1000_pch_spt) + hsflctl.regval = E1000_READ_FLASH_REG(hw, + ICH_FLASH_HSFSTS) + >> 16; + else + hsflctl.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFCTL); + + hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; + + /* In SPT, This register is in Lan memory space, + * not flash. Therefore, only 32 bit access is + * supported + */ + if (hw->mac.type >= e1000_pch_spt) + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, + hsflctl.regval << 16); + else + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, + hsflctl.regval); + + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); + + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data); + + /* check if FCERR is set to 1 , if set to 1, clear it + * and try the whole sequence a few more times else done + */ + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_WRITE_COMMAND_TIMEOUT); + + if (ret_val == E1000_SUCCESS) + break; + + /* If we're here, then things are most likely + * completely hosed, but if the error condition + * is detected, it won't hurt to give it another + * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + + if (hsfsts.hsf_status.flcerr) + /* Repeat for some time before giving up. */ + continue; + if (!hsfsts.hsf_status.flcdone) { + DEBUGOUT("Timeout error - flash cycle did not complete.\n"); + break; + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return ret_val; +} + +/** + * e1000_write_flash_byte_ich8lan - Write a single byte to NVM + * @hw: pointer to the HW structure + * @offset: The index of the byte to read. + * @data: The byte to write to the NVM. + * + * Writes a single byte to the NVM using the flash access registers. + **/ +STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, + u8 data) +{ + u16 word = (u16)data; + + DEBUGFUNC("e1000_write_flash_byte_ich8lan"); + + return e1000_write_flash_data_ich8lan(hw, offset, 1, word); +} + +/** +* e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM +* @hw: pointer to the HW structure +* @offset: The offset of the word to write. +* @dword: The dword to write to the NVM. +* +* Writes a single dword to the NVM using the flash access registers. +* Goes through a retry algorithm before giving up. +**/ +STATIC s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, + u32 offset, u32 dword) +{ + s32 ret_val; + u16 program_retries; + + DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan"); + + /* Must convert word offset into bytes. */ + offset <<= 1; + + ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); + + if (!ret_val) + return ret_val; + for (program_retries = 0; program_retries < 100; program_retries++) { + DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset); + usec_delay(100); + ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); + if (ret_val == E1000_SUCCESS) + break; + } + if (program_retries == 100) + return -E1000_ERR_NVM; + + return E1000_SUCCESS; +} + +/** + * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM + * @hw: pointer to the HW structure + * @offset: The offset of the byte to write. + * @byte: The byte to write to the NVM. + * + * Writes a single byte to the NVM using the flash access registers. + * Goes through a retry algorithm before giving up. + **/ +STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8 byte) +{ + s32 ret_val; + u16 program_retries; + + DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan"); + + ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); + if (!ret_val) + return ret_val; + + for (program_retries = 0; program_retries < 100; program_retries++) { + DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset); + usec_delay(100); + ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); + if (ret_val == E1000_SUCCESS) + break; + } + if (program_retries == 100) + return -E1000_ERR_NVM; + + return E1000_SUCCESS; +} + +/** + * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM + * @hw: pointer to the HW structure + * @bank: 0 for first bank, 1 for second bank, etc. + * + * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. + * bank N is 4096 * N + flash_reg_addr. + **/ +STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + /* bank size is in 16bit words - adjust to bytes */ + u32 flash_bank_size = nvm->flash_bank_size * 2; + s32 ret_val; + s32 count = 0; + s32 j, iteration, sector_size; + + DEBUGFUNC("e1000_erase_flash_bank_ich8lan"); + + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + + /* Determine HW Sector size: Read BERASE bits of hw flash status + * register + * 00: The Hw sector is 256 bytes, hence we need to erase 16 + * consecutive sectors. The start index for the nth Hw sector + * can be calculated as = bank * 4096 + n * 256 + * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. + * The start index for the nth Hw sector can be calculated + * as = bank * 4096 + * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 + * (ich9 only, otherwise error condition) + * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 + */ + switch (hsfsts.hsf_status.berasesz) { + case 0: + /* Hw sector size 256 */ + sector_size = ICH_FLASH_SEG_SIZE_256; + iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; + break; + case 1: + sector_size = ICH_FLASH_SEG_SIZE_4K; + iteration = 1; + break; + case 2: + sector_size = ICH_FLASH_SEG_SIZE_8K; + iteration = 1; + break; + case 3: + sector_size = ICH_FLASH_SEG_SIZE_64K; + iteration = 1; + break; + default: + return -E1000_ERR_NVM; + } + + /* Start with the base address, then add the sector offset. */ + flash_linear_addr = hw->nvm.flash_base_addr; + flash_linear_addr += (bank) ? flash_bank_size : 0; + + for (j = 0; j < iteration; j++) { + do { + u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; + + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val) + return ret_val; + + /* Write a value 11 (block Erase) in Flash + * Cycle field in hw flash control + */ + if (hw->mac.type >= e1000_pch_spt) + hsflctl.regval = + E1000_READ_FLASH_REG(hw, + ICH_FLASH_HSFSTS)>>16; + else + hsflctl.regval = + E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFCTL); + + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; + if (hw->mac.type >= e1000_pch_spt) + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, + hsflctl.regval << 16); + else + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, + hsflctl.regval); + + /* Write the last 24 bits of an index within the + * block into Flash Linear address field in Flash + * Address. + */ + flash_linear_addr += (j * sector_size); + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, + flash_linear_addr); + + ret_val = e1000_flash_cycle_ich8lan(hw, timeout); + if (ret_val == E1000_SUCCESS) + break; + + /* Check if FCERR is set to 1. If 1, + * clear it and try the whole sequence + * a few more times else Done + */ + hsfsts.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr) + /* repeat for some time before giving up */ + continue; + else if (!hsfsts.hsf_status.flcdone) + return ret_val; + } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); + } + + return E1000_SUCCESS; +} + +/** + * e1000_valid_led_default_ich8lan - Set the default LED settings + * @hw: pointer to the HW structure + * @data: Pointer to the LED settings + * + * Reads the LED default settings from the NVM to data. If the NVM LED + * settings is all 0's or F's, set the LED default to a valid LED default + * setting. + **/ +STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_ich8lan"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT_ICH8LAN; + + return E1000_SUCCESS; +} + +/** + * e1000_id_led_init_pchlan - store LED configurations + * @hw: pointer to the HW structure + * + * PCH does not control LEDs via the LEDCTL register, rather it uses + * the PHY LED configuration register. + * + * PCH also does not have an "always on" or "always off" mode which + * complicates the ID feature. Instead of using the "on" mode to indicate + * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()), + * use "link_up" mode. The LEDs will still ID on request if there is no + * link based on logic in e1000_led_[on|off]_pchlan(). + **/ +STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; + const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; + u16 data, i, temp, shift; + + DEBUGFUNC("e1000_id_led_init_pchlan"); + + /* Get default ID LED modes */ + ret_val = hw->nvm.ops.valid_led_default(hw, &data); + if (ret_val) + return ret_val; + + mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); + mac->ledctl_mode1 = mac->ledctl_default; + mac->ledctl_mode2 = mac->ledctl_default; + + for (i = 0; i < 4; i++) { + temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; + shift = (i * 5); + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode1 |= (ledctl_on << shift); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode1 |= (ledctl_off << shift); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode2 |= (ledctl_on << shift); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode2 |= (ledctl_off << shift); + break; + default: + /* Do nothing */ + break; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_bus_info_ich8lan - Get/Set the bus type and width + * @hw: pointer to the HW structure + * + * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability + * register, so the bus width is hard coded. + **/ +STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + s32 ret_val; + + DEBUGFUNC("e1000_get_bus_info_ich8lan"); + + ret_val = e1000_get_bus_info_pcie_generic(hw); + + /* ICH devices are "PCI Express"-ish. They have + * a configuration space, but do not contain + * PCI Express Capability registers, so bus width + * must be hardcoded. + */ + if (bus->width == e1000_bus_width_unknown) + bus->width = e1000_bus_width_pcie_x1; + + return ret_val; +} + +/** + * e1000_reset_hw_ich8lan - Reset the hardware + * @hw: pointer to the HW structure + * + * Does a full reset of the hardware which includes a reset of the PHY and + * MAC. + **/ +STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u16 kum_cfg; + u32 ctrl, reg; + s32 ret_val; + + DEBUGFUNC("e1000_reset_hw_ich8lan"); + + /* Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + /* Disable the Transmit and Receive units. Then delay to allow + * any pending transactions to complete before we hit the MAC + * with the global reset. + */ + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* Workaround for ICH8 bit corruption issue in FIFO memory */ + if (hw->mac.type == e1000_ich8lan) { + /* Set Tx and Rx buffer allocation to 8k apiece. */ + E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K); + /* Set Packet Buffer Size to 16k. */ + E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K); + } + + if (hw->mac.type == e1000_pchlan) { + /* Save the NVM K1 bit setting*/ + ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); + if (ret_val) + return ret_val; + + if (kum_cfg & E1000_NVM_K1_ENABLE) + dev_spec->nvm_k1_enabled = true; + else + dev_spec->nvm_k1_enabled = false; + } + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + if (!hw->phy.ops.check_reset_block(hw)) { + /* Full-chip reset requires MAC and PHY reset at the same + * time to make sure the interface between MAC and the + * external PHY is reset. + */ + ctrl |= E1000_CTRL_PHY_RST; + + /* Gate automatic PHY configuration by hardware on + * non-managed 82579 + */ + if ((hw->mac.type == e1000_pch2lan) && + !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) + e1000_gate_hw_phy_config_ich8lan(hw, true); + } + ret_val = e1000_acquire_swflag_ich8lan(hw); + DEBUGOUT("Issuing a global reset to ich8lan\n"); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST)); + /* cannot issue a flush here because it hangs the hardware */ + msec_delay(20); + + /* Set Phy Config Counter to 50msec */ + if (hw->mac.type == e1000_pch2lan) { + reg = E1000_READ_REG(hw, E1000_FEXTNVM3); + reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; + reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; + E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg); + } + + if (!ret_val) + E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); + + if (ctrl & E1000_CTRL_PHY_RST) { + ret_val = hw->phy.ops.get_cfg_done(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_post_phy_reset_ich8lan(hw); + if (ret_val) + return ret_val; + } + + /* For PCH, this write will make sure that any noise + * will be detected as a CRC error and be dropped rather than show up + * as a bad packet to the DMA engine. + */ + if (hw->mac.type == e1000_pchlan) + E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565); + + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + reg = E1000_READ_REG(hw, E1000_KABGTXD); + reg |= E1000_KABGTXD_BGSQLBIAS; + E1000_WRITE_REG(hw, E1000_KABGTXD, reg); + + return E1000_SUCCESS; +} + +/** + * e1000_init_hw_ich8lan - Initialize the hardware + * @hw: pointer to the HW structure + * + * Prepares the hardware for transmit and receive by doing the following: + * - initialize hardware bits + * - initialize LED identification + * - setup receive address registers + * - setup flow control + * - setup transmit descriptors + * - clear statistics + **/ +STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 ctrl_ext, txdctl, snoop; + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_init_hw_ich8lan"); + + e1000_initialize_hw_bits_ich8lan(hw); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + /* An error is not fatal and we should not stop init due to this */ + if (ret_val) + DEBUGOUT("Error initializing identification LED\n"); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* The 82578 Rx buffer will stall if wakeup is enabled in host and + * the ME. Disable wakeup by clearing the host wakeup bit. + * Reset the phy after disabling host wakeup to reset the Rx buffer. + */ + if (hw->phy.type == e1000_phy_82578) { + hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i); + i &= ~BM_WUC_HOST_WU_BIT; + hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i); + ret_val = e1000_phy_hw_reset_ich8lan(hw); + if (ret_val) + return ret_val; + } + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the transmit descriptor write-back policy for both queues */ + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); + txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB); + txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | + E1000_TXDCTL_MAX_TX_DESC_PREFETCH); + E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1)); + txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB); + txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | + E1000_TXDCTL_MAX_TX_DESC_PREFETCH); + E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl); + + /* ICH8 has opposite polarity of no_snoop bits. + * By default, we should use snoop behavior. + */ + if (mac->type == e1000_ich8lan) + snoop = PCIE_ICH8_SNOOP_ALL; + else + snoop = (u32) ~(PCIE_NO_SNOOP_ALL); + e1000_set_pcie_no_snoop_generic(hw, snoop); + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + /* Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_ich8lan(hw); + + return ret_val; +} + +/** + * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits + * @hw: pointer to the HW structure + * + * Sets/Clears required hardware bits necessary for correctly setting up the + * hardware for transmit and receive. + **/ +STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_initialize_hw_bits_ich8lan"); + + /* Extended Device Control */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg |= (1 << 22); + /* Enable PHY low-power state when MAC is at D3 w/o WoL */ + if (hw->mac.type >= e1000_pchlan) + reg |= E1000_CTRL_EXT_PHYPDEN; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* Transmit Descriptor Control 0 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); + + /* Transmit Descriptor Control 1 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); + + /* Transmit Arbitration Control 0 */ + reg = E1000_READ_REG(hw, E1000_TARC(0)); + if (hw->mac.type == e1000_ich8lan) + reg |= (1 << 28) | (1 << 29); + reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); + E1000_WRITE_REG(hw, E1000_TARC(0), reg); + + /* Transmit Arbitration Control 1 */ + reg = E1000_READ_REG(hw, E1000_TARC(1)); + if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) + reg &= ~(1 << 28); + else + reg |= (1 << 28); + reg |= (1 << 24) | (1 << 26) | (1 << 30); + E1000_WRITE_REG(hw, E1000_TARC(1), reg); + + /* Device Status */ + if (hw->mac.type == e1000_ich8lan) { + reg = E1000_READ_REG(hw, E1000_STATUS); + reg &= ~(1 << 31); + E1000_WRITE_REG(hw, E1000_STATUS, reg); + } + + /* work-around descriptor data corruption issue during nfs v2 udp + * traffic, just disable the nfs filtering capability + */ + reg = E1000_READ_REG(hw, E1000_RFCTL); + reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); + + /* Disable IPv6 extension header parsing because some malformed + * IPv6 headers can hang the Rx. + */ + if (hw->mac.type == e1000_ich8lan) + reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); + E1000_WRITE_REG(hw, E1000_RFCTL, reg); + + /* Enable ECC on Lynxpoint */ + if (hw->mac.type >= e1000_pch_lpt) { + reg = E1000_READ_REG(hw, E1000_PBECCSTS); + reg |= E1000_PBECCSTS_ECC_ENABLE; + E1000_WRITE_REG(hw, E1000_PBECCSTS, reg); + + reg = E1000_READ_REG(hw, E1000_CTRL); + reg |= E1000_CTRL_MEHE; + E1000_WRITE_REG(hw, E1000_CTRL, reg); + } + + return; +} + +/** + * e1000_setup_link_ich8lan - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_setup_link_ich8lan"); + + if (hw->phy.ops.check_reset_block(hw)) + return E1000_SUCCESS; + + /* ICH parts do not have a word in the NVM to determine + * the default flow control setting, so we explicitly + * set it to full. + */ + if (hw->fc.requested_mode == e1000_fc_default) + hw->fc.requested_mode = e1000_fc_full; + + /* Save off the requested flow control mode for use later. Depending + * on the link partner's capabilities, we may or may not use this mode. + */ + hw->fc.current_mode = hw->fc.requested_mode; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", + hw->fc.current_mode); + + /* Continue to configure the copper link. */ + ret_val = hw->mac.ops.setup_physical_interface(hw); + if (ret_val) + return ret_val; + + E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); + if ((hw->phy.type == e1000_phy_82578) || + (hw->phy.type == e1000_phy_82579) || + (hw->phy.type == e1000_phy_i217) || + (hw->phy.type == e1000_phy_82577)) { + E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time); + + ret_val = hw->phy.ops.write_reg(hw, + PHY_REG(BM_PORT_CTRL_PAGE, 27), + hw->fc.pause_time); + if (ret_val) + return ret_val; + } + + return e1000_set_fc_watermarks_generic(hw); +} + +/** + * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface + * @hw: pointer to the HW structure + * + * Configures the kumeran interface to the PHY to wait the appropriate time + * when polling the PHY, then call the generic setup_copper_link to finish + * configuring the copper link. + **/ +STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 reg_data; + + DEBUGFUNC("e1000_setup_copper_link_ich8lan"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Set the mac to wait the maximum time between each iteration + * and increase the max iterations when polling the phy; + * this fixes erroneous timeouts at 10Mbps. + */ + ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS, + 0xFFFF); + if (ret_val) + return ret_val; + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_INBAND_PARAM, + ®_data); + if (ret_val) + return ret_val; + reg_data |= 0x3F; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_INBAND_PARAM, + reg_data); + if (ret_val) + return ret_val; + + switch (hw->phy.type) { + case e1000_phy_igp_3: + ret_val = e1000_copper_link_setup_igp(hw); + if (ret_val) + return ret_val; + break; + case e1000_phy_bm: + case e1000_phy_82578: + ret_val = e1000_copper_link_setup_m88(hw); + if (ret_val) + return ret_val; + break; + case e1000_phy_82577: + case e1000_phy_82579: + ret_val = e1000_copper_link_setup_82577(hw); + if (ret_val) + return ret_val; + break; + case e1000_phy_ife: + ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, + ®_data); + if (ret_val) + return ret_val; + + reg_data &= ~IFE_PMC_AUTO_MDIX; + + switch (hw->phy.mdix) { + case 1: + reg_data &= ~IFE_PMC_FORCE_MDIX; + break; + case 2: + reg_data |= IFE_PMC_FORCE_MDIX; + break; + case 0: + default: + reg_data |= IFE_PMC_AUTO_MDIX; + break; + } + ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, + reg_data); + if (ret_val) + return ret_val; + break; + default: + break; + } + + return e1000_setup_copper_link_generic(hw); +} + +/** + * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface + * @hw: pointer to the HW structure + * + * Calls the PHY specific link setup function and then calls the + * generic setup_copper_link to finish configuring the link for + * Lynxpoint PCH devices + **/ +STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_setup_copper_link_pch_lpt"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + ret_val = e1000_copper_link_setup_82577(hw); + if (ret_val) + return ret_val; + + return e1000_setup_copper_link_generic(hw); +} + +/** + * e1000_get_link_up_info_ich8lan - Get current link speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to store current link speed + * @duplex: pointer to store the current link duplex + * + * Calls the generic get_speed_and_duplex to retrieve the current link + * information and then calls the Kumeran lock loss workaround for links at + * gigabit speeds. + **/ +STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_link_up_info_ich8lan"); + + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); + if (ret_val) + return ret_val; + + if ((hw->mac.type == e1000_ich8lan) && + (hw->phy.type == e1000_phy_igp_3) && + (*speed == SPEED_1000)) { + ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); + } + + return ret_val; +} + +/** + * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround + * @hw: pointer to the HW structure + * + * Work-around for 82566 Kumeran PCS lock loss: + * On link status change (i.e. PCI reset, speed change) and link is up and + * speed is gigabit- + * 0) if workaround is optionally disabled do nothing + * 1) wait 1ms for Kumeran link to come up + * 2) check Kumeran Diagnostic register PCS lock loss bit + * 3) if not set the link is locked (all is good), otherwise... + * 4) reset the PHY + * 5) repeat up to 10 times + * Note: this is only called for IGP3 copper when speed is 1gb. + **/ +STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 phy_ctrl; + s32 ret_val; + u16 i, data; + bool link; + + DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan"); + + if (!dev_spec->kmrn_lock_loss_workaround_enabled) + return E1000_SUCCESS; + + /* Make sure link is up before proceeding. If not just return. + * Attempting this while link is negotiating fouled up link + * stability + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (!link) + return E1000_SUCCESS; + + for (i = 0; i < 10; i++) { + /* read once to clear */ + ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); + if (ret_val) + return ret_val; + /* and again to get new status */ + ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); + if (ret_val) + return ret_val; + + /* check for PCS lock */ + if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) + return E1000_SUCCESS; + + /* Issue PHY reset */ + hw->phy.ops.reset(hw); + msec_delay_irq(5); + } + /* Disable GigE link negotiation */ + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + /* Call gig speed drop workaround on Gig disable before accessing + * any PHY registers + */ + e1000_gig_downshift_workaround_ich8lan(hw); + + /* unable to acquire PCS lock */ + return -E1000_ERR_PHY; +} + +/** + * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state + * @hw: pointer to the HW structure + * @state: boolean value used to set the current Kumeran workaround state + * + * If ICH8, set the current Kumeran workaround state (enabled - true + * /disabled - false). + **/ +void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, + bool state) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + + DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan"); + + if (hw->mac.type != e1000_ich8lan) { + DEBUGOUT("Workaround applies to ICH8 only.\n"); + return; + } + + dev_spec->kmrn_lock_loss_workaround_enabled = state; + + return; +} + +/** + * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 + * @hw: pointer to the HW structure + * + * Workaround for 82566 power-down on D3 entry: + * 1) disable gigabit link + * 2) write VR power-down enable + * 3) read it back + * Continue if successful, else issue LCD reset and repeat + **/ +void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) +{ + u32 reg; + u16 data; + u8 retry = 0; + + DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan"); + + if (hw->phy.type != e1000_phy_igp_3) + return; + + /* Try the workaround twice (if needed) */ + do { + /* Disable link */ + reg = E1000_READ_REG(hw, E1000_PHY_CTRL); + reg |= (E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg); + + /* Call gig speed drop workaround on Gig disable before + * accessing any PHY registers + */ + if (hw->mac.type == e1000_ich8lan) + e1000_gig_downshift_workaround_ich8lan(hw); + + /* Write VR power-down enable */ + hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); + data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; + hw->phy.ops.write_reg(hw, IGP3_VR_CTRL, + data | IGP3_VR_CTRL_MODE_SHUTDOWN); + + /* Read it back and test */ + hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); + data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; + if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) + break; + + /* Issue PHY reset and repeat at most one more time */ + reg = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST); + retry++; + } while (retry); +} + +/** + * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working + * @hw: pointer to the HW structure + * + * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), + * LPLU, Gig disable, MDIC PHY reset): + * 1) Set Kumeran Near-end loopback + * 2) Clear Kumeran Near-end loopback + * Should only be called for ICH8[m] devices with any 1G Phy. + **/ +void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val; + u16 reg_data; + + DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan"); + + if ((hw->mac.type != e1000_ich8lan) || + (hw->phy.type == e1000_phy_ife)) + return; + + ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, + ®_data); + if (ret_val) + return; + reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_DIAG_OFFSET, + reg_data); + if (ret_val) + return; + reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; + e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, + reg_data); +} + +/** + * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx + * @hw: pointer to the HW structure + * + * During S0 to Sx transition, it is possible the link remains at gig + * instead of negotiating to a lower speed. Before going to Sx, set + * 'Gig Disable' to force link speed negotiation to a lower speed based on + * the LPLU setting in the NVM or custom setting. For PCH and newer parts, + * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also + * needs to be written. + * Parts that support (and are linked to a partner which support) EEE in + * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power + * than 10Mbps w/o EEE. + **/ +void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 phy_ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_suspend_workarounds_ich8lan"); + + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; + + if (hw->phy.type == e1000_phy_i217) { + u16 phy_reg, device_id = hw->device_id; + + if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || + (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || + (device_id == E1000_DEV_ID_PCH_I218_LM3) || + (device_id == E1000_DEV_ID_PCH_I218_V3) || + (hw->mac.type >= e1000_pch_spt)) { + u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); + + E1000_WRITE_REG(hw, E1000_FEXTNVM6, + fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + if (!dev_spec->eee_disable) { + u16 eee_advert; + + ret_val = + e1000_read_emi_reg_locked(hw, + I217_EEE_ADVERTISEMENT, + &eee_advert); + if (ret_val) + goto release; + + /* Disable LPLU if both link partners support 100BaseT + * EEE and 100Full is advertised on both ends of the + * link, and enable Auto Enable LPI since there will + * be no driver to enable LPI while in Sx. + */ + if ((eee_advert & I82579_EEE_100_SUPPORTED) && + (dev_spec->eee_lp_ability & + I82579_EEE_100_SUPPORTED) && + (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { + phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | + E1000_PHY_CTRL_NOND0A_LPLU); + + /* Set Auto Enable LPI after link up */ + hw->phy.ops.read_reg_locked(hw, + I217_LPI_GPIO_CTRL, + &phy_reg); + phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; + hw->phy.ops.write_reg_locked(hw, + I217_LPI_GPIO_CTRL, + phy_reg); + } + } + + /* For i217 Intel Rapid Start Technology support, + * when the system is going into Sx and no manageability engine + * is present, the driver must configure proxy to reset only on + * power good. LPI (Low Power Idle) state must also reset only + * on power good, as well as the MTA (Multicast table array). + * The SMBus release must also be disabled on LCD reset. + */ + if (!(E1000_READ_REG(hw, E1000_FWSM) & + E1000_ICH_FWSM_FW_VALID)) { + /* Enable proxy to reset only on power good. */ + hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL, + &phy_reg); + phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; + hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, + phy_reg); + + /* Set bit enable LPI (EEE) to reset only on + * power good. + */ + hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg); + phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; + hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg); + + /* Disable the SMB release on LCD reset. */ + hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg); + phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; + hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); + } + + /* Enable MTA to reset for Intel Rapid Start Technology + * Support + */ + hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg); + phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; + hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); + +release: + hw->phy.ops.release(hw); + } +out: + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + if (hw->mac.type == e1000_ich8lan) + e1000_gig_downshift_workaround_ich8lan(hw); + + if (hw->mac.type >= e1000_pchlan) { + e1000_oem_bits_config_ich8lan(hw, false); + + /* Reset PHY to activate OEM bits on 82577/8 */ + if (hw->mac.type == e1000_pchlan) + e1000_phy_hw_reset_generic(hw); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + e1000_write_smbus_addr(hw); + hw->phy.ops.release(hw); + } + + return; +} + +/** + * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 + * @hw: pointer to the HW structure + * + * During Sx to S0 transitions on non-managed devices or managed devices + * on which PHY resets are not blocked, if the PHY registers cannot be + * accessed properly by the s/w toggle the LANPHYPC value to power cycle + * the PHY. + * On i217, setup Intel Rapid Start Technology. + **/ +u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_resume_workarounds_pchlan"); + if (hw->mac.type < e1000_pch2lan) + return E1000_SUCCESS; + + ret_val = e1000_init_phy_workarounds_pchlan(hw); + if (ret_val) { + DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val); + return ret_val; + } + + /* For i217 Intel Rapid Start Technology support when the system + * is transitioning from Sx and no manageability engine is present + * configure SMBus to restore on reset, disable proxy, and enable + * the reset on MTA (Multicast table array). + */ + if (hw->phy.type == e1000_phy_i217) { + u16 phy_reg; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) { + DEBUGOUT("Failed to setup iRST\n"); + return ret_val; + } + + /* Clear Auto Enable LPI after link up */ + hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); + phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; + hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); + + if (!(E1000_READ_REG(hw, E1000_FWSM) & + E1000_ICH_FWSM_FW_VALID)) { + /* Restore clear on SMB if no manageability engine + * is present + */ + ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, + &phy_reg); + if (ret_val) + goto release; + phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; + hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); + + /* Disable Proxy */ + hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0); + } + /* Enable reset on MTA */ + ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG, + &phy_reg); + if (ret_val) + goto release; + phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; + hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); +release: + if (ret_val) + DEBUGOUT1("Error %d in resume workarounds\n", ret_val); + hw->phy.ops.release(hw); + return ret_val; + } + return E1000_SUCCESS; +} + +/** + * e1000_cleanup_led_ich8lan - Restore the default LED operation + * @hw: pointer to the HW structure + * + * Return the LED back to the default configuration. + **/ +STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_cleanup_led_ich8lan"); + + if (hw->phy.type == e1000_phy_ife) + return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + 0); + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); + return E1000_SUCCESS; +} + +/** + * e1000_led_on_ich8lan - Turn LEDs on + * @hw: pointer to the HW structure + * + * Turn on the LEDs. + **/ +STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_led_on_ich8lan"); + + if (hw->phy.type == e1000_phy_ife) + return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); + return E1000_SUCCESS; +} + +/** + * e1000_led_off_ich8lan - Turn LEDs off + * @hw: pointer to the HW structure + * + * Turn off the LEDs. + **/ +STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_led_off_ich8lan"); + + if (hw->phy.type == e1000_phy_ife) + return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + return E1000_SUCCESS; +} + +/** + * e1000_setup_led_pchlan - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use. + **/ +STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_setup_led_pchlan"); + + return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, + (u16)hw->mac.ledctl_mode1); +} + +/** + * e1000_cleanup_led_pchlan - Restore the default LED operation + * @hw: pointer to the HW structure + * + * Return the LED back to the default configuration. + **/ +STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_cleanup_led_pchlan"); + + return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, + (u16)hw->mac.ledctl_default); +} + +/** + * e1000_led_on_pchlan - Turn LEDs on + * @hw: pointer to the HW structure + * + * Turn on the LEDs. + **/ +STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw) +{ + u16 data = (u16)hw->mac.ledctl_mode2; + u32 i, led; + + DEBUGFUNC("e1000_led_on_pchlan"); + + /* If no link, then turn LED on by setting the invert bit + * for each LED that's mode is "link_up" in ledctl_mode2. + */ + if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { + for (i = 0; i < 3; i++) { + led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; + if ((led & E1000_PHY_LED0_MODE_MASK) != + E1000_LEDCTL_MODE_LINK_UP) + continue; + if (led & E1000_PHY_LED0_IVRT) + data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); + else + data |= (E1000_PHY_LED0_IVRT << (i * 5)); + } + } + + return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); +} + +/** + * e1000_led_off_pchlan - Turn LEDs off + * @hw: pointer to the HW structure + * + * Turn off the LEDs. + **/ +STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw) +{ + u16 data = (u16)hw->mac.ledctl_mode1; + u32 i, led; + + DEBUGFUNC("e1000_led_off_pchlan"); + + /* If no link, then turn LED off by clearing the invert bit + * for each LED that's mode is "link_up" in ledctl_mode1. + */ + if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { + for (i = 0; i < 3; i++) { + led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; + if ((led & E1000_PHY_LED0_MODE_MASK) != + E1000_LEDCTL_MODE_LINK_UP) + continue; + if (led & E1000_PHY_LED0_IVRT) + data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); + else + data |= (E1000_PHY_LED0_IVRT << (i * 5)); + } + } + + return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); +} + +/** + * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset + * @hw: pointer to the HW structure + * + * Read appropriate register for the config done bit for completion status + * and configure the PHY through s/w for EEPROM-less parts. + * + * NOTE: some silicon which is EEPROM-less will fail trying to read the + * config done bit, so only an error is logged and continues. If we were + * to return with error, EEPROM-less silicon would not be able to be reset + * or change link. + **/ +STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 bank = 0; + u32 status; + + DEBUGFUNC("e1000_get_cfg_done_ich8lan"); + + e1000_get_cfg_done_generic(hw); + + /* Wait for indication from h/w that it has completed basic config */ + if (hw->mac.type >= e1000_ich10lan) { + e1000_lan_init_done_ich8lan(hw); + } else { + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) { + /* When auto config read does not complete, do not + * return with an error. This can happen in situations + * where there is no eeprom and prevents getting link. + */ + DEBUGOUT("Auto Read Done did not complete\n"); + ret_val = E1000_SUCCESS; + } + } + + /* Clear PHY Reset Asserted bit */ + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_PHYRA) + E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA); + else + DEBUGOUT("PHY Reset Asserted not set - needs delay\n"); + + /* If EEPROM is not marked present, init the IGP 3 PHY manually */ + if (hw->mac.type <= e1000_ich9lan) { + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && + (hw->phy.type == e1000_phy_igp_3)) { + e1000_phy_init_script_igp3(hw); + } + } else { + if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { + /* Maybe we should do a basic PHY config */ + DEBUGOUT("EEPROM not present\n"); + ret_val = -E1000_ERR_CONFIG; + } + } + + return ret_val; +} + +/** + * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(hw->mac.ops.check_mng_mode(hw) || + hw->phy.ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters + * @hw: pointer to the HW structure + * + * Clears hardware counters specific to the silicon family and calls + * clear_hw_cntrs_generic to clear all general purpose counters. + **/ +STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) +{ + u16 phy_data; + s32 ret_val; + + DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); + + E1000_READ_REG(hw, E1000_IAC); + E1000_READ_REG(hw, E1000_ICRXOC); + + /* Clear PHY statistics registers */ + if ((hw->phy.type == e1000_phy_82578) || + (hw->phy.type == e1000_phy_82579) || + (hw->phy.type == e1000_phy_i217) || + (hw->phy.type == e1000_phy_82577)) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + ret_val = hw->phy.ops.set_page(hw, + HV_STATS_PAGE << IGP_PAGE_SHIFT); + if (ret_val) + goto release; + hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); +release: + hw->phy.ops.release(hw); + } +} + +/** + * e1000_configure_k0s_lpt - Configure K0s power state + * @hw: pointer to the HW structure + * @entry_latency: Tx idle period for entering K0s - valid values are 0 to 3. + * 0 corresponds to 128ns, each value over 0 doubles the duration. + * @min_time: Minimum Tx idle period allowed - valid values are 0 to 4. + * 0 corresponds to 128ns, each value over 0 doubles the duration. + * + * Configure the K1 power state based on the provided parameter. + * Assumes semaphore already acquired. + * + * Success returns 0, Failure returns: + * -E1000_ERR_PHY (-2) in case of access error + * -E1000_ERR_PARAM (-4) in case of parameters error + **/ +s32 e1000_configure_k0s_lpt(struct e1000_hw *hw, u8 entry_latency, u8 min_time) +{ + s32 ret_val; + u16 kmrn_reg = 0; + + DEBUGFUNC("e1000_configure_k0s_lpt"); + + if (entry_latency > 3 || min_time > 4) + return -E1000_ERR_PARAM; + + ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL, + &kmrn_reg); + if (ret_val) + return ret_val; + + /* for now don't touch the latency */ + kmrn_reg &= ~(E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_MASK); + kmrn_reg |= ((min_time << E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT)); + + ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL, + kmrn_reg); + if (ret_val) + return ret_val; + + return E1000_SUCCESS; +} diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_ich8lan.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_ich8lan.h new file mode 100644 index 00000000..bc4ed1dd --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_ich8lan.h @@ -0,0 +1,339 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_ICH8LAN_H_ +#define _E1000_ICH8LAN_H_ + +#define ICH_FLASH_GFPREG 0x0000 +#define ICH_FLASH_HSFSTS 0x0004 +#define ICH_FLASH_HSFCTL 0x0006 +#define ICH_FLASH_FADDR 0x0008 +#define ICH_FLASH_FDATA0 0x0010 + +/* Requires up to 10 seconds when MNG might be accessing part. */ +#define ICH_FLASH_READ_COMMAND_TIMEOUT 10000000 +#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 10000000 +#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 10000000 +#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF +#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 + +#define ICH_CYCLE_READ 0 +#define ICH_CYCLE_WRITE 2 +#define ICH_CYCLE_ERASE 3 + +#define FLASH_GFPREG_BASE_MASK 0x1FFF +#define FLASH_SECTOR_ADDR_SHIFT 12 + +#define ICH_FLASH_SEG_SIZE_256 256 +#define ICH_FLASH_SEG_SIZE_4K 4096 +#define ICH_FLASH_SEG_SIZE_8K 8192 +#define ICH_FLASH_SEG_SIZE_64K 65536 + +#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ +/* FW established a valid mode */ +#define E1000_ICH_FWSM_FW_VALID 0x00008000 +#define E1000_ICH_FWSM_PCIM2PCI 0x01000000 /* ME PCIm-to-PCI active */ +#define E1000_ICH_FWSM_PCIM2PCI_COUNT 2000 + +#define E1000_ICH_MNG_IAMT_MODE 0x2 + +#define E1000_FWSM_WLOCK_MAC_MASK 0x0380 +#define E1000_FWSM_WLOCK_MAC_SHIFT 7 +#if !defined(EXTERNAL_RELEASE) || defined(ULP_SUPPORT) +#define E1000_FWSM_ULP_CFG_DONE 0x00000400 /* Low power cfg done */ +#endif /* !EXTERNAL_RELEASE || ULP_SUPPORT */ + +/* Shared Receive Address Registers */ +#define E1000_SHRAL_PCH_LPT(_i) (0x05408 + ((_i) * 8)) +#define E1000_SHRAH_PCH_LPT(_i) (0x0540C + ((_i) * 8)) + +#if !defined(EXTERNAL_RELEASE) || defined(ULP_SUPPORT) +#define E1000_H2ME 0x05B50 /* Host to ME */ +#endif /* !EXTERNAL_RELEASE || ULP_SUPPORT */ +#if !defined(EXTERNAL_RELEASE) || defined(ULP_SUPPORT) +#define E1000_H2ME_ULP 0x00000800 /* ULP Indication Bit */ +#define E1000_H2ME_ENFORCE_SETTINGS 0x00001000 /* Enforce Settings */ + +#endif /* !EXTERNAL_RELEASE || ULP_SUPPORT */ +#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_OFF1_ON2 << 4) | \ + (ID_LED_DEF1_DEF2)) + +#define E1000_ICH_NVM_SIG_WORD 0x13 +#define E1000_ICH_NVM_SIG_MASK 0xC000 +#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 +#define E1000_ICH_NVM_SIG_VALUE 0x80 + +#define E1000_ICH8_LAN_INIT_TIMEOUT 1500 + +#if !defined(EXTERNAL_RELEASE) || defined(ULP_SUPPORT) +/* FEXT register bit definition */ +#define E1000_FEXT_PHY_CABLE_DISCONNECTED 0x00000004 + +#endif /* !EXTERNAL_RELEASE || ULP_SUPPORT */ +#define E1000_FEXTNVM_SW_CONFIG 1 +#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* different on ICH8M */ + +#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000 +#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC 0x08000000 + +#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7 +#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7 +#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3 + +#define E1000_FEXTNVM6_REQ_PLL_CLK 0x00000100 +#define E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION 0x00000200 +#define E1000_FEXTNVM6_K1_OFF_ENABLE 0x80000000 +/* bit for disabling packet buffer read */ +#define E1000_FEXTNVM7_DISABLE_PB_READ 0x00040000 +#define E1000_FEXTNVM7_SIDE_CLK_UNGATE 0x00000004 +#if !defined(EXTERNAL_RELEASE) || defined(ULP_SUPPORT) +#define E1000_FEXTNVM7_DISABLE_SMB_PERST 0x00000020 +#endif /* !EXTERNAL_RELEASE || ULP_SUPPORT */ +#define E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS 0x00000800 +#define E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS 0x00001000 +#define E1000_FEXTNVM11_DISABLE_PB_READ 0x00000200 +#define E1000_FEXTNVM11_DISABLE_MULR_FIX 0x00002000 + +/* bit24: RXDCTL thresholds granularity: 0 - cache lines, 1 - descriptors */ +#define E1000_RXDCTL_THRESH_UNIT_DESC 0x01000000 + +#define NVM_SIZE_MULTIPLIER 4096 /*multiplier for NVMS field*/ +#define E1000_FLASH_BASE_ADDR 0xE000 /*offset of NVM access regs*/ +#define E1000_CTRL_EXT_NVMVS 0x3 /*NVM valid sector */ +#define E1000_TARC0_CB_MULTIQ_3_REQ (1 << 28 | 1 << 29) +#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL + +#define E1000_ICH_RAR_ENTRIES 7 +#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */ +#define E1000_PCH_LPT_RAR_ENTRIES 12 /* RAR[0], SHRA[0-10] */ + +#define PHY_PAGE_SHIFT 5 +#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ + ((reg) & MAX_PHY_REG_ADDRESS)) +#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ +#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ + +#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 +#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 +#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 + +/* PHY Wakeup Registers and defines */ +#define BM_PORT_GEN_CFG PHY_REG(BM_PORT_CTRL_PAGE, 17) +#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0) +#define BM_WUC PHY_REG(BM_WUC_PAGE, 1) +#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2) +#define BM_WUS PHY_REG(BM_WUC_PAGE, 3) +#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2))) +#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2))) +#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2))) +#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2))) +#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1))) + +#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */ +#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */ +#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */ +#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */ +#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */ +#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */ +#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */ + +#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ +#define HV_MUX_DATA_CTRL PHY_REG(776, 16) +#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400 +#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004 +#define HV_STATS_PAGE 778 +/* Half-duplex collision counts */ +#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision */ +#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17) +#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. */ +#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19) +#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Collision */ +#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21) +#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision */ +#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24) +#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision */ +#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26) +#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */ +#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28) +#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Tx with no CRS */ +#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30) + +#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */ + +#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ +#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ +#define K1_ENTRY_LATENCY 0 +#define K1_MIN_TIME 1 + +/* SMBus Control Phy Register */ +#define CV_SMB_CTRL PHY_REG(769, 23) +#define CV_SMB_CTRL_FORCE_SMBUS 0x0001 + +#if !defined(EXTERNAL_RELEASE) || defined(ULP_SUPPORT) +/* I218 Ultra Low Power Configuration 1 Register */ +#define I218_ULP_CONFIG1 PHY_REG(779, 16) +#define I218_ULP_CONFIG1_START 0x0001 /* Start auto ULP config */ +#define I218_ULP_CONFIG1_IND 0x0004 /* Pwr up from ULP indication */ +#define I218_ULP_CONFIG1_STICKY_ULP 0x0010 /* Set sticky ULP mode */ +#define I218_ULP_CONFIG1_INBAND_EXIT 0x0020 /* Inband on ULP exit */ +#define I218_ULP_CONFIG1_WOL_HOST 0x0040 /* WoL Host on ULP exit */ +#define I218_ULP_CONFIG1_RESET_TO_SMBUS 0x0100 /* Reset to SMBus mode */ +/* enable ULP even if when phy powered down via lanphypc */ +#define I218_ULP_CONFIG1_EN_ULP_LANPHYPC 0x0400 +/* disable clear of sticky ULP on PERST */ +#define I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST 0x0800 +#define I218_ULP_CONFIG1_DISABLE_SMB_PERST 0x1000 /* Disable on PERST# */ + +#endif /* !EXTERNAL_RELEASE || ULP_SUPPORT */ +/* SMBus Address Phy Register */ +#define HV_SMB_ADDR PHY_REG(768, 26) +#define HV_SMB_ADDR_MASK 0x007F +#define HV_SMB_ADDR_PEC_EN 0x0200 +#define HV_SMB_ADDR_VALID 0x0080 +#define HV_SMB_ADDR_FREQ_MASK 0x1100 +#define HV_SMB_ADDR_FREQ_LOW_SHIFT 8 +#define HV_SMB_ADDR_FREQ_HIGH_SHIFT 12 + +/* Strapping Option Register - RO */ +#define E1000_STRAP 0x0000C +#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 +#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 +#define E1000_STRAP_SMT_FREQ_MASK 0x00003000 +#define E1000_STRAP_SMT_FREQ_SHIFT 12 + +/* OEM Bits Phy Register */ +#define HV_OEM_BITS PHY_REG(768, 25) +#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ +#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ +#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ + +/* KMRN Mode Control */ +#define HV_KMRN_MODE_CTRL PHY_REG(769, 16) +#define HV_KMRN_MDIO_SLOW 0x0400 + +/* KMRN FIFO Control and Status */ +#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16) +#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000 +#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12 + +/* PHY Power Management Control */ +#define HV_PM_CTRL PHY_REG(770, 17) +#define HV_PM_CTRL_K1_CLK_REQ 0x200 +#define HV_PM_CTRL_K1_ENABLE 0x4000 + +#define I217_PLL_CLOCK_GATE_REG PHY_REG(772, 28) +#define I217_PLL_CLOCK_GATE_MASK 0x07FF + +#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in ms */ + +/* Inband Control */ +#define I217_INBAND_CTRL PHY_REG(770, 18) +#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK 0x3F00 +#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT 8 + +/* Low Power Idle GPIO Control */ +#define I217_LPI_GPIO_CTRL PHY_REG(772, 18) +#define I217_LPI_GPIO_CTRL_AUTO_EN_LPI 0x0800 + +/* PHY Low Power Idle Control */ +#define I82579_LPI_CTRL PHY_REG(772, 20) +#define I82579_LPI_CTRL_100_ENABLE 0x2000 +#define I82579_LPI_CTRL_1000_ENABLE 0x4000 +#define I82579_LPI_CTRL_ENABLE_MASK 0x6000 + +/* 82579 DFT Control */ +#define I82579_DFT_CTRL PHY_REG(769, 20) +#define I82579_DFT_CTRL_GATE_PHY_RESET 0x0040 /* Gate PHY Reset on MAC Reset */ + +/* Extended Management Interface (EMI) Registers */ +#define I82579_EMI_ADDR 0x10 +#define I82579_EMI_DATA 0x11 +#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */ +#define I82579_MSE_THRESHOLD 0x084F /* 82579 Mean Square Error Threshold */ +#define I82577_MSE_THRESHOLD 0x0887 /* 82577 Mean Square Error Threshold */ +#define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */ +#define I82579_RX_CONFIG 0x3412 /* Receive configuration */ +#define I82579_LPI_PLL_SHUT 0x4412 /* LPI PLL Shut Enable */ +#define I82579_EEE_PCS_STATUS 0x182E /* IEEE MMD Register 3.1 >> 8 */ +#define I82579_EEE_CAPABILITY 0x0410 /* IEEE MMD Register 3.20 */ +#define I82579_EEE_ADVERTISEMENT 0x040E /* IEEE MMD Register 7.60 */ +#define I82579_EEE_LP_ABILITY 0x040F /* IEEE MMD Register 7.61 */ +#define I82579_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE */ +#define I82579_EEE_1000_SUPPORTED (1 << 2) /* 1000BaseTx EEE */ +#define I82579_LPI_100_PLL_SHUT (1 << 2) /* 100M LPI PLL Shut Enabled */ +#define I217_EEE_PCS_STATUS 0x9401 /* IEEE MMD Register 3.1 */ +#define I217_EEE_CAPABILITY 0x8000 /* IEEE MMD Register 3.20 */ +#define I217_EEE_ADVERTISEMENT 0x8001 /* IEEE MMD Register 7.60 */ +#define I217_EEE_LP_ABILITY 0x8002 /* IEEE MMD Register 7.61 */ +#define I217_RX_CONFIG 0xB20C /* Receive configuration */ + +#define E1000_EEE_RX_LPI_RCVD 0x0400 /* Tx LP idle received */ +#define E1000_EEE_TX_LPI_RCVD 0x0800 /* Rx LP idle received */ + +/* Intel Rapid Start Technology Support */ +#define I217_PROXY_CTRL BM_PHY_REG(BM_WUC_PAGE, 70) +#define I217_PROXY_CTRL_AUTO_DISABLE 0x0080 +#define I217_SxCTRL PHY_REG(BM_PORT_CTRL_PAGE, 28) +#define I217_SxCTRL_ENABLE_LPI_RESET 0x1000 +#define I217_CGFREG PHY_REG(772, 29) +#define I217_CGFREG_ENABLE_MTA_RESET 0x0002 +#define I217_MEMPWR PHY_REG(772, 26) +#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010 + +/* Receive Address Initial CRC Calculation */ +#define E1000_PCH_RAICC(_n) (0x05F50 + ((_n) * 4)) + +#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) +#define E1000_PCI_REVISION_ID_REG 0x08 +#endif /* defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) */ +void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, + bool state); +void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw); +void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw); +void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw); +u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw); +s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable); +s32 e1000_configure_k0s_lpt(struct e1000_hw *hw, u8 entry_latency, u8 min_time); +void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw); +s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable); +s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data); +s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data); +s32 e1000_set_eee_pchlan(struct e1000_hw *hw); +#ifdef ULP_SUPPORT +s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx); +s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); +#endif /* ULP_SUPPORT */ +#endif /* _E1000_ICH8LAN_H_ */ +void e1000_demote_ltr(struct e1000_hw *hw, bool demote, bool link); diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_mac.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_mac.c new file mode 100644 index 00000000..a0f3a999 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_mac.c @@ -0,0 +1,2249 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#include "e1000_api.h" + +STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); +STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); +STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw); +STATIC int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); + +/** + * e1000_init_mac_ops_generic - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_mac_ops_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + DEBUGFUNC("e1000_init_mac_ops_generic"); + + /* General Setup */ + mac->ops.init_params = e1000_null_ops_generic; + mac->ops.init_hw = e1000_null_ops_generic; + mac->ops.reset_hw = e1000_null_ops_generic; + mac->ops.setup_physical_interface = e1000_null_ops_generic; + mac->ops.get_bus_info = e1000_null_ops_generic; + mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; + mac->ops.read_mac_addr = e1000_read_mac_addr_generic; + mac->ops.config_collision_dist = e1000_config_collision_dist_generic; + mac->ops.clear_hw_cntrs = e1000_null_mac_generic; + /* LED */ + mac->ops.cleanup_led = e1000_null_ops_generic; + mac->ops.setup_led = e1000_null_ops_generic; + mac->ops.blink_led = e1000_null_ops_generic; + mac->ops.led_on = e1000_null_ops_generic; + mac->ops.led_off = e1000_null_ops_generic; + /* LINK */ + mac->ops.setup_link = e1000_null_ops_generic; + mac->ops.get_link_up_info = e1000_null_link_info; + mac->ops.check_for_link = e1000_null_ops_generic; + /* Management */ + mac->ops.check_mng_mode = e1000_null_mng_mode; + /* VLAN, MC, etc. */ + mac->ops.update_mc_addr_list = e1000_null_update_mc; + mac->ops.clear_vfta = e1000_null_mac_generic; + mac->ops.write_vfta = e1000_null_write_vfta; + mac->ops.rar_set = e1000_rar_set_generic; + mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; +} + +/** + * e1000_null_ops_generic - No-op function, returns 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_null_ops_generic"); + UNREFERENCED_1PARAMETER(hw); + return E1000_SUCCESS; +} + +/** + * e1000_null_mac_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_null_mac_generic"); + UNREFERENCED_1PARAMETER(hw); + return; +} + +/** + * e1000_null_link_info - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d) +{ + DEBUGFUNC("e1000_null_link_info"); + UNREFERENCED_3PARAMETER(hw, s, d); + return E1000_SUCCESS; +} + +/** + * e1000_null_mng_mode - No-op function, return false + * @hw: pointer to the HW structure + **/ +bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_null_mng_mode"); + UNREFERENCED_1PARAMETER(hw); + return false; +} + +/** + * e1000_null_update_mc - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw, + u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) +{ + DEBUGFUNC("e1000_null_update_mc"); + UNREFERENCED_3PARAMETER(hw, h, a); + return; +} + +/** + * e1000_null_write_vfta - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw, + u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b) +{ + DEBUGFUNC("e1000_null_write_vfta"); + UNREFERENCED_3PARAMETER(hw, a, b); + return; +} + +/** + * e1000_null_rar_set - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +int e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw, + u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) +{ + DEBUGFUNC("e1000_null_rar_set"); + UNREFERENCED_3PARAMETER(hw, h, a); + return E1000_SUCCESS; +} + +/** + * e1000_get_bus_info_pci_generic - Get PCI(x) bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function. + **/ +s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_bus_info *bus = &hw->bus; + u32 status = E1000_READ_REG(hw, E1000_STATUS); + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_get_bus_info_pci_generic"); + + /* PCI or PCI-X? */ + bus->type = (status & E1000_STATUS_PCIX_MODE) + ? e1000_bus_type_pcix + : e1000_bus_type_pci; + + /* Bus speed */ + if (bus->type == e1000_bus_type_pci) { + bus->speed = (status & E1000_STATUS_PCI66) + ? e1000_bus_speed_66 + : e1000_bus_speed_33; + } else { + switch (status & E1000_STATUS_PCIX_SPEED) { + case E1000_STATUS_PCIX_SPEED_66: + bus->speed = e1000_bus_speed_66; + break; + case E1000_STATUS_PCIX_SPEED_100: + bus->speed = e1000_bus_speed_100; + break; + case E1000_STATUS_PCIX_SPEED_133: + bus->speed = e1000_bus_speed_133; + break; + default: + bus->speed = e1000_bus_speed_reserved; + break; + } + } + + /* Bus width */ + bus->width = (status & E1000_STATUS_BUS64) + ? e1000_bus_width_64 + : e1000_bus_width_32; + + /* Which PCI(-X) function? */ + mac->ops.set_lan_id(hw); + + return ret_val; +} + +/** + * e1000_get_bus_info_pcie_generic - Get PCIe bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCIe), and PCIe function. + **/ +s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_bus_info *bus = &hw->bus; + s32 ret_val; + u16 pcie_link_status; + + DEBUGFUNC("e1000_get_bus_info_pcie_generic"); + + bus->type = e1000_bus_type_pci_express; + + ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS, + &pcie_link_status); + if (ret_val) { + bus->width = e1000_bus_width_unknown; + bus->speed = e1000_bus_speed_unknown; + } else { + switch (pcie_link_status & PCIE_LINK_SPEED_MASK) { + case PCIE_LINK_SPEED_2500: + bus->speed = e1000_bus_speed_2500; + break; + case PCIE_LINK_SPEED_5000: + bus->speed = e1000_bus_speed_5000; + break; + default: + bus->speed = e1000_bus_speed_unknown; + break; + } + + bus->width = (enum e1000_bus_width)((pcie_link_status & + PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT); + } + + mac->ops.set_lan_id(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices + * + * @hw: pointer to the HW structure + * + * Determines the LAN function id by reading memory-mapped registers + * and swaps the port value if requested. + **/ +STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + u32 reg; + + /* The status register reports the correct function number + * for the device regardless of function swap state. + */ + reg = E1000_READ_REG(hw, E1000_STATUS); + bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; +} + +/** + * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices + * @hw: pointer to the HW structure + * + * Determines the LAN function id by reading PCI config space. + **/ +void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + u16 pci_header_type; + u32 status; + + e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); + if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { + status = E1000_READ_REG(hw, E1000_STATUS); + bus->func = (status & E1000_STATUS_FUNC_MASK) + >> E1000_STATUS_FUNC_SHIFT; + } else { + bus->func = 0; + } +} + +/** + * e1000_set_lan_id_single_port - Set LAN id for a single port device + * @hw: pointer to the HW structure + * + * Sets the LAN function id to zero for a single port device. + **/ +void e1000_set_lan_id_single_port(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + + bus->func = 0; +} + +/** + * e1000_clear_vfta_generic - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void e1000_clear_vfta_generic(struct e1000_hw *hw) +{ + u32 offset; + + DEBUGFUNC("e1000_clear_vfta_generic"); + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_write_vfta_generic - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) +{ + DEBUGFUNC("e1000_write_vfta_generic"); + + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_init_rx_addrs_generic - Initialize receive address's + * @hw: pointer to the HW structure + * @rar_count: receive address registers + * + * Setup the receive address registers by setting the base receive address + * register to the devices MAC address and clearing all the other receive + * address registers to 0. + **/ +void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) +{ + u32 i; + u8 mac_addr[ETH_ADDR_LEN] = {0}; + + DEBUGFUNC("e1000_init_rx_addrs_generic"); + + /* Setup the receive address */ + DEBUGOUT("Programming MAC Address into RAR[0]\n"); + + hw->mac.ops.rar_set(hw, hw->mac.addr, 0); + + /* Zero out the other (rar_entry_count - 1) receive addresses */ + DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); + for (i = 1; i < rar_count; i++) + hw->mac.ops.rar_set(hw, mac_addr, i); +} + +/** + * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr + * @hw: pointer to the HW structure + * + * Checks the nvm for an alternate MAC address. An alternate MAC address + * can be setup by pre-boot software and must be treated like a permanent + * address and must override the actual permanent MAC address. If an + * alternate MAC address is found it is programmed into RAR0, replacing + * the permanent address that was installed into RAR0 by the Si on reset. + * This function will return SUCCESS unless it encounters an error while + * reading the EEPROM. + **/ +s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) +{ + u32 i; + s32 ret_val; + u16 offset, nvm_alt_mac_addr_offset, nvm_data; + u8 alt_mac_addr[ETH_ADDR_LEN]; + + DEBUGFUNC("e1000_check_alt_mac_addr_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data); + if (ret_val) + return ret_val; + + /* not supported on older hardware or 82573 */ + if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573)) + return E1000_SUCCESS; + + /* Alternate MAC address is handled by the option ROM for 82580 + * and newer. SW support not required. + */ + if (hw->mac.type >= e1000_82580) + return E1000_SUCCESS; + + ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, + &nvm_alt_mac_addr_offset); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if ((nvm_alt_mac_addr_offset == 0xFFFF) || + (nvm_alt_mac_addr_offset == 0x0000)) + /* There is no Alternate MAC Address */ + return E1000_SUCCESS; + + if (hw->bus.func == E1000_FUNC_1) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; + if (hw->bus.func == E1000_FUNC_2) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; + + if (hw->bus.func == E1000_FUNC_3) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; + for (i = 0; i < ETH_ADDR_LEN; i += 2) { + offset = nvm_alt_mac_addr_offset + (i >> 1); + ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + alt_mac_addr[i] = (u8)(nvm_data & 0xFF); + alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); + } + + /* if multicast bit is set, the alternate address will not be used */ + if (alt_mac_addr[0] & 0x01) { + DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); + return E1000_SUCCESS; + } + + /* We have a valid alternate MAC address, and we want to treat it the + * same as the normal permanent MAC address stored by the HW into the + * RAR. Do this by mapping this address into RAR0. + */ + hw->mac.ops.rar_set(hw, alt_mac_addr, 0); + + return E1000_SUCCESS; +} + +/** + * e1000_rar_set_generic - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +STATIC int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + DEBUGFUNC("e1000_rar_set_generic"); + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + /* Some bridges will combine consecutive 32-bit writes into + * a single burst write, which will malfunction on some parts. + * The flushes avoid this. + */ + E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); + E1000_WRITE_FLUSH(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_hash_mc_addr_generic - Generate a multicast hash value + * @hw: pointer to the HW structure + * @mc_addr: pointer to a multicast address + * + * Generates a multicast address hash value which is used to determine + * the multicast filter table array address and new table value. + **/ +u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) +{ + u32 hash_value, hash_mask; + u8 bit_shift = 0; + + DEBUGFUNC("e1000_hash_mc_addr_generic"); + + /* Register count multiplied by bits per register */ + hash_mask = (hw->mac.mta_reg_count * 32) - 1; + + /* For a mc_filter_type of 0, bit_shift is the number of left-shifts + * where 0xFF would still fall within the hash mask. + */ + while (hash_mask >> bit_shift != 0xFF) + bit_shift++; + + /* The portion of the address that is used for the hash table + * is determined by the mc_filter_type setting. + * The algorithm is such that there is a total of 8 bits of shifting. + * The bit_shift for a mc_filter_type of 0 represents the number of + * left-shifts where the MSB of mc_addr[5] would still fall within + * the hash_mask. Case 0 does this exactly. Since there are a total + * of 8 bits of shifting, then mc_addr[4] will shift right the + * remaining number of bits. Thus 8 - bit_shift. The rest of the + * cases are a variation of this algorithm...essentially raising the + * number of bits to shift mc_addr[5] left, while still keeping the + * 8-bit shifting total. + * + * For example, given the following Destination MAC Address and an + * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), + * we can see that the bit_shift for case 0 is 4. These are the hash + * values resulting from each mc_filter_type... + * [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + * + * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 + * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 + * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 + * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 + */ + switch (hw->mac.mc_filter_type) { + default: + case 0: + break; + case 1: + bit_shift += 1; + break; + case 2: + bit_shift += 2; + break; + case 3: + bit_shift += 4; + break; + } + + hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | + (((u16) mc_addr[5]) << bit_shift))); + + return hash_value; +} + +/** + * e1000_update_mc_addr_list_generic - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates entire Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count) +{ + u32 hash_value, hash_bit, hash_reg; + int i; + + DEBUGFUNC("e1000_update_mc_addr_list_generic"); + + /* clear mta_shadow */ + memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); + + /* update mta_shadow from mc_addr_list */ + for (i = 0; (u32) i < mc_addr_count; i++) { + hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); + + hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + + hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); + mc_addr_list += (ETH_ADDR_LEN); + } + + /* replace the entire MTA table */ + for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value + * @hw: pointer to the HW structure + * + * In certain situations, a system BIOS may report that the PCIx maximum + * memory read byte count (MMRBC) value is higher than than the actual + * value. We check the PCIx command register with the current PCIx status + * register. + **/ +void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw) +{ + u16 cmd_mmrbc; + u16 pcix_cmd; + u16 pcix_stat_hi_word; + u16 stat_mmrbc; + + DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic"); + + /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */ + if (hw->bus.type != e1000_bus_type_pcix) + return; + + e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); + e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); + cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >> + PCIX_COMMAND_MMRBC_SHIFT; + stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> + PCIX_STATUS_HI_MMRBC_SHIFT; + if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) + stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; + if (cmd_mmrbc > stat_mmrbc) { + pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK; + pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; + e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); + } +} + +/** + * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters + * @hw: pointer to the HW structure + * + * Clears the base hardware counters by reading the counter registers. + **/ +void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); + + E1000_READ_REG(hw, E1000_CRCERRS); + E1000_READ_REG(hw, E1000_SYMERRS); + E1000_READ_REG(hw, E1000_MPC); + E1000_READ_REG(hw, E1000_SCC); + E1000_READ_REG(hw, E1000_ECOL); + E1000_READ_REG(hw, E1000_MCC); + E1000_READ_REG(hw, E1000_LATECOL); + E1000_READ_REG(hw, E1000_COLC); + E1000_READ_REG(hw, E1000_DC); + E1000_READ_REG(hw, E1000_SEC); + E1000_READ_REG(hw, E1000_RLEC); + E1000_READ_REG(hw, E1000_XONRXC); + E1000_READ_REG(hw, E1000_XONTXC); + E1000_READ_REG(hw, E1000_XOFFRXC); + E1000_READ_REG(hw, E1000_XOFFTXC); + E1000_READ_REG(hw, E1000_FCRUC); + E1000_READ_REG(hw, E1000_GPRC); + E1000_READ_REG(hw, E1000_BPRC); + E1000_READ_REG(hw, E1000_MPRC); + E1000_READ_REG(hw, E1000_GPTC); + E1000_READ_REG(hw, E1000_GORCL); + E1000_READ_REG(hw, E1000_GORCH); + E1000_READ_REG(hw, E1000_GOTCL); + E1000_READ_REG(hw, E1000_GOTCH); + E1000_READ_REG(hw, E1000_RNBC); + E1000_READ_REG(hw, E1000_RUC); + E1000_READ_REG(hw, E1000_RFC); + E1000_READ_REG(hw, E1000_ROC); + E1000_READ_REG(hw, E1000_RJC); + E1000_READ_REG(hw, E1000_TORL); + E1000_READ_REG(hw, E1000_TORH); + E1000_READ_REG(hw, E1000_TOTL); + E1000_READ_REG(hw, E1000_TOTH); + E1000_READ_REG(hw, E1000_TPR); + E1000_READ_REG(hw, E1000_TPT); + E1000_READ_REG(hw, E1000_MPTC); + E1000_READ_REG(hw, E1000_BPTC); +} + +/** + * e1000_check_for_copper_link_generic - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks to see of the link status of the hardware has changed. If a + * change in link status has been detected, then we read the PHY registers + * to get the current speed/duplex if link exists. + **/ +s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_check_for_copper_link"); + + /* We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) + return E1000_SUCCESS; + + /* First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) + return E1000_SUCCESS; /* No link detected */ + + mac->get_link_status = false; + + /* Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000_check_downshift_generic(hw); + + /* If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) + return -E1000_ERR_CONFIG; + + /* Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + mac->ops.config_collision_dist(hw); + + /* Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) + DEBUGOUT("Error configuring flow control\n"); + + return ret_val; +} + +/** + * e1000_check_for_fiber_link_generic - Check for link (Fiber) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + DEBUGFUNC("e1000_check_for_fiber_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && + !(rxcw & E1000_RXCW_C)) { + if (!mac->autoneg_failed) { + mac->autoneg_failed = true; + return E1000_SUCCESS; + } + DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } + + return E1000_SUCCESS; +} + +/** + * e1000_check_for_serdes_link_generic - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + DEBUGFUNC("e1000_check_for_serdes_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), and our link partner is not trying to + * auto-negotiate with us (we are receiving idles or data), + * we need to force link up. We also need to give auto-negotiation + * time to complete. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { + if (!mac->autoneg_failed) { + mac->autoneg_failed = true; + return E1000_SUCCESS; + } + DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { + /* If we force link for non-auto-negotiation switch, check + * link status based on MAC synchronization for internal + * serdes media type. + */ + /* SYNCH bit and IV bit are sticky. */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = true; + DEBUGOUT("SERDES: Link up - forced.\n"); + } + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - force failed.\n"); + } + } + + if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_LU) { + /* SYNCH bit and IV bit are sticky, so reread rxcw. */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = true; + DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n"); + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n"); + } + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - no sync.\n"); + } + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - autoneg failed\n"); + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_set_default_fc_generic - Set flow control default values + * @hw: pointer to the HW structure + * + * Read the EEPROM for the default values for flow control and store the + * values. + **/ +s32 e1000_set_default_fc_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 nvm_data; + u16 nvm_offset = 0; + + DEBUGFUNC("e1000_set_default_fc_generic"); + + /* Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + if (hw->mac.type == e1000_i350) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func); + ret_val = hw->nvm.ops.read(hw, + NVM_INIT_CONTROL2_REG + + nvm_offset, + 1, &nvm_data); + } else { + ret_val = hw->nvm.ops.read(hw, + NVM_INIT_CONTROL2_REG, + 1, &nvm_data); + } + + + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) + hw->fc.requested_mode = e1000_fc_none; + else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == + NVM_WORD0F_ASM_DIR) + hw->fc.requested_mode = e1000_fc_tx_pause; + else + hw->fc.requested_mode = e1000_fc_full; + + return E1000_SUCCESS; +} + +/** + * e1000_setup_link_generic - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +s32 e1000_setup_link_generic(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_setup_link_generic"); + + /* In the case of the phy reset being blocked, we already have a link. + * We do not need to set it up again. + */ + if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) + return E1000_SUCCESS; + + /* If requested flow control is set to default, set flow control + * based on the EEPROM flow control settings. + */ + if (hw->fc.requested_mode == e1000_fc_default) { + ret_val = e1000_set_default_fc_generic(hw); + if (ret_val) + return ret_val; + } + + /* Save off the requested flow control mode for use later. Depending + * on the link partner's capabilities, we may or may not use this mode. + */ + hw->fc.current_mode = hw->fc.requested_mode; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", + hw->fc.current_mode); + + /* Call the necessary media_type subroutine to configure the link. */ + ret_val = hw->mac.ops.setup_physical_interface(hw); + if (ret_val) + return ret_val; + + /* Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); + E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); + + E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); + + return e1000_set_fc_watermarks_generic(hw); +} + +/** + * e1000_commit_fc_settings_generic - Configure flow control + * @hw: pointer to the HW structure + * + * Write the flow control settings to the Transmit Config Word Register (TXCW) + * base on the flow control settings in e1000_mac_info. + **/ +s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 txcw; + + DEBUGFUNC("e1000_commit_fc_settings_generic"); + + /* Check for a software override of the flow control settings, and + * setup the device accordingly. If auto-negotiation is enabled, then + * software will have to set the "PAUSE" bits to the correct value in + * the Transmit Config Word Register (TXCW) and re-start auto- + * negotiation. However, if auto-negotiation is disabled, then + * software will have to manually configure the two flow control enable + * bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we + * do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + */ + switch (hw->fc.current_mode) { + case e1000_fc_none: + /* Flow control completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case e1000_fc_rx_pause: + /* Rx Flow control is enabled and Tx Flow control is disabled + * by a software over-ride. Since there really isn't a way to + * advertise that we are capable of Rx Pause ONLY, we will + * advertise that we support both symmetric and asymmetric Rx + * PAUSE. Later, we will disable the adapter's ability to send + * PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case e1000_fc_tx_pause: + /* Tx Flow control is enabled, and Rx Flow control is disabled, + * by a software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case e1000_fc_full: + /* Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + + E1000_WRITE_REG(hw, E1000_TXCW, txcw); + mac->txcw = txcw; + + return E1000_SUCCESS; +} + +/** + * e1000_poll_fiber_serdes_link_generic - Poll for link up + * @hw: pointer to the HW structure + * + * Polls for link up by reading the status register, if link fails to come + * up with auto-negotiation, then the link is forced if a signal is detected. + **/ +s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 i, status; + s32 ret_val; + + DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); + + /* If we have a signal (the cable is plugged in, or assumed true for + * serdes media) then poll for a "Link-Up" indication in the Device + * Status Register. Time-out if a link isn't seen in 500 milliseconds + * seconds (Auto-negotiation should complete in less than 500 + * milliseconds even if the other end is doing it in SW). + */ + for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { + msec_delay(10); + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == FIBER_LINK_UP_LIMIT) { + DEBUGOUT("Never got a valid link from auto-neg!!!\n"); + mac->autoneg_failed = true; + /* AutoNeg failed to achieve a link, so we'll call + * mac->check_for_link. This routine will force the + * link up if we detect a signal. This will allow us to + * communicate with non-autonegotiating link partners. + */ + ret_val = mac->ops.check_for_link(hw); + if (ret_val) { + DEBUGOUT("Error while checking for link\n"); + return ret_val; + } + mac->autoneg_failed = false; + } else { + mac->autoneg_failed = false; + DEBUGOUT("Valid Link Found\n"); + } + + return E1000_SUCCESS; +} + +/** + * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes + * links. Upon successful setup, poll for link. + **/ +s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + hw->mac.ops.config_collision_dist(hw); + + ret_val = e1000_commit_fc_settings_generic(hw); + if (ret_val) + return ret_val; + + /* Since auto-negotiation is enabled, take the link out of reset (the + * link will be in reset, because we previously reset the chip). This + * will restart auto-negotiation. If auto-negotiation is successful + * then the link-up status bit will be set and the flow control enable + * bits (RFCE and TFCE) will be set according to their negotiated value. + */ + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + + /* For these adapters, the SW definable pin 1 is set when the optics + * detect a signal. If we have a signal, then poll for a "Link-Up" + * indication. + */ + if (hw->phy.media_type == e1000_media_type_internal_serdes || + (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { + ret_val = e1000_poll_fiber_serdes_link_generic(hw); + } else { + DEBUGOUT("No signal detected\n"); + } + + return ret_val; +} + +/** + * e1000_config_collision_dist_generic - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw) +{ + u32 tctl; + + DEBUGFUNC("e1000_config_collision_dist_generic"); + + tctl = E1000_READ_REG(hw, E1000_TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + + E1000_WRITE_REG(hw, E1000_TCTL, tctl); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks + * @hw: pointer to the HW structure + * + * Sets the flow control high/low threshold (watermark) registers. If + * flow control XON frame transmission is enabled, then set XON frame + * transmission as well. + **/ +s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw) +{ + u32 fcrtl = 0, fcrth = 0; + + DEBUGFUNC("e1000_set_fc_watermarks_generic"); + + /* Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames is not enabled, then these + * registers will be set to 0. + */ + if (hw->fc.current_mode & e1000_fc_tx_pause) { + /* We need to set up the Receive Threshold high and low water + * marks as well as (optionally) enabling the transmission of + * XON frames. + */ + fcrtl = hw->fc.low_water; + if (hw->fc.send_xon) + fcrtl |= E1000_FCRTL_XONE; + + fcrth = hw->fc.high_water; + } + E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); + E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); + + return E1000_SUCCESS; +} + +/** + * e1000_force_mac_fc_generic - Force the MAC's flow control settings + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the + * device control register to reflect the adapter settings. TFCE and RFCE + * need to be explicitly set by software when a copper PHY is used because + * autonegotiation is managed by the PHY rather than the MAC. Software must + * also configure these bits when link is forced on a fiber connection. + **/ +s32 e1000_force_mac_fc_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + DEBUGFUNC("e1000_force_mac_fc_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc.current_mode" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and Tx flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); + + switch (hw->fc.current_mode) { + case e1000_fc_none: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case e1000_fc_rx_pause: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case e1000_fc_tx_pause: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case e1000_fc_full: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_config_fc_after_link_up_generic - Configures flow control after link + * @hw: pointer to the HW structure + * + * Checks the status of auto-negotiation after link up to ensure that the + * speed and duplex were not forced. If the link needed to be forced, then + * flow control needs to be forced also. If auto-negotiation is enabled + * and did not fail, then we configure flow control based on our link + * partner. + **/ +s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; + u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; + u16 speed, duplex; + + DEBUGFUNC("e1000_config_fc_after_link_up_generic"); + + /* Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (mac->autoneg_failed) { + if (hw->phy.media_type == e1000_media_type_fiber || + hw->phy.media_type == e1000_media_type_internal_serdes) + ret_val = e1000_force_mac_fc_generic(hw); + } else { + if (hw->phy.media_type == e1000_media_type_copper) + ret_val = e1000_force_mac_fc_generic(hw); + } + + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + + /* Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { + /* Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { + DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); + return ret_val; + } + + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (Address 4) and the Auto_Negotiation Base + * Page Ability Register (Address 5) to determine how + * flow control was negotiated. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, + &mii_nway_adv_reg); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, + &mii_nway_lp_ability_reg); + if (ret_val) + return ret_val; + + /* Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | E1000_fc_full + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* Now we need to check if the user selected Rx ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise Rx + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->fc.requested_mode == e1000_fc_full) { + hw->fc.current_mode = e1000_fc_full; + DEBUGOUT("Flow Control = FULL.\n"); + } else { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_tx_pause; + DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); + } else { + /* Per the IEEE spec, at this point flow control + * should be disabled. + */ + hw->fc.current_mode = e1000_fc_none; + DEBUGOUT("Flow Control = NONE.\n"); + } + + /* Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + + if (duplex == HALF_DUPLEX) + hw->fc.current_mode = e1000_fc_none; + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = e1000_force_mac_fc_generic(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } + + /* Check for the case where we have SerDes media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->phy.media_type == e1000_media_type_internal_serdes) && + mac->autoneg) { + /* Read the PCS_LSTS and check to see if AutoNeg + * has completed. + */ + pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT); + + if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { + DEBUGOUT("PCS Auto Neg has not completed.\n"); + return ret_val; + } + + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (PCS_ANADV) and the Auto_Negotiation Base + * Page Ability Register (PCS_LPAB) to determine how + * flow control was negotiated. + */ + pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); + pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB); + + /* Two bits in the Auto Negotiation Advertisement Register + * (PCS_ANADV) and two bits in the Auto Negotiation Base + * Page Ability Register (PCS_LPAB) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | e1000_fc_full + * + */ + if ((pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { + /* Now we need to check if the user selected Rx ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise Rx + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->fc.requested_mode == e1000_fc_full) { + hw->fc.current_mode = e1000_fc_full; + DEBUGOUT("Flow Control = FULL.\n"); + } else { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + */ + else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_adv_reg & E1000_TXCW_ASM_DIR) && + (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_tx_pause; + DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + */ + else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_adv_reg & E1000_TXCW_ASM_DIR) && + !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); + } else { + /* Per the IEEE spec, at this point flow control + * should be disabled. + */ + hw->fc.current_mode = e1000_fc_none; + DEBUGOUT("Flow Control = NONE.\n"); + } + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL); + pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; + E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg); + + ret_val = e1000_force_mac_fc_generic(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Read the status register for the current speed/duplex and store the current + * speed and duplex for copper connections. + **/ +s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + u32 status; + + DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); + + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + DEBUGOUT("1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + DEBUGOUT("100 Mbs, "); + } else { + *speed = SPEED_10; + DEBUGOUT("10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Sets the speed and duplex to gigabit full duplex (the only possible option) + * for fiber/serdes links. + **/ +s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw, + u16 *speed, u16 *duplex) +{ + DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); + UNREFERENCED_1PARAMETER(hw); + + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + + return E1000_SUCCESS; +} + +/** + * e1000_get_hw_semaphore_generic - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw) +{ + u32 swsm; + s32 timeout = hw->nvm.word_size + 1; + s32 i = 0; + + DEBUGFUNC("e1000_get_hw_semaphore_generic"); + + /* Get the SW semaphore */ + while (i < timeout) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + usec_delay(50); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_NVM; + } + + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) + break; + + usec_delay(50); + } + + if (i == timeout) { + /* Release semaphores */ + e1000_put_hw_semaphore_generic(hw); + DEBUGOUT("Driver can't access the NVM\n"); + return -E1000_ERR_NVM; + } + + return E1000_SUCCESS; +} + +/** + * e1000_put_hw_semaphore_generic - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +void e1000_put_hw_semaphore_generic(struct e1000_hw *hw) +{ + u32 swsm; + + DEBUGFUNC("e1000_put_hw_semaphore_generic"); + + swsm = E1000_READ_REG(hw, E1000_SWSM); + + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + + E1000_WRITE_REG(hw, E1000_SWSM, swsm); +} + +/** + * e1000_get_auto_rd_done_generic - Check for auto read completion + * @hw: pointer to the HW structure + * + * Check EEPROM for Auto Read done bit. + **/ +s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw) +{ + s32 i = 0; + + DEBUGFUNC("e1000_get_auto_rd_done_generic"); + + while (i < AUTO_READ_DONE_TIMEOUT) { + if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) + break; + msec_delay(1); + i++; + } + + if (i == AUTO_READ_DONE_TIMEOUT) { + DEBUGOUT("Auto read by HW from NVM has not completed.\n"); + return -E1000_ERR_RESET; + } + + return E1000_SUCCESS; +} + +/** + * e1000_valid_led_default_generic - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; + + return E1000_SUCCESS; +} + +/** + * e1000_id_led_init_generic - + * @hw: pointer to the HW structure + * + **/ +s32 e1000_id_led_init_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + const u32 ledctl_mask = 0x000000FF; + const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + u16 data, i, temp; + const u16 led_mask = 0x0F; + + DEBUGFUNC("e1000_id_led_init_generic"); + + ret_val = hw->nvm.ops.valid_led_default(hw, &data); + if (ret_val) + return ret_val; + + mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); + mac->ledctl_mode1 = mac->ledctl_default; + mac->ledctl_mode2 = mac->ledctl_default; + + for (i = 0; i < 4; i++) { + temp = (data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_setup_led_generic - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. + **/ +s32 e1000_setup_led_generic(struct e1000_hw *hw) +{ + u32 ledctl; + + DEBUGFUNC("e1000_setup_led_generic"); + + if (hw->mac.ops.setup_led != e1000_setup_led_generic) + return -E1000_ERR_CONFIG; + + if (hw->phy.media_type == e1000_media_type_fiber) { + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + hw->mac.ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << + E1000_LEDCTL_LED0_MODE_SHIFT); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + } else if (hw->phy.media_type == e1000_media_type_copper) { + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + } + + return E1000_SUCCESS; +} + +/** + * e1000_cleanup_led_generic - Set LED config to default operation + * @hw: pointer to the HW structure + * + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. + **/ +s32 e1000_cleanup_led_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_cleanup_led_generic"); + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); + return E1000_SUCCESS; +} + +/** + * e1000_blink_led_generic - Blink LED + * @hw: pointer to the HW structure + * + * Blink the LEDs which are set to be on. + **/ +s32 e1000_blink_led_generic(struct e1000_hw *hw) +{ + u32 ledctl_blink = 0; + u32 i; + + DEBUGFUNC("e1000_blink_led_generic"); + + if (hw->phy.media_type == e1000_media_type_fiber) { + /* always blink LED0 for PCI-E fiber */ + ledctl_blink = E1000_LEDCTL_LED0_BLINK | + (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); + } else { + /* Set the blink bit for each LED that's "on" (0x0E) + * (or "off" if inverted) in ledctl_mode2. The blink + * logic in hardware only works when mode is set to "on" + * so it must be changed accordingly when the mode is + * "off" and inverted. + */ + ledctl_blink = hw->mac.ledctl_mode2; + for (i = 0; i < 32; i += 8) { + u32 mode = (hw->mac.ledctl_mode2 >> i) & + E1000_LEDCTL_LED0_MODE_MASK; + u32 led_default = hw->mac.ledctl_default >> i; + + if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && + (mode == E1000_LEDCTL_MODE_LED_ON)) || + ((led_default & E1000_LEDCTL_LED0_IVRT) && + (mode == E1000_LEDCTL_MODE_LED_OFF))) { + ledctl_blink &= + ~(E1000_LEDCTL_LED0_MODE_MASK << i); + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_MODE_LED_ON) << i; + } + } + } + + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); + + return E1000_SUCCESS; +} + +/** + * e1000_led_on_generic - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +s32 e1000_led_on_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + DEBUGFUNC("e1000_led_on_generic"); + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + break; + case e1000_media_type_copper: + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_led_off_generic - Turn LED off + * @hw: pointer to the HW structure + * + * Turn LED off. + **/ +s32 e1000_led_off_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + DEBUGFUNC("e1000_led_off_generic"); + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + break; + case e1000_media_type_copper: + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities + * @hw: pointer to the HW structure + * @no_snoop: bitmap of snoop events + * + * Set the PCI-express register to snoop for events enabled in 'no_snoop'. + **/ +void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) +{ + u32 gcr; + + DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); + + if (hw->bus.type != e1000_bus_type_pci_express) + return; + + if (no_snoop) { + gcr = E1000_READ_REG(hw, E1000_GCR); + gcr &= ~(PCIE_NO_SNOOP_ALL); + gcr |= no_snoop; + E1000_WRITE_REG(hw, E1000_GCR, gcr); + } +} + +/** + * e1000_disable_pcie_master_generic - Disables PCI-express master access + * @hw: pointer to the HW structure + * + * Returns E1000_SUCCESS if successful, else returns -10 + * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused + * the master requests to be disabled. + * + * Disables PCI-Express master access and verifies there are no pending + * requests. + **/ +s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw) +{ + u32 ctrl; + s32 timeout = MASTER_DISABLE_TIMEOUT; + + DEBUGFUNC("e1000_disable_pcie_master_generic"); + + if (hw->bus.type != e1000_bus_type_pci_express) + return E1000_SUCCESS; + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + while (timeout) { + if (!(E1000_READ_REG(hw, E1000_STATUS) & + E1000_STATUS_GIO_MASTER_ENABLE) || + E1000_REMOVED(hw->hw_addr)) + break; + usec_delay(100); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Master requests are pending.\n"); + return -E1000_ERR_MASTER_REQUESTS_PENDING; + } + + return E1000_SUCCESS; +} + +/** + * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Reset the Adaptive Interframe Spacing throttle to default values. + **/ +void e1000_reset_adaptive_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_reset_adaptive_generic"); + + if (!mac->adaptive_ifs) { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + return; + } + + mac->current_ifs_val = 0; + mac->ifs_min_val = IFS_MIN; + mac->ifs_max_val = IFS_MAX; + mac->ifs_step_size = IFS_STEP; + mac->ifs_ratio = IFS_RATIO; + + mac->in_ifs_mode = false; + E1000_WRITE_REG(hw, E1000_AIT, 0); +} + +/** + * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Update the Adaptive Interframe Spacing Throttle value based on the + * time between transmitted packets and time between collisions. + **/ +void e1000_update_adaptive_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_update_adaptive_generic"); + + if (!mac->adaptive_ifs) { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + return; + } + + if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { + if (mac->tx_packet_delta > MIN_NUM_XMITS) { + mac->in_ifs_mode = true; + if (mac->current_ifs_val < mac->ifs_max_val) { + if (!mac->current_ifs_val) + mac->current_ifs_val = mac->ifs_min_val; + else + mac->current_ifs_val += + mac->ifs_step_size; + E1000_WRITE_REG(hw, E1000_AIT, + mac->current_ifs_val); + } + } + } else { + if (mac->in_ifs_mode && + (mac->tx_packet_delta <= MIN_NUM_XMITS)) { + mac->current_ifs_val = 0; + mac->in_ifs_mode = false; + E1000_WRITE_REG(hw, E1000_AIT, 0); + } + } +} + +/** + * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings + * @hw: pointer to the HW structure + * + * Verify that when not using auto-negotiation that MDI/MDIx is correctly + * set, which is forced to MDI mode only. + **/ +STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_validate_mdi_setting_generic"); + + if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { + DEBUGOUT("Invalid MDI setting detected\n"); + hw->phy.mdix = 1; + return -E1000_ERR_CONFIG; + } + + return E1000_SUCCESS; +} + +/** + * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings + * @hw: pointer to the HW structure + * + * Validate the MDI/MDIx setting, allowing for auto-crossover during forced + * operation. + **/ +s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic"); + UNREFERENCED_1PARAMETER(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register + * @hw: pointer to the HW structure + * @reg: 32bit register offset such as E1000_SCTL + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes an address/data control type register. There are several of these + * and they all have the format address << 8 | data and bit 31 is polled for + * completion. + **/ +s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, + u32 offset, u8 data) +{ + u32 i, regvalue = 0; + + DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic"); + + /* Set up the address and data */ + regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); + E1000_WRITE_REG(hw, reg, regvalue); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { + usec_delay(5); + regvalue = E1000_READ_REG(hw, reg); + if (regvalue & E1000_GEN_CTL_READY) + break; + } + if (!(regvalue & E1000_GEN_CTL_READY)) { + DEBUGOUT1("Reg %08x did not indicate ready\n", reg); + return -E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_mac.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_mac.h new file mode 100644 index 00000000..96a260c3 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_mac.h @@ -0,0 +1,95 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_MAC_H_ +#define _E1000_MAC_H_ + +void e1000_init_mac_ops_generic(struct e1000_hw *hw); +#ifndef E1000_REMOVED +#define E1000_REMOVED(a) (0) +#endif /* E1000_REMOVED */ +void e1000_null_mac_generic(struct e1000_hw *hw); +s32 e1000_null_ops_generic(struct e1000_hw *hw); +s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d); +bool e1000_null_mng_mode(struct e1000_hw *hw); +void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a); +void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b); +int e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a); +s32 e1000_blink_led_generic(struct e1000_hw *hw); +s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw); +s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw); +s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw); +s32 e1000_cleanup_led_generic(struct e1000_hw *hw); +s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw); +s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw); +s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw); +s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw); +s32 e1000_force_mac_fc_generic(struct e1000_hw *hw); +s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw); +s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw); +s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw); +void e1000_set_lan_id_single_port(struct e1000_hw *hw); +void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw); +s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw); +s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +s32 e1000_id_led_init_generic(struct e1000_hw *hw); +s32 e1000_led_on_generic(struct e1000_hw *hw); +s32 e1000_led_off_generic(struct e1000_hw *hw); +void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count); +s32 e1000_set_default_fc_generic(struct e1000_hw *hw); +s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw); +s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw); +s32 e1000_setup_led_generic(struct e1000_hw *hw); +s32 e1000_setup_link_generic(struct e1000_hw *hw); +s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw); +s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, + u32 offset, u8 data); + +u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr); + +void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw); +void e1000_clear_vfta_generic(struct e1000_hw *hw); +void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count); +void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw); +void e1000_put_hw_semaphore_generic(struct e1000_hw *hw); +s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw); +void e1000_reset_adaptive_generic(struct e1000_hw *hw); +void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop); +void e1000_update_adaptive_generic(struct e1000_hw *hw); +void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value); + +#endif diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_manage.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_manage.c new file mode 100644 index 00000000..8564a7f8 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_manage.c @@ -0,0 +1,576 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#include "e1000_api.h" + +/** + * e1000_calculate_checksum - Calculate checksum for buffer + * @buffer: pointer to EEPROM + * @length: size of EEPROM to calculate a checksum for + * + * Calculates the checksum for some buffer on a specified length. The + * checksum calculated is returned. + **/ +u8 e1000_calculate_checksum(u8 *buffer, u32 length) +{ + u32 i; + u8 sum = 0; + + DEBUGFUNC("e1000_calculate_checksum"); + + if (!buffer) + return 0; + + for (i = 0; i < length; i++) + sum += buffer[i]; + + return (u8) (0 - sum); +} + +/** + * e1000_mng_enable_host_if_generic - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operation + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw) +{ + u32 hicr; + u8 i; + + DEBUGFUNC("e1000_mng_enable_host_if_generic"); + + if (!hw->mac.arc_subsystem_valid) { + DEBUGOUT("ARC subsystem not valid.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_EN)) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + /* check the previous command is completed */ + for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay_irq(1); + } + + if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { + DEBUGOUT("Previous command timeout failed .\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + return E1000_SUCCESS; +} + +/** + * e1000_check_mng_mode_generic - Generic check management mode + * @hw: pointer to the HW structure + * + * Reads the firmware semaphore register and returns true (>0) if + * manageability is enabled, else false (0). + **/ +bool e1000_check_mng_mode_generic(struct e1000_hw *hw) +{ + u32 fwsm = E1000_READ_REG(hw, E1000_FWSM); + + DEBUGFUNC("e1000_check_mng_mode_generic"); + + + return (fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); +} + +/** + * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + **/ +bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw) +{ + struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; + u32 *buffer = (u32 *)&hw->mng_cookie; + u32 offset; + s32 ret_val, hdr_csum, csum; + u8 i, len; + + DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic"); + + hw->mac.tx_pkt_filtering = true; + + /* No manageability, no filtering */ + if (!hw->mac.ops.check_mng_mode(hw)) { + hw->mac.tx_pkt_filtering = false; + return hw->mac.tx_pkt_filtering; + } + + /* If we can't read from the host interface for whatever + * reason, disable filtering. + */ + ret_val = e1000_mng_enable_host_if_generic(hw); + if (ret_val != E1000_SUCCESS) { + hw->mac.tx_pkt_filtering = false; + return hw->mac.tx_pkt_filtering; + } + + /* Read in the header. Length and offset are in dwords. */ + len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; + offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; + for (i = 0; i < len; i++) + *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, + offset + i); + hdr_csum = hdr->checksum; + hdr->checksum = 0; + csum = e1000_calculate_checksum((u8 *)hdr, + E1000_MNG_DHCP_COOKIE_LENGTH); + /* If either the checksums or signature don't match, then + * the cookie area isn't considered valid, in which case we + * take the safe route of assuming Tx filtering is enabled. + */ + if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { + hw->mac.tx_pkt_filtering = true; + return hw->mac.tx_pkt_filtering; + } + + /* Cookie area is valid, make the final check for filtering. */ + if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) + hw->mac.tx_pkt_filtering = false; + + return hw->mac.tx_pkt_filtering; +} + +/** + * e1000_mng_write_cmd_header_generic - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr) +{ + u16 i, length = sizeof(struct e1000_host_mng_command_header); + + DEBUGFUNC("e1000_mng_write_cmd_header_generic"); + + /* Write the whole command header structure with new checksum. */ + + hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); + + length >>= 2; + /* Write the relevant command block into the ram area. */ + for (i = 0; i < length; i++) { + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, + *((u32 *) hdr + i)); + E1000_WRITE_FLUSH(hw); + } + + return E1000_SUCCESS; +} + +/** + * e1000_mng_host_if_write_generic - Write to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, + u16 length, u16 offset, u8 *sum) +{ + u8 *tmp; + u8 *bufptr = buffer; + u32 data = 0; + u16 remaining, i, j, prev_bytes; + + DEBUGFUNC("e1000_mng_host_if_write_generic"); + + /* sum = only sum of the data and it is not checksum */ + + if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) + return -E1000_ERR_PARAM; + + tmp = (u8 *)&data; + prev_bytes = offset & 0x3; + offset >>= 2; + + if (prev_bytes) { + data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset); + for (j = prev_bytes; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data); + length -= j - prev_bytes; + offset++; + } + + remaining = length & 0x3; + length -= remaining; + + /* Calculate length in DWORDs */ + length >>= 2; + + /* The device driver writes the relevant command block into the + * ram area. + */ + for (i = 0; i < length; i++) { + for (j = 0; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, + data); + } + if (remaining) { + for (j = 0; j < sizeof(u32); j++) { + if (j < remaining) + *(tmp + j) = *bufptr++; + else + *(tmp + j) = 0; + + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, + data); + } + + return E1000_SUCCESS; +} + +/** + * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer, + u16 length) +{ + struct e1000_host_mng_command_header hdr; + s32 ret_val; + u32 hicr; + + DEBUGFUNC("e1000_mng_write_dhcp_info_generic"); + + hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; + hdr.command_length = length; + hdr.reserved1 = 0; + hdr.reserved2 = 0; + hdr.checksum = 0; + + /* Enable the host interface */ + ret_val = e1000_mng_enable_host_if_generic(hw); + if (ret_val) + return ret_val; + + /* Populate the host interface with the contents of "buffer". */ + ret_val = e1000_mng_host_if_write_generic(hw, buffer, length, + sizeof(hdr), &(hdr.checksum)); + if (ret_val) + return ret_val; + + /* Write the manageability command header */ + ret_val = e1000_mng_write_cmd_header_generic(hw, &hdr); + if (ret_val) + return ret_val; + + /* Tell the ARC a new command is pending. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); + + return E1000_SUCCESS; +} + +/** + * e1000_enable_mng_pass_thru - Check if management passthrough is needed + * @hw: pointer to the HW structure + * + * Verifies the hardware needs to leave interface enabled so that frames can + * be directed to and from the management interface. + **/ +bool e1000_enable_mng_pass_thru(struct e1000_hw *hw) +{ + u32 manc; + u32 fwsm, factps; + + DEBUGFUNC("e1000_enable_mng_pass_thru"); + + if (!hw->mac.asf_firmware_present) + return false; + + manc = E1000_READ_REG(hw, E1000_MANC); + + if (!(manc & E1000_MANC_RCV_TCO_EN)) + return false; + + if (hw->mac.has_fwsm) { + fwsm = E1000_READ_REG(hw, E1000_FWSM); + factps = E1000_READ_REG(hw, E1000_FACTPS); + + if (!(factps & E1000_FACTPS_MNGCG) && + ((fwsm & E1000_FWSM_MODE_MASK) == + (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) + return true; + } else if ((hw->mac.type == e1000_82574) || + (hw->mac.type == e1000_82583)) { + u16 data; + s32 ret_val; + + factps = E1000_READ_REG(hw, E1000_FACTPS); + ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); + if (ret_val) + return false; + + if (!(factps & E1000_FACTPS_MNGCG) && + ((data & E1000_NVM_INIT_CTRL2_MNGM) == + (e1000_mng_mode_pt << 13))) + return true; + } else if ((manc & E1000_MANC_SMBUS_EN) && + !(manc & E1000_MANC_ASF_EN)) { + return true; + } + + return false; +} + +/** + * e1000_host_interface_command - Writes buffer to host interface + * @hw: pointer to the HW structure + * @buffer: contains a command to write + * @length: the byte length of the buffer, must be multiple of 4 bytes + * + * Writes a buffer to the Host Interface. Upon success, returns E1000_SUCCESS + * else returns E1000_ERR_HOST_INTERFACE_COMMAND. + **/ +s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length) +{ + u32 hicr, i; + + DEBUGFUNC("e1000_host_interface_command"); + + if (!(hw->mac.arc_subsystem_valid)) { + DEBUGOUT("Hardware doesn't support host interface command.\n"); + return E1000_SUCCESS; + } + + if (!hw->mac.asf_firmware_present) { + DEBUGOUT("Firmware is not present.\n"); + return E1000_SUCCESS; + } + + if (length == 0 || length & 0x3 || + length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) { + DEBUGOUT("Buffer length failure.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_EN)) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Calculate length in DWORDs */ + length >>= 2; + + /* The device driver writes the relevant command block + * into the ram area. + */ + for (i = 0; i < length; i++) + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, + *((u32 *)buffer + i)); + + /* Setting this bit tells the ARC that a new command is pending. */ + E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); + + for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay(1); + } + + /* Check command successful completion. */ + if (i == E1000_HI_COMMAND_TIMEOUT || + (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) { + DEBUGOUT("Command has failed with no status valid.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + for (i = 0; i < length; i++) + *((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, + E1000_HOST_IF, + i); + + return E1000_SUCCESS; +} +/** + * e1000_load_firmware - Writes proxy FW code buffer to host interface + * and execute. + * @hw: pointer to the HW structure + * @buffer: contains a firmware to write + * @length: the byte length of the buffer, must be multiple of 4 bytes + * + * Upon success returns E1000_SUCCESS, returns E1000_ERR_CONFIG if not enabled + * in HW else returns E1000_ERR_HOST_INTERFACE_COMMAND. + **/ +s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length) +{ + u32 hicr, hibba, fwsm, icr, i; + + DEBUGFUNC("e1000_load_firmware"); + + if (hw->mac.type < e1000_i210) { + DEBUGOUT("Hardware doesn't support loading FW by the driver\n"); + return -E1000_ERR_CONFIG; + } + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_EN)) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_CONFIG; + } + if (!(hicr & E1000_HICR_MEMORY_BASE_EN)) { + DEBUGOUT("E1000_HICR_MEMORY_BASE_EN bit disabled.\n"); + return -E1000_ERR_CONFIG; + } + + if (length == 0 || length & 0x3 || length > E1000_HI_FW_MAX_LENGTH) { + DEBUGOUT("Buffer length failure.\n"); + return -E1000_ERR_INVALID_ARGUMENT; + } + + /* Clear notification from ROM-FW by reading ICR register */ + icr = E1000_READ_REG(hw, E1000_ICR_V2); + + /* Reset ROM-FW */ + hicr = E1000_READ_REG(hw, E1000_HICR); + hicr |= E1000_HICR_FW_RESET_ENABLE; + E1000_WRITE_REG(hw, E1000_HICR, hicr); + hicr |= E1000_HICR_FW_RESET; + E1000_WRITE_REG(hw, E1000_HICR, hicr); + E1000_WRITE_FLUSH(hw); + + /* Wait till MAC notifies about its readiness after ROM-FW reset */ + for (i = 0; i < (E1000_HI_COMMAND_TIMEOUT * 2); i++) { + icr = E1000_READ_REG(hw, E1000_ICR_V2); + if (icr & E1000_ICR_MNG) + break; + msec_delay(1); + } + + /* Check for timeout */ + if (i == E1000_HI_COMMAND_TIMEOUT) { + DEBUGOUT("FW reset failed.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Wait till MAC is ready to accept new FW code */ + for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { + fwsm = E1000_READ_REG(hw, E1000_FWSM); + if ((fwsm & E1000_FWSM_FW_VALID) && + ((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT == + E1000_FWSM_HI_EN_ONLY_MODE)) + break; + msec_delay(1); + } + + /* Check for timeout */ + if (i == E1000_HI_COMMAND_TIMEOUT) { + DEBUGOUT("FW reset failed.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Calculate length in DWORDs */ + length >>= 2; + + /* The device driver writes the relevant FW code block + * into the ram area in DWORDs via 1kB ram addressing window. + */ + for (i = 0; i < length; i++) { + if (!(i % E1000_HI_FW_BLOCK_DWORD_LENGTH)) { + /* Point to correct 1kB ram window */ + hibba = E1000_HI_FW_BASE_ADDRESS + + ((E1000_HI_FW_BLOCK_DWORD_LENGTH << 2) * + (i / E1000_HI_FW_BLOCK_DWORD_LENGTH)); + + E1000_WRITE_REG(hw, E1000_HIBBA, hibba); + } + + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, + i % E1000_HI_FW_BLOCK_DWORD_LENGTH, + *((u32 *)buffer + i)); + } + + /* Setting this bit tells the ARC that a new FW is ready to execute. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); + + for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay(1); + } + + /* Check for successful FW start. */ + if (i == E1000_HI_COMMAND_TIMEOUT) { + DEBUGOUT("New FW did not start within timeout period.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + return E1000_SUCCESS; +} + + diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_manage.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_manage.h new file mode 100644 index 00000000..25be1156 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_manage.h @@ -0,0 +1,95 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_MANAGE_H_ +#define _E1000_MANAGE_H_ + +bool e1000_check_mng_mode_generic(struct e1000_hw *hw); +bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw); +s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw); +s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, + u16 length, u16 offset, u8 *sum); +s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr); +s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, + u8 *buffer, u16 length); +bool e1000_enable_mng_pass_thru(struct e1000_hw *hw); +u8 e1000_calculate_checksum(u8 *buffer, u32 length); +s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length); +s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length); + +enum e1000_mng_mode { + e1000_mng_mode_none = 0, + e1000_mng_mode_asf, + e1000_mng_mode_pt, + e1000_mng_mode_ipmi, + e1000_mng_mode_host_if_only +}; + +#define E1000_FACTPS_MNGCG 0x20000000 + +#define E1000_FWSM_MODE_MASK 0xE +#define E1000_FWSM_MODE_SHIFT 1 +#define E1000_FWSM_FW_VALID 0x00008000 +#define E1000_FWSM_HI_EN_ONLY_MODE 0x4 + +#define E1000_MNG_IAMT_MODE 0x3 +#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 +#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 +#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 +#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 +#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 +#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 + +#define E1000_VFTA_ENTRY_SHIFT 5 +#define E1000_VFTA_ENTRY_MASK 0x7F +#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F + +#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */ +#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */ +#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI cmd limit */ +#define E1000_HI_FW_BASE_ADDRESS 0x10000 +#define E1000_HI_FW_MAX_LENGTH (64 * 1024) /* Num of bytes */ +#define E1000_HI_FW_BLOCK_DWORD_LENGTH 256 /* Num of DWORDs per page */ +#define E1000_HICR_MEMORY_BASE_EN 0x200 /* MB Enable bit - RO */ +#define E1000_HICR_EN 0x01 /* Enable bit - RO */ +/* Driver sets this bit when done to put command in RAM */ +#define E1000_HICR_C 0x02 +#define E1000_HICR_SV 0x04 /* Status Validity */ +#define E1000_HICR_FW_RESET_ENABLE 0x40 +#define E1000_HICR_FW_RESET 0x80 + +/* Intel(R) Active Management Technology signature */ +#define E1000_IAMT_SIGNATURE 0x544D4149 + +#endif diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_mbx.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_mbx.c new file mode 100644 index 00000000..a92fd22e --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_mbx.c @@ -0,0 +1,791 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#include "e1000_mbx.h" + +/** + * e1000_null_mbx_check_for_flag - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_null_mbx_check_for_flag(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG mbx_id) +{ + DEBUGFUNC("e1000_null_mbx_check_flag"); + UNREFERENCED_2PARAMETER(hw, mbx_id); + + return E1000_SUCCESS; +} + +/** + * e1000_null_mbx_transact - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_null_mbx_transact(struct e1000_hw E1000_UNUSEDARG *hw, + u32 E1000_UNUSEDARG *msg, + u16 E1000_UNUSEDARG size, + u16 E1000_UNUSEDARG mbx_id) +{ + DEBUGFUNC("e1000_null_mbx_rw_msg"); + UNREFERENCED_4PARAMETER(hw, msg, size, mbx_id); + + return E1000_SUCCESS; +} + +/** + * e1000_read_mbx - Reads a message from the mailbox + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to read + * + * returns SUCCESS if it successfully read message from buffer + **/ +s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_read_mbx"); + + /* limit read to size of mailbox */ + if (size > mbx->size) + size = mbx->size; + + if (mbx->ops.read) + ret_val = mbx->ops.read(hw, msg, size, mbx_id); + + return ret_val; +} + +/** + * e1000_write_mbx - Write a message to the mailbox + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully copied message into the buffer + **/ +s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_mbx"); + + if (size > mbx->size) + ret_val = -E1000_ERR_MBX; + + else if (mbx->ops.write) + ret_val = mbx->ops.write(hw, msg, size, mbx_id); + + return ret_val; +} + +/** + * e1000_check_for_msg - checks to see if someone sent us mail + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns SUCCESS if the Status bit was found or else ERR_MBX + **/ +s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_msg"); + + if (mbx->ops.check_for_msg) + ret_val = mbx->ops.check_for_msg(hw, mbx_id); + + return ret_val; +} + +/** + * e1000_check_for_ack - checks to see if someone sent us ACK + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns SUCCESS if the Status bit was found or else ERR_MBX + **/ +s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_ack"); + + if (mbx->ops.check_for_ack) + ret_val = mbx->ops.check_for_ack(hw, mbx_id); + + return ret_val; +} + +/** + * e1000_check_for_rst - checks to see if other side has reset + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns SUCCESS if the Status bit was found or else ERR_MBX + **/ +s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_rst"); + + if (mbx->ops.check_for_rst) + ret_val = mbx->ops.check_for_rst(hw, mbx_id); + + return ret_val; +} + +/** + * e1000_poll_for_msg - Wait for message notification + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully received a message notification + **/ +STATIC s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + int countdown = mbx->timeout; + + DEBUGFUNC("e1000_poll_for_msg"); + + if (!countdown || !mbx->ops.check_for_msg) + goto out; + + while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) { + countdown--; + if (!countdown) + break; + usec_delay(mbx->usec_delay); + } + + /* if we failed, all future posted messages fail until reset */ + if (!countdown) + mbx->timeout = 0; +out: + return countdown ? E1000_SUCCESS : -E1000_ERR_MBX; +} + +/** + * e1000_poll_for_ack - Wait for message acknowledgement + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully received a message acknowledgement + **/ +STATIC s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + int countdown = mbx->timeout; + + DEBUGFUNC("e1000_poll_for_ack"); + + if (!countdown || !mbx->ops.check_for_ack) + goto out; + + while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) { + countdown--; + if (!countdown) + break; + usec_delay(mbx->usec_delay); + } + + /* if we failed, all future posted messages fail until reset */ + if (!countdown) + mbx->timeout = 0; +out: + return countdown ? E1000_SUCCESS : -E1000_ERR_MBX; +} + +/** + * e1000_read_posted_mbx - Wait for message notification and receive message + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully received a message notification and + * copied it into the receive buffer. + **/ +s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_read_posted_mbx"); + + if (!mbx->ops.read) + goto out; + + ret_val = e1000_poll_for_msg(hw, mbx_id); + + /* if ack received read message, otherwise we timed out */ + if (!ret_val) + ret_val = mbx->ops.read(hw, msg, size, mbx_id); +out: + return ret_val; +} + +/** + * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully copied message into the buffer and + * received an ack to that message within delay * timeout period + **/ +s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_write_posted_mbx"); + + /* exit if either we can't write or there isn't a defined timeout */ + if (!mbx->ops.write || !mbx->timeout) + goto out; + + /* send msg */ + ret_val = mbx->ops.write(hw, msg, size, mbx_id); + + /* if msg sent wait until we receive an ack */ + if (!ret_val) + ret_val = e1000_poll_for_ack(hw, mbx_id); +out: + return ret_val; +} + +/** + * e1000_init_mbx_ops_generic - Initialize mbx function pointers + * @hw: pointer to the HW structure + * + * Sets the function pointers to no-op functions + **/ +void e1000_init_mbx_ops_generic(struct e1000_hw *hw) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + mbx->ops.init_params = e1000_null_ops_generic; + mbx->ops.read = e1000_null_mbx_transact; + mbx->ops.write = e1000_null_mbx_transact; + mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag; + mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag; + mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag; + mbx->ops.read_posted = e1000_read_posted_mbx; + mbx->ops.write_posted = e1000_write_posted_mbx; +} + +/** + * e1000_read_v2p_mailbox - read v2p mailbox + * @hw: pointer to the HW structure + * + * This function is used to read the v2p mailbox without losing the read to + * clear status bits. + **/ +STATIC u32 e1000_read_v2p_mailbox(struct e1000_hw *hw) +{ + u32 v2p_mailbox = E1000_READ_REG(hw, E1000_V2PMAILBOX(0)); + + v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox; + hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS; + + return v2p_mailbox; +} + +/** + * e1000_check_for_bit_vf - Determine if a status bit was set + * @hw: pointer to the HW structure + * @mask: bitmask for bits to be tested and cleared + * + * This function is used to check for the read to clear bits within + * the V2P mailbox. + **/ +STATIC s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask) +{ + u32 v2p_mailbox = e1000_read_v2p_mailbox(hw); + s32 ret_val = -E1000_ERR_MBX; + + if (v2p_mailbox & mask) + ret_val = E1000_SUCCESS; + + hw->dev_spec.vf.v2p_mailbox &= ~mask; + + return ret_val; +} + +/** + * e1000_check_for_msg_vf - checks to see if the PF has sent mail + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns SUCCESS if the PF has set the Status bit or else ERR_MBX + **/ +STATIC s32 e1000_check_for_msg_vf(struct e1000_hw *hw, + u16 E1000_UNUSEDARG mbx_id) +{ + s32 ret_val = -E1000_ERR_MBX; + + UNREFERENCED_1PARAMETER(mbx_id); + DEBUGFUNC("e1000_check_for_msg_vf"); + + if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) { + ret_val = E1000_SUCCESS; + hw->mbx.stats.reqs++; + } + + return ret_val; +} + +/** + * e1000_check_for_ack_vf - checks to see if the PF has ACK'd + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns SUCCESS if the PF has set the ACK bit or else ERR_MBX + **/ +STATIC s32 e1000_check_for_ack_vf(struct e1000_hw *hw, + u16 E1000_UNUSEDARG mbx_id) +{ + s32 ret_val = -E1000_ERR_MBX; + + UNREFERENCED_1PARAMETER(mbx_id); + DEBUGFUNC("e1000_check_for_ack_vf"); + + if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) { + ret_val = E1000_SUCCESS; + hw->mbx.stats.acks++; + } + + return ret_val; +} + +/** + * e1000_check_for_rst_vf - checks to see if the PF has reset + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns true if the PF has set the reset done bit or else false + **/ +STATIC s32 e1000_check_for_rst_vf(struct e1000_hw *hw, + u16 E1000_UNUSEDARG mbx_id) +{ + s32 ret_val = -E1000_ERR_MBX; + + UNREFERENCED_1PARAMETER(mbx_id); + DEBUGFUNC("e1000_check_for_rst_vf"); + + if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD | + E1000_V2PMAILBOX_RSTI))) { + ret_val = E1000_SUCCESS; + hw->mbx.stats.rsts++; + } + + return ret_val; +} + +/** + * e1000_obtain_mbx_lock_vf - obtain mailbox lock + * @hw: pointer to the HW structure + * + * return SUCCESS if we obtained the mailbox lock + **/ +STATIC s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw) +{ + s32 ret_val = -E1000_ERR_MBX; + int count = 10; + + DEBUGFUNC("e1000_obtain_mbx_lock_vf"); + + do { + /* Take ownership of the buffer */ + E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_VFU); + + /* reserve mailbox for vf use */ + if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU) { + ret_val = E1000_SUCCESS; + break; + } + usec_delay(1000); + } while (count-- > 0); + + return ret_val; +} + +/** + * e1000_write_mbx_vf - Write a message to the mailbox + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully copied message into the buffer + **/ +STATIC s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size, + u16 E1000_UNUSEDARG mbx_id) +{ + s32 ret_val; + u16 i; + + UNREFERENCED_1PARAMETER(mbx_id); + + DEBUGFUNC("e1000_write_mbx_vf"); + + /* lock the mailbox to prevent pf/vf race condition */ + ret_val = e1000_obtain_mbx_lock_vf(hw); + if (ret_val) + goto out_no_write; + + /* flush msg and acks as we are overwriting the message buffer */ + e1000_check_for_msg_vf(hw, 0); + e1000_check_for_ack_vf(hw, 0); + + /* copy the caller specified message to the mailbox memory buffer */ + for (i = 0; i < size; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(0), i, msg[i]); + + /* update stats */ + hw->mbx.stats.msgs_tx++; + + /* Drop VFU and interrupt the PF to tell it a message has been sent */ + E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_REQ); + +out_no_write: + return ret_val; +} + +/** + * e1000_read_mbx_vf - Reads a message from the inbox intended for vf + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to read + * + * returns SUCCESS if it successfully read message from buffer + **/ +STATIC s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size, + u16 E1000_UNUSEDARG mbx_id) +{ + s32 ret_val = E1000_SUCCESS; + u16 i; + + DEBUGFUNC("e1000_read_mbx_vf"); + UNREFERENCED_1PARAMETER(mbx_id); + + /* lock the mailbox to prevent pf/vf race condition */ + ret_val = e1000_obtain_mbx_lock_vf(hw); + if (ret_val) + goto out_no_read; + + /* copy the message from the mailbox memory buffer */ + for (i = 0; i < size; i++) + msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(0), i); + + /* Acknowledge receipt and release mailbox, then we're done */ + E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_ACK); + + /* update stats */ + hw->mbx.stats.msgs_rx++; + +out_no_read: + return ret_val; +} + +/** + * e1000_init_mbx_params_vf - set initial values for vf mailbox + * @hw: pointer to the HW structure + * + * Initializes the hw->mbx struct to correct values for vf mailbox + */ +s32 e1000_init_mbx_params_vf(struct e1000_hw *hw) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + + /* start mailbox as timed out and let the reset_hw call set the timeout + * value to begin communications */ + mbx->timeout = 0; + mbx->usec_delay = E1000_VF_MBX_INIT_DELAY; + + mbx->size = E1000_VFMAILBOX_SIZE; + + mbx->ops.read = e1000_read_mbx_vf; + mbx->ops.write = e1000_write_mbx_vf; + mbx->ops.read_posted = e1000_read_posted_mbx; + mbx->ops.write_posted = e1000_write_posted_mbx; + mbx->ops.check_for_msg = e1000_check_for_msg_vf; + mbx->ops.check_for_ack = e1000_check_for_ack_vf; + mbx->ops.check_for_rst = e1000_check_for_rst_vf; + + mbx->stats.msgs_tx = 0; + mbx->stats.msgs_rx = 0; + mbx->stats.reqs = 0; + mbx->stats.acks = 0; + mbx->stats.rsts = 0; + + return E1000_SUCCESS; +} + +STATIC s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask) +{ + u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR); + s32 ret_val = -E1000_ERR_MBX; + + if (mbvficr & mask) { + ret_val = E1000_SUCCESS; + E1000_WRITE_REG(hw, E1000_MBVFICR, mask); + } + + return ret_val; +} + +/** + * e1000_check_for_msg_pf - checks to see if the VF has sent mail + * @hw: pointer to the HW structure + * @vf_number: the VF index + * + * returns SUCCESS if the VF has set the Status bit or else ERR_MBX + **/ +STATIC s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number) +{ + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_msg_pf"); + + if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) { + ret_val = E1000_SUCCESS; + hw->mbx.stats.reqs++; + } + + return ret_val; +} + +/** + * e1000_check_for_ack_pf - checks to see if the VF has ACKed + * @hw: pointer to the HW structure + * @vf_number: the VF index + * + * returns SUCCESS if the VF has set the Status bit or else ERR_MBX + **/ +STATIC s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number) +{ + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_ack_pf"); + + if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) { + ret_val = E1000_SUCCESS; + hw->mbx.stats.acks++; + } + + return ret_val; +} + +/** + * e1000_check_for_rst_pf - checks to see if the VF has reset + * @hw: pointer to the HW structure + * @vf_number: the VF index + * + * returns SUCCESS if the VF has set the Status bit or else ERR_MBX + **/ +STATIC s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number) +{ + u32 vflre = E1000_READ_REG(hw, E1000_VFLRE); + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_rst_pf"); + + if (vflre & (1 << vf_number)) { + ret_val = E1000_SUCCESS; + E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number)); + hw->mbx.stats.rsts++; + } + + return ret_val; +} + +/** + * e1000_obtain_mbx_lock_pf - obtain mailbox lock + * @hw: pointer to the HW structure + * @vf_number: the VF index + * + * return SUCCESS if we obtained the mailbox lock + **/ +STATIC s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number) +{ + s32 ret_val = -E1000_ERR_MBX; + u32 p2v_mailbox; + int count = 10; + + DEBUGFUNC("e1000_obtain_mbx_lock_pf"); + + do { + /* Take ownership of the buffer */ + E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), + E1000_P2VMAILBOX_PFU); + + /* reserve mailbox for pf use */ + p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number)); + if (p2v_mailbox & E1000_P2VMAILBOX_PFU) { + ret_val = E1000_SUCCESS; + break; + } + usec_delay(1000); + } while (count-- > 0); + + return ret_val; + +} + +/** + * e1000_write_mbx_pf - Places a message in the mailbox + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @vf_number: the VF index + * + * returns SUCCESS if it successfully copied message into the buffer + **/ +STATIC s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, + u16 vf_number) +{ + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_write_mbx_pf"); + + /* lock the mailbox to prevent pf/vf race condition */ + ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number); + if (ret_val) + goto out_no_write; + + /* flush msg and acks as we are overwriting the message buffer */ + e1000_check_for_msg_pf(hw, vf_number); + e1000_check_for_ack_pf(hw, vf_number); + + /* copy the caller specified message to the mailbox memory buffer */ + for (i = 0; i < size; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]); + + /* Interrupt VF to tell it a message has been sent and release buffer*/ + E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS); + + /* update stats */ + hw->mbx.stats.msgs_tx++; + +out_no_write: + return ret_val; + +} + +/** + * e1000_read_mbx_pf - Read a message from the mailbox + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @vf_number: the VF index + * + * This function copies a message from the mailbox buffer to the caller's + * memory buffer. The presumption is that the caller knows that there was + * a message due to a VF request so no polling for message is needed. + **/ +STATIC s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, + u16 vf_number) +{ + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_read_mbx_pf"); + + /* lock the mailbox to prevent pf/vf race condition */ + ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number); + if (ret_val) + goto out_no_read; + + /* copy the message to the mailbox memory buffer */ + for (i = 0; i < size; i++) + msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i); + + /* Acknowledge the message and release buffer */ + E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK); + + /* update stats */ + hw->mbx.stats.msgs_rx++; + +out_no_read: + return ret_val; +} + +/** + * e1000_init_mbx_params_pf - set initial values for pf mailbox + * @hw: pointer to the HW structure + * + * Initializes the hw->mbx struct to correct values for pf mailbox + */ +s32 e1000_init_mbx_params_pf(struct e1000_hw *hw) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + + switch (hw->mac.type) { + case e1000_82576: + case e1000_i350: + case e1000_i354: + mbx->timeout = 0; + mbx->usec_delay = 0; + + mbx->size = E1000_VFMAILBOX_SIZE; + + mbx->ops.read = e1000_read_mbx_pf; + mbx->ops.write = e1000_write_mbx_pf; + mbx->ops.read_posted = e1000_read_posted_mbx; + mbx->ops.write_posted = e1000_write_posted_mbx; + mbx->ops.check_for_msg = e1000_check_for_msg_pf; + mbx->ops.check_for_ack = e1000_check_for_ack_pf; + mbx->ops.check_for_rst = e1000_check_for_rst_pf; + + mbx->stats.msgs_tx = 0; + mbx->stats.msgs_rx = 0; + mbx->stats.reqs = 0; + mbx->stats.acks = 0; + mbx->stats.rsts = 0; + default: + return E1000_SUCCESS; + } +} + diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_mbx.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_mbx.h new file mode 100644 index 00000000..563dcb9d --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_mbx.h @@ -0,0 +1,105 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_MBX_H_ +#define _E1000_MBX_H_ + +#include "e1000_api.h" + +/* Define mailbox register bits */ +#define E1000_V2PMAILBOX_REQ 0x00000001 /* Request for PF Ready bit */ +#define E1000_V2PMAILBOX_ACK 0x00000002 /* Ack PF message received */ +#define E1000_V2PMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ +#define E1000_V2PMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ +#define E1000_V2PMAILBOX_PFSTS 0x00000010 /* PF wrote a message in the MB */ +#define E1000_V2PMAILBOX_PFACK 0x00000020 /* PF ack the previous VF msg */ +#define E1000_V2PMAILBOX_RSTI 0x00000040 /* PF has reset indication */ +#define E1000_V2PMAILBOX_RSTD 0x00000080 /* PF has indicated reset done */ +#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */ + +#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */ +#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */ +#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ +#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ +#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */ + +#define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */ +#define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */ +#define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */ +#define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */ + +#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */ + +/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the + * PF. The reverse is true if it is E1000_PF_*. + * Message ACK's are the value or'd with 0xF0000000 + */ +/* Msgs below or'd with this are the ACK */ +#define E1000_VT_MSGTYPE_ACK 0x80000000 +/* Msgs below or'd with this are the NACK */ +#define E1000_VT_MSGTYPE_NACK 0x40000000 +/* Indicates that VF is still clear to send requests */ +#define E1000_VT_MSGTYPE_CTS 0x20000000 +#define E1000_VT_MSGINFO_SHIFT 16 +/* bits 23:16 are used for extra info for certain messages */ +#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT) + +#define E1000_VF_RESET 0x01 /* VF requests reset */ +#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */ +#define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */ +#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_MULTICAST_OVERFLOW (0x80 << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */ +#define E1000_VF_SET_VLAN_ADD (0x01 << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_LPE 0x05 /* reqs to set VMOLR.LPE */ +#define E1000_VF_SET_PROMISC 0x06 /* reqs to clear VMOLR.ROPE/MPME*/ +#define E1000_VF_SET_PROMISC_UNICAST (0x01 << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT) + +#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */ + +#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* number of retries on mailbox */ +#define E1000_VF_MBX_INIT_DELAY 500 /* microseconds between retries */ + +s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_check_for_msg(struct e1000_hw *, u16); +s32 e1000_check_for_ack(struct e1000_hw *, u16); +s32 e1000_check_for_rst(struct e1000_hw *, u16); +void e1000_init_mbx_ops_generic(struct e1000_hw *hw); +s32 e1000_init_mbx_params_vf(struct e1000_hw *); +s32 e1000_init_mbx_params_pf(struct e1000_hw *); + +#endif /* _E1000_MBX_H_ */ diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_nvm.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_nvm.c new file mode 100644 index 00000000..75c22827 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_nvm.c @@ -0,0 +1,1385 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#include "e1000_api.h" + +STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw); + +/** + * e1000_init_nvm_ops_generic - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_nvm_ops_generic(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + DEBUGFUNC("e1000_init_nvm_ops_generic"); + + /* Initialize function pointers */ + nvm->ops.init_params = e1000_null_ops_generic; + nvm->ops.acquire = e1000_null_ops_generic; + nvm->ops.read = e1000_null_read_nvm; + nvm->ops.release = e1000_null_nvm_generic; + nvm->ops.reload = e1000_reload_nvm_generic; + nvm->ops.update = e1000_null_ops_generic; + nvm->ops.valid_led_default = e1000_null_led_default; + nvm->ops.validate = e1000_null_ops_generic; + nvm->ops.write = e1000_null_write_nvm; +} + +/** + * e1000_null_nvm_read - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, + u16 E1000_UNUSEDARG *c) +{ + DEBUGFUNC("e1000_null_read_nvm"); + UNREFERENCED_4PARAMETER(hw, a, b, c); + return E1000_SUCCESS; +} + +/** + * e1000_null_nvm_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_null_nvm_generic"); + UNREFERENCED_1PARAMETER(hw); + return; +} + +/** + * e1000_null_led_default - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG *data) +{ + DEBUGFUNC("e1000_null_led_default"); + UNREFERENCED_2PARAMETER(hw, data); + return E1000_SUCCESS; +} + +/** + * e1000_null_write_nvm - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, + u16 E1000_UNUSEDARG *c) +{ + DEBUGFUNC("e1000_null_write_nvm"); + UNREFERENCED_4PARAMETER(hw, a, b, c); + return E1000_SUCCESS; +} + +/** + * e1000_raise_eec_clk - Raise EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Enable/Raise the EEPROM clock bit. + **/ +STATIC void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd | E1000_EECD_SK; + E1000_WRITE_REG(hw, E1000_EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->nvm.delay_usec); +} + +/** + * e1000_lower_eec_clk - Lower EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Clear/Lower the EEPROM clock bit. + **/ +STATIC void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd & ~E1000_EECD_SK; + E1000_WRITE_REG(hw, E1000_EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->nvm.delay_usec); +} + +/** + * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM + * @hw: pointer to the HW structure + * @data: data to send to the EEPROM + * @count: number of bits to shift out + * + * We need to shift 'count' bits out to the EEPROM. So, the value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + **/ +STATIC void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u32 mask; + + DEBUGFUNC("e1000_shift_out_eec_bits"); + + mask = 0x01 << (count - 1); + if (nvm->type == e1000_nvm_eeprom_microwire) + eecd &= ~E1000_EECD_DO; + else + if (nvm->type == e1000_nvm_eeprom_spi) + eecd |= E1000_EECD_DO; + + do { + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + + usec_delay(nvm->delay_usec); + + e1000_raise_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); + + mask >>= 1; + } while (mask); + + eecd &= ~E1000_EECD_DI; + E1000_WRITE_REG(hw, E1000_EECD, eecd); +} + +/** + * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM + * @hw: pointer to the HW structure + * @count: number of bits to shift in + * + * In order to read a register from the EEPROM, we need to shift 'count' bits + * in from the EEPROM. Bits are "shifted in" by raising the clock input to + * the EEPROM (setting the SK bit), and then reading the value of the data out + * "DO" bit. During this "shifting in" process the data in "DI" bit should + * always be clear. + **/ +STATIC u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) +{ + u32 eecd; + u32 i; + u16 data; + + DEBUGFUNC("e1000_shift_in_eec_bits"); + + eecd = E1000_READ_REG(hw, E1000_EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for (i = 0; i < count; i++) { + data <<= 1; + e1000_raise_eec_clk(hw, &eecd); + + eecd = E1000_READ_REG(hw, E1000_EECD); + + eecd &= ~E1000_EECD_DI; + if (eecd & E1000_EECD_DO) + data |= 1; + + e1000_lower_eec_clk(hw, &eecd); + } + + return data; +} + +/** + * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion + * @hw: pointer to the HW structure + * @ee_reg: EEPROM flag for polling + * + * Polls the EEPROM status bit for either read or write completion based + * upon the value of 'ee_reg'. + **/ +s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) +{ + u32 attempts = 100000; + u32 i, reg = 0; + + DEBUGFUNC("e1000_poll_eerd_eewr_done"); + + for (i = 0; i < attempts; i++) { + if (ee_reg == E1000_NVM_POLL_READ) + reg = E1000_READ_REG(hw, E1000_EERD); + else + reg = E1000_READ_REG(hw, E1000_EEWR); + + if (reg & E1000_NVM_RW_REG_DONE) + return E1000_SUCCESS; + + usec_delay(5); + } + + return -E1000_ERR_NVM; +} + +/** + * e1000_acquire_nvm_generic - Generic request for access to EEPROM + * @hw: pointer to the HW structure + * + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +s32 e1000_acquire_nvm_generic(struct e1000_hw *hw) +{ + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + s32 timeout = E1000_NVM_GRANT_ATTEMPTS; + + DEBUGFUNC("e1000_acquire_nvm_generic"); + + E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); + eecd = E1000_READ_REG(hw, E1000_EECD); + + while (timeout) { + if (eecd & E1000_EECD_GNT) + break; + usec_delay(5); + eecd = E1000_READ_REG(hw, E1000_EECD); + timeout--; + } + + if (!timeout) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + DEBUGOUT("Could not acquire NVM grant\n"); + return -E1000_ERR_NVM; + } + + return E1000_SUCCESS; +} + +/** + * e1000_standby_nvm - Return EEPROM to standby state + * @hw: pointer to the HW structure + * + * Return the EEPROM to a standby state. + **/ +STATIC void e1000_standby_nvm(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + + DEBUGFUNC("e1000_standby_nvm"); + + if (nvm->type == e1000_nvm_eeprom_microwire) { + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + + e1000_raise_eec_clk(hw, &eecd); + + /* Select EEPROM */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + + e1000_lower_eec_clk(hw, &eecd); + } else if (nvm->type == e1000_nvm_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + eecd &= ~E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + } +} + +/** + * e1000_stop_nvm - Terminate EEPROM command + * @hw: pointer to the HW structure + * + * Terminates the current command by inverting the EEPROM's chip select pin. + **/ +void e1000_stop_nvm(struct e1000_hw *hw) +{ + u32 eecd; + + DEBUGFUNC("e1000_stop_nvm"); + + eecd = E1000_READ_REG(hw, E1000_EECD); + if (hw->nvm.type == e1000_nvm_eeprom_spi) { + /* Pull CS high */ + eecd |= E1000_EECD_CS; + e1000_lower_eec_clk(hw, &eecd); + } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { + /* CS on Microwire is active-high */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + e1000_raise_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); + } +} + +/** + * e1000_release_nvm_generic - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +void e1000_release_nvm_generic(struct e1000_hw *hw) +{ + u32 eecd; + + DEBUGFUNC("e1000_release_nvm_generic"); + + e1000_stop_nvm(hw); + + eecd = E1000_READ_REG(hw, E1000_EECD); + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, E1000_EECD, eecd); +} + +/** + * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write + * @hw: pointer to the HW structure + * + * Setups the EEPROM for reading and writing. + **/ +STATIC s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u8 spi_stat_reg; + + DEBUGFUNC("e1000_ready_nvm_eeprom"); + + if (nvm->type == e1000_nvm_eeprom_microwire) { + /* Clear SK and DI */ + eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + /* Set CS */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + } else if (nvm->type == e1000_nvm_eeprom_spi) { + u16 timeout = NVM_MAX_RETRY_SPI; + + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(1); + + /* Read "Status Register" repeatedly until the LSB is cleared. + * The EEPROM will signal that the command has been completed + * by clearing bit 0 of the internal status register. If it's + * not cleared within 'timeout', then error out. + */ + while (timeout) { + e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, + hw->nvm.opcode_bits); + spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); + if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) + break; + + usec_delay(5); + e1000_standby_nvm(hw); + timeout--; + } + + if (!timeout) { + DEBUGOUT("SPI NVM Status error\n"); + return -E1000_ERR_NVM; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_nvm_spi - Read EEPROM's using SPI + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM. + **/ +s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i = 0; + s32 ret_val; + u16 word_in; + u8 read_opcode = NVM_READ_OPCODE_SPI; + + DEBUGFUNC("e1000_read_nvm_spi"); + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + e1000_standby_nvm(hw); + + if ((nvm->address_bits == 8) && (offset >= 128)) + read_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); + + /* Read the data. SPI NVMs increment the address with each byte + * read and will roll over if reading beyond the end. This allows + * us to read the whole NVM from any offset + */ + for (i = 0; i < words; i++) { + word_in = e1000_shift_in_eec_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + +release: + nvm->ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_nvm_microwire - Reads EEPROM's using microwire + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM. + **/ +s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i = 0; + s32 ret_val; + u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; + + DEBUGFUNC("e1000_read_nvm_microwire"); + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + for (i = 0; i < words; i++) { + /* Send the READ command (opcode + addr) */ + e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)(offset + i), + nvm->address_bits); + + /* Read the data. For microwire, each word requires the + * overhead of setup and tear-down. + */ + data[i] = e1000_shift_in_eec_bits(hw, 16); + e1000_standby_nvm(hw); + } + +release: + nvm->ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_nvm_eerd - Reads EEPROM using EERD register + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM using the EERD register. + **/ +s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, eerd = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_nvm_eerd"); + + /* A check for invalid values: offset too large, too many words, + * too many words for the offset, and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + for (i = 0; i < words; i++) { + eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + + E1000_NVM_RW_REG_START; + + E1000_WRITE_REG(hw, E1000_EERD, eerd); + ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); + if (ret_val) + break; + + data[i] = (E1000_READ_REG(hw, E1000_EERD) >> + E1000_NVM_RW_REG_DATA); + } + + if (ret_val) + DEBUGOUT1("NVM read error: %d\n", ret_val); + + return ret_val; +} + +/** + * e1000_write_nvm_spi - Write to EEPROM using SPI + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * Writes data to EEPROM at offset using SPI interface. + * + * If e1000_update_nvm_checksum is not called after this function , the + * EEPROM will most likely contain an invalid checksum. + **/ +s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val = -E1000_ERR_NVM; + u16 widx = 0; + + DEBUGFUNC("e1000_write_nvm_spi"); + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + while (widx < words) { + u8 write_opcode = NVM_WRITE_OPCODE_SPI; + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) { + nvm->ops.release(hw); + return ret_val; + } + + e1000_standby_nvm(hw); + + /* Send the WRITE ENABLE command (8 bit opcode) */ + e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, + nvm->opcode_bits); + + e1000_standby_nvm(hw); + + /* Some SPI eeproms use the 8th address bit embedded in the + * opcode + */ + if ((nvm->address_bits == 8) && (offset >= 128)) + write_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the Write command (8-bit opcode + addr) */ + e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), + nvm->address_bits); + + /* Loop to allow for up to whole page write of eeprom */ + while (widx < words) { + u16 word_out = data[widx]; + word_out = (word_out >> 8) | (word_out << 8); + e1000_shift_out_eec_bits(hw, word_out, 16); + widx++; + + if ((((offset + widx) * 2) % nvm->page_size) == 0) { + e1000_standby_nvm(hw); + break; + } + } + msec_delay(10); + nvm->ops.release(hw); + } + + return ret_val; +} + +/** + * e1000_write_nvm_microwire - Writes EEPROM using microwire + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * Writes data to EEPROM at offset using microwire interface. + * + * If e1000_update_nvm_checksum is not called after this function , the + * EEPROM will most likely contain an invalid checksum. + **/ +s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val; + u32 eecd; + u16 words_written = 0; + u16 widx = 0; + + DEBUGFUNC("e1000_write_nvm_microwire"); + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, + (u16)(nvm->opcode_bits + 2)); + + e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); + + e1000_standby_nvm(hw); + + while (words_written < words) { + e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, + nvm->opcode_bits); + + e1000_shift_out_eec_bits(hw, (u16)(offset + words_written), + nvm->address_bits); + + e1000_shift_out_eec_bits(hw, data[words_written], 16); + + e1000_standby_nvm(hw); + + for (widx = 0; widx < 200; widx++) { + eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & E1000_EECD_DO) + break; + usec_delay(50); + } + + if (widx == 200) { + DEBUGOUT("NVM Write did not complete\n"); + ret_val = -E1000_ERR_NVM; + goto release; + } + + e1000_standby_nvm(hw); + + words_written++; + } + + e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, + (u16)(nvm->opcode_bits + 2)); + + e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); + +release: + nvm->ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_pba_string_generic - Read device part number + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + **/ +s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, + u32 pba_num_size) +{ + s32 ret_val; + u16 nvm_data; + u16 pba_ptr; + u16 offset; + u16 length; + + DEBUGFUNC("e1000_read_pba_string_generic"); + + if ((hw->mac.type >= e1000_i210) && + !e1000_get_flash_presence_i210(hw)) { + DEBUGOUT("Flashless no PBA string\n"); + return -E1000_ERR_NVM_PBA_SECTION; + } + + if (pba_num == NULL) { + DEBUGOUT("PBA string buffer was null\n"); + return -E1000_ERR_INVALID_ARGUMENT; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + /* if nvm_data is not ptr guard the PBA must be in legacy format which + * means pba_ptr is actually our second data word for the PBA number + * and we can decode it into an ascii string + */ + if (nvm_data != NVM_PBA_PTR_GUARD) { + DEBUGOUT("NVM PBA number is not stored as string\n"); + + /* make sure callers buffer is big enough to store the PBA */ + if (pba_num_size < E1000_PBANUM_LENGTH) { + DEBUGOUT("PBA string buffer too small\n"); + return E1000_ERR_NO_SPACE; + } + + /* extract hex string from data and pba_ptr */ + pba_num[0] = (nvm_data >> 12) & 0xF; + pba_num[1] = (nvm_data >> 8) & 0xF; + pba_num[2] = (nvm_data >> 4) & 0xF; + pba_num[3] = nvm_data & 0xF; + pba_num[4] = (pba_ptr >> 12) & 0xF; + pba_num[5] = (pba_ptr >> 8) & 0xF; + pba_num[6] = '-'; + pba_num[7] = 0; + pba_num[8] = (pba_ptr >> 4) & 0xF; + pba_num[9] = pba_ptr & 0xF; + + /* put a null character on the end of our string */ + pba_num[10] = '\0'; + + /* switch all the data but the '-' to hex char */ + for (offset = 0; offset < 10; offset++) { + if (pba_num[offset] < 0xA) + pba_num[offset] += '0'; + else if (pba_num[offset] < 0x10) + pba_num[offset] += 'A' - 0xA; + } + + return E1000_SUCCESS; + } + + ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (length == 0xFFFF || length == 0) { + DEBUGOUT("NVM PBA number section invalid length\n"); + return -E1000_ERR_NVM_PBA_SECTION; + } + /* check if pba_num buffer is big enough */ + if (pba_num_size < (((u32)length * 2) - 1)) { + DEBUGOUT("PBA string buffer too small\n"); + return -E1000_ERR_NO_SPACE; + } + + /* trim pba length from start of string */ + pba_ptr++; + length--; + + for (offset = 0; offset < length; offset++) { + ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + pba_num[offset * 2] = (u8)(nvm_data >> 8); + pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); + } + pba_num[offset * 2] = '\0'; + + return E1000_SUCCESS; +} + +/** + * e1000_read_pba_length_generic - Read device part number length + * @hw: pointer to the HW structure + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number length from the EEPROM and + * stores the value in pba_num_size. + **/ +s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size) +{ + s32 ret_val; + u16 nvm_data; + u16 pba_ptr; + u16 length; + + DEBUGFUNC("e1000_read_pba_length_generic"); + + if (pba_num_size == NULL) { + DEBUGOUT("PBA buffer size was null\n"); + return -E1000_ERR_INVALID_ARGUMENT; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + /* if data is not ptr guard the PBA must be in legacy format */ + if (nvm_data != NVM_PBA_PTR_GUARD) { + *pba_num_size = E1000_PBANUM_LENGTH; + return E1000_SUCCESS; + } + + ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (length == 0xFFFF || length == 0) { + DEBUGOUT("NVM PBA number section invalid length\n"); + return -E1000_ERR_NVM_PBA_SECTION; + } + + /* Convert from length in u16 values to u8 chars, add 1 for NULL, + * and subtract 2 because length field is included in length. + */ + *pba_num_size = ((u32)length * 2) - 1; + + return E1000_SUCCESS; +} + +/** + * e1000_read_pba_num_generic - Read device part number + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + **/ +s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num) +{ + s32 ret_val; + u16 nvm_data; + + DEBUGFUNC("e1000_read_pba_num_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } else if (nvm_data == NVM_PBA_PTR_GUARD) { + DEBUGOUT("NVM Not Supported\n"); + return -E1000_NOT_IMPLEMENTED; + } + *pba_num = (u32)(nvm_data << 16); + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + *pba_num |= nvm_data; + + return E1000_SUCCESS; +} + + +/** + * e1000_read_pba_raw + * @hw: pointer to the HW structure + * @eeprom_buf: optional pointer to EEPROM image + * @eeprom_buf_size: size of EEPROM image in words + * @max_pba_block_size: PBA block size limit + * @pba: pointer to output PBA structure + * + * Reads PBA from EEPROM image when eeprom_buf is not NULL. + * Reads PBA from physical EEPROM device when eeprom_buf is NULL. + * + **/ +s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, u16 max_pba_block_size, + struct e1000_pba *pba) +{ + s32 ret_val; + u16 pba_block_size; + + if (pba == NULL) + return -E1000_ERR_PARAM; + + if (eeprom_buf == NULL) { + ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, + &pba->word[0]); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > NVM_PBA_OFFSET_1) { + pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; + pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; + } else { + return -E1000_ERR_PARAM; + } + } + + if (pba->word[0] == NVM_PBA_PTR_GUARD) { + if (pba->pba_block == NULL) + return -E1000_ERR_PARAM; + + ret_val = e1000_get_pba_block_size(hw, eeprom_buf, + eeprom_buf_size, + &pba_block_size); + if (ret_val) + return ret_val; + + if (pba_block_size > max_pba_block_size) + return -E1000_ERR_PARAM; + + if (eeprom_buf == NULL) { + ret_val = e1000_read_nvm(hw, pba->word[1], + pba_block_size, + pba->pba_block); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > (u32)(pba->word[1] + + pba_block_size)) { + memcpy(pba->pba_block, + &eeprom_buf[pba->word[1]], + pba_block_size * sizeof(u16)); + } else { + return -E1000_ERR_PARAM; + } + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_write_pba_raw + * @hw: pointer to the HW structure + * @eeprom_buf: optional pointer to EEPROM image + * @eeprom_buf_size: size of EEPROM image in words + * @pba: pointer to PBA structure + * + * Writes PBA to EEPROM image when eeprom_buf is not NULL. + * Writes PBA to physical EEPROM device when eeprom_buf is NULL. + * + **/ +s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, struct e1000_pba *pba) +{ + s32 ret_val; + + if (pba == NULL) + return -E1000_ERR_PARAM; + + if (eeprom_buf == NULL) { + ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2, + &pba->word[0]); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > NVM_PBA_OFFSET_1) { + eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0]; + eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1]; + } else { + return -E1000_ERR_PARAM; + } + } + + if (pba->word[0] == NVM_PBA_PTR_GUARD) { + if (pba->pba_block == NULL) + return -E1000_ERR_PARAM; + + if (eeprom_buf == NULL) { + ret_val = e1000_write_nvm(hw, pba->word[1], + pba->pba_block[0], + pba->pba_block); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > (u32)(pba->word[1] + + pba->pba_block[0])) { + memcpy(&eeprom_buf[pba->word[1]], + pba->pba_block, + pba->pba_block[0] * sizeof(u16)); + } else { + return -E1000_ERR_PARAM; + } + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_pba_block_size + * @hw: pointer to the HW structure + * @eeprom_buf: optional pointer to EEPROM image + * @eeprom_buf_size: size of EEPROM image in words + * @pba_data_size: pointer to output variable + * + * Returns the size of the PBA block in words. Function operates on EEPROM + * image if the eeprom_buf pointer is not NULL otherwise it accesses physical + * EEPROM device. + * + **/ +s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, u16 *pba_block_size) +{ + s32 ret_val; + u16 pba_word[2]; + u16 length; + + DEBUGFUNC("e1000_get_pba_block_size"); + + if (eeprom_buf == NULL) { + ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > NVM_PBA_OFFSET_1) { + pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; + pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; + } else { + return -E1000_ERR_PARAM; + } + } + + if (pba_word[0] == NVM_PBA_PTR_GUARD) { + if (eeprom_buf == NULL) { + ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1, + &length); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > pba_word[1]) + length = eeprom_buf[pba_word[1] + 0]; + else + return -E1000_ERR_PARAM; + } + + if (length == 0xFFFF || length == 0) + return -E1000_ERR_NVM_PBA_SECTION; + } else { + /* PBA number in legacy format, there is no PBA Block. */ + length = 0; + } + + if (pba_block_size != NULL) + *pba_block_size = length; + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr_generic - Read device MAC address + * @hw: pointer to the HW structure + * + * Reads the device MAC address from the EEPROM and stores the value. + * Since devices with two ports use the same EEPROM, we increment the + * last bit in the MAC address for the second port. + **/ +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) +{ + u32 rar_high; + u32 rar_low; + u16 i; + + rar_high = E1000_READ_REG(hw, E1000_RAH(0)); + rar_low = E1000_READ_REG(hw, E1000_RAL(0)); + + for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) + hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); + + for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) + hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); + + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + + return E1000_SUCCESS; +} + +/** + * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_validate_nvm_checksum_generic"); + + for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + checksum += nvm_data; + } + + if (checksum != (u16) NVM_SUM) { + DEBUGOUT("NVM Checksum Invalid\n"); + return -E1000_ERR_NVM; + } + + return E1000_SUCCESS; +} + +/** + * e1000_update_nvm_checksum_generic - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_update_nvm_checksum"); + + for (i = 0; i < NVM_CHECKSUM_REG; i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error while updating checksum.\n"); + return ret_val; + } + checksum += nvm_data; + } + checksum = (u16) NVM_SUM - checksum; + ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); + if (ret_val) + DEBUGOUT("NVM Write Error while updating checksum.\n"); + + return ret_val; +} + +/** + * e1000_reload_nvm_generic - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw) +{ + u32 ctrl_ext; + + DEBUGFUNC("e1000_reload_nvm_generic"); + + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_get_fw_version - Get firmware version information + * @hw: pointer to the HW structure + * @fw_vers: pointer to output version structure + * + * unsupported/not present features return 0 in version structure + **/ +void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) +{ + u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; + u8 q, hval, rem, result; + u16 comb_verh, comb_verl, comb_offset; + + memset(fw_vers, 0, sizeof(struct e1000_fw_version)); + + /* basic eeprom version numbers, bits used vary by part and by tool + * used to create the nvm images */ + /* Check which data format we have */ + switch (hw->mac.type) { + case e1000_i211: + e1000_read_invm_version(hw, fw_vers); + return; + case e1000_82575: + case e1000_82576: + case e1000_82580: + case e1000_i354: + hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); + /* Use this format, unless EETRACK ID exists, + * then use alternate format + */ + if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { + hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); + fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) + >> NVM_MAJOR_SHIFT; + fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) + >> NVM_MINOR_SHIFT; + fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); + goto etrack_id; + } + break; + case e1000_i210: + if (!(e1000_get_flash_presence_i210(hw))) { + e1000_read_invm_version(hw, fw_vers); + return; + } + /* fall through */ + case e1000_i350: + hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); + /* find combo image version */ + hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); + if ((comb_offset != 0x0) && + (comb_offset != NVM_VER_INVALID)) { + + hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset + + 1), 1, &comb_verh); + hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), + 1, &comb_verl); + + /* get Option Rom version if it exists and is valid */ + if ((comb_verh && comb_verl) && + ((comb_verh != NVM_VER_INVALID) && + (comb_verl != NVM_VER_INVALID))) { + + fw_vers->or_valid = true; + fw_vers->or_major = + comb_verl >> NVM_COMB_VER_SHFT; + fw_vers->or_build = + (comb_verl << NVM_COMB_VER_SHFT) + | (comb_verh >> NVM_COMB_VER_SHFT); + fw_vers->or_patch = + comb_verh & NVM_COMB_VER_MASK; + } + } + break; + default: + hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); + return; + } + hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); + fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) + >> NVM_MAJOR_SHIFT; + + /* check for old style version format in newer images*/ + if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { + eeprom_verl = (fw_version & NVM_COMB_VER_MASK); + } else { + eeprom_verl = (fw_version & NVM_MINOR_MASK) + >> NVM_MINOR_SHIFT; + } + /* Convert minor value to hex before assigning to output struct + * Val to be converted will not be higher than 99, per tool output + */ + q = eeprom_verl / NVM_HEX_CONV; + hval = q * NVM_HEX_TENS; + rem = eeprom_verl % NVM_HEX_CONV; + result = hval + rem; + fw_vers->eep_minor = result; + +etrack_id: + if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { + hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); + hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); + fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) + | eeprom_verl; + } else if ((etrack_test & NVM_ETRACK_VALID) == 0) { + hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh); + hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl); + fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) | + eeprom_verl; + } +} + + diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_nvm.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_nvm.h new file mode 100644 index 00000000..c400dc3a --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_nvm.h @@ -0,0 +1,98 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_NVM_H_ +#define _E1000_NVM_H_ + +struct e1000_pba { + u16 word[2]; + u16 *pba_block; +}; + +struct e1000_fw_version { + u32 etrack_id; + u16 eep_major; + u16 eep_minor; + u16 eep_build; + + u8 invm_major; + u8 invm_minor; + u8 invm_img_type; + + bool or_valid; + u16 or_major; + u16 or_build; + u16 or_patch; +}; + + +void e1000_init_nvm_ops_generic(struct e1000_hw *hw); +s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); +void e1000_null_nvm_generic(struct e1000_hw *hw); +s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data); +s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); +s32 e1000_acquire_nvm_generic(struct e1000_hw *hw); + +s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); +s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num); +s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, + u32 pba_num_size); +s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size); +s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, u16 max_pba_block_size, + struct e1000_pba *pba); +s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, struct e1000_pba *pba); +s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, u16 *pba_block_size); +s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data); +s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw); +s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw); +void e1000_stop_nvm(struct e1000_hw *hw); +void e1000_release_nvm_generic(struct e1000_hw *hw); +void e1000_get_fw_version(struct e1000_hw *hw, + struct e1000_fw_version *fw_vers); + +#define E1000_STM_OPCODE 0xDB00 + +#endif diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_osdep.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_osdep.c new file mode 100644 index 00000000..7270edfa --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_osdep.c @@ -0,0 +1,83 @@ +/****************************************************************************** + + Copyright (c) 2001-2014, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +/* + * NOTE: the following routines using the e1000 + * naming style are provided to the shared + * code but are OS specific + */ + +void +e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) +{ + return; +} + +void +e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) +{ + *value = 0; + return; +} + +void +e1000_pci_set_mwi(struct e1000_hw *hw) +{ +} + +void +e1000_pci_clear_mwi(struct e1000_hw *hw) +{ +} + + +/* + * Read the PCI Express capabilities + */ +int32_t +e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) +{ + return E1000_NOT_IMPLEMENTED; +} + +/* + * Write the PCI Express capabilities + */ +int32_t +e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) +{ + return E1000_NOT_IMPLEMENTED; +} diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_osdep.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_osdep.h new file mode 100644 index 00000000..b8868049 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_osdep.h @@ -0,0 +1,198 @@ +/****************************************************************************** + + Copyright (c) 2001-2014, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_OSDEP_H_ +#define _E1000_OSDEP_H_ + +#include <stdint.h> +#include <stdio.h> +#include <stdarg.h> +#include <string.h> +#include <rte_common.h> +#include <rte_cycles.h> +#include <rte_log.h> +#include <rte_debug.h> +#include <rte_byteorder.h> +#include <rte_io.h> + +#include "../e1000_logs.h" + +#define DELAY(x) rte_delay_us(x) +#define usec_delay(x) DELAY(x) +#define usec_delay_irq(x) DELAY(x) +#define msec_delay(x) DELAY(1000*(x)) +#define msec_delay_irq(x) DELAY(1000*(x)) + +#define DEBUGFUNC(F) DEBUGOUT(F "\n"); +#define DEBUGOUT(S, args...) PMD_DRV_LOG_RAW(DEBUG, S, ##args) +#define DEBUGOUT1(S, args...) DEBUGOUT(S, ##args) +#define DEBUGOUT2(S, args...) DEBUGOUT(S, ##args) +#define DEBUGOUT3(S, args...) DEBUGOUT(S, ##args) +#define DEBUGOUT6(S, args...) DEBUGOUT(S, ##args) +#define DEBUGOUT7(S, args...) DEBUGOUT(S, ##args) + +#define UNREFERENCED_PARAMETER(_p) +#define UNREFERENCED_1PARAMETER(_p) +#define UNREFERENCED_2PARAMETER(_p, _q) +#define UNREFERENCED_3PARAMETER(_p, _q, _r) +#define UNREFERENCED_4PARAMETER(_p, _q, _r, _s) + +#define FALSE 0 +#define TRUE 1 + +#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */ + +/* Mutex used in the shared code */ +#define E1000_MUTEX uintptr_t +#define E1000_MUTEX_INIT(mutex) (*(mutex) = 0) +#define E1000_MUTEX_LOCK(mutex) (*(mutex) = 1) +#define E1000_MUTEX_UNLOCK(mutex) (*(mutex) = 0) + +typedef uint64_t u64; +typedef uint32_t u32; +typedef uint16_t u16; +typedef uint8_t u8; +typedef int64_t s64; +typedef int32_t s32; +typedef int16_t s16; +typedef int8_t s8; +typedef int bool; + +#define __le16 u16 +#define __le32 u32 +#define __le64 u64 + +#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS) + +#define E1000_PCI_REG(reg) rte_read32(reg) + +#define E1000_PCI_REG16(reg) rte_read16(reg) + +#define E1000_PCI_REG_WRITE(reg, value) \ + rte_write32((rte_cpu_to_le_32(value)), reg) + +#define E1000_PCI_REG_WRITE_RELAXED(reg, value) \ + rte_write32_relaxed((rte_cpu_to_le_32(value)), reg) + +#define E1000_PCI_REG_WRITE16(reg, value) \ + rte_write16((rte_cpu_to_le_16(value)), reg) + +#define E1000_PCI_REG_ADDR(hw, reg) \ + ((volatile uint32_t *)((char *)(hw)->hw_addr + (reg))) + +#define E1000_PCI_REG_ARRAY_ADDR(hw, reg, index) \ + E1000_PCI_REG_ADDR((hw), (reg) + ((index) << 2)) + +#define E1000_PCI_REG_FLASH_ADDR(hw, reg) \ + ((volatile uint32_t *)((char *)(hw)->flash_address + (reg))) + +static inline uint32_t e1000_read_addr(volatile void *addr) +{ + return rte_le_to_cpu_32(E1000_PCI_REG(addr)); +} + +static inline uint16_t e1000_read_addr16(volatile void *addr) +{ + return rte_le_to_cpu_16(E1000_PCI_REG16(addr)); +} + +/* Necessary defines */ +#define E1000_MRQC_ENABLE_MASK 0x00000007 +#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 +#define E1000_ALL_FULL_DUPLEX ( \ + ADVERTISE_10_FULL | ADVERTISE_100_FULL | ADVERTISE_1000_FULL) + +#define M88E1543_E_PHY_ID 0x01410EA0 +#define ULP_SUPPORT + +#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ +#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 + +/* Register READ/WRITE macros */ + +#define E1000_READ_REG(hw, reg) \ + e1000_read_addr(E1000_PCI_REG_ADDR((hw), (reg))) + +#define E1000_WRITE_REG(hw, reg, value) \ + E1000_PCI_REG_WRITE(E1000_PCI_REG_ADDR((hw), (reg)), (value)) + +#define E1000_READ_REG_ARRAY(hw, reg, index) \ + E1000_PCI_REG(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index))) + +#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \ + E1000_PCI_REG_WRITE(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)), (value)) + +#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY +#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY + +#define E1000_ACCESS_PANIC(x, hw, reg, value) \ + rte_panic("%s:%u\t" RTE_STR(x) "(%p, 0x%x, 0x%x)", \ + __FILE__, __LINE__, (hw), (reg), (unsigned int)(value)) + +/* + * To be able to do IO write, we need to map IO BAR + * (bar 2/4 depending on device). + * Right now mapping multiple BARs is not supported by DPDK. + * Fortunatelly we need it only for legacy hw support. + */ + +#define E1000_WRITE_REG_IO(hw, reg, value) \ + E1000_WRITE_REG(hw, reg, value) + +/* + * Tested on I217/I218 chipset. + */ + +#define E1000_READ_FLASH_REG(hw, reg) \ + e1000_read_addr(E1000_PCI_REG_FLASH_ADDR((hw), (reg))) + +#define E1000_READ_FLASH_REG16(hw, reg) \ + e1000_read_addr16(E1000_PCI_REG_FLASH_ADDR((hw), (reg))) + +#define E1000_WRITE_FLASH_REG(hw, reg, value) \ + E1000_PCI_REG_WRITE(E1000_PCI_REG_FLASH_ADDR((hw), (reg)), (value)) + +#define E1000_WRITE_FLASH_REG16(hw, reg, value) \ + E1000_PCI_REG_WRITE16(E1000_PCI_REG_FLASH_ADDR((hw), (reg)), (value)) + +#define STATIC static + +#ifndef ETH_ADDR_LEN +#define ETH_ADDR_LEN 6 +#endif + +#define false FALSE +#define true TRUE + +#endif /* _E1000_OSDEP_H_ */ diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_phy.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_phy.c new file mode 100644 index 00000000..33f478b1 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_phy.c @@ -0,0 +1,4260 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#include "e1000_api.h" + +STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw); +STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, + u16 *data, bool read, bool page_set); +STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page); +STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, + u16 *data, bool read); + +/* Cable length tables */ +STATIC const u16 e1000_m88_cable_length_table[] = { + 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; +#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_m88_cable_length_table) / \ + sizeof(e1000_m88_cable_length_table[0])) + +STATIC const u16 e1000_igp_2_cable_length_table[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, + 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, + 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, + 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, + 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, + 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, + 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, + 124}; +#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_igp_2_cable_length_table) / \ + sizeof(e1000_igp_2_cable_length_table[0])) + +/** + * e1000_init_phy_ops_generic - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_phy_ops_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + DEBUGFUNC("e1000_init_phy_ops_generic"); + + /* Initialize function pointers */ + phy->ops.init_params = e1000_null_ops_generic; + phy->ops.acquire = e1000_null_ops_generic; + phy->ops.check_polarity = e1000_null_ops_generic; + phy->ops.check_reset_block = e1000_null_ops_generic; + phy->ops.commit = e1000_null_ops_generic; + phy->ops.force_speed_duplex = e1000_null_ops_generic; + phy->ops.get_cfg_done = e1000_null_ops_generic; + phy->ops.get_cable_length = e1000_null_ops_generic; + phy->ops.get_info = e1000_null_ops_generic; + phy->ops.set_page = e1000_null_set_page; + phy->ops.read_reg = e1000_null_read_reg; + phy->ops.read_reg_locked = e1000_null_read_reg; + phy->ops.read_reg_page = e1000_null_read_reg; + phy->ops.release = e1000_null_phy_generic; + phy->ops.reset = e1000_null_ops_generic; + phy->ops.set_d0_lplu_state = e1000_null_lplu_state; + phy->ops.set_d3_lplu_state = e1000_null_lplu_state; + phy->ops.write_reg = e1000_null_write_reg; + phy->ops.write_reg_locked = e1000_null_write_reg; + phy->ops.write_reg_page = e1000_null_write_reg; + phy->ops.power_up = e1000_null_phy_generic; + phy->ops.power_down = e1000_null_phy_generic; + phy->ops.read_i2c_byte = e1000_read_i2c_byte_null; + phy->ops.write_i2c_byte = e1000_write_i2c_byte_null; + phy->ops.cfg_on_link_up = e1000_null_ops_generic; +} + +/** + * e1000_null_set_page - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG data) +{ + DEBUGFUNC("e1000_null_set_page"); + UNREFERENCED_2PARAMETER(hw, data); + return E1000_SUCCESS; +} + +/** + * e1000_null_read_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw, + u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data) +{ + DEBUGFUNC("e1000_null_read_reg"); + UNREFERENCED_3PARAMETER(hw, offset, data); + return E1000_SUCCESS; +} + +/** + * e1000_null_phy_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_null_phy_generic"); + UNREFERENCED_1PARAMETER(hw); + return; +} + +/** + * e1000_null_lplu_state - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw, + bool E1000_UNUSEDARG active) +{ + DEBUGFUNC("e1000_null_lplu_state"); + UNREFERENCED_2PARAMETER(hw, active); + return E1000_SUCCESS; +} + +/** + * e1000_null_write_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw, + u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data) +{ + DEBUGFUNC("e1000_null_write_reg"); + UNREFERENCED_3PARAMETER(hw, offset, data); + return E1000_SUCCESS; +} + +/** + * e1000_read_i2c_byte_null - No-op function, return 0 + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: data value read + * + **/ +s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, + u8 E1000_UNUSEDARG byte_offset, + u8 E1000_UNUSEDARG dev_addr, + u8 E1000_UNUSEDARG *data) +{ + DEBUGFUNC("e1000_read_i2c_byte_null"); + UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data); + return E1000_SUCCESS; +} + +/** + * e1000_write_i2c_byte_null - No-op function, return 0 + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: data value to write + * + **/ +s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, + u8 E1000_UNUSEDARG byte_offset, + u8 E1000_UNUSEDARG dev_addr, + u8 E1000_UNUSEDARG data) +{ + DEBUGFUNC("e1000_write_i2c_byte_null"); + UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data); + return E1000_SUCCESS; +} + +/** + * e1000_check_reset_block_generic - Check if PHY reset is blocked + * @hw: pointer to the HW structure + * + * Read the PHY management control register and check whether a PHY reset + * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise + * return E1000_BLK_PHY_RESET (12). + **/ +s32 e1000_check_reset_block_generic(struct e1000_hw *hw) +{ + u32 manc; + + DEBUGFUNC("e1000_check_reset_block"); + + manc = E1000_READ_REG(hw, E1000_MANC); + + return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? + E1000_BLK_PHY_RESET : E1000_SUCCESS; +} + +/** + * e1000_get_phy_id - Retrieve the PHY ID and revision + * @hw: pointer to the HW structure + * + * Reads the PHY registers and stores the PHY ID and possibly the PHY + * revision in the hardware structure. + **/ +s32 e1000_get_phy_id(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_id; + u16 retry_count = 0; + + DEBUGFUNC("e1000_get_phy_id"); + + if (!phy->ops.read_reg) + return E1000_SUCCESS; + + while (retry_count < 2) { + ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); + if (ret_val) + return ret_val; + + phy->id = (u32)(phy_id << 16); + usec_delay(20); + ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); + if (ret_val) + return ret_val; + + phy->id |= (u32)(phy_id & PHY_REVISION_MASK); + phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); + + if (phy->id != 0 && phy->id != PHY_REVISION_MASK) + return E1000_SUCCESS; + + retry_count++; + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_reset_dsp_generic - Reset PHY DSP + * @hw: pointer to the HW structure + * + * Reset the digital signal processor. + **/ +s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_phy_reset_dsp_generic"); + + if (!hw->phy.ops.write_reg) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); + if (ret_val) + return ret_val; + + return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); +} + +/** + * e1000_read_phy_reg_mdic - Read MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the MDI control register in the PHY at offset and stores the + * information read to data. + **/ +s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + + DEBUGFUNC("e1000_read_phy_reg_mdic"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + return -E1000_ERR_PARAM; + } + + /* Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = ((offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + E1000_WRITE_REG(hw, E1000_MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + usec_delay_irq(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { + DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n", + offset, + (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); + return -E1000_ERR_PHY; + } + *data = (u16) mdic; + + /* Allow some time after each MDIC transaction to avoid + * reading duplicate data in the next MDIC transaction. + */ + if (hw->mac.type == e1000_pch2lan) + usec_delay_irq(100); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_mdic - Write MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write to register at offset + * + * Writes data to MDI control register in the PHY at offset. + **/ +s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + + DEBUGFUNC("e1000_write_phy_reg_mdic"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + return -E1000_ERR_PARAM; + } + + /* Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = (((u32)data) | + (offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + E1000_WRITE_REG(hw, E1000_MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + usec_delay_irq(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { + DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n", + offset, + (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); + return -E1000_ERR_PHY; + } + + /* Allow some time after each MDIC transaction to avoid + * reading duplicate data in the next MDIC transaction. + */ + if (hw->mac.type == e1000_pch2lan) + usec_delay_irq(100); + + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg_i2c - Read PHY register using i2c + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the i2c interface and stores the + * retrieved information in data. + **/ +s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, i2ccmd = 0; + + DEBUGFUNC("e1000_read_phy_reg_i2c"); + + /* Set up Op-code, Phy Address, and register address in the I2CCMD + * register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | + (E1000_I2CCMD_OPCODE_READ)); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) + break; + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + + /* Need to byte-swap the 16-bit value. */ + *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_i2c - Write PHY register using i2c + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset using the i2c interface. + **/ +s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, i2ccmd = 0; + u16 phy_data_swapped; + + DEBUGFUNC("e1000_write_phy_reg_i2c"); + + /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ + if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { + DEBUGOUT1("PHY I2C Address %d is out of range.\n", + hw->phy.addr); + return -E1000_ERR_CONFIG; + } + + /* Swap the data bytes for the I2C interface */ + phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); + + /* Set up Op-code, Phy Address, and register address in the I2CCMD + * register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_WRITE | + phy_data_swapped); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) + break; + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_sfp_data_byte - Reads SFP module data. + * @hw: pointer to the HW structure + * @offset: byte location offset to be read + * @data: read data buffer pointer + * + * Reads one byte from SFP module data stored + * in SFP resided EEPROM memory or SFP diagnostic area. + * Function should be called with + * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access + * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters + * access + **/ +s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) +{ + u32 i = 0; + u32 i2ccmd = 0; + u32 data_local = 0; + + DEBUGFUNC("e1000_read_sfp_data_byte"); + + if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { + DEBUGOUT("I2CCMD command address exceeds upper limit\n"); + return -E1000_ERR_PHY; + } + + /* Set up Op-code, EEPROM Address,in the I2CCMD + * register. The MAC will take care of interfacing with the + * EEPROM to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_READ); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + data_local = E1000_READ_REG(hw, E1000_I2CCMD); + if (data_local & E1000_I2CCMD_READY) + break; + } + if (!(data_local & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (data_local & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + *data = (u8) data_local & 0xFF; + + return E1000_SUCCESS; +} + +/** + * e1000_write_sfp_data_byte - Writes SFP module data. + * @hw: pointer to the HW structure + * @offset: byte location offset to write to + * @data: data to write + * + * Writes one byte to SFP module data stored + * in SFP resided EEPROM memory or SFP diagnostic area. + * Function should be called with + * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access + * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters + * access + **/ +s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data) +{ + u32 i = 0; + u32 i2ccmd = 0; + u32 data_local = 0; + + DEBUGFUNC("e1000_write_sfp_data_byte"); + + if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { + DEBUGOUT("I2CCMD command address exceeds upper limit\n"); + return -E1000_ERR_PHY; + } + /* The programming interface is 16 bits wide + * so we need to read the whole word first + * then update appropriate byte lane and write + * the updated word back. + */ + /* Set up Op-code, EEPROM Address,in the I2CCMD + * register. The MAC will take care of interfacing + * with an EEPROM to write the data given. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_READ); + /* Set a command to read single word */ + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + /* Poll the ready bit to see if lastly + * launched I2C operation completed + */ + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) { + /* Check if this is READ or WRITE phase */ + if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) == + E1000_I2CCMD_OPCODE_READ) { + /* Write the selected byte + * lane and update whole word + */ + data_local = i2ccmd & 0xFF00; + data_local |= data; + i2ccmd = ((offset << + E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_WRITE | data_local); + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + } else { + break; + } + } + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg_m88 - Read m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_read_phy_reg_m88"); + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_m88 - Write m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_write_phy_reg_m88"); + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_set_page_igp - Set page as on IGP-like PHY(s) + * @hw: pointer to the HW structure + * @page: page to set (shifted left when necessary) + * + * Sets PHY page required for PHY register access. Assumes semaphore is + * already acquired. Note, this function sets phy.addr to 1 so the caller + * must set it appropriately (if necessary) after this function returns. + **/ +s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) +{ + DEBUGFUNC("e1000_set_page_igp"); + + DEBUGOUT1("Setting page 0x%x\n", page); + + hw->phy.addr = 1; + + return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); +} + +/** + * __e1000_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and stores the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +STATIC s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("__e1000_read_phy_reg_igp"); + + if (!locked) { + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + if (offset > MAX_PHY_MULTI_PAGE_REG) + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (!ret_val) + ret_val = e1000_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset and stores the + * retrieved information in data. + * Release the acquired semaphore before exiting. + **/ +s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_igp(hw, offset, data, false); +} + +/** + * e1000_read_phy_reg_igp_locked - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired. + **/ +s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_igp(hw, offset, data, true); +} + +/** + * e1000_write_phy_reg_igp - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +STATIC s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, + bool locked) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_igp"); + + if (!locked) { + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + if (offset > MAX_PHY_MULTI_PAGE_REG) + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (!ret_val) + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & + offset, + data); + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_igp - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_igp(hw, offset, data, false); +} + +/** + * e1000_write_phy_reg_igp_locked - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. + * Assumes semaphore already acquired. + **/ +s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_igp(hw, offset, data, true); +} + +/** + * __e1000_read_kmrn_reg - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary. Then reads the PHY register at offset + * using the kumeran interface. The information retrieved is stored in data. + * Release any acquired semaphores before exiting. + **/ +STATIC s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked) +{ + u32 kmrnctrlsta; + + DEBUGFUNC("__e1000_read_kmrn_reg"); + + if (!locked) { + s32 ret_val = E1000_SUCCESS; + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); + + usec_delay(2); + + kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); + *data = (u16)kmrnctrlsta; + + if (!locked) + hw->phy.ops.release(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_kmrn_reg_generic - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset using the + * kumeran interface. The information retrieved is stored in data. + * Release the acquired semaphore before exiting. + **/ +s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_kmrn_reg(hw, offset, data, false); +} + +/** + * e1000_read_kmrn_reg_locked - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the kumeran interface. The + * information retrieved is stored in data. + * Assumes semaphore already acquired. + **/ +s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_kmrn_reg(hw, offset, data, true); +} + +/** + * __e1000_write_kmrn_reg - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary. Then write the data to PHY register + * at the offset using the kumeran interface. Release any acquired semaphores + * before exiting. + **/ +STATIC s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, + bool locked) +{ + u32 kmrnctrlsta; + + DEBUGFUNC("e1000_write_kmrn_reg_generic"); + + if (!locked) { + s32 ret_val = E1000_SUCCESS; + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | data; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); + + usec_delay(2); + + if (!locked) + hw->phy.ops.release(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_write_kmrn_reg_generic - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to the PHY register at the offset + * using the kumeran interface. Release the acquired semaphore before exiting. + **/ +s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_kmrn_reg(hw, offset, data, false); +} + +/** + * e1000_write_kmrn_reg_locked - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Write the data to PHY register at the offset using the kumeran interface. + * Assumes semaphore already acquired. + **/ +s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_kmrn_reg(hw, offset, data, true); +} + +/** + * e1000_set_master_slave_mode - Setup PHY for Master/slave mode + * @hw: pointer to the HW structure + * + * Sets up Master/slave mode + **/ +STATIC s32 e1000_set_master_slave_mode(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + /* Resolve Master/Slave mode */ + ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* load defaults for future use */ + hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? + ((phy_data & CR_1000T_MS_VALUE) ? + e1000_ms_force_master : + e1000_ms_force_slave) : e1000_ms_auto; + + switch (hw->phy.ms_type) { + case e1000_ms_force_master: + phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case e1000_ms_force_slave: + phy_data |= CR_1000T_MS_ENABLE; + phy_data &= ~(CR_1000T_MS_VALUE); + break; + case e1000_ms_auto: + phy_data &= ~CR_1000T_MS_ENABLE; + /* fall-through */ + default: + break; + } + + return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); +} + +/** + * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link + * @hw: pointer to the HW structure + * + * Sets up Carrier-sense on Transmit and downshift values. + **/ +s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_82577"); + + if (hw->phy.type == e1000_phy_82580) { + ret_val = hw->phy.ops.reset(hw); + if (ret_val) { + DEBUGOUT("Error resetting the PHY.\n"); + return ret_val; + } + } + + /* Enable CRS on Tx. This must be set for half-duplex operation. */ + ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; + + /* Enable downshift */ + phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; + + ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data); + if (ret_val) + return ret_val; + + /* Set MDI/MDIX mode */ + ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; + /* Options: + * 0 - Auto (default) + * 1 - MDI mode + * 2 - MDI-X mode + */ + switch (hw->phy.mdix) { + case 1: + break; + case 2: + phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; + break; + case 0: + default: + phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; + break; + } + ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data); + if (ret_val) + return ret_val; + + return e1000_set_master_slave_mode(hw); +} + +/** + * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock + * and downshift values are set also. + **/ +s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_m88"); + + + /* Enable CRS on Tx. This must be set for half-duplex operation. */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* For BM PHY this bit is downshift enable */ + if (phy->type != e1000_phy_bm) + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (phy->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (phy->disable_polarity_correction) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + + /* Enable downshift on BM (disabled by default) */ + if (phy->type == e1000_phy_bm) { + /* For 82574/82583, first disable then enable downshift */ + if (phy->id == BME1000_E_PHY_ID_R2) { + phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + /* Commit the changes. */ + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + } + + phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; + } + + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if ((phy->type == e1000_phy_m88) && + (phy->revision < E1000_REVISION_4) && + (phy->id != BME1000_E_PHY_ID_R2)) { + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((phy->revision == E1000_REVISION_2) && + (phy->id == M88E1111_I_PHY_ID)) { + /* 82573L PHY - set the downshift counter to 5x. */ + phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + } + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + + if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { + /* Set PHY page 0, register 29 to 0x0003 */ + ret_val = phy->ops.write_reg(hw, 29, 0x0003); + if (ret_val) + return ret_val; + + /* Set PHY page 0, register 30 to 0x0000 */ + ret_val = phy->ops.write_reg(hw, 30, 0x0000); + if (ret_val) + return ret_val; + } + + /* Commit the changes. */ + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + + if (phy->type == e1000_phy_82578) { + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + /* 82578 PHY - set the downshift count to 1x. */ + phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; + phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. + * Also enables and sets the downshift parameters. + **/ +s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_m88_gen2"); + + + /* Enable CRS on Tx. This must be set for half-duplex operation. */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (phy->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + /* M88E1112 does not support this mode) */ + if (phy->id != M88E1112_E_PHY_ID) { + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + } + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (phy->disable_polarity_correction) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + + /* Enable downshift and setting it to X6 */ + if (phy->id == M88E1543_E_PHY_ID) { + phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; + ret_val = + phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + } + + phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; + phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; + phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; + + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* Commit the changes. */ + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + + ret_val = e1000_set_master_slave_mode(hw); + if (ret_val) + return ret_val; + + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_setup_igp - Setup igp PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for + * igp PHY's. + **/ +s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_copper_link_setup_igp"); + + + ret_val = hw->phy.ops.reset(hw); + if (ret_val) { + DEBUGOUT("Error resetting the PHY.\n"); + return ret_val; + } + + /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid + * timeout issues when LFS is enabled. + */ + msec_delay(100); + + /* The NVM settings will configure LPLU in D3 for + * non-IGP1 PHYs. + */ + if (phy->type == e1000_phy_igp) { + /* disable lplu d3 during driver init */ + ret_val = hw->phy.ops.set_d3_lplu_state(hw, false); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D3\n"); + return ret_val; + } + } + + /* disable lplu d0 during driver init */ + if (hw->phy.ops.set_d0_lplu_state) { + ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D0\n"); + return ret_val; + } + } + /* Configure mdi-mdix settings */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCR_AUTO_MDIX; + + switch (phy->mdix) { + case 1: + data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 2: + data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 0: + default: + data |= IGP01E1000_PSCR_AUTO_MDIX; + break; + } + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); + if (ret_val) + return ret_val; + + /* set auto-master slave resolution settings */ + if (hw->mac.autoneg) { + /* when autonegotiation advertisement is only 1000Mbps then we + * should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. + */ + if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + + /* Set auto Master/Slave resolution process */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); + if (ret_val) + return ret_val; + + data &= ~CR_1000T_MS_ENABLE; + ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); + if (ret_val) + return ret_val; + } + + ret_val = e1000_set_master_slave_mode(hw); + } + + return ret_val; +} + +/** + * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation + * @hw: pointer to the HW structure + * + * Reads the MII auto-neg advertisement register and/or the 1000T control + * register and if the PHY is already setup for auto-negotiation, then + * return successful. Otherwise, setup advertisement and flow control to + * the appropriate values for the wanted auto-negotiation. + **/ +s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 mii_autoneg_adv_reg; + u16 mii_1000t_ctrl_reg = 0; + + DEBUGFUNC("e1000_phy_setup_autoneg"); + + phy->autoneg_advertised &= phy->autoneg_mask; + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) { + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, + &mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } + + /* Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | + NWAY_AR_100TX_HD_CAPS | + NWAY_AR_10T_FD_CAPS | + NWAY_AR_10T_HD_CAPS); + mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); + + DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_HALF) { + DEBUGOUT("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_FULL) { + DEBUGOUT("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_HALF) { + DEBUGOUT("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_FULL) { + DEBUGOUT("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if (phy->autoneg_advertised & ADVERTISE_1000_HALF) + DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { + DEBUGOUT("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + } + + /* Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- + * negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc.current_mode) { + case e1000_fc_none: + /* Flow control (Rx & Tx) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_rx_pause: + /* Rx Flow control is enabled, and Tx Flow control is + * disabled, by a software over-ride. + * + * Since there really isn't a way to advertise that we are + * capable of Rx Pause ONLY, we will advertise that we + * support both symmetric and asymmetric Rx PAUSE. Later + * (in e1000_config_fc_after_link_up) we will disable the + * hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_tx_pause: + /* Tx Flow control is enabled, and Rx Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case e1000_fc_full: + /* Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) + ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, + mii_1000t_ctrl_reg); + + return ret_val; +} + +/** + * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link + * @hw: pointer to the HW structure + * + * Performs initial bounds checking on autoneg advertisement parameter, then + * configure to advertise the full capability. Setup the PHY to autoneg + * and restart the negotiation process between the link partner. If + * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. + **/ +s32 e1000_copper_link_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_ctrl; + + DEBUGFUNC("e1000_copper_link_autoneg"); + + /* Perform some bounds checking on the autoneg advertisement + * parameter. + */ + phy->autoneg_advertised &= phy->autoneg_mask; + + /* If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if (!phy->autoneg_advertised) + phy->autoneg_advertised = phy->autoneg_mask; + + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); + ret_val = e1000_phy_setup_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error Setting up Auto-Negotiation\n"); + return ret_val; + } + DEBUGOUT("Restarting Auto-Neg\n"); + + /* Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + return ret_val; + + phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + return ret_val; + + /* Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if (phy->autoneg_wait_to_complete) { + ret_val = e1000_wait_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error while waiting for autoneg to complete\n"); + return ret_val; + } + } + + hw->mac.get_link_status = true; + + return ret_val; +} + +/** + * e1000_setup_copper_link_generic - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) +{ + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_setup_copper_link_generic"); + + if (hw->mac.autoneg) { + /* Setup autoneg and flow control advertisement and perform + * autonegotiation. + */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + return ret_val; + } else { + /* PHY will be set to 10H, 10F, 100H or 100F + * depending on user settings. + */ + DEBUGOUT("Forcing Speed and Duplex\n"); + ret_val = hw->phy.ops.force_speed_duplex(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + return ret_val; + } + } + + /* Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, + &link); + if (ret_val) + return ret_val; + + if (link) { + DEBUGOUT("Valid link established!!!\n"); + hw->mac.ops.config_collision_dist(hw); + ret_val = e1000_config_fc_after_link_up_generic(hw); + } else { + DEBUGOUT("Unable to establish link!!!\n"); + } + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Waits for link and returns + * successful if link up is successful, else -E1000_ERR_PHY (-2). + **/ +s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + /* Clear Auto-Crossover to force MDI manually. IGP requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + + DEBUGOUT1("IGP PSCR: %X\n", phy_data); + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + } + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Resets the PHY to commit the + * changes. If time expires while waiting for link up, we reset the DSP. + * After reset, TX_CLK and CRS on Tx must be set. Return successful upon + * successful completion, else return corresponding error code. + **/ +s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); + + /* I210 and I211 devices support Auto-Crossover in forced operation. */ + if (phy->type != e1000_phy_i210) { + /* Clear Auto-Crossover to force MDI manually. M88E1000 + * requires MDI forced whenever speed and duplex are forced. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + + DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); + } + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + /* Reset the phy to commit changes. */ + ret_val = hw->phy.ops.commit(hw); + if (ret_val) + return ret_val; + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) { + bool reset_dsp = true; + + switch (hw->phy.id) { + case I347AT4_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1543_E_PHY_ID: + case M88E1512_E_PHY_ID: + case I210_I_PHY_ID: + reset_dsp = false; + break; + default: + if (hw->phy.type != e1000_phy_m88) + reset_dsp = false; + break; + } + + if (!reset_dsp) { + DEBUGOUT("Link taking longer than expected.\n"); + } else { + /* We didn't get link. + * Reset the DSP and cross our fingers. + */ + ret_val = phy->ops.write_reg(hw, + M88E1000_PHY_PAGE_SELECT, + 0x001d); + if (ret_val) + return ret_val; + ret_val = e1000_phy_reset_dsp_generic(hw); + if (ret_val) + return ret_val; + } + } + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + } + + if (hw->phy.type != e1000_phy_m88) + return E1000_SUCCESS; + + if (hw->phy.id == I347AT4_E_PHY_ID || + hw->phy.id == M88E1340M_E_PHY_ID || + hw->phy.id == M88E1112_E_PHY_ID) + return E1000_SUCCESS; + if (hw->phy.id == I210_I_PHY_ID) + return E1000_SUCCESS; + if ((hw->phy.id == M88E1543_E_PHY_ID) || + (hw->phy.id == M88E1512_E_PHY_ID)) + return E1000_SUCCESS; + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* Resetting the phy means we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock from + * the reset value of 2.5MHz. + */ + phy_data |= M88E1000_EPSCR_TX_CLK_25; + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* In addition, we must re-enable CRS on Tx for both half and full + * duplex. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex + * @hw: pointer to the HW structure + * + * Forces the speed and duplex settings of the PHY. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); + if (ret_val) + return ret_val; + + /* Disable MDI-X support for 10/100 */ + ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + return ret_val; + + data &= ~IFE_PMC_AUTO_MDIX; + data &= ~IFE_PMC_FORCE_MDIX; + + ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); + if (ret_val) + return ret_val; + + DEBUGOUT1("IFE PMC: %X\n", data); + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex + * @hw: pointer to the HW structure + * @phy_ctrl: pointer to current value of PHY_CONTROL + * + * Forces speed and duplex on the PHY by doing the following: disable flow + * control, force speed/duplex on the MAC, disable auto speed detection, + * disable auto-negotiation, configure duplex, configure speed, configure + * the collision distance, write configuration to CTRL register. The + * caller must write to the PHY_CONTROL register for these settings to + * take affect. + **/ +void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 ctrl; + + DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); + + /* Turn off flow control when forcing speed/duplex */ + hw->fc.current_mode = e1000_fc_none; + + /* Force speed/duplex on the mac */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~E1000_CTRL_SPD_SEL; + + /* Disable Auto Speed Detection */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Disable autoneg on the phy */ + *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; + + /* Forcing Full or Half Duplex? */ + if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { + ctrl &= ~E1000_CTRL_FD; + *phy_ctrl &= ~MII_CR_FULL_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } else { + ctrl |= E1000_CTRL_FD; + *phy_ctrl |= MII_CR_FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } + + /* Forcing 10mb or 100mb? */ + if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { + ctrl |= E1000_CTRL_SPD_100; + *phy_ctrl |= MII_CR_SPEED_100; + *phy_ctrl &= ~MII_CR_SPEED_1000; + DEBUGOUT("Forcing 100mb\n"); + } else { + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + DEBUGOUT("Forcing 10mb\n"); + } + + hw->mac.ops.config_collision_dist(hw); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); +} + +/** + * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is true, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_generic"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + return ret_val; + + if (!active) { + data &= ~IGP02E1000_PM_D3_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + return ret_val; + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= IGP02E1000_PM_D3_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + return ret_val; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + } + + return ret_val; +} + +/** + * e1000_check_downshift_generic - Checks whether a downshift in speed occurred + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns 1 + * + * A downshift is detected by querying the PHY link health. + **/ +s32 e1000_check_downshift_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + DEBUGFUNC("e1000_check_downshift_generic"); + + switch (phy->type) { + case e1000_phy_i210: + case e1000_phy_m88: + case e1000_phy_gg82563: + case e1000_phy_bm: + case e1000_phy_82578: + offset = M88E1000_PHY_SPEC_STATUS; + mask = M88E1000_PSSR_DOWNSHIFT; + break; + case e1000_phy_igp: + case e1000_phy_igp_2: + case e1000_phy_igp_3: + offset = IGP01E1000_PHY_LINK_HEALTH; + mask = IGP01E1000_PLHR_SS_DOWNGRADE; + break; + default: + /* speed downshift not supported */ + phy->speed_downgraded = false; + return E1000_SUCCESS; + } + + ret_val = phy->ops.read_reg(hw, offset, &phy_data); + + if (!ret_val) + phy->speed_downgraded = !!(phy_data & mask); + + return ret_val; +} + +/** + * e1000_check_polarity_m88 - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_check_polarity_m88"); + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); + + if (!ret_val) + phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); + + return ret_val; +} + +/** + * e1000_check_polarity_igp - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY port status register, and the + * current speed (since there is no polarity at 100Mbps). + **/ +s32 e1000_check_polarity_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data, offset, mask; + + DEBUGFUNC("e1000_check_polarity_igp"); + + /* Polarity is determined based on the speed of + * our connection. + */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + return ret_val; + + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + offset = IGP01E1000_PHY_PCS_INIT_REG; + mask = IGP01E1000_PHY_POLARITY_MASK; + } else { + /* This really only applies to 10Mbps since + * there is no polarity for 100Mbps (always 0). + */ + offset = IGP01E1000_PHY_PORT_STATUS; + mask = IGP01E1000_PSSR_POLARITY_REVERSED; + } + + ret_val = phy->ops.read_reg(hw, offset, &data); + + if (!ret_val) + phy->cable_polarity = ((data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); + + return ret_val; +} + +/** + * e1000_check_polarity_ife - Check cable polarity for IFE PHY + * @hw: pointer to the HW structure + * + * Polarity is determined on the polarity reversal feature being enabled. + **/ +s32 e1000_check_polarity_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + DEBUGFUNC("e1000_check_polarity_ife"); + + /* Polarity is determined based on the reversal feature being enabled. + */ + if (phy->polarity_correction) { + offset = IFE_PHY_EXTENDED_STATUS_CONTROL; + mask = IFE_PESC_POLARITY_REVERSED; + } else { + offset = IFE_PHY_SPECIAL_CONTROL; + mask = IFE_PSC_FORCE_POLARITY; + } + + ret_val = phy->ops.read_reg(hw, offset, &phy_data); + + if (!ret_val) + phy->cable_polarity = ((phy_data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); + + return ret_val; +} + +/** + * e1000_wait_autoneg - Wait for auto-neg completion + * @hw: pointer to the HW structure + * + * Waits for auto-negotiation to complete or for the auto-negotiation time + * limit to expire, which ever happens first. + **/ +STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 i, phy_status; + + DEBUGFUNC("e1000_wait_autoneg"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ + for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_AUTONEG_COMPLETE) + break; + msec_delay(100); + } + + /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation + * has completed. + */ + return ret_val; +} + +/** + * e1000_phy_has_link_generic - Polls PHY for link + * @hw: pointer to the HW structure + * @iterations: number of times to poll for link + * @usec_interval: delay between polling attempts + * @success: pointer to whether polling was successful or not + * + * Polls the PHY status register for link, 'iterations' number of times. + **/ +s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, + u32 usec_interval, bool *success) +{ + s32 ret_val = E1000_SUCCESS; + u16 i, phy_status; + + DEBUGFUNC("e1000_phy_has_link_generic"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + for (i = 0; i < iterations; i++) { + /* Some PHYs require the PHY_STATUS register to be read + * twice due to the link bit being sticky. No harm doing + * it across the board. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) { + /* If the first read fails, another entity may have + * ownership of the resources, wait and try again to + * see if they have relinquished the resources yet. + */ + if (usec_interval >= 1000) + msec_delay(usec_interval/1000); + else + usec_delay(usec_interval); + } + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_LINK_STATUS) + break; + if (usec_interval >= 1000) + msec_delay(usec_interval/1000); + else + usec_delay(usec_interval); + } + + *success = (i < iterations); + + return ret_val; +} + +/** + * e1000_get_cable_length_m88 - Determine cable length for m88 PHY + * @hw: pointer to the HW structure + * + * Reads the PHY specific status register to retrieve the cable length + * information. The cable length is determined by averaging the minimum and + * maximum values to get the "average" cable length. The m88 PHY has four + * possible cable length values, which are: + * Register Value Cable Length + * 0 < 50 meters + * 1 50 - 80 meters + * 2 80 - 110 meters + * 3 110 - 140 meters + * 4 > 140 meters + **/ +s32 e1000_get_cable_length_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, index; + + DEBUGFUNC("e1000_get_cable_length_m88"); + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT); + + if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) + return -E1000_ERR_PHY; + + phy->min_cable_length = e1000_m88_cable_length_table[index]; + phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + + return E1000_SUCCESS; +} + +s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, phy_data2, is_cm; + u16 index, default_page; + + DEBUGFUNC("e1000_get_cable_length_m88_gen2"); + + switch (hw->phy.id) { + case I210_I_PHY_ID: + /* Get cable length from PHY Cable Diagnostics Control Reg */ + ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + + (I347AT4_PCDL + phy->addr), + &phy_data); + if (ret_val) + return ret_val; + + /* Check if the unit of cable length is meters or cm */ + ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + + I347AT4_PCDC, &phy_data2); + if (ret_val) + return ret_val; + + is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); + + /* Populate the phy structure with cable length in meters */ + phy->min_cable_length = phy_data / (is_cm ? 100 : 1); + phy->max_cable_length = phy_data / (is_cm ? 100 : 1); + phy->cable_length = phy_data / (is_cm ? 100 : 1); + break; + case M88E1543_E_PHY_ID: + case M88E1512_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case I347AT4_E_PHY_ID: + /* Remember the original page select and set it to 7 */ + ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, + &default_page); + if (ret_val) + return ret_val; + + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); + if (ret_val) + return ret_val; + + /* Get cable length from PHY Cable Diagnostics Control Reg */ + ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), + &phy_data); + if (ret_val) + return ret_val; + + /* Check if the unit of cable length is meters or cm */ + ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); + if (ret_val) + return ret_val; + + is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); + + /* Populate the phy structure with cable length in meters */ + phy->min_cable_length = phy_data / (is_cm ? 100 : 1); + phy->max_cable_length = phy_data / (is_cm ? 100 : 1); + phy->cable_length = phy_data / (is_cm ? 100 : 1); + + /* Reset the page select to its original value */ + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, + default_page); + if (ret_val) + return ret_val; + break; + + case M88E1112_E_PHY_ID: + /* Remember the original page select and set it to 5 */ + ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, + &default_page); + if (ret_val) + return ret_val; + + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, + &phy_data); + if (ret_val) + return ret_val; + + index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + + if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) + return -E1000_ERR_PHY; + + phy->min_cable_length = e1000_m88_cable_length_table[index]; + phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; + + phy->cable_length = (phy->min_cable_length + + phy->max_cable_length) / 2; + + /* Reset the page select to its original value */ + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, + default_page); + if (ret_val) + return ret_val; + + break; + default: + return -E1000_ERR_PHY; + } + + return ret_val; +} + +/** + * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY + * @hw: pointer to the HW structure + * + * The automatic gain control (agc) normalizes the amplitude of the + * received signal, adjusting for the attenuation produced by the + * cable. By reading the AGC registers, which represent the + * combination of coarse and fine gain value, the value can be put + * into a lookup table to obtain the approximate cable length + * for each channel. + **/ +s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, i, agc_value = 0; + u16 cur_agc_index, max_agc_index = 0; + u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; + static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { + IGP02E1000_PHY_AGC_A, + IGP02E1000_PHY_AGC_B, + IGP02E1000_PHY_AGC_C, + IGP02E1000_PHY_AGC_D + }; + + DEBUGFUNC("e1000_get_cable_length_igp_2"); + + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); + if (ret_val) + return ret_val; + + /* Getting bits 15:9, which represent the combination of + * coarse and fine gain values. The result is a number + * that can be put into the lookup table to obtain the + * approximate cable length. + */ + cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & + IGP02E1000_AGC_LENGTH_MASK); + + /* Array index bound check. */ + if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || + (cur_agc_index == 0)) + return -E1000_ERR_PHY; + + /* Remove min & max AGC values from calculation. */ + if (e1000_igp_2_cable_length_table[min_agc_index] > + e1000_igp_2_cable_length_table[cur_agc_index]) + min_agc_index = cur_agc_index; + if (e1000_igp_2_cable_length_table[max_agc_index] < + e1000_igp_2_cable_length_table[cur_agc_index]) + max_agc_index = cur_agc_index; + + agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; + } + + agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + + e1000_igp_2_cable_length_table[max_agc_index]); + agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); + + /* Calculate cable length with the error range of +/- 10 meters. */ + phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? + (agc_value - IGP02E1000_AGC_RANGE) : 0); + phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_info_m88 - Retrieve PHY information + * @hw: pointer to the HW structure + * + * Valid for only copper links. Read the PHY status register (sticky read) + * to verify that link is up. Read the PHY special control register to + * determine the polarity and 10base-T extended distance. Read the PHY + * special status register to determine MDI/MDIx and current speed. If + * speed is 1000, then determine cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_m88"); + + if (phy->media_type != e1000_media_type_copper) { + DEBUGOUT("Phy info is only valid for copper media\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy->polarity_correction = !!(phy_data & + M88E1000_PSCR_POLARITY_REVERSAL); + + ret_val = e1000_check_polarity_m88(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); + + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { + ret_val = hw->phy.ops.get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + /* Set values to "undefined" */ + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return ret_val; +} + +/** + * e1000_get_phy_info_igp - Retrieve igp PHY information + * @hw: pointer to the HW structure + * + * Read PHY status to determine if link is up. If link is up, then + * set/determine 10base-T extended distance and polarity correction. Read + * PHY port status to determine MDI/MDIx and speed. Based on the speed, + * determine on the cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_igp"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + phy->polarity_correction = true; + + ret_val = e1000_check_polarity_igp(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); + + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + ret_val = phy->ops.get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); + if (ret_val) + return ret_val; + + phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return ret_val; +} + +/** + * e1000_get_phy_info_ife - Retrieves various IFE PHY states + * @hw: pointer to the HW structure + * + * Populates "phy" structure with various feature states. + **/ +s32 e1000_get_phy_info_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_ife"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data); + if (ret_val) + return ret_val; + phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); + + if (phy->polarity_correction) { + ret_val = e1000_check_polarity_ife(hw); + if (ret_val) + return ret_val; + } else { + /* Polarity is forced */ + phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); + } + + ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); + + /* The following parameters are undefined for 10/100 operation. */ + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + + return E1000_SUCCESS; +} + +/** + * e1000_phy_sw_reset_generic - PHY software reset + * @hw: pointer to the HW structure + * + * Does a software reset of the PHY by reading the PHY control register and + * setting/write the control register reset bit to the PHY. + **/ +s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_ctrl; + + DEBUGFUNC("e1000_phy_sw_reset_generic"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + return ret_val; + + phy_ctrl |= MII_CR_RESET; + ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + return ret_val; + + usec_delay(1); + + return ret_val; +} + +/** + * e1000_phy_hw_reset_generic - PHY hardware reset + * @hw: pointer to the HW structure + * + * Verify the reset block is not blocking us from resetting. Acquire + * semaphore (if necessary) and read/set/write the device control reset + * bit in the PHY. Wait the appropriate delay time for the device to + * reset and release the semaphore (if necessary). + **/ +s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u32 ctrl; + + DEBUGFUNC("e1000_phy_hw_reset_generic"); + + if (phy->ops.check_reset_block) { + ret_val = phy->ops.check_reset_block(hw); + if (ret_val) + return E1000_SUCCESS; + } + + ret_val = phy->ops.acquire(hw); + if (ret_val) + return ret_val; + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); + E1000_WRITE_FLUSH(hw); + + usec_delay(phy->reset_delay_us); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + usec_delay(150); + + phy->ops.release(hw); + + return phy->ops.get_cfg_done(hw); +} + +/** + * e1000_get_cfg_done_generic - Generic configuration done + * @hw: pointer to the HW structure + * + * Generic function to wait 10 milli-seconds for configuration to complete + * and return success. + **/ +s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_get_cfg_done_generic"); + UNREFERENCED_1PARAMETER(hw); + + msec_delay_irq(10); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_init_script_igp3 - Inits the IGP3 PHY + * @hw: pointer to the HW structure + * + * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. + **/ +s32 e1000_phy_init_script_igp3(struct e1000_hw *hw) +{ + DEBUGOUT("Running IGP 3 PHY init script\n"); + + /* PHY init IGP 3 */ + /* Enable rise/fall, 10-mode work in class-A */ + hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); + /* Remove all caps from Replica path filter */ + hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); + /* Bias trimming for ADC, AFE and Driver (Default) */ + hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); + /* Increase Hybrid poly bias */ + hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); + /* Add 4% to Tx amplitude in Gig mode */ + hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); + /* Disable trimming (TTT) */ + hw->phy.ops.write_reg(hw, 0x2011, 0x0000); + /* Poly DC correction to 94.6% + 2% for all channels */ + hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); + /* ABS DC correction to 95.9% */ + hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); + /* BG temp curve trim */ + hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); + /* Increasing ADC OPAMP stage 1 currents to max */ + hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); + /* Force 1000 ( required for enabling PHY regs configuration) */ + hw->phy.ops.write_reg(hw, 0x0000, 0x0140); + /* Set upd_freq to 6 */ + hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); + /* Disable NPDFE */ + hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); + /* Disable adaptive fixed FFE (Default) */ + hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); + /* Enable FFE hysteresis */ + hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); + /* Fixed FFE for short cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); + /* Fixed FFE for medium cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); + /* Fixed FFE for long cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); + /* Enable Adaptive Clip Threshold */ + hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); + /* AHT reset limit to 1 */ + hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); + /* Set AHT master delay to 127 msec */ + hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); + /* Set scan bits for AHT */ + hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); + /* Set AHT Preset bits */ + hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); + /* Change integ_factor of channel A to 3 */ + hw->phy.ops.write_reg(hw, 0x1895, 0x0003); + /* Change prop_factor of channels BCD to 8 */ + hw->phy.ops.write_reg(hw, 0x1796, 0x0008); + /* Change cg_icount + enable integbp for channels BCD */ + hw->phy.ops.write_reg(hw, 0x1798, 0xD008); + /* Change cg_icount + enable integbp + change prop_factor_master + * to 8 for channel A + */ + hw->phy.ops.write_reg(hw, 0x1898, 0xD918); + /* Disable AHT in Slave mode on channel A */ + hw->phy.ops.write_reg(hw, 0x187A, 0x0800); + /* Enable LPLU and disable AN to 1000 in non-D0a states, + * Enable SPD+B2B + */ + hw->phy.ops.write_reg(hw, 0x0019, 0x008D); + /* Enable restart AN on an1000_dis change */ + hw->phy.ops.write_reg(hw, 0x001B, 0x2080); + /* Enable wh_fifo read clock in 10/100 modes */ + hw->phy.ops.write_reg(hw, 0x0014, 0x0045); + /* Restart AN, Speed selection is 1000 */ + hw->phy.ops.write_reg(hw, 0x0000, 0x1340); + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_type_from_id - Get PHY type from id + * @phy_id: phy_id read from the phy + * + * Returns the phy type from the id. + **/ +enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id) +{ + enum e1000_phy_type phy_type = e1000_phy_unknown; + + switch (phy_id) { + case M88E1000_I_PHY_ID: + case M88E1000_E_PHY_ID: + case M88E1111_I_PHY_ID: + case M88E1011_I_PHY_ID: + case M88E1543_E_PHY_ID: + case M88E1512_E_PHY_ID: + case I347AT4_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1340M_E_PHY_ID: + phy_type = e1000_phy_m88; + break; + case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ + phy_type = e1000_phy_igp_2; + break; + case GG82563_E_PHY_ID: + phy_type = e1000_phy_gg82563; + break; + case IGP03E1000_E_PHY_ID: + phy_type = e1000_phy_igp_3; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + phy_type = e1000_phy_ife; + break; + case BME1000_E_PHY_ID: + case BME1000_E_PHY_ID_R2: + phy_type = e1000_phy_bm; + break; + case I82578_E_PHY_ID: + phy_type = e1000_phy_82578; + break; + case I82577_E_PHY_ID: + phy_type = e1000_phy_82577; + break; + case I82579_E_PHY_ID: + phy_type = e1000_phy_82579; + break; + case I217_E_PHY_ID: + phy_type = e1000_phy_i217; + break; + case I82580_I_PHY_ID: + phy_type = e1000_phy_82580; + break; + case I210_I_PHY_ID: + phy_type = e1000_phy_i210; + break; + default: + phy_type = e1000_phy_unknown; + break; + } + return phy_type; +} + +/** + * e1000_determine_phy_address - Determines PHY address. + * @hw: pointer to the HW structure + * + * This uses a trial and error method to loop through possible PHY + * addresses. It tests each by reading the PHY ID registers and + * checking for a match. + **/ +s32 e1000_determine_phy_address(struct e1000_hw *hw) +{ + u32 phy_addr = 0; + u32 i; + enum e1000_phy_type phy_type = e1000_phy_unknown; + + hw->phy.id = phy_type; + + for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { + hw->phy.addr = phy_addr; + i = 0; + + do { + e1000_get_phy_id(hw); + phy_type = e1000_get_phy_type_from_id(hw->phy.id); + + /* If phy_type is valid, break - we found our + * PHY address + */ + if (phy_type != e1000_phy_unknown) + return E1000_SUCCESS; + + msec_delay(1); + i++; + } while (i < 10); + } + + return -E1000_ERR_PHY_TYPE; +} + +/** + * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address + * @page: page to access + * + * Returns the phy address for the page requested. + **/ +STATIC u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) +{ + u32 phy_addr = 2; + + if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) + phy_addr = 1; + + return phy_addr; +} + +/** + * e1000_write_phy_reg_bm - Write BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u32 page = offset >> IGP_PAGE_SHIFT; + + DEBUGFUNC("e1000_write_phy_reg_bm"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + false, false); + goto release; + } + + hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + u32 page_shift, page_select; + + /* Page select is register 31 for phy address 1 and 22 for + * phy address 2 and 3. Page select is shifted only for + * phy address 1. + */ + if (hw->phy.addr == 1) { + page_shift = IGP_PAGE_SHIFT; + page_select = IGP01E1000_PHY_PAGE_SELECT; + } else { + page_shift = 0; + page_select = BM_PHY_PAGE_SELECT; + } + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, page_select, + (page << page_shift)); + if (ret_val) + goto release; + } + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_read_phy_reg_bm - Read BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u32 page = offset >> IGP_PAGE_SHIFT; + + DEBUGFUNC("e1000_read_phy_reg_bm"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + true, false); + goto release; + } + + hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + u32 page_shift, page_select; + + /* Page select is register 31 for phy address 1 and 22 for + * phy address 2 and 3. Page select is shifted only for + * phy address 1. + */ + if (hw->phy.addr == 1) { + page_shift = IGP_PAGE_SHIFT; + page_select = IGP01E1000_PHY_PAGE_SELECT; + } else { + page_shift = 0; + page_select = BM_PHY_PAGE_SELECT; + } + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, page_select, + (page << page_shift)); + if (ret_val) + goto release; + } + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_read_phy_reg_bm2 - Read BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + + DEBUGFUNC("e1000_read_phy_reg_bm2"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + true, false); + goto release; + } + + hw->phy.addr = 1; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, + page); + + if (ret_val) + goto release; + } + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_write_phy_reg_bm2 - Write BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + + DEBUGFUNC("e1000_write_phy_reg_bm2"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + false, false); + goto release; + } + + hw->phy.addr = 1; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, + page); + + if (ret_val) + goto release; + } + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers + * @hw: pointer to the HW structure + * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG + * + * Assumes semaphore already acquired and phy_reg points to a valid memory + * address to store contents of the BM_WUC_ENABLE_REG register. + **/ +s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) +{ + s32 ret_val; + u16 temp; + + DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm"); + + if (!phy_reg) + return -E1000_ERR_PARAM; + + /* All page select, port ctrl and wakeup registers use phy address 1 */ + hw->phy.addr = 1; + + /* Select Port Control Registers page */ + ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); + if (ret_val) { + DEBUGOUT("Could not set Port Control page\n"); + return ret_val; + } + + ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); + if (ret_val) { + DEBUGOUT2("Could not read PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + return ret_val; + } + + /* Enable both PHY wakeup mode and Wakeup register page writes. + * Prevent a power state change by disabling ME and Host PHY wakeup. + */ + temp = *phy_reg; + temp |= BM_WUC_ENABLE_BIT; + temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); + + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); + if (ret_val) { + DEBUGOUT2("Could not write PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + return ret_val; + } + + /* Select Host Wakeup Registers page - caller now able to write + * registers on the Wakeup registers page + */ + return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); +} + +/** + * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs + * @hw: pointer to the HW structure + * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG + * + * Restore BM_WUC_ENABLE_REG to its original value. + * + * Assumes semaphore already acquired and *phy_reg is the contents of the + * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by + * caller. + **/ +s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) +{ + s32 ret_val; + + DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm"); + + if (!phy_reg) + return -E1000_ERR_PARAM; + + /* Select Port Control Registers page */ + ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); + if (ret_val) { + DEBUGOUT("Could not set Port Control page\n"); + return ret_val; + } + + /* Restore 769.17 to its original value */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); + if (ret_val) + DEBUGOUT2("Could not restore PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + + return ret_val; +} + +/** + * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register + * @hw: pointer to the HW structure + * @offset: register offset to be read or written + * @data: pointer to the data to read or write + * @read: determines if operation is read or write + * @page_set: BM_WUC_PAGE already set and access enabled + * + * Read the PHY register at offset and store the retrieved information in + * data, or write data to PHY register at offset. Note the procedure to + * access the PHY wakeup registers is different than reading the other PHY + * registers. It works as such: + * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 + * 2) Set page to 800 for host (801 if we were manageability) + * 3) Write the address using the address opcode (0x11) + * 4) Read or write the data using the data opcode (0x12) + * 5) Restore 769.17.2 to its original value + * + * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and + * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). + * + * Assumes semaphore is already acquired. When page_set==true, assumes + * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack + * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). + **/ +STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, + u16 *data, bool read, bool page_set) +{ + s32 ret_val; + u16 reg = BM_PHY_REG_NUM(offset); + u16 page = BM_PHY_REG_PAGE(offset); + u16 phy_reg = 0; + + DEBUGFUNC("e1000_access_phy_wakeup_reg_bm"); + + /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ + if ((hw->mac.type == e1000_pchlan) && + (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) + DEBUGOUT1("Attempting to access page %d while gig enabled.\n", + page); + + if (!page_set) { + /* Enable access to PHY wakeup registers */ + ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); + if (ret_val) { + DEBUGOUT("Could not enable PHY wakeup reg access\n"); + return ret_val; + } + } + + DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg); + + /* Write the Wakeup register page offset value using opcode 0x11 */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); + if (ret_val) { + DEBUGOUT1("Could not write address opcode to page %d\n", page); + return ret_val; + } + + if (read) { + /* Read the Wakeup register page value using opcode 0x12 */ + ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, + data); + } else { + /* Write the Wakeup register page value using opcode 0x12 */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, + *data); + } + + if (ret_val) { + DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg); + return ret_val; + } + + if (!page_set) + ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); + + return ret_val; +} + +/** + * e1000_power_up_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_up_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); + mii_reg &= ~MII_CR_POWER_DOWN; + hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); +} + +/** + * e1000_power_down_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_down_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); + mii_reg |= MII_CR_POWER_DOWN; + hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); + msec_delay(1); +} + +/** + * __e1000_read_phy_reg_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and stores the retrieved information in data. Release any acquired + * semaphore before exiting. + **/ +STATIC s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked, bool page_set) +{ + s32 ret_val; + u16 page = BM_PHY_REG_PAGE(offset); + u16 reg = BM_PHY_REG_NUM(offset); + u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); + + DEBUGFUNC("__e1000_read_phy_reg_hv"); + + if (!locked) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + true, page_set); + goto out; + } + + if (page > 0 && page < HV_INTC_FC_PAGE_START) { + ret_val = e1000_access_phy_debug_regs_hv(hw, offset, + data, true); + goto out; + } + + if (!page_set) { + if (page == HV_INTC_FC_PAGE_START) + page = 0; + + if (reg > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_set_page_igp(hw, + (page << IGP_PAGE_SHIFT)); + + hw->phy.addr = phy_addr; + + if (ret_val) + goto out; + } + } + + DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, + page << IGP_PAGE_SHIFT, reg); + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, + data); +out: + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_phy_reg_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset and stores + * the retrieved information in data. Release the acquired semaphore + * before exiting. + **/ +s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, false, false); +} + +/** + * e1000_read_phy_reg_hv_locked - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired. + **/ +s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, true, false); +} + +/** + * e1000_read_phy_reg_page_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired and page already set. + **/ +s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, true, true); +} + +/** + * __e1000_write_phy_reg_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +STATIC s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, + bool locked, bool page_set) +{ + s32 ret_val; + u16 page = BM_PHY_REG_PAGE(offset); + u16 reg = BM_PHY_REG_NUM(offset); + u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); + + DEBUGFUNC("__e1000_write_phy_reg_hv"); + + if (!locked) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + false, page_set); + goto out; + } + + if (page > 0 && page < HV_INTC_FC_PAGE_START) { + ret_val = e1000_access_phy_debug_regs_hv(hw, offset, + &data, false); + goto out; + } + + if (!page_set) { + if (page == HV_INTC_FC_PAGE_START) + page = 0; + + /* Workaround MDIO accesses being disabled after entering IEEE + * Power Down (when bit 11 of the PHY Control register is set) + */ + if ((hw->phy.type == e1000_phy_82578) && + (hw->phy.revision >= 1) && + (hw->phy.addr == 2) && + !(MAX_PHY_REG_ADDRESS & reg) && + (data & (1 << 11))) { + u16 data2 = 0x7EFF; + ret_val = e1000_access_phy_debug_regs_hv(hw, + (1 << 6) | 0x3, + &data2, false); + if (ret_val) + goto out; + } + + if (reg > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_set_page_igp(hw, + (page << IGP_PAGE_SHIFT)); + + hw->phy.addr = phy_addr; + + if (ret_val) + goto out; + } + } + + DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, + page << IGP_PAGE_SHIFT, reg); + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, + data); + +out: + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to PHY register at the offset. + * Release the acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, false, false); +} + +/** + * e1000_write_phy_reg_hv_locked - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. Assumes semaphore + * already acquired. + **/ +s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, true, false); +} + +/** + * e1000_write_phy_reg_page_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. Assumes semaphore + * already acquired and page already set. + **/ +s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, true, true); +} + +/** + * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page + * @page: page to be accessed + **/ +STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page) +{ + u32 phy_addr = 2; + + if (page >= HV_INTC_FC_PAGE_START) + phy_addr = 1; + + return phy_addr; +} + +/** + * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers + * @hw: pointer to the HW structure + * @offset: register offset to be read or written + * @data: pointer to the data to be read or written + * @read: determines if operation is read or write + * + * Reads the PHY register at offset and stores the retreived information + * in data. Assumes semaphore already acquired. Note that the procedure + * to access these regs uses the address port and data port to read/write. + * These accesses done with PHY address 2 and without using pages. + **/ +STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, + u16 *data, bool read) +{ + s32 ret_val; + u32 addr_reg; + u32 data_reg; + + DEBUGFUNC("e1000_access_phy_debug_regs_hv"); + + /* This takes care of the difference with desktop vs mobile phy */ + addr_reg = ((hw->phy.type == e1000_phy_82578) ? + I82578_ADDR_REG : I82577_ADDR_REG); + data_reg = addr_reg + 1; + + /* All operations in this function are phy address 2 */ + hw->phy.addr = 2; + + /* masking with 0x3F to remove the page from offset */ + ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); + if (ret_val) { + DEBUGOUT("Could not write the Address Offset port register\n"); + return ret_val; + } + + /* Read or write the data value next */ + if (read) + ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data); + else + ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data); + + if (ret_val) + DEBUGOUT("Could not access the Data port register\n"); + + return ret_val; +} + +/** + * e1000_link_stall_workaround_hv - Si workaround + * @hw: pointer to the HW structure + * + * This function works around a Si bug where the link partner can get + * a link up indication before the PHY does. If small packets are sent + * by the link partner they can be placed in the packet buffer without + * being properly accounted for by the PHY and will stall preventing + * further packets from being received. The workaround is to clear the + * packet buffer after the PHY detects link up. + **/ +s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_link_stall_workaround_hv"); + + if (hw->phy.type != e1000_phy_82578) + return E1000_SUCCESS; + + /* Do not apply workaround if in PHY loopback bit 14 set */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &data); + if (data & PHY_CONTROL_LB) + return E1000_SUCCESS; + + /* check if link is up and at 1Gbps */ + ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data); + if (ret_val) + return ret_val; + + data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_MASK); + + if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_1000)) + return E1000_SUCCESS; + + msec_delay(200); + + /* flush the packets in the fifo buffer */ + ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, + (HV_MUX_DATA_CTRL_GEN_TO_MAC | + HV_MUX_DATA_CTRL_FORCE_SPEED)); + if (ret_val) + return ret_val; + + return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, + HV_MUX_DATA_CTRL_GEN_TO_MAC); +} + +/** + * e1000_check_polarity_82577 - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_check_polarity_82577"); + + ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); + + if (!ret_val) + phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. + **/ +s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_82577"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + } + + return ret_val; +} + +/** + * e1000_get_phy_info_82577 - Retrieve I82577 PHY information + * @hw: pointer to the HW structure + * + * Read PHY status to determine if link is up. If link is up, then + * set/determine 10base-T extended distance and polarity correction. Read + * PHY port status to determine MDI/MDIx and speed. Based on the speed, + * determine on the cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_82577"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + phy->polarity_correction = true; + + ret_val = e1000_check_polarity_82577(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); + + if ((data & I82577_PHY_STATUS2_SPEED_MASK) == + I82577_PHY_STATUS2_SPEED_1000MBPS) { + ret_val = hw->phy.ops.get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); + if (ret_val) + return ret_val; + + phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY + * @hw: pointer to the HW structure + * + * Reads the diagnostic status register and verifies result is valid before + * placing it in the phy_cable_length field. + **/ +s32 e1000_get_cable_length_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, length; + + DEBUGFUNC("e1000_get_cable_length_82577"); + + ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data); + if (ret_val) + return ret_val; + + length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >> + I82577_DSTATUS_CABLE_LENGTH_SHIFT); + + if (length == E1000_CABLE_LENGTH_UNDEFINED) + return -E1000_ERR_PHY; + + phy->cable_length = length; + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_gs40g - Write GS40G PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u16 page = offset >> GS40G_PAGE_SHIFT; + + DEBUGFUNC("e1000_write_phy_reg_gs40g"); + + offset = offset & GS40G_OFFSET_MASK; + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); + if (ret_val) + goto release; + ret_val = e1000_write_phy_reg_mdic(hw, offset, data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_read_phy_reg_gs40g - Read GS40G PHY register + * @hw: pointer to the HW structure + * @offset: lower half is register offset to read to + * upper half is page to use. + * @data: data to read at register offset + * + * Acquires semaphore, if necessary, then reads the data in the PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u16 page = offset >> GS40G_PAGE_SHIFT; + + DEBUGFUNC("e1000_read_phy_reg_gs40g"); + + offset = offset & GS40G_OFFSET_MASK; + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); + if (ret_val) + goto release; + ret_val = e1000_read_phy_reg_mdic(hw, offset, data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_read_phy_reg_mphy - Read mPHY control register + * @hw: pointer to the HW structure + * @address: address to be read + * @data: pointer to the read data + * + * Reads the mPHY control register in the PHY at offset and stores the + * information read to data. + **/ +s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data) +{ + u32 mphy_ctrl = 0; + bool locked = false; + bool ready; + + DEBUGFUNC("e1000_read_phy_reg_mphy"); + + /* Check if mPHY is ready to read/write operations */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + + /* Check if mPHY access is disabled and enable it if so */ + mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); + if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { + locked = true; + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + mphy_ctrl |= E1000_MPHY_ENA_ACCESS; + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); + } + + /* Set the address that we want to read */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + + /* We mask address, because we want to use only current lane */ + mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK & + ~E1000_MPHY_ADDRESS_FNC_OVERRIDE) | + (address & E1000_MPHY_ADDRESS_MASK); + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); + + /* Read data from the address */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + *data = E1000_READ_REG(hw, E1000_MPHY_DATA); + + /* Disable access to mPHY if it was originally disabled */ + if (locked) { + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, + E1000_MPHY_DIS_ACCESS); + } + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_mphy - Write mPHY control register + * @hw: pointer to the HW structure + * @address: address to write to + * @data: data to write to register at offset + * @line_override: used when we want to use different line than default one + * + * Writes data to mPHY control register. + **/ +s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data, + bool line_override) +{ + u32 mphy_ctrl = 0; + bool locked = false; + bool ready; + + DEBUGFUNC("e1000_write_phy_reg_mphy"); + + /* Check if mPHY is ready to read/write operations */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + + /* Check if mPHY access is disabled and enable it if so */ + mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); + if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { + locked = true; + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + mphy_ctrl |= E1000_MPHY_ENA_ACCESS; + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); + } + + /* Set the address that we want to read */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + + /* We mask address, because we want to use only current lane */ + if (line_override) + mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE; + else + mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE; + mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) | + (address & E1000_MPHY_ADDRESS_MASK); + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); + + /* Read data from the address */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + E1000_WRITE_REG(hw, E1000_MPHY_DATA, data); + + /* Disable access to mPHY if it was originally disabled */ + if (locked) { + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, + E1000_MPHY_DIS_ACCESS); + } + + return E1000_SUCCESS; +} + +/** + * e1000_is_mphy_ready - Check if mPHY control register is not busy + * @hw: pointer to the HW structure + * + * Returns mPHY control register status. + **/ +bool e1000_is_mphy_ready(struct e1000_hw *hw) +{ + u16 retry_count = 0; + u32 mphy_ctrl = 0; + bool ready = false; + + while (retry_count < 2) { + mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); + if (mphy_ctrl & E1000_MPHY_BUSY) { + usec_delay(20); + retry_count++; + continue; + } + ready = true; + break; + } + + if (!ready) + DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n"); + + return ready; +} diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_phy.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_phy.h new file mode 100644 index 00000000..2cd0e14b --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_phy.h @@ -0,0 +1,341 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_PHY_H_ +#define _E1000_PHY_H_ + +void e1000_init_phy_ops_generic(struct e1000_hw *hw); +s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data); +void e1000_null_phy_generic(struct e1000_hw *hw); +s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active); +s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_null_set_page(struct e1000_hw *hw, u16 data); +s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 *data); +s32 e1000_write_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 data); +s32 e1000_check_downshift_generic(struct e1000_hw *hw); +s32 e1000_check_polarity_m88(struct e1000_hw *hw); +s32 e1000_check_polarity_igp(struct e1000_hw *hw); +s32 e1000_check_polarity_ife(struct e1000_hw *hw); +s32 e1000_check_reset_block_generic(struct e1000_hw *hw); +s32 e1000_phy_setup_autoneg(struct e1000_hw *hw); +s32 e1000_copper_link_autoneg(struct e1000_hw *hw); +s32 e1000_copper_link_setup_igp(struct e1000_hw *hw); +s32 e1000_copper_link_setup_m88(struct e1000_hw *hw); +s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw); +s32 e1000_get_cable_length_m88(struct e1000_hw *hw); +s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw); +s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw); +s32 e1000_get_cfg_done_generic(struct e1000_hw *hw); +s32 e1000_get_phy_id(struct e1000_hw *hw); +s32 e1000_get_phy_info_igp(struct e1000_hw *hw); +s32 e1000_get_phy_info_m88(struct e1000_hw *hw); +s32 e1000_get_phy_info_ife(struct e1000_hw *hw); +s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw); +void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); +s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw); +s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw); +s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page); +s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active); +s32 e1000_setup_copper_link_generic(struct e1000_hw *hw); +s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, + u32 usec_interval, bool *success); +s32 e1000_phy_init_script_igp3(struct e1000_hw *hw); +enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id); +s32 e1000_determine_phy_address(struct e1000_hw *hw); +s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg); +s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg); +s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data); +void e1000_power_up_phy_copper(struct e1000_hw *hw); +void e1000_power_down_phy_copper(struct e1000_hw *hw); +s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data); +s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data); +s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw); +s32 e1000_copper_link_setup_82577(struct e1000_hw *hw); +s32 e1000_check_polarity_82577(struct e1000_hw *hw); +s32 e1000_get_phy_info_82577(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw); +s32 e1000_get_cable_length_82577(struct e1000_hw *hw); +s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data); +s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data, + bool line_override); +bool e1000_is_mphy_ready(struct e1000_hw *hw); + +#define E1000_MAX_PHY_ADDR 8 + +/* IGP01E1000 Specific Registers */ +#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ +#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ +#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ +#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ +#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */ +#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ +#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ +#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */ +#define IGP_PAGE_SHIFT 5 +#define PHY_REG_MASK 0x1F + +/* GS40G - I210 PHY defines */ +#define GS40G_PAGE_SELECT 0x16 +#define GS40G_PAGE_SHIFT 16 +#define GS40G_OFFSET_MASK 0xFFFF +#define GS40G_PAGE_2 0x20000 +#define GS40G_MAC_REG2 0x15 +#define GS40G_MAC_LB 0x4140 +#define GS40G_MAC_SPEED_1G 0X0006 +#define GS40G_COPPER_SPEC 0x0010 + +/* BM/HV Specific Registers */ +#define BM_PORT_CTRL_PAGE 769 +#define BM_WUC_PAGE 800 +#define BM_WUC_ADDRESS_OPCODE 0x11 +#define BM_WUC_DATA_OPCODE 0x12 +#define BM_WUC_ENABLE_PAGE BM_PORT_CTRL_PAGE +#define BM_WUC_ENABLE_REG 17 +#define BM_WUC_ENABLE_BIT (1 << 2) +#define BM_WUC_HOST_WU_BIT (1 << 4) +#define BM_WUC_ME_WU_BIT (1 << 5) + +#define PHY_UPPER_SHIFT 21 +#define BM_PHY_REG(page, reg) \ + (((reg) & MAX_PHY_REG_ADDRESS) |\ + (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\ + (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT))) +#define BM_PHY_REG_PAGE(offset) \ + ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF)) +#define BM_PHY_REG_NUM(offset) \ + ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\ + (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\ + ~MAX_PHY_REG_ADDRESS))) + +#define HV_INTC_FC_PAGE_START 768 +#define I82578_ADDR_REG 29 +#define I82577_ADDR_REG 16 +#define I82577_CFG_REG 22 +#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15) +#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift */ +#define I82577_CTRL_REG 23 + +/* 82577 specific PHY registers */ +#define I82577_PHY_CTRL_2 18 +#define I82577_PHY_LBK_CTRL 19 +#define I82577_PHY_STATUS_2 26 +#define I82577_PHY_DIAG_STATUS 31 + +/* I82577 PHY Status 2 */ +#define I82577_PHY_STATUS2_REV_POLARITY 0x0400 +#define I82577_PHY_STATUS2_MDIX 0x0800 +#define I82577_PHY_STATUS2_SPEED_MASK 0x0300 +#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200 + +/* I82577 PHY Control 2 */ +#define I82577_PHY_CTRL2_MANUAL_MDIX 0x0200 +#define I82577_PHY_CTRL2_AUTO_MDI_MDIX 0x0400 +#define I82577_PHY_CTRL2_MDIX_CFG_MASK 0x0600 + +/* I82577 PHY Diagnostics Status */ +#define I82577_DSTATUS_CABLE_LENGTH 0x03FC +#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2 + +/* 82580 PHY Power Management */ +#define E1000_82580_PHY_POWER_MGMT 0xE14 +#define E1000_82580_PM_SPD 0x0001 /* Smart Power Down */ +#define E1000_82580_PM_D0_LPLU 0x0002 /* For D0a states */ +#define E1000_82580_PM_D3_LPLU 0x0004 /* For all other states */ +#define E1000_82580_PM_GO_LINKD 0x0020 /* Go Link Disconnect */ + +#define E1000_MPHY_DIS_ACCESS 0x80000000 /* disable_access bit */ +#define E1000_MPHY_ENA_ACCESS 0x40000000 /* enable_access bit */ +#define E1000_MPHY_BUSY 0x00010000 /* busy bit */ +#define E1000_MPHY_ADDRESS_FNC_OVERRIDE 0x20000000 /* fnc_override bit */ +#define E1000_MPHY_ADDRESS_MASK 0x0000FFFF /* address mask */ + +/* BM PHY Copper Specific Control 1 */ +#define BM_CS_CTRL1 16 + +/* BM PHY Copper Specific Status */ +#define BM_CS_STATUS 17 +#define BM_CS_STATUS_LINK_UP 0x0400 +#define BM_CS_STATUS_RESOLVED 0x0800 +#define BM_CS_STATUS_SPEED_MASK 0xC000 +#define BM_CS_STATUS_SPEED_1000 0x8000 + +/* 82577 Mobile Phy Status Register */ +#define HV_M_STATUS 26 +#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000 +#define HV_M_STATUS_SPEED_MASK 0x0300 +#define HV_M_STATUS_SPEED_1000 0x0200 +#define HV_M_STATUS_SPEED_100 0x0100 +#define HV_M_STATUS_LINK_UP 0x0040 + +#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 +#define IGP01E1000_PHY_POLARITY_MASK 0x0078 + +#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 +#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ + +#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 + +/* Enable flexible speed on link-up */ +#define IGP01E1000_GMII_FLEX_SPD 0x0010 +#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */ + +#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ +#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ +#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ + +#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 + +#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 +#define IGP01E1000_PSSR_MDIX 0x0800 +#define IGP01E1000_PSSR_SPEED_MASK 0xC000 +#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 + +#define IGP02E1000_PHY_CHANNEL_NUM 4 +#define IGP02E1000_PHY_AGC_A 0x11B1 +#define IGP02E1000_PHY_AGC_B 0x12B1 +#define IGP02E1000_PHY_AGC_C 0x14B1 +#define IGP02E1000_PHY_AGC_D 0x18B1 + +#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course=15:13, Fine=12:9 */ +#define IGP02E1000_AGC_LENGTH_MASK 0x7F +#define IGP02E1000_AGC_RANGE 15 + +#define E1000_CABLE_LENGTH_UNDEFINED 0xFF + +#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000 +#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16 +#define E1000_KMRNCTRLSTA_REN 0x00200000 +#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */ +#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */ +#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */ +#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */ +#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */ +#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */ +#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7 +#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002 /* enable K1 */ +#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */ +#define E1000_KMRNCTRLSTA_K0S_CTRL 0x1E /* Kumeran K0s Control */ +#define E1000_KMRNCTRLSTA_K0S_CTRL_ENTRY_LTNCY_SHIFT 0 +#define E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT 4 +#define E1000_KMRNCTRLSTA_K0S_CTRL_ENTRY_LTNCY_MASK \ + (3 << E1000_KMRNCTRLSTA_K0S_CTRL_ENTRY_LTNCY_SHIFT) +#define E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_MASK \ + (7 << E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT) +#define E1000_KMRNCTRLSTA_OP_MODES 0x1F /* Kumeran Modes of Operation */ +#define E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC 0x0002 /* change LSC to CSC */ + +#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 +#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Ctrl */ +#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Ctrl */ +#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */ + +/* IFE PHY Extended Status Control */ +#define IFE_PESC_POLARITY_REVERSED 0x0100 + +/* IFE PHY Special Control */ +#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 +#define IFE_PSC_FORCE_POLARITY 0x0020 + +/* IFE PHY Special Control and LED Control */ +#define IFE_PSCL_PROBE_MODE 0x0020 +#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ +#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ + +/* IFE PHY MDIX Control */ +#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ +#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */ +#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto, 0=disable */ + +/* SFP modules ID memory locations */ +#define E1000_SFF_IDENTIFIER_OFFSET 0x00 +#define E1000_SFF_IDENTIFIER_SFF 0x02 +#define E1000_SFF_IDENTIFIER_SFP 0x03 + +#define E1000_SFF_ETH_FLAGS_OFFSET 0x06 +/* Flags for SFP modules compatible with ETH up to 1Gb */ +struct sfp_e1000_flags { + u8 e1000_base_sx:1; + u8 e1000_base_lx:1; + u8 e1000_base_cx:1; + u8 e1000_base_t:1; + u8 e100_base_lx:1; + u8 e100_base_fx:1; + u8 e10_base_bx10:1; + u8 e10_base_px:1; +}; + +/* Vendor OUIs: format of OUI is 0x[byte0][byte1][byte2][00] */ +#define E1000_SFF_VENDOR_OUI_TYCO 0x00407600 +#define E1000_SFF_VENDOR_OUI_FTL 0x00906500 +#define E1000_SFF_VENDOR_OUI_AVAGO 0x00176A00 +#define E1000_SFF_VENDOR_OUI_INTEL 0x001B2100 + +/* EEPROM byte offsets */ +#define IGB_SFF_8472_SWAP 0x5C +#define IGB_SFF_8472_COMP 0x5E + +/* Bitmasks */ +#define IGB_SFF_ADDRESSING_MODE 0x4 +#define IGB_SFF_8472_UNSUP 0x00 + +#endif diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_regs.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_regs.h new file mode 100644 index 00000000..364a7261 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_regs.h @@ -0,0 +1,695 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_REGS_H_ +#define _E1000_REGS_H_ + +#define E1000_CTRL 0x00000 /* Device Control - RW */ +#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ +#define E1000_STATUS 0x00008 /* Device Status - RO */ +#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ +#define E1000_EERD 0x00014 /* EEPROM Read - RW */ +#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ +#define E1000_FLA 0x0001C /* Flash Access - RW */ +#define E1000_MDIC 0x00020 /* MDI Control - RW */ +#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */ +#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */ +#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */ +#define E1000_EEPROM_PCIE_CTRL_WORD_2 0x28 /* EEPROM PCIe Ctrl Word 2 */ +#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */ +#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */ +#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */ +#define E1000_MPHY_ADDR_CTRL 0x0024 /* GbE MPHY Address Control */ +#define E1000_MPHY_DATA 0x0E10 /* GBE MPHY Data */ +#define E1000_MPHY_STAT 0x0E0C /* GBE MPHY Statistics */ +#define E1000_PPHY_CTRL 0x5b48 /* PCIe PHY Control */ +#define E1000_I350_BARCTRL 0x5BFC /* BAR ctrl reg */ +#define E1000_I350_DTXMXPKTSZ 0x355C /* Maximum sent packet size reg*/ +#define E1000_SCTL 0x00024 /* SerDes Control - RW */ +#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ +#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ +#if !defined(EXTERNAL_RELEASE) || defined(ULP_SUPPORT) +#define E1000_FEXT 0x0002C /* Future Extended - RW */ +#endif /* !EXTERNAL_RELEASE || ULP_SUPPORT */ +#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */ +#define E1000_FEXTNVM3 0x0003C /* Future Extended NVM 3 - RW */ +#define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */ +#define E1000_FEXTNVM6 0x00010 /* Future Extended NVM 6 - RW */ +#define E1000_FEXTNVM7 0x000E4 /* Future Extended NVM 7 - RW */ +#define E1000_FEXTNVM9 0x5BB4 /* Future Extended NVM 9 - RW */ +#define E1000_FEXTNVM11 0x5BBC /* Future Extended NVM 11 - RW */ +#define E1000_PCIEANACFG 0x00F18 /* PCIE Analog Config */ +#define E1000_FCT 0x00030 /* Flow Control Type - RW */ +#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ +#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ +#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ +#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ +#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ +#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ +#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ +#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ +#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */ +#define E1000_SVCR 0x000F0 +#define E1000_SVT 0x000F4 +#define E1000_LPIC 0x000FC /* Low Power IDLE control */ +#define E1000_RCTL 0x00100 /* Rx Control - RW */ +#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ +#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */ +#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */ +#define E1000_PBA_ECC 0x01100 /* PBA ECC Register */ +#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ +#define E1000_EITR(_n) (0x01680 + (0x4 * (_n))) +#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */ +#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */ +#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */ +#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */ +#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */ +#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */ +#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */ +#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */ +#define E1000_TCTL 0x00400 /* Tx Control - RW */ +#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */ +#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */ +#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */ +#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ +#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ +#define E1000_LEDMUX 0x08130 /* LED MUX Control */ +#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ +#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ +#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ +#define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */ +#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ +#define E1000_PBS 0x01008 /* Packet Buffer Size */ +#define E1000_PBECCSTS 0x0100C /* Packet Buffer ECC Status - RW */ +#define E1000_IOSFPC 0x00F28 /* TX corrupted data */ +#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ +#define E1000_EEMNGCTL_I210 0x01010 /* i210 MNG EEprom Mode Control */ +#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ +#define E1000_EEARBC_I210 0x12024 /* EEPROM Auto Read Bus Control */ +#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ +#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ +#define E1000_FLSWCTL 0x01030 /* FLASH control register */ +#define E1000_FLSWDATA 0x01034 /* FLASH data register */ +#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ +#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ +#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ +#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */ +#define E1000_I2CBB_EN 0x00000100 /* I2C - Bit Bang Enable */ +#define E1000_I2C_CLK_OUT 0x00000200 /* I2C- Clock */ +#define E1000_I2C_DATA_OUT 0x00000400 /* I2C- Data Out */ +#define E1000_I2C_DATA_OE_N 0x00000800 /* I2C- Data Output Enable */ +#define E1000_I2C_DATA_IN 0x00001000 /* I2C- Data In */ +#define E1000_I2C_CLK_OE_N 0x00002000 /* I2C- Clock Output Enable */ +#define E1000_I2C_CLK_IN 0x00004000 /* I2C- Clock In */ +#define E1000_I2C_CLK_STRETCH_DIS 0x00008000 /* I2C- Dis Clk Stretching */ +#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */ +#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */ +#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ +#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */ +#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */ +#define E1000_ICR_V2 0x01500 /* Intr Cause - new location - RC */ +#define E1000_ICS_V2 0x01504 /* Intr Cause Set - new location - WO */ +#define E1000_IMS_V2 0x01508 /* Intr Mask Set/Read - new location - RW */ +#define E1000_IMC_V2 0x0150C /* Intr Mask Clear - new location - WO */ +#define E1000_IAM_V2 0x01510 /* Intr Ack Auto Mask - new location - RW */ +#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ +#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ +#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ +#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ +#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ +#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ +#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ +#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ +#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ +#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */ +#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ +/* Split and Replication Rx Control - RW */ +#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */ +#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */ +#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */ +#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */ +#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */ +#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */ +#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */ +#define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer Si - RW */ +#define E1000_PBRWAC 0x024E8 /* Rx packet buffer wrap around counter - RO */ +#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */ +#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */ +#define E1000_EMIADD 0x10 /* Extended Memory Indirect Address */ +#define E1000_EMIDATA 0x11 /* Extended Memory Indirect Data */ +#define E1000_SRWR 0x12018 /* Shadow Ram Write Register - RW */ +#define E1000_I210_FLMNGCTL 0x12038 +#define E1000_I210_FLMNGDATA 0x1203C +#define E1000_I210_FLMNGCNT 0x12040 + +#define E1000_I210_FLSWCTL 0x12048 +#define E1000_I210_FLSWDATA 0x1204C +#define E1000_I210_FLSWCNT 0x12050 + +#define E1000_I210_FLA 0x1201C + +#define E1000_INVM_DATA_REG(_n) (0x12120 + 4*(_n)) +#define E1000_INVM_SIZE 64 /* Number of INVM Data Registers */ + +/* QAV Tx mode control register */ +#define E1000_I210_TQAVCTRL 0x3570 + +/* QAV Tx mode control register bitfields masks */ +/* QAV enable */ +#define E1000_TQAVCTRL_MODE (1 << 0) +/* Fetching arbitration type */ +#define E1000_TQAVCTRL_FETCH_ARB (1 << 4) +/* Fetching timer enable */ +#define E1000_TQAVCTRL_FETCH_TIMER_ENABLE (1 << 5) +/* Launch arbitration type */ +#define E1000_TQAVCTRL_LAUNCH_ARB (1 << 8) +/* Launch timer enable */ +#define E1000_TQAVCTRL_LAUNCH_TIMER_ENABLE (1 << 9) +/* SP waits for SR enable */ +#define E1000_TQAVCTRL_SP_WAIT_SR (1 << 10) +/* Fetching timer correction */ +#define E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET 16 +#define E1000_TQAVCTRL_FETCH_TIMER_DELTA \ + (0xFFFF << E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET) + +/* High credit registers where _n can be 0 or 1. */ +#define E1000_I210_TQAVHC(_n) (0x300C + 0x40 * (_n)) + +/* Queues fetch arbitration priority control register */ +#define E1000_I210_TQAVARBCTRL 0x3574 +/* Queues priority masks where _n and _p can be 0-3. */ +#define E1000_TQAVARBCTRL_QUEUE_PRI(_n, _p) ((_p) << (2 * (_n))) +/* QAV Tx mode control registers where _n can be 0 or 1. */ +#define E1000_I210_TQAVCC(_n) (0x3004 + 0x40 * (_n)) + +/* QAV Tx mode control register bitfields masks */ +#define E1000_TQAVCC_IDLE_SLOPE 0xFFFF /* Idle slope */ +#define E1000_TQAVCC_KEEP_CREDITS (1 << 30) /* Keep credits opt enable */ +#define E1000_TQAVCC_QUEUE_MODE (1 << 31) /* SP vs. SR Tx mode */ + +/* Good transmitted packets counter registers */ +#define E1000_PQGPTC(_n) (0x010014 + (0x100 * (_n))) + +/* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */ +#define E1000_I210_TXPBS_SIZE(_n, _s) ((_s) << (6 * (_n))) + +#define E1000_MMDAC 13 /* MMD Access Control */ +#define E1000_MMDAAD 14 /* MMD Access Address/Data */ + +/* Convenience macros + * + * Note: "_n" is the queue number of the register to be written to. + * + * Example usage: + * E1000_RDBAL_REG(current_rx_queue) + */ +#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \ + (0x0C000 + ((_n) * 0x40))) +#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \ + (0x0C004 + ((_n) * 0x40))) +#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \ + (0x0C008 + ((_n) * 0x40))) +#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \ + (0x0C00C + ((_n) * 0x40))) +#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \ + (0x0C010 + ((_n) * 0x40))) +#define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \ + (0x0C014 + ((_n) * 0x40))) +#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n) +#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \ + (0x0C018 + ((_n) * 0x40))) +#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \ + (0x0C028 + ((_n) * 0x40))) +#define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \ + (0x0C030 + ((_n) * 0x40))) +#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \ + (0x0E000 + ((_n) * 0x40))) +#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \ + (0x0E004 + ((_n) * 0x40))) +#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \ + (0x0E008 + ((_n) * 0x40))) +#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \ + (0x0E010 + ((_n) * 0x40))) +#define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \ + (0x0E014 + ((_n) * 0x40))) +#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n) +#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \ + (0x0E018 + ((_n) * 0x40))) +#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \ + (0x0E028 + ((_n) * 0x40))) +#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \ + (0x0E038 + ((_n) * 0x40))) +#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \ + (0x0E03C + ((_n) * 0x40))) +#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100)) +#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */ +#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ +#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */ +#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ +#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4)) +#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \ + (0x054E0 + ((_i - 16) * 8))) +#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \ + (0x054E4 + ((_i - 16) * 8))) +#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8)) +#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8)) +#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) +#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) +#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) +#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) +#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) +#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) +#define E1000_PBSLAC 0x03100 /* Pkt Buffer Slave Access Control */ +#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Pkt Buffer DWORD */ +#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */ +/* Same as TXPBS, renamed for newer Si - RW */ +#define E1000_ITPBS 0x03404 +#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ +#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ +#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ +#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ +#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ +#define E1000_TDPUMB 0x0357C /* DMA Tx Desc uC Mail Box - RW */ +#define E1000_TDPUAD 0x03580 /* DMA Tx Desc uC Addr Command - RW */ +#define E1000_TDPUWD 0x03584 /* DMA Tx Desc uC Data Write - RW */ +#define E1000_TDPURD 0x03588 /* DMA Tx Desc uC Data Read - RW */ +#define E1000_TDPUCTL 0x0358C /* DMA Tx Desc uC Control - RW */ +#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */ +#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */ +#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */ +/* DMA Tx Max Total Allow Size Reqs - RW */ +#define E1000_DTXMXSZRQ 0x03540 +#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */ +#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */ +#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ +#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ +#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ +#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ +#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ +#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ +#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ +#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ +#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ +#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ +#define E1000_COLC 0x04028 /* Collision Count - R/clr */ +#define E1000_DC 0x04030 /* Defer Count - R/clr */ +#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */ +#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ +#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ +#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ +#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */ +#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */ +#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */ +#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */ +#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */ +#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */ +#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */ +#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */ +#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */ +#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */ +#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */ +#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */ +#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */ +#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */ +#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */ +#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */ +#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */ +#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */ +#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */ +#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */ +#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */ +#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */ +#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */ +#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */ +#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */ +#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ +#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */ +#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */ +#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */ +#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */ +#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */ +#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */ +#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */ +#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */ +#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */ +#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */ +#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */ +#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */ +#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */ +#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */ +#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */ +#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */ +#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */ +#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ +#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */ +#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */ +#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */ +#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */ +#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ +#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */ +#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */ +#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ +#define E1000_CRC_OFFSET 0x05F50 /* CRC Offset register */ + +#define E1000_VFGPRC 0x00F10 +#define E1000_VFGORC 0x00F18 +#define E1000_VFMPRC 0x00F3C +#define E1000_VFGPTC 0x00F14 +#define E1000_VFGOTC 0x00F34 +#define E1000_VFGOTLBC 0x00F50 +#define E1000_VFGPTLBC 0x00F44 +#define E1000_VFGORLBC 0x00F48 +#define E1000_VFGPRLBC 0x00F40 +/* Virtualization statistical counters */ +#define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n))) +#define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n))) +#define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n))) +#define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n))) +#define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n))) +#define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n))) +#define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n))) +#define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n))) +#define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n))) + +/* LinkSec */ +#define E1000_LSECTXUT 0x04300 /* Tx Untagged Pkt Cnt */ +#define E1000_LSECTXPKTE 0x04304 /* Encrypted Tx Pkts Cnt */ +#define E1000_LSECTXPKTP 0x04308 /* Protected Tx Pkt Cnt */ +#define E1000_LSECTXOCTE 0x0430C /* Encrypted Tx Octets Cnt */ +#define E1000_LSECTXOCTP 0x04310 /* Protected Tx Octets Cnt */ +#define E1000_LSECRXUT 0x04314 /* Untagged non-Strict Rx Pkt Cnt */ +#define E1000_LSECRXOCTD 0x0431C /* Rx Octets Decrypted Count */ +#define E1000_LSECRXOCTV 0x04320 /* Rx Octets Validated */ +#define E1000_LSECRXBAD 0x04324 /* Rx Bad Tag */ +#define E1000_LSECRXNOSCI 0x04328 /* Rx Packet No SCI Count */ +#define E1000_LSECRXUNSCI 0x0432C /* Rx Packet Unknown SCI Count */ +#define E1000_LSECRXUNCH 0x04330 /* Rx Unchecked Packets Count */ +#define E1000_LSECRXDELAY 0x04340 /* Rx Delayed Packet Count */ +#define E1000_LSECRXLATE 0x04350 /* Rx Late Packets Count */ +#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* Rx Pkt OK Cnt */ +#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* Rx Invalid Cnt */ +#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* Rx Not Valid Cnt */ +#define E1000_LSECRXUNSA 0x043C0 /* Rx Unused SA Count */ +#define E1000_LSECRXNUSA 0x043D0 /* Rx Not Using SA Count */ +#define E1000_LSECTXCAP 0x0B000 /* Tx Capabilities Register - RO */ +#define E1000_LSECRXCAP 0x0B300 /* Rx Capabilities Register - RO */ +#define E1000_LSECTXCTRL 0x0B004 /* Tx Control - RW */ +#define E1000_LSECRXCTRL 0x0B304 /* Rx Control - RW */ +#define E1000_LSECTXSCL 0x0B008 /* Tx SCI Low - RW */ +#define E1000_LSECTXSCH 0x0B00C /* Tx SCI High - RW */ +#define E1000_LSECTXSA 0x0B010 /* Tx SA0 - RW */ +#define E1000_LSECTXPN0 0x0B018 /* Tx SA PN 0 - RW */ +#define E1000_LSECTXPN1 0x0B01C /* Tx SA PN 1 - RW */ +#define E1000_LSECRXSCL 0x0B3D0 /* Rx SCI Low - RW */ +#define E1000_LSECRXSCH 0x0B3E0 /* Rx SCI High - RW */ +/* LinkSec Tx 128-bit Key 0 - WO */ +#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) +/* LinkSec Tx 128-bit Key 1 - WO */ +#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) +#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */ +#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */ +/* LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit + * key - RW. + */ +#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m))) + +#define E1000_SSVPC 0x041A0 /* Switch Security Violation Pkt Cnt */ +#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */ +#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */ +#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */ +/* IPSec Rx IPv4/v6 Address - RW */ +#define E1000_IPSRXIPADDR(_n) (0x0B420 + (0x04 * (_n))) +/* IPSec Rx 128-bit Key - RW */ +#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) +#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */ +#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */ +/* IPSec Tx 128-bit Key - RW */ +#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) +#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */ +#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */ +#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ +#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ +#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ +#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */ +#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ +#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */ +#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */ +#define E1000_RPTHC 0x04104 /* Rx Packets To Host */ +#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */ +#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */ +#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ +#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ +#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ +#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ +#define E1000_LENERRS 0x04138 /* Length Errors Count */ +#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ +#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */ +#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ +#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ +#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ +#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Pg - RW */ +#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */ +#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */ +#define E1000_RFCTL 0x05008 /* Receive Filter Control*/ +#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ +#define E1000_RA 0x05400 /* Receive Address - RW Array */ +#define E1000_RA2 0x054E0 /* 2nd half of Rx address array - RW Array */ +#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ +#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */ +#define E1000_CIAA 0x05B88 /* Config Indirect Access Address - RW */ +#define E1000_CIAD 0x05B8C /* Config Indirect Access Data - RW */ +#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */ +#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */ +#define E1000_WUC 0x05800 /* Wakeup Control - RW */ +#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ +#define E1000_WUS 0x05810 /* Wakeup Status - RO */ +#define E1000_MANC 0x05820 /* Management Control - RW */ +#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ +#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ +#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ +#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ +#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ +#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */ +#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ +#define E1000_HOST_IF 0x08800 /* Host Interface */ +#define E1000_HIBBA 0x8F40 /* Host Interface Buffer Base Address */ +/* Flexible Host Filter Table */ +#define E1000_FHFT(_n) (0x09000 + ((_n) * 0x100)) +/* Ext Flexible Host Filter Table */ +#define E1000_FHFT_EXT(_n) (0x09A00 + ((_n) * 0x100)) + + +#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */ +#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ +/* Management Decision Filters */ +#define E1000_MDEF(_n) (0x05890 + (4 * (_n))) +#define E1000_SW_FW_SYNC 0x05B5C /* SW-FW Synchronization - RW */ +#define E1000_CCMCTL 0x05B48 /* CCM Control Register */ +#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ +#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ +#define E1000_GCR 0x05B00 /* PCI-Ex Control */ +#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */ +#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ +#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ +#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ +#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ +#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ +#define E1000_SWSM 0x05B50 /* SW Semaphore */ +#define E1000_FWSM 0x05B54 /* FW Semaphore */ +/* Driver-only SW semaphore (not used by BOOT agents) */ +#define E1000_SWSM2 0x05B58 +#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */ +#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */ +#define E1000_UFUSE 0x05B78 /* UFUSE - RO */ +#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ +#define E1000_HICR 0x08F00 /* Host Interface Control */ +#define E1000_FWSTS 0x08F0C /* FW Status */ + +/* RSS registers */ +#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ +#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ +#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ +#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate INTR Ext*/ +#define E1000_IMIRVP 0x05AC0 /* Immediate INT Rx VLAN Priority -RW */ +#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Alloc Reg -RW */ +#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */ +#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */ +#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ +#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ +/* VT Registers */ +#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */ +#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */ +#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */ +#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */ +#define E1000_VFRE 0x00C8C /* VF Receive Enables */ +#define E1000_VFTE 0x00C90 /* VF Transmit Enables */ +#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */ +#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */ +#define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */ +#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */ +#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */ +#define E1000_IOVTCL 0x05BBC /* IOV Control Register */ +#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */ +#define E1000_VMRVLAN 0x05D90 /* Virtual Mirror Rule VLAN */ +#define E1000_VMRVM 0x05DA0 /* Virtual Mirror Rule VM */ +#define E1000_MDFB 0x03558 /* Malicious Driver free block */ +#define E1000_LVMMC 0x03548 /* Last VM Misbehavior cause */ +#define E1000_TXSWC 0x05ACC /* Tx Switch Control */ +#define E1000_SCCRL 0x05DB0 /* Storm Control Control */ +#define E1000_BSCTRH 0x05DB8 /* Broadcast Storm Control Threshold */ +#define E1000_MSCTRH 0x05DBC /* Multicast Storm Control Threshold */ +/* These act per VF so an array friendly macro is used */ +#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n))) +#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n))) +#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n))) +#define E1000_VFVMBMEM(_n) (0x00800 + (_n)) +#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n))) +/* VLAN Virtual Machine Filter - RW */ +#define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) +#define E1000_VMVIR(_n) (0x03700 + (4 * (_n))) +#define E1000_DVMOLR(_n) (0x0C038 + (0x40 * (_n))) /* DMA VM offload */ +#define E1000_VTCTRL(_n) (0x10000 + (0x100 * (_n))) /* VT Control */ +#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */ +#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */ +#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */ +#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */ +#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */ +#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */ +#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */ +#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */ +#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */ +#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */ +#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */ +#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */ +#define E1000_TIMADJL 0x0B60C /* Time sync time adjustment offset Low - RW */ +#define E1000_TIMADJH 0x0B610 /* Time sync time adjustment offset High - RW */ +#define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */ +#define E1000_SYSSTMPL 0x0B648 /* HH Timesync system stamp low register */ +#define E1000_SYSSTMPH 0x0B64C /* HH Timesync system stamp hi register */ +#define E1000_PLTSTMPL 0x0B640 /* HH Timesync platform stamp low register */ +#define E1000_PLTSTMPH 0x0B644 /* HH Timesync platform stamp hi register */ +#define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */ +#define E1000_TSICR 0x0B66C /* Interrupt Cause Register */ +#define E1000_TSIM 0x0B674 /* Interrupt Mask Register */ +#define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */ +#define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */ + +/* Filtering Registers */ +#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */ +#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */ +#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */ +#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */ +#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */ +#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */ +#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */ + +#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */ +#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */ +#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */ +#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */ +#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */ +/* Tx Desc plane TC Rate-scheduler config */ +#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) +/* Tx Packet plane TC Rate-Scheduler Config */ +#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) +/* Rx Packet plane TC Rate-Scheduler Config */ +#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) +/* Tx Desc Plane TC Rate-Scheduler Status */ +#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) +/* Tx Desc Plane TC Rate-Scheduler MMW */ +#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) +/* Tx Packet plane TC Rate-Scheduler Status */ +#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) +/* Tx Packet plane TC Rate-scheduler MMW */ +#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) +/* Rx Packet plane TC Rate-Scheduler Status */ +#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) +/* Rx Packet plane TC Rate-Scheduler MMW */ +#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) +/* Tx Desc plane VM Rate-Scheduler MMW*/ +#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) +/* Tx BCN Rate-Scheduler MMW */ +#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) +#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */ +#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */ +#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */ +#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */ +#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */ +#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */ +#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */ +#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */ +#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */ +#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */ +#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */ +#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */ +#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */ +#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */ + +/* DMA Coalescing registers */ +#define E1000_DMACR 0x02508 /* Control Register */ +#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */ +#define E1000_DMCTLX 0x02514 /* Time to Lx Request */ +#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */ +#define E1000_DMCCNT 0x05DD4 /* Current Rx Count */ +#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */ +#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */ + +/* PCIe Parity Status Register */ +#define E1000_PCIEERRSTS 0x05BA8 + +#define E1000_PROXYS 0x5F64 /* Proxying Status */ +#define E1000_PROXYFC 0x5F60 /* Proxying Filter Control */ +/* Thermal sensor configuration and status registers */ +#define E1000_THMJT 0x08100 /* Junction Temperature */ +#define E1000_THLOWTC 0x08104 /* Low Threshold Control */ +#define E1000_THMIDTC 0x08108 /* Mid Threshold Control */ +#define E1000_THHIGHTC 0x0810C /* High Threshold Control */ +#define E1000_THSTAT 0x08110 /* Thermal Sensor Status */ + +/* Energy Efficient Ethernet "EEE" registers */ +#define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */ +#define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */ +#define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE"*/ +#define E1000_EEE_SU 0x0E34 /* EEE Setup */ +#define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */ +#define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */ + +/* OS2BMC Registers */ +#define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */ +#define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */ +#define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */ +#define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */ + + + +#endif diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_vf.c b/src/spdk/dpdk/drivers/net/e1000/base/e1000_vf.c new file mode 100644 index 00000000..44ab0188 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_vf.c @@ -0,0 +1,589 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + + +#include "e1000_api.h" + + +STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw); +STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw); +STATIC void e1000_release_vf(struct e1000_hw *hw); +STATIC s32 e1000_acquire_vf(struct e1000_hw *hw); +STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw); +STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw); +STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw); +STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw); +STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw); +STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw); +STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32); +STATIC int e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); +STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *); + +/** + * e1000_init_phy_params_vf - Inits PHY params + * @hw: pointer to the HW structure + * + * Doesn't do much - there's no PHY available to the VF. + **/ +STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_phy_params_vf"); + hw->phy.type = e1000_phy_vf; + hw->phy.ops.acquire = e1000_acquire_vf; + hw->phy.ops.release = e1000_release_vf; + + return E1000_SUCCESS; +} + +/** + * e1000_init_nvm_params_vf - Inits NVM params + * @hw: pointer to the HW structure + * + * Doesn't do much - there's no NVM available to the VF. + **/ +STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_nvm_params_vf"); + hw->nvm.type = e1000_nvm_none; + hw->nvm.ops.acquire = e1000_acquire_vf; + hw->nvm.ops.release = e1000_release_vf; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_vf - Inits MAC params + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_init_mac_params_vf"); + + /* Set media type */ + /* + * Virtual functions don't care what they're media type is as they + * have no direct access to the PHY, or the media. That is handled + * by the physical function driver. + */ + hw->phy.media_type = e1000_media_type_unknown; + + /* No ASF features for the VF driver */ + mac->asf_firmware_present = false; + /* ARC subsystem not supported */ + mac->arc_subsystem_valid = false; + /* Disable adaptive IFS mode so the generic funcs don't do anything */ + mac->adaptive_ifs = false; + /* VF's have no MTA Registers - PF feature only */ + mac->mta_reg_count = 128; + /* VF's have no access to RAR entries */ + mac->rar_entry_count = 1; + + /* Function pointers */ + /* link setup */ + mac->ops.setup_link = e1000_setup_link_vf; + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_vf; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_vf; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_link_vf; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_vf; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; + /* set mac address */ + mac->ops.rar_set = e1000_rar_set_vf; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_vf; + + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_vf - Inits function pointers + * @hw: pointer to the HW structure + **/ +void e1000_init_function_pointers_vf(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_vf"); + + hw->mac.ops.init_params = e1000_init_mac_params_vf; + hw->nvm.ops.init_params = e1000_init_nvm_params_vf; + hw->phy.ops.init_params = e1000_init_phy_params_vf; + hw->mbx.ops.init_params = e1000_init_mbx_params_vf; +} + +/** + * e1000_acquire_vf - Acquire rights to access PHY or NVM. + * @hw: pointer to the HW structure + * + * There is no PHY or NVM so we want all attempts to acquire these to fail. + * In addition, the MAC registers to access PHY/NVM don't exist so we don't + * even want any SW to attempt to use them. + **/ +STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw) +{ + UNREFERENCED_1PARAMETER(hw); + return -E1000_ERR_PHY; +} + +/** + * e1000_release_vf - Release PHY or NVM + * @hw: pointer to the HW structure + * + * There is no PHY or NVM so we want all attempts to acquire these to fail. + * In addition, the MAC registers to access PHY/NVM don't exist so we don't + * even want any SW to attempt to use them. + **/ +STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw) +{ + UNREFERENCED_1PARAMETER(hw); + return; +} + +/** + * e1000_setup_link_vf - Sets up link. + * @hw: pointer to the HW structure + * + * Virtual functions cannot change link. + **/ +STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_setup_link_vf"); + UNREFERENCED_1PARAMETER(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_get_bus_info_pcie_vf - Gets the bus info. + * @hw: pointer to the HW structure + * + * Virtual functions are not really on their own bus. + **/ +STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + + DEBUGFUNC("e1000_get_bus_info_pcie_vf"); + + /* Do not set type PCI-E because we don't want disable master to run */ + bus->type = e1000_bus_type_reserved; + bus->speed = e1000_bus_speed_2500; + + return 0; +} + +/** + * e1000_get_link_up_info_vf - Gets link info. + * @hw: pointer to the HW structure + * @speed: pointer to 16 bit value to store link speed. + * @duplex: pointer to 16 bit value to store duplex. + * + * Since we cannot read the PHY and get accurate link info, we must rely upon + * the status register's data which is often stale and inaccurate. + **/ +STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 status; + + DEBUGFUNC("e1000_get_link_up_info_vf"); + + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + DEBUGOUT("1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + DEBUGOUT("100 Mbs, "); + } else { + *speed = SPEED_10; + DEBUGOUT("10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } + + return E1000_SUCCESS; +} + +/** + * e1000_reset_hw_vf - Resets the HW + * @hw: pointer to the HW structure + * + * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. + * This is all the reset we can perform on a VF. + **/ +STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + u32 timeout = E1000_VF_INIT_TIMEOUT; + s32 ret_val = -E1000_ERR_MAC_INIT; + u32 ctrl, msgbuf[3]; + u8 *addr = (u8 *)(&msgbuf[1]); + + DEBUGFUNC("e1000_reset_hw_vf"); + + DEBUGOUT("Issuing a function level reset to MAC\n"); + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + /* we cannot reset while the RSTI / RSTD bits are asserted */ + while (!mbx->ops.check_for_rst(hw, 0) && timeout) { + timeout--; + usec_delay(5); + } + + if (timeout) { + /* mailbox timeout can now become active */ + mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; + + msgbuf[0] = E1000_VF_RESET; + mbx->ops.write_posted(hw, msgbuf, 1, 0); + + msec_delay(10); + + /* set our "perm_addr" based on info provided by PF */ + ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); + if (!ret_val) { + if (msgbuf[0] == (E1000_VF_RESET | + E1000_VT_MSGTYPE_ACK)) + memcpy(hw->mac.perm_addr, addr, 6); + else + ret_val = -E1000_ERR_MAC_INIT; + } + } + + return ret_val; +} + +/** + * e1000_init_hw_vf - Inits the HW + * @hw: pointer to the HW structure + * + * Not much to do here except clear the PF Reset indication if there is one. + **/ +STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_hw_vf"); + + /* attempt to set and restore our mac address */ + e1000_rar_set_vf(hw, hw->mac.addr, 0); + + return E1000_SUCCESS; +} + +/** + * e1000_rar_set_vf - set device MAC address + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index receive address array register + **/ +STATIC int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, + u32 E1000_UNUSEDARG index) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + u32 msgbuf[3]; + u8 *msg_addr = (u8 *)(&msgbuf[1]); + s32 ret_val; + + UNREFERENCED_1PARAMETER(index); + memset(msgbuf, 0, 12); + msgbuf[0] = E1000_VF_SET_MAC_ADDR; + memcpy(msg_addr, addr, 6); + ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0); + + if (!ret_val) + ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); + + msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; + + /* if nacked the address was rejected, use "perm_addr" */ + if (!ret_val && + (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) + e1000_read_mac_addr_vf(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_hash_mc_addr_vf - Generate a multicast hash value + * @hw: pointer to the HW structure + * @mc_addr: pointer to a multicast address + * + * Generates a multicast address hash value which is used to determine + * the multicast filter table array address and new table value. + **/ +STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) +{ + u32 hash_value, hash_mask; + u8 bit_shift = 0; + + DEBUGFUNC("e1000_hash_mc_addr_generic"); + + /* Register count multiplied by bits per register */ + hash_mask = (hw->mac.mta_reg_count * 32) - 1; + + /* + * The bit_shift is the number of left-shifts + * where 0xFF would still fall within the hash mask. + */ + while (hash_mask >> bit_shift != 0xFF) + bit_shift++; + + hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | + (((u16) mc_addr[5]) << bit_shift))); + + return hash_value; +} + +STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw, + u32 *msg, u16 size) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + u32 retmsg[E1000_VFMAILBOX_SIZE]; + s32 retval = mbx->ops.write_posted(hw, msg, size, 0); + + if (!retval) + mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0); +} + +/** + * e1000_update_mc_addr_list_vf - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates the Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count) +{ + u32 msgbuf[E1000_VFMAILBOX_SIZE]; + u16 *hash_list = (u16 *)&msgbuf[1]; + u32 hash_value; + u32 i; + + DEBUGFUNC("e1000_update_mc_addr_list_vf"); + + /* Each entry in the list uses 1 16 bit word. We have 30 + * 16 bit words available in our HW msg buffer (minus 1 for the + * msg type). That's 30 hash values if we pack 'em right. If + * there are more than 30 MC addresses to add then punt the + * extras for now and then add code to handle more than 30 later. + * It would be unusual for a server to request that many multi-cast + * addresses except for in large enterprise network environments. + */ + + DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count); + + msgbuf[0] = E1000_VF_SET_MULTICAST; + + if (mc_addr_count > 30) { + msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW; + mc_addr_count = 30; + } + + msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT; + + for (i = 0; i < mc_addr_count; i++) { + hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); + DEBUGOUT1("Hash value = 0x%03X\n", hash_value); + hash_list[i] = hash_value & 0x0FFF; + mc_addr_list += ETH_ADDR_LEN; + } + + e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE); +} + +/** + * e1000_vfta_set_vf - Set/Unset vlan filter table address + * @hw: pointer to the HW structure + * @vid: determines the vfta register and bit to set/unset + * @set: if true then set bit, else clear bit + **/ +void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set) +{ + u32 msgbuf[2]; + + msgbuf[0] = E1000_VF_SET_VLAN; + msgbuf[1] = vid; + /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */ + if (set) + msgbuf[0] |= E1000_VF_SET_VLAN_ADD; + + e1000_write_msg_read_ack(hw, msgbuf, 2); +} + +/** e1000_rlpml_set_vf - Set the maximum receive packet length + * @hw: pointer to the HW structure + * @max_size: value to assign to max frame size + **/ +void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) +{ + u32 msgbuf[2]; + + msgbuf[0] = E1000_VF_SET_LPE; + msgbuf[1] = max_size; + + e1000_write_msg_read_ack(hw, msgbuf, 2); +} + +/** + * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc + * @hw: pointer to the HW structure + * @uni: boolean indicating unicast promisc status + * @multi: boolean indicating multicast promisc status + **/ +s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + u32 msgbuf = E1000_VF_SET_PROMISC; + s32 ret_val; + + switch (type) { + case e1000_promisc_multicast: + msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; + break; + case e1000_promisc_enabled: + msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; + case e1000_promisc_unicast: + msgbuf |= E1000_VF_SET_PROMISC_UNICAST; + case e1000_promisc_disabled: + break; + default: + return -E1000_ERR_MAC_INIT; + } + + ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0); + + if (!ret_val) + ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0); + + if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK)) + ret_val = -E1000_ERR_MAC_INIT; + + return ret_val; +} + +/** + * e1000_read_mac_addr_vf - Read device MAC address + * @hw: pointer to the HW structure + **/ +STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) +{ + int i; + + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + + return E1000_SUCCESS; +} + +/** + * e1000_check_for_link_vf - Check for link for a virtual interface + * @hw: pointer to the HW structure + * + * Checks to see if the underlying PF is still talking to the VF and + * if it is then it reports the link state to the hardware, otherwise + * it reports link down and returns an error. + **/ +STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + u32 in_msg = 0; + + DEBUGFUNC("e1000_check_for_link_vf"); + + /* + * We only want to run this if there has been a rst asserted. + * in this case that could mean a link change, device reset, + * or a virtual function reset + */ + + /* If we were hit with a reset or timeout drop the link */ + if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout) + mac->get_link_status = true; + + if (!mac->get_link_status) + goto out; + + /* if link status is down no point in checking to see if pf is up */ + if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) + goto out; + + /* if the read failed it could just be a mailbox collision, best wait + * until we are called again and don't report an error */ + if (mbx->ops.read(hw, &in_msg, 1, 0)) + goto out; + + /* if incoming message isn't clear to send we are waiting on response */ + if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { + /* message is not CTS and is NACK we have lost CTS status */ + if (in_msg & E1000_VT_MSGTYPE_NACK) + ret_val = -E1000_ERR_MAC_INIT; + goto out; + } + + /* at this point we know the PF is talking to us, check and see if + * we are still accepting timeout or if we had a timeout failure. + * if we failed then we will need to reinit */ + if (!mbx->timeout) { + ret_val = -E1000_ERR_MAC_INIT; + goto out; + } + + /* if we passed all the tests above then the link is up and we no + * longer need to check for link */ + mac->get_link_status = false; + +out: + return ret_val; +} + diff --git a/src/spdk/dpdk/drivers/net/e1000/base/e1000_vf.h b/src/spdk/dpdk/drivers/net/e1000/base/e1000_vf.h new file mode 100644 index 00000000..d6216dec --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/e1000_vf.h @@ -0,0 +1,295 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#ifndef _E1000_VF_H_ +#define _E1000_VF_H_ + +#include "e1000_osdep.h" +#include "e1000_regs.h" +#include "e1000_defines.h" + +struct e1000_hw; + +#define E1000_DEV_ID_82576_VF 0x10CA +#define E1000_DEV_ID_I350_VF 0x1520 + +#define E1000_VF_INIT_TIMEOUT 200 /* Num of retries to clear RSTI */ + +/* Additional Descriptor Control definitions */ +#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */ +#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */ + +/* SRRCTL bit definitions */ +#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \ + (0x0C00C + ((_n) * 0x40))) +#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ +#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00 +#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ +#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000 +#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000 +#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000 +#define E1000_SRRCTL_DROP_EN 0x80000000 + +#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F +#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00 + +/* Interrupt Defines */ +#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ +#define E1000_EITR(_n) (0x01680 + ((_n) << 2)) +#define E1000_EICS 0x01520 /* Ext. Intr Cause Set -W0 */ +#define E1000_EIMS 0x01524 /* Ext. Intr Mask Set/Read -RW */ +#define E1000_EIMC 0x01528 /* Ext. Intr Mask Clear -WO */ +#define E1000_EIAC 0x0152C /* Ext. Intr Auto Clear -RW */ +#define E1000_EIAM 0x01530 /* Ext. Intr Ack Auto Clear Mask -RW */ +#define E1000_IVAR0 0x01700 /* Intr Vector Alloc (array) -RW */ +#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes -RW */ +#define E1000_IVAR_VALID 0x80 + +/* Receive Descriptor - Advanced */ +union e1000_adv_rx_desc { + struct { + u64 pkt_addr; /* Packet buffer address */ + u64 hdr_addr; /* Header buffer address */ + } read; + struct { + struct { + union { + u32 data; + struct { + /* RSS type, Packet type */ + u16 pkt_info; + /* Split Header, header buffer len */ + u16 hdr_info; + } hs_rss; + } lo_dword; + union { + u32 rss; /* RSS Hash */ + struct { + u16 ip_id; /* IP id */ + u16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + u32 status_error; /* ext status/error */ + u16 length; /* Packet length */ + u16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ +}; + +#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 +#define E1000_RXDADV_HDRBUFLEN_SHIFT 5 + +/* Transmit Descriptor - Advanced */ +union e1000_adv_tx_desc { + struct { + u64 buffer_addr; /* Address of descriptor's data buf */ + u32 cmd_type_len; + u32 olinfo_status; + } read; + struct { + u64 rsvd; /* Reserved */ + u32 nxtseq_seed; + u32 status; + } wb; +}; + +/* Adv Transmit Descriptor Config Masks */ +#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ +#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ +#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */ +#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */ +#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ +#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ +#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ +#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ + +/* Context descriptors */ +struct e1000_adv_tx_context_desc { + u32 vlan_macip_lens; + u32 seqnum_seed; + u32 type_tucmd_mlhl; + u32 mss_l4len_idx; +}; + +#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ +#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ +#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ +#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ +#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ + +enum e1000_mac_type { + e1000_undefined = 0, + e1000_vfadapt, + e1000_vfadapt_i350, + e1000_num_macs /* List is 1-based, so subtract 1 for true count. */ +}; + +struct e1000_vf_stats { + u64 base_gprc; + u64 base_gptc; + u64 base_gorc; + u64 base_gotc; + u64 base_mprc; + u64 base_gotlbc; + u64 base_gptlbc; + u64 base_gorlbc; + u64 base_gprlbc; + + u32 last_gprc; + u32 last_gptc; + u32 last_gorc; + u32 last_gotc; + u32 last_mprc; + u32 last_gotlbc; + u32 last_gptlbc; + u32 last_gorlbc; + u32 last_gprlbc; + + u64 gprc; + u64 gptc; + u64 gorc; + u64 gotc; + u64 mprc; + u64 gotlbc; + u64 gptlbc; + u64 gorlbc; + u64 gprlbc; +}; + +#include "e1000_mbx.h" + +struct e1000_mac_operations { + /* Function pointers for the MAC. */ + s32 (*init_params)(struct e1000_hw *); + s32 (*check_for_link)(struct e1000_hw *); + void (*clear_vfta)(struct e1000_hw *); + s32 (*get_bus_info)(struct e1000_hw *); + s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); + void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); + s32 (*reset_hw)(struct e1000_hw *); + s32 (*init_hw)(struct e1000_hw *); + s32 (*setup_link)(struct e1000_hw *); + void (*write_vfta)(struct e1000_hw *, u32, u32); + int (*rar_set)(struct e1000_hw *, u8*, u32); + s32 (*read_mac_addr)(struct e1000_hw *); +}; + +struct e1000_mac_info { + struct e1000_mac_operations ops; + u8 addr[6]; + u8 perm_addr[6]; + + enum e1000_mac_type type; + + u16 mta_reg_count; + u16 rar_entry_count; + + bool get_link_status; +}; + +struct e1000_mbx_operations { + s32 (*init_params)(struct e1000_hw *hw); + s32 (*read)(struct e1000_hw *, u32 *, u16, u16); + s32 (*write)(struct e1000_hw *, u32 *, u16, u16); + s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16); + s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16); + s32 (*check_for_msg)(struct e1000_hw *, u16); + s32 (*check_for_ack)(struct e1000_hw *, u16); + s32 (*check_for_rst)(struct e1000_hw *, u16); +}; + +struct e1000_mbx_stats { + u32 msgs_tx; + u32 msgs_rx; + + u32 acks; + u32 reqs; + u32 rsts; +}; + +struct e1000_mbx_info { + struct e1000_mbx_operations ops; + struct e1000_mbx_stats stats; + u32 timeout; + u32 usec_delay; + u16 size; +}; + +struct e1000_dev_spec_vf { + u32 vf_number; + u32 v2p_mailbox; +}; + +struct e1000_hw { + void *back; + + u8 *hw_addr; + u8 *flash_address; + unsigned long io_base; + + struct e1000_mac_info mac; + struct e1000_mbx_info mbx; + + union { + struct e1000_dev_spec_vf vf; + } dev_spec; + + u16 device_id; + u16 subsystem_vendor_id; + u16 subsystem_device_id; + u16 vendor_id; + + u8 revision_id; +}; + +enum e1000_promisc_type { + e1000_promisc_disabled = 0, /* all promisc modes disabled */ + e1000_promisc_unicast = 1, /* unicast promiscuous enabled */ + e1000_promisc_multicast = 2, /* multicast promiscuous enabled */ + e1000_promisc_enabled = 3, /* both uni and multicast promisc */ + e1000_num_promisc_types +}; + +/* These functions must be implemented by drivers */ +s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); +void e1000_vfta_set_vf(struct e1000_hw *, u16, bool); +void e1000_rlpml_set_vf(struct e1000_hw *, u16); +s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type); +#endif /* _E1000_VF_H_ */ diff --git a/src/spdk/dpdk/drivers/net/e1000/base/meson.build b/src/spdk/dpdk/drivers/net/e1000/base/meson.build new file mode 100644 index 00000000..5e1716de --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/base/meson.build @@ -0,0 +1,37 @@ +# SPDX-License-Identifier: BSD-3-Clause +# Copyright(c) 2017 Intel Corporation + +sources = [ + 'e1000_80003es2lan.c', + 'e1000_82540.c', + 'e1000_82541.c', + 'e1000_82542.c', + 'e1000_82543.c', + 'e1000_82571.c', + 'e1000_82575.c', + 'e1000_api.c', + 'e1000_i210.c', + 'e1000_ich8lan.c', + 'e1000_mac.c', + 'e1000_manage.c', + 'e1000_mbx.c', + 'e1000_nvm.c', + 'e1000_osdep.c', + 'e1000_phy.c', + 'e1000_vf.c' +] + +error_cflags = ['-Wno-uninitialized', '-Wno-unused-parameter', + '-Wno-unused-variable', '-Wno-misleading-indentation', + '-Wno-implicit-fallthrough'] +c_args = cflags +foreach flag: error_cflags + if cc.has_argument(flag) + c_args += flag + endif +endforeach + +base_lib = static_library('e1000_base', sources, + dependencies: static_rte_eal, + c_args: c_args) +base_objs = base_lib.extract_all_objects() diff --git a/src/spdk/dpdk/drivers/net/e1000/e1000_ethdev.h b/src/spdk/dpdk/drivers/net/e1000/e1000_ethdev.h new file mode 100644 index 00000000..902001f3 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/e1000_ethdev.h @@ -0,0 +1,517 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2010-2015 Intel Corporation + */ + +#ifndef _E1000_ETHDEV_H_ +#define _E1000_ETHDEV_H_ + +#include <stdint.h> + +#include <rte_flow.h> +#include <rte_time.h> +#include <rte_pci.h> + +#define E1000_INTEL_VENDOR_ID 0x8086 + +/* need update link, bit flag */ +#define E1000_FLAG_NEED_LINK_UPDATE (uint32_t)(1 << 0) +#define E1000_FLAG_MAILBOX (uint32_t)(1 << 1) + +/* + * Defines that were not part of e1000_hw.h as they are not used by the FreeBSD + * driver. + */ +#define E1000_ADVTXD_POPTS_TXSM 0x00000200 /* L4 Checksum offload request */ +#define E1000_ADVTXD_POPTS_IXSM 0x00000100 /* IP Checksum offload request */ +#define E1000_ADVTXD_TUCMD_L4T_RSV 0x00001800 /* L4 Packet TYPE of Reserved */ +#define E1000_RXD_STAT_TMST 0x10000 /* Timestamped Packet indication */ +#define E1000_RXD_ERR_CKSUM_BIT 29 +#define E1000_RXD_ERR_CKSUM_MSK 3 +#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Bit shift for l2_len */ +#define E1000_CTRL_EXT_EXTEND_VLAN (1<<26) /* EXTENDED VLAN */ +#define IGB_VFTA_SIZE 128 + +#define IGB_HKEY_MAX_INDEX 10 +#define IGB_MAX_RX_QUEUE_NUM 8 +#define IGB_MAX_RX_QUEUE_NUM_82576 16 + +#define E1000_SYN_FILTER_ENABLE 0x00000001 /* syn filter enable field */ +#define E1000_SYN_FILTER_QUEUE 0x0000000E /* syn filter queue field */ +#define E1000_SYN_FILTER_QUEUE_SHIFT 1 /* syn filter queue field */ +#define E1000_RFCTL_SYNQFP 0x00080000 /* SYNQFP in RFCTL register */ + +#define E1000_ETQF_ETHERTYPE 0x0000FFFF +#define E1000_ETQF_QUEUE 0x00070000 +#define E1000_ETQF_QUEUE_SHIFT 16 +#define E1000_MAX_ETQF_FILTERS 8 + +#define E1000_IMIR_DSTPORT 0x0000FFFF +#define E1000_IMIR_PRIORITY 0xE0000000 +#define E1000_MAX_TTQF_FILTERS 8 +#define E1000_2TUPLE_MAX_PRI 7 + +#define E1000_MAX_FLEX_FILTERS 8 +#define E1000_MAX_FHFT 4 +#define E1000_MAX_FHFT_EXT 4 +#define E1000_FHFT_SIZE_IN_DWD 64 +#define E1000_MAX_FLEX_FILTER_PRI 7 +#define E1000_MAX_FLEX_FILTER_LEN 128 +#define E1000_MAX_FLEX_FILTER_DWDS \ + (E1000_MAX_FLEX_FILTER_LEN / sizeof(uint32_t)) +#define E1000_FLEX_FILTERS_MASK_SIZE \ + (E1000_MAX_FLEX_FILTER_DWDS / 2) +#define E1000_FHFT_QUEUEING_LEN 0x0000007F +#define E1000_FHFT_QUEUEING_QUEUE 0x00000700 +#define E1000_FHFT_QUEUEING_PRIO 0x00070000 +#define E1000_FHFT_QUEUEING_OFFSET 0xFC +#define E1000_FHFT_QUEUEING_QUEUE_SHIFT 8 +#define E1000_FHFT_QUEUEING_PRIO_SHIFT 16 +#define E1000_WUFC_FLEX_HQ 0x00004000 + +#define E1000_SPQF_SRCPORT 0x0000FFFF + +#define E1000_MAX_FTQF_FILTERS 8 +#define E1000_FTQF_PROTOCOL_MASK 0x000000FF +#define E1000_FTQF_5TUPLE_MASK_SHIFT 28 +#define E1000_FTQF_QUEUE_MASK 0x03ff0000 +#define E1000_FTQF_QUEUE_SHIFT 16 +#define E1000_FTQF_QUEUE_ENABLE 0x00000100 + +#define IGB_RSS_OFFLOAD_ALL ( \ + ETH_RSS_IPV4 | \ + ETH_RSS_NONFRAG_IPV4_TCP | \ + ETH_RSS_NONFRAG_IPV4_UDP | \ + ETH_RSS_IPV6 | \ + ETH_RSS_NONFRAG_IPV6_TCP | \ + ETH_RSS_NONFRAG_IPV6_UDP | \ + ETH_RSS_IPV6_EX | \ + ETH_RSS_IPV6_TCP_EX | \ + ETH_RSS_IPV6_UDP_EX) + +/* + * Maximum number of Ring Descriptors. + * + * Since RDLEN/TDLEN should be multiple of 128 bytes, the number of ring + * desscriptors should meet the following condition: + * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0 + */ +#define E1000_MIN_RING_DESC 32 +#define E1000_MAX_RING_DESC 4096 + +/* + * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be + * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. + * This will also optimize cache line size effect. + * H/W supports up to cache line size 128. + */ +#define E1000_ALIGN 128 + +#define IGB_RXD_ALIGN (E1000_ALIGN / sizeof(union e1000_adv_rx_desc)) +#define IGB_TXD_ALIGN (E1000_ALIGN / sizeof(union e1000_adv_tx_desc)) + +#define EM_RXD_ALIGN (E1000_ALIGN / sizeof(struct e1000_rx_desc)) +#define EM_TXD_ALIGN (E1000_ALIGN / sizeof(struct e1000_data_desc)) + +#define E1000_MISC_VEC_ID RTE_INTR_VEC_ZERO_OFFSET +#define E1000_RX_VEC_START RTE_INTR_VEC_RXTX_OFFSET + +#define IGB_TX_MAX_SEG UINT8_MAX +#define IGB_TX_MAX_MTU_SEG UINT8_MAX +#define EM_TX_MAX_SEG UINT8_MAX +#define EM_TX_MAX_MTU_SEG UINT8_MAX + +#define MAC_TYPE_FILTER_SUP(type) do {\ + if ((type) != e1000_82580 && (type) != e1000_i350 &&\ + (type) != e1000_82576 && (type) != e1000_i210 &&\ + (type) != e1000_i211)\ + return -ENOTSUP;\ +} while (0) + +#define MAC_TYPE_FILTER_SUP_EXT(type) do {\ + if ((type) != e1000_82580 && (type) != e1000_i350 &&\ + (type) != e1000_i210 && (type) != e1000_i211)\ + return -ENOTSUP; \ +} while (0) + +/* structure for interrupt relative data */ +struct e1000_interrupt { + uint32_t flags; + uint32_t mask; +}; + +/* local vfta copy */ +struct e1000_vfta { + uint32_t vfta[IGB_VFTA_SIZE]; +}; + +/* + * VF data which used by PF host only + */ +#define E1000_MAX_VF_MC_ENTRIES 30 +struct e1000_vf_info { + uint8_t vf_mac_addresses[ETHER_ADDR_LEN]; + uint16_t vf_mc_hashes[E1000_MAX_VF_MC_ENTRIES]; + uint16_t num_vf_mc_hashes; + uint16_t default_vf_vlan_id; + uint16_t vlans_enabled; + uint16_t pf_qos; + uint16_t vlan_count; + uint16_t tx_rate; +}; + +TAILQ_HEAD(e1000_flex_filter_list, e1000_flex_filter); + +struct e1000_flex_filter_info { + uint16_t len; + uint32_t dwords[E1000_MAX_FLEX_FILTER_DWDS]; /* flex bytes in dword. */ + /* if mask bit is 1b, do not compare corresponding byte in dwords. */ + uint8_t mask[E1000_FLEX_FILTERS_MASK_SIZE]; + uint8_t priority; +}; + +/* Flex filter structure */ +struct e1000_flex_filter { + TAILQ_ENTRY(e1000_flex_filter) entries; + uint16_t index; /* index of flex filter */ + struct e1000_flex_filter_info filter_info; + uint16_t queue; /* rx queue assigned to */ +}; + +TAILQ_HEAD(e1000_5tuple_filter_list, e1000_5tuple_filter); +TAILQ_HEAD(e1000_2tuple_filter_list, e1000_2tuple_filter); + +struct e1000_5tuple_filter_info { + uint32_t dst_ip; + uint32_t src_ip; + uint16_t dst_port; + uint16_t src_port; + uint8_t proto; /* l4 protocol. */ + /* the packet matched above 5tuple and contain any set bit will hit this filter. */ + uint8_t tcp_flags; + uint8_t priority; /* seven levels (001b-111b), 111b is highest, + used when more than one filter matches. */ + uint8_t dst_ip_mask:1, /* if mask is 1b, do not compare dst ip. */ + src_ip_mask:1, /* if mask is 1b, do not compare src ip. */ + dst_port_mask:1, /* if mask is 1b, do not compare dst port. */ + src_port_mask:1, /* if mask is 1b, do not compare src port. */ + proto_mask:1; /* if mask is 1b, do not compare protocol. */ +}; + +struct e1000_2tuple_filter_info { + uint16_t dst_port; + uint8_t proto; /* l4 protocol. */ + /* the packet matched above 2tuple and contain any set bit will hit this filter. */ + uint8_t tcp_flags; + uint8_t priority; /* seven levels (001b-111b), 111b is highest, + used when more than one filter matches. */ + uint8_t dst_ip_mask:1, /* if mask is 1b, do not compare dst ip. */ + src_ip_mask:1, /* if mask is 1b, do not compare src ip. */ + dst_port_mask:1, /* if mask is 1b, do not compare dst port. */ + src_port_mask:1, /* if mask is 1b, do not compare src port. */ + proto_mask:1; /* if mask is 1b, do not compare protocol. */ +}; + +/* 5tuple filter structure */ +struct e1000_5tuple_filter { + TAILQ_ENTRY(e1000_5tuple_filter) entries; + uint16_t index; /* the index of 5tuple filter */ + struct e1000_5tuple_filter_info filter_info; + uint16_t queue; /* rx queue assigned to */ +}; + +/* 2tuple filter structure */ +struct e1000_2tuple_filter { + TAILQ_ENTRY(e1000_2tuple_filter) entries; + uint16_t index; /* the index of 2tuple filter */ + struct e1000_2tuple_filter_info filter_info; + uint16_t queue; /* rx queue assigned to */ +}; + +/* ethertype filter structure */ +struct igb_ethertype_filter { + uint16_t ethertype; + uint32_t etqf; +}; + +struct igb_rte_flow_rss_conf { + struct rte_flow_action_rss conf; /**< RSS parameters. */ + uint8_t key[IGB_HKEY_MAX_INDEX * sizeof(uint32_t)]; /* Hash key. */ + uint16_t queue[IGB_MAX_RX_QUEUE_NUM]; /**< Queues indices to use. */ +}; + +/* + * Structure to store filters'info. + */ +struct e1000_filter_info { + uint8_t ethertype_mask; /* Bit mask for every used ethertype filter */ + /* store used ethertype filters*/ + struct igb_ethertype_filter ethertype_filters[E1000_MAX_ETQF_FILTERS]; + uint8_t flex_mask; /* Bit mask for every used flex filter */ + struct e1000_flex_filter_list flex_list; + /* Bit mask for every used 5tuple filter */ + uint8_t fivetuple_mask; + struct e1000_5tuple_filter_list fivetuple_list; + /* Bit mask for every used 2tuple filter */ + uint8_t twotuple_mask; + struct e1000_2tuple_filter_list twotuple_list; + /* store the SYN filter info */ + uint32_t syn_info; + /* store the rss filter info */ + struct igb_rte_flow_rss_conf rss_info; +}; + +/* + * Structure to store private data for each driver instance (for each port). + */ +struct e1000_adapter { + struct e1000_hw hw; + struct e1000_hw_stats stats; + struct e1000_interrupt intr; + struct e1000_vfta shadow_vfta; + struct e1000_vf_info *vfdata; + struct e1000_filter_info filter; + bool stopped; + struct rte_timecounter systime_tc; + struct rte_timecounter rx_tstamp_tc; + struct rte_timecounter tx_tstamp_tc; +}; + +#define E1000_DEV_PRIVATE(adapter) \ + ((struct e1000_adapter *)adapter) + +#define E1000_DEV_PRIVATE_TO_HW(adapter) \ + (&((struct e1000_adapter *)adapter)->hw) + +#define E1000_DEV_PRIVATE_TO_STATS(adapter) \ + (&((struct e1000_adapter *)adapter)->stats) + +#define E1000_DEV_PRIVATE_TO_INTR(adapter) \ + (&((struct e1000_adapter *)adapter)->intr) + +#define E1000_DEV_PRIVATE_TO_VFTA(adapter) \ + (&((struct e1000_adapter *)adapter)->shadow_vfta) + +#define E1000_DEV_PRIVATE_TO_P_VFDATA(adapter) \ + (&((struct e1000_adapter *)adapter)->vfdata) + +#define E1000_DEV_PRIVATE_TO_FILTER_INFO(adapter) \ + (&((struct e1000_adapter *)adapter)->filter) + +struct rte_flow { + enum rte_filter_type filter_type; + void *rule; +}; + +/* ntuple filter list structure */ +struct igb_ntuple_filter_ele { + TAILQ_ENTRY(igb_ntuple_filter_ele) entries; + struct rte_eth_ntuple_filter filter_info; +}; + +/* ethertype filter list structure */ +struct igb_ethertype_filter_ele { + TAILQ_ENTRY(igb_ethertype_filter_ele) entries; + struct rte_eth_ethertype_filter filter_info; +}; + +/* syn filter list structure */ +struct igb_eth_syn_filter_ele { + TAILQ_ENTRY(igb_eth_syn_filter_ele) entries; + struct rte_eth_syn_filter filter_info; +}; + +/* flex filter list structure */ +struct igb_flex_filter_ele { + TAILQ_ENTRY(igb_flex_filter_ele) entries; + struct rte_eth_flex_filter filter_info; +}; + +/* rss filter list structure */ +struct igb_rss_conf_ele { + TAILQ_ENTRY(igb_rss_conf_ele) entries; + struct igb_rte_flow_rss_conf filter_info; +}; + +/* igb_flow memory list structure */ +struct igb_flow_mem { + TAILQ_ENTRY(igb_flow_mem) entries; + struct rte_flow *flow; + struct rte_eth_dev *dev; +}; + +TAILQ_HEAD(igb_ntuple_filter_list, igb_ntuple_filter_ele); +struct igb_ntuple_filter_list igb_filter_ntuple_list; +TAILQ_HEAD(igb_ethertype_filter_list, igb_ethertype_filter_ele); +struct igb_ethertype_filter_list igb_filter_ethertype_list; +TAILQ_HEAD(igb_syn_filter_list, igb_eth_syn_filter_ele); +struct igb_syn_filter_list igb_filter_syn_list; +TAILQ_HEAD(igb_flex_filter_list, igb_flex_filter_ele); +struct igb_flex_filter_list igb_filter_flex_list; +TAILQ_HEAD(igb_rss_filter_list, igb_rss_conf_ele); +struct igb_rss_filter_list igb_filter_rss_list; +TAILQ_HEAD(igb_flow_mem_list, igb_flow_mem); +struct igb_flow_mem_list igb_flow_list; + +extern const struct rte_flow_ops igb_flow_ops; + +/* + * RX/TX IGB function prototypes + */ +void eth_igb_tx_queue_release(void *txq); +void eth_igb_rx_queue_release(void *rxq); +void igb_dev_clear_queues(struct rte_eth_dev *dev); +void igb_dev_free_queues(struct rte_eth_dev *dev); + +uint64_t igb_get_rx_port_offloads_capa(struct rte_eth_dev *dev); +uint64_t igb_get_rx_queue_offloads_capa(struct rte_eth_dev *dev); + +int eth_igb_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, + uint16_t nb_rx_desc, unsigned int socket_id, + const struct rte_eth_rxconf *rx_conf, + struct rte_mempool *mb_pool); + +uint32_t eth_igb_rx_queue_count(struct rte_eth_dev *dev, + uint16_t rx_queue_id); + +int eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset); + +int eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset); +int eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset); + +uint64_t igb_get_tx_port_offloads_capa(struct rte_eth_dev *dev); +uint64_t igb_get_tx_queue_offloads_capa(struct rte_eth_dev *dev); + +int eth_igb_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, + uint16_t nb_tx_desc, unsigned int socket_id, + const struct rte_eth_txconf *tx_conf); + +int eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt); + +int eth_igb_rx_init(struct rte_eth_dev *dev); + +void eth_igb_tx_init(struct rte_eth_dev *dev); + +uint16_t eth_igb_xmit_pkts(void *txq, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts); + +uint16_t eth_igb_prep_pkts(void *txq, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts); + +uint16_t eth_igb_recv_pkts(void *rxq, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); + +uint16_t eth_igb_recv_scattered_pkts(void *rxq, + struct rte_mbuf **rx_pkts, uint16_t nb_pkts); + +int eth_igb_rss_hash_update(struct rte_eth_dev *dev, + struct rte_eth_rss_conf *rss_conf); + +int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev, + struct rte_eth_rss_conf *rss_conf); + +int eth_igbvf_rx_init(struct rte_eth_dev *dev); + +void eth_igbvf_tx_init(struct rte_eth_dev *dev); + +/* + * misc function prototypes + */ +void igb_pf_host_init(struct rte_eth_dev *eth_dev); + +void igb_pf_mbx_process(struct rte_eth_dev *eth_dev); + +int igb_pf_host_configure(struct rte_eth_dev *eth_dev); + +void igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_rxq_info *qinfo); + +void igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_txq_info *qinfo); + +uint32_t em_get_max_pktlen(struct rte_eth_dev *dev); + +/* + * RX/TX EM function prototypes + */ +void eth_em_tx_queue_release(void *txq); +void eth_em_rx_queue_release(void *rxq); + +void em_dev_clear_queues(struct rte_eth_dev *dev); +void em_dev_free_queues(struct rte_eth_dev *dev); + +uint64_t em_get_rx_port_offloads_capa(struct rte_eth_dev *dev); +uint64_t em_get_rx_queue_offloads_capa(struct rte_eth_dev *dev); + +int eth_em_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, + uint16_t nb_rx_desc, unsigned int socket_id, + const struct rte_eth_rxconf *rx_conf, + struct rte_mempool *mb_pool); + +uint32_t eth_em_rx_queue_count(struct rte_eth_dev *dev, + uint16_t rx_queue_id); + +int eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset); + +int eth_em_rx_descriptor_status(void *rx_queue, uint16_t offset); +int eth_em_tx_descriptor_status(void *tx_queue, uint16_t offset); + +uint64_t em_get_tx_port_offloads_capa(struct rte_eth_dev *dev); +uint64_t em_get_tx_queue_offloads_capa(struct rte_eth_dev *dev); + +int eth_em_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, + uint16_t nb_tx_desc, unsigned int socket_id, + const struct rte_eth_txconf *tx_conf); + +int eth_em_rx_init(struct rte_eth_dev *dev); + +void eth_em_tx_init(struct rte_eth_dev *dev); + +uint16_t eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts); + +uint16_t eth_em_prep_pkts(void *txq, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts); + +uint16_t eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); + +uint16_t eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); + +void em_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_rxq_info *qinfo); + +void em_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_txq_info *qinfo); + +void igb_pf_host_uninit(struct rte_eth_dev *dev); + +void igb_filterlist_flush(struct rte_eth_dev *dev); +int igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev, + struct e1000_5tuple_filter *filter); +int igb_delete_2tuple_filter(struct rte_eth_dev *dev, + struct e1000_2tuple_filter *filter); +void igb_remove_flex_filter(struct rte_eth_dev *dev, + struct e1000_flex_filter *filter); +int igb_ethertype_filter_remove(struct e1000_filter_info *filter_info, + uint8_t idx); +int igb_add_del_ntuple_filter(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *ntuple_filter, bool add); +int igb_add_del_ethertype_filter(struct rte_eth_dev *dev, + struct rte_eth_ethertype_filter *filter, + bool add); +int eth_igb_syn_filter_set(struct rte_eth_dev *dev, + struct rte_eth_syn_filter *filter, + bool add); +int eth_igb_add_del_flex_filter(struct rte_eth_dev *dev, + struct rte_eth_flex_filter *filter, + bool add); +int igb_rss_conf_init(struct igb_rte_flow_rss_conf *out, + const struct rte_flow_action_rss *in); +int igb_action_rss_same(const struct rte_flow_action_rss *comp, + const struct rte_flow_action_rss *with); +int igb_config_rss_filter(struct rte_eth_dev *dev, + struct igb_rte_flow_rss_conf *conf, + bool add); + +#endif /* _E1000_ETHDEV_H_ */ diff --git a/src/spdk/dpdk/drivers/net/e1000/e1000_logs.c b/src/spdk/dpdk/drivers/net/e1000/e1000_logs.c new file mode 100644 index 00000000..22173939 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/e1000_logs.c @@ -0,0 +1,26 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2018 Intel Corporation + */ + +#include "e1000_logs.h" + +/* declared as extern in e1000_logs.h */ +int e1000_logtype_init; +int e1000_logtype_driver; + +/* avoids double registering of logs if EM and IGB drivers are in use */ +static int e1000_log_initialized; + +void +e1000_igb_init_log(void) +{ + if (!e1000_log_initialized) { + e1000_logtype_init = rte_log_register("pmd.net.e1000.init"); + if (e1000_logtype_init >= 0) + rte_log_set_level(e1000_logtype_init, RTE_LOG_NOTICE); + e1000_logtype_driver = rte_log_register("pmd.net.e1000.driver"); + if (e1000_logtype_driver >= 0) + rte_log_set_level(e1000_logtype_driver, RTE_LOG_NOTICE); + e1000_log_initialized = 1; + } +} diff --git a/src/spdk/dpdk/drivers/net/e1000/e1000_logs.h b/src/spdk/dpdk/drivers/net/e1000/e1000_logs.h new file mode 100644 index 00000000..69d3d311 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/e1000_logs.h @@ -0,0 +1,50 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2010-2014 Intel Corporation + */ + +#ifndef _E1000_LOGS_H_ +#define _E1000_LOGS_H_ + +#include <rte_log.h> + +extern int e1000_logtype_init; +#define PMD_INIT_LOG(level, fmt, args...) \ + rte_log(RTE_LOG_ ## level, e1000_logtype_init, \ + "%s(): " fmt "\n", __func__, ##args) + +#define PMD_INIT_FUNC_TRACE() PMD_INIT_LOG(DEBUG, " >>") + +#ifdef RTE_LIBRTE_E1000_DEBUG_RX +#define PMD_RX_LOG(level, fmt, args...) \ + RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args) +#else +#define PMD_RX_LOG(level, fmt, args...) do { } while(0) +#endif + +#ifdef RTE_LIBRTE_E1000_DEBUG_TX +#define PMD_TX_LOG(level, fmt, args...) \ + RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args) +#else +#define PMD_TX_LOG(level, fmt, args...) do { } while(0) +#endif + +#ifdef RTE_LIBRTE_E1000_DEBUG_TX_FREE +#define PMD_TX_FREE_LOG(level, fmt, args...) \ + RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args) +#else +#define PMD_TX_FREE_LOG(level, fmt, args...) do { } while(0) +#endif + +extern int e1000_logtype_driver; +#define PMD_DRV_LOG_RAW(level, fmt, args...) \ + rte_log(RTE_LOG_ ## level, e1000_logtype_driver, "%s(): " fmt, \ + __func__, ## args) + +#define PMD_DRV_LOG(level, fmt, args...) \ + PMD_DRV_LOG_RAW(level, fmt "\n", ## args) + + +/* log init function shared by e1000 and igb drivers */ +void e1000_igb_init_log(void); + +#endif /* _E1000_LOGS_H_ */ diff --git a/src/spdk/dpdk/drivers/net/e1000/em_ethdev.c b/src/spdk/dpdk/drivers/net/e1000/em_ethdev.c new file mode 100644 index 00000000..053e855b --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/em_ethdev.c @@ -0,0 +1,1829 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2010-2016 Intel Corporation + */ + +#include <sys/queue.h> +#include <stdio.h> +#include <errno.h> +#include <stdint.h> +#include <stdarg.h> + +#include <rte_common.h> +#include <rte_interrupts.h> +#include <rte_byteorder.h> +#include <rte_debug.h> +#include <rte_pci.h> +#include <rte_bus_pci.h> +#include <rte_ether.h> +#include <rte_ethdev_driver.h> +#include <rte_ethdev_pci.h> +#include <rte_memory.h> +#include <rte_eal.h> +#include <rte_malloc.h> +#include <rte_dev.h> + +#include "e1000_logs.h" +#include "base/e1000_api.h" +#include "e1000_ethdev.h" + +#define EM_EIAC 0x000DC + +#define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y)) + + +static int eth_em_configure(struct rte_eth_dev *dev); +static int eth_em_start(struct rte_eth_dev *dev); +static void eth_em_stop(struct rte_eth_dev *dev); +static void eth_em_close(struct rte_eth_dev *dev); +static void eth_em_promiscuous_enable(struct rte_eth_dev *dev); +static void eth_em_promiscuous_disable(struct rte_eth_dev *dev); +static void eth_em_allmulticast_enable(struct rte_eth_dev *dev); +static void eth_em_allmulticast_disable(struct rte_eth_dev *dev); +static int eth_em_link_update(struct rte_eth_dev *dev, + int wait_to_complete); +static int eth_em_stats_get(struct rte_eth_dev *dev, + struct rte_eth_stats *rte_stats); +static void eth_em_stats_reset(struct rte_eth_dev *dev); +static void eth_em_infos_get(struct rte_eth_dev *dev, + struct rte_eth_dev_info *dev_info); +static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev, + struct rte_eth_fc_conf *fc_conf); +static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev, + struct rte_eth_fc_conf *fc_conf); +static int eth_em_interrupt_setup(struct rte_eth_dev *dev); +static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev); +static int eth_em_interrupt_get_status(struct rte_eth_dev *dev); +static int eth_em_interrupt_action(struct rte_eth_dev *dev, + struct rte_intr_handle *handle); +static void eth_em_interrupt_handler(void *param); + +static int em_hw_init(struct e1000_hw *hw); +static int em_hardware_init(struct e1000_hw *hw); +static void em_hw_control_acquire(struct e1000_hw *hw); +static void em_hw_control_release(struct e1000_hw *hw); +static void em_init_manageability(struct e1000_hw *hw); +static void em_release_manageability(struct e1000_hw *hw); + +static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); + +static int eth_em_vlan_filter_set(struct rte_eth_dev *dev, + uint16_t vlan_id, int on); +static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask); +static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev); +static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev); +static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev); +static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev); + +/* +static void eth_em_vlan_filter_set(struct rte_eth_dev *dev, + uint16_t vlan_id, int on); +*/ + +static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id); +static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id); +static void em_lsc_intr_disable(struct e1000_hw *hw); +static void em_rxq_intr_enable(struct e1000_hw *hw); +static void em_rxq_intr_disable(struct e1000_hw *hw); + +static int eth_em_led_on(struct rte_eth_dev *dev); +static int eth_em_led_off(struct rte_eth_dev *dev); + +static int em_get_rx_buffer_size(struct e1000_hw *hw); +static int eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr, + uint32_t index, uint32_t pool); +static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index); +static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev, + struct ether_addr *addr); + +static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev, + struct ether_addr *mc_addr_set, + uint32_t nb_mc_addr); + +#define EM_FC_PAUSE_TIME 0x0680 +#define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */ +#define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */ + +static enum e1000_fc_mode em_fc_setting = e1000_fc_full; + +/* + * The set of PCI devices this driver supports + */ +static const struct rte_pci_id pci_id_em_map[] = { + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) }, + { .vendor_id = 0, /* sentinel */ }, +}; + +static const struct eth_dev_ops eth_em_ops = { + .dev_configure = eth_em_configure, + .dev_start = eth_em_start, + .dev_stop = eth_em_stop, + .dev_close = eth_em_close, + .promiscuous_enable = eth_em_promiscuous_enable, + .promiscuous_disable = eth_em_promiscuous_disable, + .allmulticast_enable = eth_em_allmulticast_enable, + .allmulticast_disable = eth_em_allmulticast_disable, + .link_update = eth_em_link_update, + .stats_get = eth_em_stats_get, + .stats_reset = eth_em_stats_reset, + .dev_infos_get = eth_em_infos_get, + .mtu_set = eth_em_mtu_set, + .vlan_filter_set = eth_em_vlan_filter_set, + .vlan_offload_set = eth_em_vlan_offload_set, + .rx_queue_setup = eth_em_rx_queue_setup, + .rx_queue_release = eth_em_rx_queue_release, + .rx_queue_count = eth_em_rx_queue_count, + .rx_descriptor_done = eth_em_rx_descriptor_done, + .rx_descriptor_status = eth_em_rx_descriptor_status, + .tx_descriptor_status = eth_em_tx_descriptor_status, + .tx_queue_setup = eth_em_tx_queue_setup, + .tx_queue_release = eth_em_tx_queue_release, + .rx_queue_intr_enable = eth_em_rx_queue_intr_enable, + .rx_queue_intr_disable = eth_em_rx_queue_intr_disable, + .dev_led_on = eth_em_led_on, + .dev_led_off = eth_em_led_off, + .flow_ctrl_get = eth_em_flow_ctrl_get, + .flow_ctrl_set = eth_em_flow_ctrl_set, + .mac_addr_set = eth_em_default_mac_addr_set, + .mac_addr_add = eth_em_rar_set, + .mac_addr_remove = eth_em_rar_clear, + .set_mc_addr_list = eth_em_set_mc_addr_list, + .rxq_info_get = em_rxq_info_get, + .txq_info_get = em_txq_info_get, +}; + + +/** + * eth_em_dev_is_ich8 - Check for ICH8 device + * @hw: pointer to the HW structure + * + * return TRUE for ICH8, otherwise FALSE + **/ +static bool +eth_em_dev_is_ich8(struct e1000_hw *hw) +{ + DEBUGFUNC("eth_em_dev_is_ich8"); + + switch (hw->device_id) { + case E1000_DEV_ID_PCH2_LV_LM: + case E1000_DEV_ID_PCH_LPT_I217_LM: + case E1000_DEV_ID_PCH_LPT_I217_V: + case E1000_DEV_ID_PCH_LPTLP_I218_LM: + case E1000_DEV_ID_PCH_LPTLP_I218_V: + case E1000_DEV_ID_PCH_I218_V2: + case E1000_DEV_ID_PCH_I218_LM2: + case E1000_DEV_ID_PCH_I218_V3: + case E1000_DEV_ID_PCH_I218_LM3: + case E1000_DEV_ID_PCH_SPT_I219_LM: + case E1000_DEV_ID_PCH_SPT_I219_V: + case E1000_DEV_ID_PCH_SPT_I219_LM2: + case E1000_DEV_ID_PCH_SPT_I219_V2: + case E1000_DEV_ID_PCH_LBG_I219_LM3: + case E1000_DEV_ID_PCH_SPT_I219_LM4: + case E1000_DEV_ID_PCH_SPT_I219_V4: + case E1000_DEV_ID_PCH_SPT_I219_LM5: + case E1000_DEV_ID_PCH_SPT_I219_V5: + case E1000_DEV_ID_PCH_CNP_I219_LM6: + case E1000_DEV_ID_PCH_CNP_I219_V6: + case E1000_DEV_ID_PCH_CNP_I219_LM7: + case E1000_DEV_ID_PCH_CNP_I219_V7: + return 1; + default: + return 0; + } +} + +static int +eth_em_dev_init(struct rte_eth_dev *eth_dev) +{ + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(eth_dev->data->dev_private); + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); + struct e1000_vfta * shadow_vfta = + E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private); + + eth_dev->dev_ops = ð_em_ops; + eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts; + eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts; + eth_dev->tx_pkt_prepare = (eth_tx_prep_t)ð_em_prep_pkts; + + /* for secondary processes, we don't initialise any further as primary + * has already done this work. Only check we don't need a different + * RX function */ + if (rte_eal_process_type() != RTE_PROC_PRIMARY){ + if (eth_dev->data->scattered_rx) + eth_dev->rx_pkt_burst = + (eth_rx_burst_t)ð_em_recv_scattered_pkts; + return 0; + } + + rte_eth_copy_pci_info(eth_dev, pci_dev); + + hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; + hw->device_id = pci_dev->id.device_id; + adapter->stopped = 0; + + /* For ICH8 support we'll need to map the flash memory BAR */ + if (eth_em_dev_is_ich8(hw)) + hw->flash_address = (void *)pci_dev->mem_resource[1].addr; + + if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS || + em_hw_init(hw) != 0) { + PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: " + "failed to init HW", + eth_dev->data->port_id, pci_dev->id.vendor_id, + pci_dev->id.device_id); + return -ENODEV; + } + + /* Allocate memory for storing MAC addresses */ + eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN * + hw->mac.rar_entry_count, 0); + if (eth_dev->data->mac_addrs == NULL) { + PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to " + "store MAC addresses", + ETHER_ADDR_LEN * hw->mac.rar_entry_count); + return -ENOMEM; + } + + /* Copy the permanent MAC address */ + ether_addr_copy((struct ether_addr *) hw->mac.addr, + eth_dev->data->mac_addrs); + + /* initialize the vfta */ + memset(shadow_vfta, 0, sizeof(*shadow_vfta)); + + PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x", + eth_dev->data->port_id, pci_dev->id.vendor_id, + pci_dev->id.device_id); + + rte_intr_callback_register(intr_handle, + eth_em_interrupt_handler, eth_dev); + + return 0; +} + +static int +eth_em_dev_uninit(struct rte_eth_dev *eth_dev) +{ + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(eth_dev->data->dev_private); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + + PMD_INIT_FUNC_TRACE(); + + if (rte_eal_process_type() != RTE_PROC_PRIMARY) + return -EPERM; + + if (adapter->stopped == 0) + eth_em_close(eth_dev); + + eth_dev->dev_ops = NULL; + eth_dev->rx_pkt_burst = NULL; + eth_dev->tx_pkt_burst = NULL; + + rte_free(eth_dev->data->mac_addrs); + eth_dev->data->mac_addrs = NULL; + + /* disable uio intr before callback unregister */ + rte_intr_disable(intr_handle); + rte_intr_callback_unregister(intr_handle, + eth_em_interrupt_handler, eth_dev); + + return 0; +} + +static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, + struct rte_pci_device *pci_dev) +{ + return rte_eth_dev_pci_generic_probe(pci_dev, + sizeof(struct e1000_adapter), eth_em_dev_init); +} + +static int eth_em_pci_remove(struct rte_pci_device *pci_dev) +{ + return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit); +} + +static struct rte_pci_driver rte_em_pmd = { + .id_table = pci_id_em_map, + .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC | + RTE_PCI_DRV_IOVA_AS_VA, + .probe = eth_em_pci_probe, + .remove = eth_em_pci_remove, +}; + +static int +em_hw_init(struct e1000_hw *hw) +{ + int diag; + + diag = hw->mac.ops.init_params(hw); + if (diag != 0) { + PMD_INIT_LOG(ERR, "MAC Initialization Error"); + return diag; + } + diag = hw->nvm.ops.init_params(hw); + if (diag != 0) { + PMD_INIT_LOG(ERR, "NVM Initialization Error"); + return diag; + } + diag = hw->phy.ops.init_params(hw); + if (diag != 0) { + PMD_INIT_LOG(ERR, "PHY Initialization Error"); + return diag; + } + (void) e1000_get_bus_info(hw); + + hw->mac.autoneg = 1; + hw->phy.autoneg_wait_to_complete = 0; + hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; + + e1000_init_script_state_82541(hw, TRUE); + e1000_set_tbi_compatibility_82543(hw, TRUE); + + /* Copper options */ + if (hw->phy.media_type == e1000_media_type_copper) { + hw->phy.mdix = 0; /* AUTO_ALL_MODES */ + hw->phy.disable_polarity_correction = 0; + hw->phy.ms_type = e1000_ms_hw_default; + } + + /* + * Start from a known state, this is important in reading the nvm + * and mac from that. + */ + e1000_reset_hw(hw); + + /* Make sure we have a good EEPROM before we read from it */ + if (e1000_validate_nvm_checksum(hw) < 0) { + /* + * Some PCI-E parts fail the first check due to + * the link being in sleep state, call it again, + * if it fails a second time its a real issue. + */ + diag = e1000_validate_nvm_checksum(hw); + if (diag < 0) { + PMD_INIT_LOG(ERR, "EEPROM checksum invalid"); + goto error; + } + } + + /* Read the permanent MAC address out of the EEPROM */ + diag = e1000_read_mac_addr(hw); + if (diag != 0) { + PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address"); + goto error; + } + + /* Now initialize the hardware */ + diag = em_hardware_init(hw); + if (diag != 0) { + PMD_INIT_LOG(ERR, "Hardware initialization failed"); + goto error; + } + + hw->mac.get_link_status = 1; + + /* Indicate SOL/IDER usage */ + diag = e1000_check_reset_block(hw); + if (diag < 0) { + PMD_INIT_LOG(ERR, "PHY reset is blocked due to " + "SOL/IDER session"); + } + return 0; + +error: + em_hw_control_release(hw); + return diag; +} + +static int +eth_em_configure(struct rte_eth_dev *dev) +{ + struct e1000_interrupt *intr = + E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); + + PMD_INIT_FUNC_TRACE(); + intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; + + PMD_INIT_FUNC_TRACE(); + + return 0; +} + +static void +em_set_pba(struct e1000_hw *hw) +{ + uint32_t pba; + + /* + * Packet Buffer Allocation (PBA) + * Writing PBA sets the receive portion of the buffer + * the remainder is used for the transmit buffer. + * Devices before the 82547 had a Packet Buffer of 64K. + * After the 82547 the buffer was reduced to 40K. + */ + switch (hw->mac.type) { + case e1000_82547: + case e1000_82547_rev_2: + /* 82547: Total Packet Buffer is 40K */ + pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */ + break; + case e1000_82571: + case e1000_82572: + case e1000_80003es2lan: + pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ + break; + case e1000_82573: /* 82573: Total Packet Buffer is 32K */ + pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ + break; + case e1000_82574: + case e1000_82583: + pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ + break; + case e1000_ich8lan: + pba = E1000_PBA_8K; + break; + case e1000_ich9lan: + case e1000_ich10lan: + pba = E1000_PBA_10K; + break; + case e1000_pchlan: + case e1000_pch2lan: + case e1000_pch_lpt: + case e1000_pch_spt: + case e1000_pch_cnp: + pba = E1000_PBA_26K; + break; + default: + pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ + } + + E1000_WRITE_REG(hw, E1000_PBA, pba); +} + +static void +eth_em_rxtx_control(struct rte_eth_dev *dev, + bool enable) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t tctl, rctl; + + tctl = E1000_READ_REG(hw, E1000_TCTL); + rctl = E1000_READ_REG(hw, E1000_RCTL); + if (enable) { + /* enable Tx/Rx */ + tctl |= E1000_TCTL_EN; + rctl |= E1000_RCTL_EN; + } else { + /* disable Tx/Rx */ + tctl &= ~E1000_TCTL_EN; + rctl &= ~E1000_RCTL_EN; + } + E1000_WRITE_REG(hw, E1000_TCTL, tctl); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + E1000_WRITE_FLUSH(hw); +} + +static int +eth_em_start(struct rte_eth_dev *dev) +{ + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(dev->data->dev_private); + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + int ret, mask; + uint32_t intr_vector = 0; + uint32_t *speeds; + int num_speeds; + bool autoneg; + + PMD_INIT_FUNC_TRACE(); + + eth_em_stop(dev); + + e1000_power_up_phy(hw); + + /* Set default PBA value */ + em_set_pba(hw); + + /* Put the address into the Receive Address Array */ + e1000_rar_set(hw, hw->mac.addr, 0); + + /* + * With the 82571 adapter, RAR[0] may be overwritten + * when the other port is reset, we make a duplicate + * in RAR[14] for that eventuality, this assures + * the interface continues to function. + */ + if (hw->mac.type == e1000_82571) { + e1000_set_laa_state_82571(hw, TRUE); + e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1); + } + + /* Initialize the hardware */ + if (em_hardware_init(hw)) { + PMD_INIT_LOG(ERR, "Unable to initialize the hardware"); + return -EIO; + } + + E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN); + + /* Configure for OS presence */ + em_init_manageability(hw); + + if (dev->data->dev_conf.intr_conf.rxq != 0) { + intr_vector = dev->data->nb_rx_queues; + if (rte_intr_efd_enable(intr_handle, intr_vector)) + return -1; + } + + if (rte_intr_dp_is_en(intr_handle)) { + intr_handle->intr_vec = + rte_zmalloc("intr_vec", + dev->data->nb_rx_queues * sizeof(int), 0); + if (intr_handle->intr_vec == NULL) { + PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues" + " intr_vec", dev->data->nb_rx_queues); + return -ENOMEM; + } + + /* enable rx interrupt */ + em_rxq_intr_enable(hw); + } + + eth_em_tx_init(dev); + + ret = eth_em_rx_init(dev); + if (ret) { + PMD_INIT_LOG(ERR, "Unable to initialize RX hardware"); + em_dev_clear_queues(dev); + return ret; + } + + e1000_clear_hw_cntrs_base_generic(hw); + + mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \ + ETH_VLAN_EXTEND_MASK; + ret = eth_em_vlan_offload_set(dev, mask); + if (ret) { + PMD_INIT_LOG(ERR, "Unable to update vlan offload"); + em_dev_clear_queues(dev); + return ret; + } + + /* Set Interrupt Throttling Rate to maximum allowed value. */ + E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX); + + /* Setup link speed and duplex */ + speeds = &dev->data->dev_conf.link_speeds; + if (*speeds == ETH_LINK_SPEED_AUTONEG) { + hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; + hw->mac.autoneg = 1; + } else { + num_speeds = 0; + autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0; + + /* Reset */ + hw->phy.autoneg_advertised = 0; + + if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M | + ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M | + ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) { + num_speeds = -1; + goto error_invalid_config; + } + if (*speeds & ETH_LINK_SPEED_10M_HD) { + hw->phy.autoneg_advertised |= ADVERTISE_10_HALF; + num_speeds++; + } + if (*speeds & ETH_LINK_SPEED_10M) { + hw->phy.autoneg_advertised |= ADVERTISE_10_FULL; + num_speeds++; + } + if (*speeds & ETH_LINK_SPEED_100M_HD) { + hw->phy.autoneg_advertised |= ADVERTISE_100_HALF; + num_speeds++; + } + if (*speeds & ETH_LINK_SPEED_100M) { + hw->phy.autoneg_advertised |= ADVERTISE_100_FULL; + num_speeds++; + } + if (*speeds & ETH_LINK_SPEED_1G) { + hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL; + num_speeds++; + } + if (num_speeds == 0 || (!autoneg && (num_speeds > 1))) + goto error_invalid_config; + + /* Set/reset the mac.autoneg based on the link speed, + * fixed or not + */ + if (!autoneg) { + hw->mac.autoneg = 0; + hw->mac.forced_speed_duplex = + hw->phy.autoneg_advertised; + } else { + hw->mac.autoneg = 1; + } + } + + e1000_setup_link(hw); + + if (rte_intr_allow_others(intr_handle)) { + /* check if lsc interrupt is enabled */ + if (dev->data->dev_conf.intr_conf.lsc != 0) { + ret = eth_em_interrupt_setup(dev); + if (ret) { + PMD_INIT_LOG(ERR, "Unable to setup interrupts"); + em_dev_clear_queues(dev); + return ret; + } + } + } else { + rte_intr_callback_unregister(intr_handle, + eth_em_interrupt_handler, + (void *)dev); + if (dev->data->dev_conf.intr_conf.lsc != 0) + PMD_INIT_LOG(INFO, "lsc won't enable because of" + " no intr multiplexn"); + } + /* check if rxq interrupt is enabled */ + if (dev->data->dev_conf.intr_conf.rxq != 0) + eth_em_rxq_interrupt_setup(dev); + + rte_intr_enable(intr_handle); + + adapter->stopped = 0; + + eth_em_rxtx_control(dev, true); + eth_em_link_update(dev, 0); + + PMD_INIT_LOG(DEBUG, "<<"); + + return 0; + +error_invalid_config: + PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u", + dev->data->dev_conf.link_speeds, dev->data->port_id); + em_dev_clear_queues(dev); + return -EINVAL; +} + +/********************************************************************* + * + * This routine disables all traffic on the adapter by issuing a + * global reset on the MAC. + * + **********************************************************************/ +static void +eth_em_stop(struct rte_eth_dev *dev) +{ + struct rte_eth_link link; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + + eth_em_rxtx_control(dev, false); + em_rxq_intr_disable(hw); + em_lsc_intr_disable(hw); + + e1000_reset_hw(hw); + if (hw->mac.type >= e1000_82544) + E1000_WRITE_REG(hw, E1000_WUC, 0); + + /* Power down the phy. Needed to make the link go down */ + e1000_power_down_phy(hw); + + em_dev_clear_queues(dev); + + /* clear the recorded link status */ + memset(&link, 0, sizeof(link)); + rte_eth_linkstatus_set(dev, &link); + + if (!rte_intr_allow_others(intr_handle)) + /* resume to the default handler */ + rte_intr_callback_register(intr_handle, + eth_em_interrupt_handler, + (void *)dev); + + /* Clean datapath event and queue/vec mapping */ + rte_intr_efd_disable(intr_handle); + if (intr_handle->intr_vec != NULL) { + rte_free(intr_handle->intr_vec); + intr_handle->intr_vec = NULL; + } +} + +static void +eth_em_close(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(dev->data->dev_private); + + eth_em_stop(dev); + adapter->stopped = 1; + em_dev_free_queues(dev); + e1000_phy_hw_reset(hw); + em_release_manageability(hw); + em_hw_control_release(hw); +} + +static int +em_get_rx_buffer_size(struct e1000_hw *hw) +{ + uint32_t rx_buf_size; + + rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10); + return rx_buf_size; +} + +/********************************************************************* + * + * Initialize the hardware + * + **********************************************************************/ +static int +em_hardware_init(struct e1000_hw *hw) +{ + uint32_t rx_buf_size; + int diag; + + /* Issue a global reset */ + e1000_reset_hw(hw); + + /* Let the firmware know the OS is in control */ + em_hw_control_acquire(hw); + + /* + * These parameters control the automatic generation (Tx) and + * response (Rx) to Ethernet PAUSE frames. + * - High water mark should allow for at least two standard size (1518) + * frames to be received after sending an XOFF. + * - Low water mark works best when it is very near the high water mark. + * This allows the receiver to restart by sending XON when it has + * drained a bit. Here we use an arbitrary value of 1500 which will + * restart after one full frame is pulled from the buffer. There + * could be several smaller frames in the buffer and if so they will + * not trigger the XON until their total number reduces the buffer + * by 1500. + * - The pause time is fairly large at 1000 x 512ns = 512 usec. + */ + rx_buf_size = em_get_rx_buffer_size(hw); + + hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024); + hw->fc.low_water = hw->fc.high_water - 1500; + + if (hw->mac.type == e1000_80003es2lan) + hw->fc.pause_time = UINT16_MAX; + else + hw->fc.pause_time = EM_FC_PAUSE_TIME; + + hw->fc.send_xon = 1; + + /* Set Flow control, use the tunable location if sane */ + if (em_fc_setting <= e1000_fc_full) + hw->fc.requested_mode = em_fc_setting; + else + hw->fc.requested_mode = e1000_fc_none; + + /* Workaround: no TX flow ctrl for PCH */ + if (hw->mac.type == e1000_pchlan) + hw->fc.requested_mode = e1000_fc_rx_pause; + + /* Override - settings for PCH2LAN, ya its magic :) */ + if (hw->mac.type == e1000_pch2lan) { + hw->fc.high_water = 0x5C20; + hw->fc.low_water = 0x5048; + hw->fc.pause_time = 0x0650; + hw->fc.refresh_time = 0x0400; + } else if (hw->mac.type == e1000_pch_lpt || + hw->mac.type == e1000_pch_spt || + hw->mac.type == e1000_pch_cnp) { + hw->fc.requested_mode = e1000_fc_full; + } + + diag = e1000_init_hw(hw); + if (diag < 0) + return diag; + e1000_check_for_link(hw); + return 0; +} + +/* This function is based on em_update_stats_counters() in e1000/if_em.c */ +static int +eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_hw_stats *stats = + E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); + int pause_frames; + + if(hw->phy.media_type == e1000_media_type_copper || + (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { + stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS); + stats->sec += E1000_READ_REG(hw, E1000_SEC); + } + + stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS); + stats->mpc += E1000_READ_REG(hw, E1000_MPC); + stats->scc += E1000_READ_REG(hw, E1000_SCC); + stats->ecol += E1000_READ_REG(hw, E1000_ECOL); + + stats->mcc += E1000_READ_REG(hw, E1000_MCC); + stats->latecol += E1000_READ_REG(hw, E1000_LATECOL); + stats->colc += E1000_READ_REG(hw, E1000_COLC); + stats->dc += E1000_READ_REG(hw, E1000_DC); + stats->rlec += E1000_READ_REG(hw, E1000_RLEC); + stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC); + stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC); + + /* + * For watchdog management we need to know if we have been + * paused during the last interval, so capture that here. + */ + pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC); + stats->xoffrxc += pause_frames; + stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC); + stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC); + stats->prc64 += E1000_READ_REG(hw, E1000_PRC64); + stats->prc127 += E1000_READ_REG(hw, E1000_PRC127); + stats->prc255 += E1000_READ_REG(hw, E1000_PRC255); + stats->prc511 += E1000_READ_REG(hw, E1000_PRC511); + stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023); + stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522); + stats->gprc += E1000_READ_REG(hw, E1000_GPRC); + stats->bprc += E1000_READ_REG(hw, E1000_BPRC); + stats->mprc += E1000_READ_REG(hw, E1000_MPRC); + stats->gptc += E1000_READ_REG(hw, E1000_GPTC); + + /* + * For the 64-bit byte counters the low dword must be read first. + * Both registers clear on the read of the high dword. + */ + + stats->gorc += E1000_READ_REG(hw, E1000_GORCL); + stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32); + stats->gotc += E1000_READ_REG(hw, E1000_GOTCL); + stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32); + + stats->rnbc += E1000_READ_REG(hw, E1000_RNBC); + stats->ruc += E1000_READ_REG(hw, E1000_RUC); + stats->rfc += E1000_READ_REG(hw, E1000_RFC); + stats->roc += E1000_READ_REG(hw, E1000_ROC); + stats->rjc += E1000_READ_REG(hw, E1000_RJC); + + stats->tor += E1000_READ_REG(hw, E1000_TORH); + stats->tot += E1000_READ_REG(hw, E1000_TOTH); + + stats->tpr += E1000_READ_REG(hw, E1000_TPR); + stats->tpt += E1000_READ_REG(hw, E1000_TPT); + stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64); + stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127); + stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255); + stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511); + stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023); + stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522); + stats->mptc += E1000_READ_REG(hw, E1000_MPTC); + stats->bptc += E1000_READ_REG(hw, E1000_BPTC); + + /* Interrupt Counts */ + + if (hw->mac.type >= e1000_82571) { + stats->iac += E1000_READ_REG(hw, E1000_IAC); + stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC); + stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC); + stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC); + stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC); + stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC); + stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC); + stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC); + stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC); + } + + if (hw->mac.type >= e1000_82543) { + stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC); + stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC); + stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS); + stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR); + stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC); + stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC); + } + + if (rte_stats == NULL) + return -EINVAL; + + /* Rx Errors */ + rte_stats->imissed = stats->mpc; + rte_stats->ierrors = stats->crcerrs + + stats->rlec + stats->ruc + stats->roc + + stats->rxerrc + stats->algnerrc + stats->cexterr; + + /* Tx Errors */ + rte_stats->oerrors = stats->ecol + stats->latecol; + + rte_stats->ipackets = stats->gprc; + rte_stats->opackets = stats->gptc; + rte_stats->ibytes = stats->gorc; + rte_stats->obytes = stats->gotc; + return 0; +} + +static void +eth_em_stats_reset(struct rte_eth_dev *dev) +{ + struct e1000_hw_stats *hw_stats = + E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); + + /* HW registers are cleared on read */ + eth_em_stats_get(dev, NULL); + + /* Reset software totals */ + memset(hw_stats, 0, sizeof(*hw_stats)); +} + +static int +eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + + em_rxq_intr_enable(hw); + rte_intr_enable(intr_handle); + + return 0; +} + +static int +eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + em_rxq_intr_disable(hw); + + return 0; +} + +uint32_t +em_get_max_pktlen(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + case e1000_ich9lan: + case e1000_ich10lan: + case e1000_pch2lan: + case e1000_pch_lpt: + case e1000_pch_spt: + case e1000_pch_cnp: + case e1000_82574: + case e1000_80003es2lan: /* 9K Jumbo Frame size */ + case e1000_82583: + return 0x2412; + case e1000_pchlan: + return 0x1000; + /* Adapters that do not support jumbo frames */ + case e1000_ich8lan: + return ETHER_MAX_LEN; + default: + return MAX_JUMBO_FRAME_SIZE; + } +} + +static void +eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */ + dev_info->max_rx_pktlen = em_get_max_pktlen(dev); + dev_info->max_mac_addrs = hw->mac.rar_entry_count; + + /* + * Starting with 631xESB hw supports 2 TX/RX queues per port. + * Unfortunatelly, all these nics have just one TX context. + * So we have few choises for TX: + * - Use just one TX queue. + * - Allow cksum offload only for one TX queue. + * - Don't allow TX cksum offload at all. + * For now, option #1 was chosen. + * To use second RX queue we have to use extended RX descriptor + * (Multiple Receive Queues are mutually exclusive with UDP + * fragmentation and are not supported when a legacy receive + * descriptor format is used). + * Which means separate RX routinies - as legacy nics (82540, 82545) + * don't support extended RXD. + * To avoid it we support just one RX queue for now (no RSS). + */ + + dev_info->max_rx_queues = 1; + dev_info->max_tx_queues = 1; + + dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev); + dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) | + dev_info->rx_queue_offload_capa; + dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev); + dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) | + dev_info->tx_queue_offload_capa; + + dev_info->rx_desc_lim = (struct rte_eth_desc_lim) { + .nb_max = E1000_MAX_RING_DESC, + .nb_min = E1000_MIN_RING_DESC, + .nb_align = EM_RXD_ALIGN, + }; + + dev_info->tx_desc_lim = (struct rte_eth_desc_lim) { + .nb_max = E1000_MAX_RING_DESC, + .nb_min = E1000_MIN_RING_DESC, + .nb_align = EM_TXD_ALIGN, + .nb_seg_max = EM_TX_MAX_SEG, + .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG, + }; + + dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M | + ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M | + ETH_LINK_SPEED_1G; + + /* Preferred queue parameters */ + dev_info->default_rxportconf.nb_queues = 1; + dev_info->default_txportconf.nb_queues = 1; + dev_info->default_txportconf.ring_size = 256; + dev_info->default_rxportconf.ring_size = 256; +} + +/* return 0 means link status changed, -1 means not changed */ +static int +eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct rte_eth_link link; + int link_check, count; + + link_check = 0; + hw->mac.get_link_status = 1; + + /* possible wait-to-complete in up to 9 seconds */ + for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) { + /* Read the real link status */ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + /* Do the work to read phy */ + e1000_check_for_link(hw); + link_check = !hw->mac.get_link_status; + break; + + case e1000_media_type_fiber: + e1000_check_for_link(hw); + link_check = (E1000_READ_REG(hw, E1000_STATUS) & + E1000_STATUS_LU); + break; + + case e1000_media_type_internal_serdes: + e1000_check_for_link(hw); + link_check = hw->mac.serdes_has_link; + break; + + default: + break; + } + if (link_check || wait_to_complete == 0) + break; + rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL); + } + memset(&link, 0, sizeof(link)); + + /* Now we check if a transition has happened */ + if (link_check && (link.link_status == ETH_LINK_DOWN)) { + uint16_t duplex, speed; + hw->mac.ops.get_link_up_info(hw, &speed, &duplex); + link.link_duplex = (duplex == FULL_DUPLEX) ? + ETH_LINK_FULL_DUPLEX : + ETH_LINK_HALF_DUPLEX; + link.link_speed = speed; + link.link_status = ETH_LINK_UP; + link.link_autoneg = !(dev->data->dev_conf.link_speeds & + ETH_LINK_SPEED_FIXED); + } else if (!link_check && (link.link_status == ETH_LINK_UP)) { + link.link_speed = ETH_SPEED_NUM_NONE; + link.link_duplex = ETH_LINK_HALF_DUPLEX; + link.link_status = ETH_LINK_DOWN; + link.link_autoneg = ETH_LINK_FIXED; + } + + return rte_eth_linkstatus_set(dev, &link); +} + +/* + * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means + * that the driver is loaded. For AMT version type f/w + * this means that the network i/f is open. + */ +static void +em_hw_control_acquire(struct e1000_hw *hw) +{ + uint32_t ctrl_ext, swsm; + + /* Let firmware know the driver has taken over */ + if (hw->mac.type == e1000_82573) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD); + + } else { + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, + ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); + } +} + +/* + * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means that the + * driver is no longer loaded. For AMT versions of the + * f/w this means that the network i/f is closed. + */ +static void +em_hw_control_release(struct e1000_hw *hw) +{ + uint32_t ctrl_ext, swsm; + + /* Let firmware taken over control of h/w */ + if (hw->mac.type == e1000_82573) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD); + } else { + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, + ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); + } +} + +/* + * Bit of a misnomer, what this really means is + * to enable OS management of the system... aka + * to disable special hardware management features. + */ +static void +em_init_manageability(struct e1000_hw *hw) +{ + if (e1000_enable_mng_pass_thru(hw)) { + uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H); + uint32_t manc = E1000_READ_REG(hw, E1000_MANC); + + /* disable hardware interception of ARP */ + manc &= ~(E1000_MANC_ARP_EN); + + /* enable receiving management packets to the host */ + manc |= E1000_MANC_EN_MNG2HOST; + manc2h |= 1 << 5; /* Mng Port 623 */ + manc2h |= 1 << 6; /* Mng Port 664 */ + E1000_WRITE_REG(hw, E1000_MANC2H, manc2h); + E1000_WRITE_REG(hw, E1000_MANC, manc); + } +} + +/* + * Give control back to hardware management + * controller if there is one. + */ +static void +em_release_manageability(struct e1000_hw *hw) +{ + uint32_t manc; + + if (e1000_enable_mng_pass_thru(hw)) { + manc = E1000_READ_REG(hw, E1000_MANC); + + /* re-enable hardware interception of ARP */ + manc |= E1000_MANC_ARP_EN; + manc &= ~E1000_MANC_EN_MNG2HOST; + + E1000_WRITE_REG(hw, E1000_MANC, manc); + } +} + +static void +eth_em_promiscuous_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t rctl; + + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); +} + +static void +eth_em_promiscuous_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t rctl; + + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP); + if (dev->data->all_multicast == 1) + rctl |= E1000_RCTL_MPE; + else + rctl &= (~E1000_RCTL_MPE); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); +} + +static void +eth_em_allmulticast_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t rctl; + + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl |= E1000_RCTL_MPE; + E1000_WRITE_REG(hw, E1000_RCTL, rctl); +} + +static void +eth_em_allmulticast_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t rctl; + + if (dev->data->promiscuous == 1) + return; /* must remain in all_multicast mode */ + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl &= (~E1000_RCTL_MPE); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); +} + +static int +eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vfta * shadow_vfta = + E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); + uint32_t vfta; + uint32_t vid_idx; + uint32_t vid_bit; + + vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) & + E1000_VFTA_ENTRY_MASK); + vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK)); + vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx); + if (on) + vfta |= vid_bit; + else + vfta &= ~vid_bit; + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta); + + /* update local VFTA copy */ + shadow_vfta->vfta[vid_idx] = vfta; + + return 0; +} + +static void +em_vlan_hw_filter_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t reg; + + /* Filter Table Disable */ + reg = E1000_READ_REG(hw, E1000_RCTL); + reg &= ~E1000_RCTL_CFIEN; + reg &= ~E1000_RCTL_VFE; + E1000_WRITE_REG(hw, E1000_RCTL, reg); +} + +static void +em_vlan_hw_filter_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vfta * shadow_vfta = + E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); + uint32_t reg; + int i; + + /* Filter Table Enable, CFI not used for packet acceptance */ + reg = E1000_READ_REG(hw, E1000_RCTL); + reg &= ~E1000_RCTL_CFIEN; + reg |= E1000_RCTL_VFE; + E1000_WRITE_REG(hw, E1000_RCTL, reg); + + /* restore vfta from local copy */ + for (i = 0; i < IGB_VFTA_SIZE; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]); +} + +static void +em_vlan_hw_strip_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t reg; + + /* VLAN Mode Disable */ + reg = E1000_READ_REG(hw, E1000_CTRL); + reg &= ~E1000_CTRL_VME; + E1000_WRITE_REG(hw, E1000_CTRL, reg); + +} + +static void +em_vlan_hw_strip_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t reg; + + /* VLAN Mode Enable */ + reg = E1000_READ_REG(hw, E1000_CTRL); + reg |= E1000_CTRL_VME; + E1000_WRITE_REG(hw, E1000_CTRL, reg); +} + +static int +eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask) +{ + struct rte_eth_rxmode *rxmode; + + rxmode = &dev->data->dev_conf.rxmode; + if(mask & ETH_VLAN_STRIP_MASK){ + if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP) + em_vlan_hw_strip_enable(dev); + else + em_vlan_hw_strip_disable(dev); + } + + if(mask & ETH_VLAN_FILTER_MASK){ + if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER) + em_vlan_hw_filter_enable(dev); + else + em_vlan_hw_filter_disable(dev); + } + + return 0; +} + +/* + * It enables the interrupt mask and then enable the interrupt. + * + * @param dev + * Pointer to struct rte_eth_dev. + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +eth_em_interrupt_setup(struct rte_eth_dev *dev) +{ + uint32_t regval; + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* clear interrupt */ + E1000_READ_REG(hw, E1000_ICR); + regval = E1000_READ_REG(hw, E1000_IMS); + E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC); + return 0; +} + +/* + * It clears the interrupt causes and enables the interrupt. + * It will be called once only during nic initialized. + * + * @param dev + * Pointer to struct rte_eth_dev. + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + E1000_READ_REG(hw, E1000_ICR); + em_rxq_intr_enable(hw); + return 0; +} + +/* + * It enable receive packet interrupt. + * @param hw + * Pointer to struct e1000_hw + * + * @return + */ +static void +em_rxq_intr_enable(struct e1000_hw *hw) +{ + E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0); + E1000_WRITE_FLUSH(hw); +} + +/* + * It disabled lsc interrupt. + * @param hw + * Pointer to struct e1000_hw + * + * @return + */ +static void +em_lsc_intr_disable(struct e1000_hw *hw) +{ + E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC); + E1000_WRITE_FLUSH(hw); +} + +/* + * It disabled receive packet interrupt. + * @param hw + * Pointer to struct e1000_hw + * + * @return + */ +static void +em_rxq_intr_disable(struct e1000_hw *hw) +{ + E1000_READ_REG(hw, E1000_ICR); + E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0); + E1000_WRITE_FLUSH(hw); +} + +/* + * It reads ICR and gets interrupt causes, check it and set a bit flag + * to update link status. + * + * @param dev + * Pointer to struct rte_eth_dev. + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +eth_em_interrupt_get_status(struct rte_eth_dev *dev) +{ + uint32_t icr; + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_interrupt *intr = + E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); + + /* read-on-clear nic registers here */ + icr = E1000_READ_REG(hw, E1000_ICR); + if (icr & E1000_ICR_LSC) { + intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; + } + + return 0; +} + +/* + * It executes link_update after knowing an interrupt is prsent. + * + * @param dev + * Pointer to struct rte_eth_dev. + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +eth_em_interrupt_action(struct rte_eth_dev *dev, + struct rte_intr_handle *intr_handle) +{ + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_interrupt *intr = + E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); + struct rte_eth_link link; + int ret; + + if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE)) + return -1; + + intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE; + rte_intr_enable(intr_handle); + + /* set get_link_status to check register later */ + hw->mac.get_link_status = 1; + ret = eth_em_link_update(dev, 0); + + /* check if link has changed */ + if (ret < 0) + return 0; + + rte_eth_linkstatus_get(dev, &link); + + if (link.link_status) { + PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s", + dev->data->port_id, link.link_speed, + link.link_duplex == ETH_LINK_FULL_DUPLEX ? + "full-duplex" : "half-duplex"); + } else { + PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id); + } + PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d", + pci_dev->addr.domain, pci_dev->addr.bus, + pci_dev->addr.devid, pci_dev->addr.function); + + return 0; +} + +/** + * Interrupt handler which shall be registered at first. + * + * @param handle + * Pointer to interrupt handle. + * @param param + * The address of parameter (struct rte_eth_dev *) regsitered before. + * + * @return + * void + */ +static void +eth_em_interrupt_handler(void *param) +{ + struct rte_eth_dev *dev = (struct rte_eth_dev *)param; + + eth_em_interrupt_get_status(dev); + eth_em_interrupt_action(dev, dev->intr_handle); + _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL); +} + +static int +eth_em_led_on(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP; +} + +static int +eth_em_led_off(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP; +} + +static int +eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) +{ + struct e1000_hw *hw; + uint32_t ctrl; + int tx_pause; + int rx_pause; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + fc_conf->pause_time = hw->fc.pause_time; + fc_conf->high_water = hw->fc.high_water; + fc_conf->low_water = hw->fc.low_water; + fc_conf->send_xon = hw->fc.send_xon; + fc_conf->autoneg = hw->mac.autoneg; + + /* + * Return rx_pause and tx_pause status according to actual setting of + * the TFCE and RFCE bits in the CTRL register. + */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + if (ctrl & E1000_CTRL_TFCE) + tx_pause = 1; + else + tx_pause = 0; + + if (ctrl & E1000_CTRL_RFCE) + rx_pause = 1; + else + rx_pause = 0; + + if (rx_pause && tx_pause) + fc_conf->mode = RTE_FC_FULL; + else if (rx_pause) + fc_conf->mode = RTE_FC_RX_PAUSE; + else if (tx_pause) + fc_conf->mode = RTE_FC_TX_PAUSE; + else + fc_conf->mode = RTE_FC_NONE; + + return 0; +} + +static int +eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) +{ + struct e1000_hw *hw; + int err; + enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = { + e1000_fc_none, + e1000_fc_rx_pause, + e1000_fc_tx_pause, + e1000_fc_full + }; + uint32_t rx_buf_size; + uint32_t max_high_water; + uint32_t rctl; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + if (fc_conf->autoneg != hw->mac.autoneg) + return -ENOTSUP; + rx_buf_size = em_get_rx_buffer_size(hw); + PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size); + + /* At least reserve one Ethernet frame for watermark */ + max_high_water = rx_buf_size - ETHER_MAX_LEN; + if ((fc_conf->high_water > max_high_water) || + (fc_conf->high_water < fc_conf->low_water)) { + PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value"); + PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water); + return -EINVAL; + } + + hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode]; + hw->fc.pause_time = fc_conf->pause_time; + hw->fc.high_water = fc_conf->high_water; + hw->fc.low_water = fc_conf->low_water; + hw->fc.send_xon = fc_conf->send_xon; + + err = e1000_setup_link_generic(hw); + if (err == E1000_SUCCESS) { + + /* check if we want to forward MAC frames - driver doesn't have native + * capability to do that, so we'll write the registers ourselves */ + + rctl = E1000_READ_REG(hw, E1000_RCTL); + + /* set or clear MFLCN.PMCF bit depending on configuration */ + if (fc_conf->mac_ctrl_frame_fwd != 0) + rctl |= E1000_RCTL_PMCF; + else + rctl &= ~E1000_RCTL_PMCF; + + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + E1000_WRITE_FLUSH(hw); + + return 0; + } + + PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err); + return -EIO; +} + +static int +eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr, + uint32_t index, __rte_unused uint32_t pool) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + return e1000_rar_set(hw, mac_addr->addr_bytes, index); +} + +static void +eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index) +{ + uint8_t addr[ETHER_ADDR_LEN]; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + memset(addr, 0, sizeof(addr)); + + e1000_rar_set(hw, addr, index); +} + +static int +eth_em_default_mac_addr_set(struct rte_eth_dev *dev, + struct ether_addr *addr) +{ + eth_em_rar_clear(dev, 0); + + return eth_em_rar_set(dev, (void *)addr, 0, 0); +} + +static int +eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) +{ + struct rte_eth_dev_info dev_info; + struct e1000_hw *hw; + uint32_t frame_size; + uint32_t rctl; + + eth_em_infos_get(dev, &dev_info); + frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE; + + /* check that mtu is within the allowed range */ + if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen)) + return -EINVAL; + + /* refuse mtu that requires the support of scattered packets when this + * feature has not been enabled before. */ + if (!dev->data->scattered_rx && + frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) + return -EINVAL; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + rctl = E1000_READ_REG(hw, E1000_RCTL); + + /* switch to jumbo mode if needed */ + if (frame_size > ETHER_MAX_LEN) { + dev->data->dev_conf.rxmode.offloads |= + DEV_RX_OFFLOAD_JUMBO_FRAME; + rctl |= E1000_RCTL_LPE; + } else { + dev->data->dev_conf.rxmode.offloads &= + ~DEV_RX_OFFLOAD_JUMBO_FRAME; + rctl &= ~E1000_RCTL_LPE; + } + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + + /* update max frame size */ + dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size; + return 0; +} + +static int +eth_em_set_mc_addr_list(struct rte_eth_dev *dev, + struct ether_addr *mc_addr_set, + uint32_t nb_mc_addr) +{ + struct e1000_hw *hw; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr); + return 0; +} + +RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd); +RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map); +RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci"); + +/* see e1000_logs.c */ +RTE_INIT(igb_init_log) +{ + e1000_igb_init_log(); +} diff --git a/src/spdk/dpdk/drivers/net/e1000/em_rxtx.c b/src/spdk/dpdk/drivers/net/e1000/em_rxtx.c new file mode 100644 index 00000000..7d2ac4eb --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/em_rxtx.c @@ -0,0 +1,1999 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2010-2016 Intel Corporation + */ + +#include <sys/queue.h> + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <errno.h> +#include <stdint.h> +#include <stdarg.h> +#include <inttypes.h> + +#include <rte_interrupts.h> +#include <rte_byteorder.h> +#include <rte_common.h> +#include <rte_log.h> +#include <rte_debug.h> +#include <rte_pci.h> +#include <rte_memory.h> +#include <rte_memcpy.h> +#include <rte_memzone.h> +#include <rte_launch.h> +#include <rte_eal.h> +#include <rte_per_lcore.h> +#include <rte_lcore.h> +#include <rte_atomic.h> +#include <rte_branch_prediction.h> +#include <rte_mempool.h> +#include <rte_malloc.h> +#include <rte_mbuf.h> +#include <rte_ether.h> +#include <rte_ethdev_driver.h> +#include <rte_prefetch.h> +#include <rte_ip.h> +#include <rte_udp.h> +#include <rte_tcp.h> +#include <rte_sctp.h> +#include <rte_net.h> +#include <rte_string_fns.h> + +#include "e1000_logs.h" +#include "base/e1000_api.h" +#include "e1000_ethdev.h" +#include "base/e1000_osdep.h" + +#define E1000_TXD_VLAN_SHIFT 16 + +#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ + +#define E1000_TX_OFFLOAD_MASK ( \ + PKT_TX_IP_CKSUM | \ + PKT_TX_L4_MASK | \ + PKT_TX_VLAN_PKT) + +#define E1000_TX_OFFLOAD_NOTSUP_MASK \ + (PKT_TX_OFFLOAD_MASK ^ E1000_TX_OFFLOAD_MASK) + +/** + * Structure associated with each descriptor of the RX ring of a RX queue. + */ +struct em_rx_entry { + struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */ +}; + +/** + * Structure associated with each descriptor of the TX ring of a TX queue. + */ +struct em_tx_entry { + struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */ + uint16_t next_id; /**< Index of next descriptor in ring. */ + uint16_t last_id; /**< Index of last scattered descriptor. */ +}; + +/** + * Structure associated with each RX queue. + */ +struct em_rx_queue { + struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */ + volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */ + uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */ + volatile uint32_t *rdt_reg_addr; /**< RDT register address. */ + volatile uint32_t *rdh_reg_addr; /**< RDH register address. */ + struct em_rx_entry *sw_ring; /**< address of RX software ring. */ + struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */ + struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */ + uint64_t offloads; /**< Offloads of DEV_RX_OFFLOAD_* */ + uint16_t nb_rx_desc; /**< number of RX descriptors. */ + uint16_t rx_tail; /**< current value of RDT register. */ + uint16_t nb_rx_hold; /**< number of held free RX desc. */ + uint16_t rx_free_thresh; /**< max free RX desc to hold. */ + uint16_t queue_id; /**< RX queue index. */ + uint16_t port_id; /**< Device port identifier. */ + uint8_t pthresh; /**< Prefetch threshold register. */ + uint8_t hthresh; /**< Host threshold register. */ + uint8_t wthresh; /**< Write-back threshold register. */ + uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */ +}; + +/** + * Hardware context number + */ +enum { + EM_CTX_0 = 0, /**< CTX0 */ + EM_CTX_NUM = 1, /**< CTX NUM */ +}; + +/** Offload features */ +union em_vlan_macip { + uint32_t data; + struct { + uint16_t l3_len:9; /**< L3 (IP) Header Length. */ + uint16_t l2_len:7; /**< L2 (MAC) Header Length. */ + uint16_t vlan_tci; + /**< VLAN Tag Control Identifier (CPU order). */ + } f; +}; + +/* + * Compare mask for vlan_macip_len.data, + * should be in sync with em_vlan_macip.f layout. + * */ +#define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */ +#define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */ +#define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */ +/** MAC+IP length. */ +#define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK) + +/** + * Structure to check if new context need be built + */ +struct em_ctx_info { + uint64_t flags; /**< ol_flags related to context build. */ + uint32_t cmp_mask; /**< compare mask */ + union em_vlan_macip hdrlen; /**< L2 and L3 header lenghts */ +}; + +/** + * Structure associated with each TX queue. + */ +struct em_tx_queue { + volatile struct e1000_data_desc *tx_ring; /**< TX ring address */ + uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */ + struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */ + volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */ + uint16_t nb_tx_desc; /**< number of TX descriptors. */ + uint16_t tx_tail; /**< Current value of TDT register. */ + /**< Start freeing TX buffers if there are less free descriptors than + this value. */ + uint16_t tx_free_thresh; + /**< Number of TX descriptors to use before RS bit is set. */ + uint16_t tx_rs_thresh; + /** Number of TX descriptors used since RS bit was set. */ + uint16_t nb_tx_used; + /** Index to last TX descriptor to have been cleaned. */ + uint16_t last_desc_cleaned; + /** Total number of TX descriptors ready to be allocated. */ + uint16_t nb_tx_free; + uint16_t queue_id; /**< TX queue index. */ + uint16_t port_id; /**< Device port identifier. */ + uint8_t pthresh; /**< Prefetch threshold register. */ + uint8_t hthresh; /**< Host threshold register. */ + uint8_t wthresh; /**< Write-back threshold register. */ + struct em_ctx_info ctx_cache; + /**< Hardware context history.*/ + uint64_t offloads; /**< offloads of DEV_TX_OFFLOAD_* */ +}; + +#if 1 +#define RTE_PMD_USE_PREFETCH +#endif + +#ifdef RTE_PMD_USE_PREFETCH +#define rte_em_prefetch(p) rte_prefetch0(p) +#else +#define rte_em_prefetch(p) do {} while(0) +#endif + +#ifdef RTE_PMD_PACKET_PREFETCH +#define rte_packet_prefetch(p) rte_prefetch1(p) +#else +#define rte_packet_prefetch(p) do {} while(0) +#endif + +#ifndef DEFAULT_TX_FREE_THRESH +#define DEFAULT_TX_FREE_THRESH 32 +#endif /* DEFAULT_TX_FREE_THRESH */ + +#ifndef DEFAULT_TX_RS_THRESH +#define DEFAULT_TX_RS_THRESH 32 +#endif /* DEFAULT_TX_RS_THRESH */ + + +/********************************************************************* + * + * TX function + * + **********************************************************************/ + +/* + * Populates TX context descriptor. + */ +static inline void +em_set_xmit_ctx(struct em_tx_queue* txq, + volatile struct e1000_context_desc *ctx_txd, + uint64_t flags, + union em_vlan_macip hdrlen) +{ + uint32_t cmp_mask, cmd_len; + uint16_t ipcse, l2len; + struct e1000_context_desc ctx; + + cmp_mask = 0; + cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C; + + l2len = hdrlen.f.l2_len; + ipcse = (uint16_t)(l2len + hdrlen.f.l3_len); + + /* setup IPCS* fields */ + ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len; + ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len + + offsetof(struct ipv4_hdr, hdr_checksum)); + + /* + * When doing checksum or TCP segmentation with IPv6 headers, + * IPCSE field should be set t0 0. + */ + if (flags & PKT_TX_IP_CKSUM) { + ctx.lower_setup.ip_fields.ipcse = + (uint16_t)rte_cpu_to_le_16(ipcse - 1); + cmd_len |= E1000_TXD_CMD_IP; + cmp_mask |= TX_MACIP_LEN_CMP_MASK; + } else { + ctx.lower_setup.ip_fields.ipcse = 0; + } + + /* setup TUCS* fields */ + ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse; + ctx.upper_setup.tcp_fields.tucse = 0; + + switch (flags & PKT_TX_L4_MASK) { + case PKT_TX_UDP_CKSUM: + ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse + + offsetof(struct udp_hdr, dgram_cksum)); + cmp_mask |= TX_MACIP_LEN_CMP_MASK; + break; + case PKT_TX_TCP_CKSUM: + ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse + + offsetof(struct tcp_hdr, cksum)); + cmd_len |= E1000_TXD_CMD_TCP; + cmp_mask |= TX_MACIP_LEN_CMP_MASK; + break; + default: + ctx.upper_setup.tcp_fields.tucso = 0; + } + + ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len); + ctx.tcp_seg_setup.data = 0; + + *ctx_txd = ctx; + + txq->ctx_cache.flags = flags; + txq->ctx_cache.cmp_mask = cmp_mask; + txq->ctx_cache.hdrlen = hdrlen; +} + +/* + * Check which hardware context can be used. Use the existing match + * or create a new context descriptor. + */ +static inline uint32_t +what_ctx_update(struct em_tx_queue *txq, uint64_t flags, + union em_vlan_macip hdrlen) +{ + /* If match with the current context */ + if (likely (txq->ctx_cache.flags == flags && + ((txq->ctx_cache.hdrlen.data ^ hdrlen.data) & + txq->ctx_cache.cmp_mask) == 0)) + return EM_CTX_0; + + /* Mismatch */ + return EM_CTX_NUM; +} + +/* Reset transmit descriptors after they have been used */ +static inline int +em_xmit_cleanup(struct em_tx_queue *txq) +{ + struct em_tx_entry *sw_ring = txq->sw_ring; + volatile struct e1000_data_desc *txr = txq->tx_ring; + uint16_t last_desc_cleaned = txq->last_desc_cleaned; + uint16_t nb_tx_desc = txq->nb_tx_desc; + uint16_t desc_to_clean_to; + uint16_t nb_tx_to_clean; + + /* Determine the last descriptor needing to be cleaned */ + desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh); + if (desc_to_clean_to >= nb_tx_desc) + desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc); + + /* Check to make sure the last descriptor to clean is done */ + desc_to_clean_to = sw_ring[desc_to_clean_to].last_id; + if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD)) + { + PMD_TX_FREE_LOG(DEBUG, + "TX descriptor %4u is not done" + "(port=%d queue=%d)", desc_to_clean_to, + txq->port_id, txq->queue_id); + /* Failed to clean any descriptors, better luck next time */ + return -(1); + } + + /* Figure out how many descriptors will be cleaned */ + if (last_desc_cleaned > desc_to_clean_to) + nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) + + desc_to_clean_to); + else + nb_tx_to_clean = (uint16_t)(desc_to_clean_to - + last_desc_cleaned); + + PMD_TX_FREE_LOG(DEBUG, + "Cleaning %4u TX descriptors: %4u to %4u " + "(port=%d queue=%d)", nb_tx_to_clean, + last_desc_cleaned, desc_to_clean_to, txq->port_id, + txq->queue_id); + + /* + * The last descriptor to clean is done, so that means all the + * descriptors from the last descriptor that was cleaned + * up to the last descriptor with the RS bit set + * are done. Only reset the threshold descriptor. + */ + txr[desc_to_clean_to].upper.fields.status = 0; + + /* Update the txq to reflect the last descriptor that was cleaned */ + txq->last_desc_cleaned = desc_to_clean_to; + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean); + + /* No Error */ + return 0; +} + +static inline uint32_t +tx_desc_cksum_flags_to_upper(uint64_t ol_flags) +{ + static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8}; + static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8}; + uint32_t tmp; + + tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM]; + tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0]; + return tmp; +} + +uint16_t +eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + struct em_tx_queue *txq; + struct em_tx_entry *sw_ring; + struct em_tx_entry *txe, *txn; + volatile struct e1000_data_desc *txr; + volatile struct e1000_data_desc *txd; + struct rte_mbuf *tx_pkt; + struct rte_mbuf *m_seg; + uint64_t buf_dma_addr; + uint32_t popts_spec; + uint32_t cmd_type_len; + uint16_t slen; + uint64_t ol_flags; + uint16_t tx_id; + uint16_t tx_last; + uint16_t nb_tx; + uint16_t nb_used; + uint64_t tx_ol_req; + uint32_t ctx; + uint32_t new_ctx; + union em_vlan_macip hdrlen; + + txq = tx_queue; + sw_ring = txq->sw_ring; + txr = txq->tx_ring; + tx_id = txq->tx_tail; + txe = &sw_ring[tx_id]; + + /* Determine if the descriptor ring needs to be cleaned. */ + if (txq->nb_tx_free < txq->tx_free_thresh) + em_xmit_cleanup(txq); + + /* TX loop */ + for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { + new_ctx = 0; + tx_pkt = *tx_pkts++; + + RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf); + + /* + * Determine how many (if any) context descriptors + * are needed for offload functionality. + */ + ol_flags = tx_pkt->ol_flags; + + /* If hardware offload required */ + tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK)); + if (tx_ol_req) { + hdrlen.f.vlan_tci = tx_pkt->vlan_tci; + hdrlen.f.l2_len = tx_pkt->l2_len; + hdrlen.f.l3_len = tx_pkt->l3_len; + /* If new context to be built or reuse the exist ctx. */ + ctx = what_ctx_update(txq, tx_ol_req, hdrlen); + + /* Only allocate context descriptor if required*/ + new_ctx = (ctx == EM_CTX_NUM); + } + + /* + * Keep track of how many descriptors are used this loop + * This will always be the number of segments + the number of + * Context descriptors required to transmit the packet + */ + nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx); + + /* + * The number of descriptors that must be allocated for a + * packet is the number of segments of that packet, plus 1 + * Context Descriptor for the hardware offload, if any. + * Determine the last TX descriptor to allocate in the TX ring + * for the packet, starting from the current position (tx_id) + * in the ring. + */ + tx_last = (uint16_t) (tx_id + nb_used - 1); + + /* Circular ring */ + if (tx_last >= txq->nb_tx_desc) + tx_last = (uint16_t) (tx_last - txq->nb_tx_desc); + + PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u" + " tx_first=%u tx_last=%u", + (unsigned) txq->port_id, + (unsigned) txq->queue_id, + (unsigned) tx_pkt->pkt_len, + (unsigned) tx_id, + (unsigned) tx_last); + + /* + * Make sure there are enough TX descriptors available to + * transmit the entire packet. + * nb_used better be less than or equal to txq->tx_rs_thresh + */ + while (unlikely (nb_used > txq->nb_tx_free)) { + PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors " + "nb_used=%4u nb_free=%4u " + "(port=%d queue=%d)", + nb_used, txq->nb_tx_free, + txq->port_id, txq->queue_id); + + if (em_xmit_cleanup(txq) != 0) { + /* Could not clean any descriptors */ + if (nb_tx == 0) + return 0; + goto end_of_tx; + } + } + + /* + * By now there are enough free TX descriptors to transmit + * the packet. + */ + + /* + * Set common flags of all TX Data Descriptors. + * + * The following bits must be set in all Data Descriptors: + * - E1000_TXD_DTYP_DATA + * - E1000_TXD_DTYP_DEXT + * + * The following bits must be set in the first Data Descriptor + * and are ignored in the other ones: + * - E1000_TXD_POPTS_IXSM + * - E1000_TXD_POPTS_TXSM + * + * The following bits must be set in the last Data Descriptor + * and are ignored in the other ones: + * - E1000_TXD_CMD_VLE + * - E1000_TXD_CMD_IFCS + * + * The following bits must only be set in the last Data + * Descriptor: + * - E1000_TXD_CMD_EOP + * + * The following bits can be set in any Data Descriptor, but + * are only set in the last Data Descriptor: + * - E1000_TXD_CMD_RS + */ + cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | + E1000_TXD_CMD_IFCS; + popts_spec = 0; + + /* Set VLAN Tag offload fields. */ + if (ol_flags & PKT_TX_VLAN_PKT) { + cmd_type_len |= E1000_TXD_CMD_VLE; + popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT; + } + + if (tx_ol_req) { + /* + * Setup the TX Context Descriptor if required + */ + if (new_ctx) { + volatile struct e1000_context_desc *ctx_txd; + + ctx_txd = (volatile struct e1000_context_desc *) + &txr[tx_id]; + + txn = &sw_ring[txe->next_id]; + RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf); + + if (txe->mbuf != NULL) { + rte_pktmbuf_free_seg(txe->mbuf); + txe->mbuf = NULL; + } + + em_set_xmit_ctx(txq, ctx_txd, tx_ol_req, + hdrlen); + + txe->last_id = tx_last; + tx_id = txe->next_id; + txe = txn; + } + + /* + * Setup the TX Data Descriptor, + * This path will go through + * whatever new/reuse the context descriptor + */ + popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags); + } + + m_seg = tx_pkt; + do { + txd = &txr[tx_id]; + txn = &sw_ring[txe->next_id]; + + if (txe->mbuf != NULL) + rte_pktmbuf_free_seg(txe->mbuf); + txe->mbuf = m_seg; + + /* + * Set up Transmit Data Descriptor. + */ + slen = m_seg->data_len; + buf_dma_addr = rte_mbuf_data_iova(m_seg); + + txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr); + txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen); + txd->upper.data = rte_cpu_to_le_32(popts_spec); + + txe->last_id = tx_last; + tx_id = txe->next_id; + txe = txn; + m_seg = m_seg->next; + } while (m_seg != NULL); + + /* + * The last packet data descriptor needs End Of Packet (EOP) + */ + cmd_type_len |= E1000_TXD_CMD_EOP; + txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used); + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used); + + /* Set RS bit only on threshold packets' last descriptor */ + if (txq->nb_tx_used >= txq->tx_rs_thresh) { + PMD_TX_FREE_LOG(DEBUG, + "Setting RS bit on TXD id=%4u " + "(port=%d queue=%d)", + tx_last, txq->port_id, txq->queue_id); + + cmd_type_len |= E1000_TXD_CMD_RS; + + /* Update txq RS bit counters */ + txq->nb_tx_used = 0; + } + txd->lower.data |= rte_cpu_to_le_32(cmd_type_len); + } +end_of_tx: + rte_wmb(); + + /* + * Set the Transmit Descriptor Tail (TDT) + */ + PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", + (unsigned) txq->port_id, (unsigned) txq->queue_id, + (unsigned) tx_id, (unsigned) nb_tx); + E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id); + txq->tx_tail = tx_id; + + return nb_tx; +} + +/********************************************************************* + * + * TX prep functions + * + **********************************************************************/ +uint16_t +eth_em_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + int i, ret; + struct rte_mbuf *m; + + for (i = 0; i < nb_pkts; i++) { + m = tx_pkts[i]; + + if (m->ol_flags & E1000_TX_OFFLOAD_NOTSUP_MASK) { + rte_errno = -ENOTSUP; + return i; + } + +#ifdef RTE_LIBRTE_ETHDEV_DEBUG + ret = rte_validate_tx_offload(m); + if (ret != 0) { + rte_errno = ret; + return i; + } +#endif + ret = rte_net_intel_cksum_prepare(m); + if (ret != 0) { + rte_errno = ret; + return i; + } + } + + return i; +} + +/********************************************************************* + * + * RX functions + * + **********************************************************************/ + +static inline uint64_t +rx_desc_status_to_pkt_flags(uint32_t rx_status) +{ + uint64_t pkt_flags; + + /* Check if VLAN present */ + pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ? + PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0); + + return pkt_flags; +} + +static inline uint64_t +rx_desc_error_to_pkt_flags(uint32_t rx_error) +{ + uint64_t pkt_flags = 0; + + if (rx_error & E1000_RXD_ERR_IPE) + pkt_flags |= PKT_RX_IP_CKSUM_BAD; + if (rx_error & E1000_RXD_ERR_TCPE) + pkt_flags |= PKT_RX_L4_CKSUM_BAD; + return pkt_flags; +} + +uint16_t +eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + volatile struct e1000_rx_desc *rx_ring; + volatile struct e1000_rx_desc *rxdp; + struct em_rx_queue *rxq; + struct em_rx_entry *sw_ring; + struct em_rx_entry *rxe; + struct rte_mbuf *rxm; + struct rte_mbuf *nmb; + struct e1000_rx_desc rxd; + uint64_t dma_addr; + uint16_t pkt_len; + uint16_t rx_id; + uint16_t nb_rx; + uint16_t nb_hold; + uint8_t status; + + rxq = rx_queue; + + nb_rx = 0; + nb_hold = 0; + rx_id = rxq->rx_tail; + rx_ring = rxq->rx_ring; + sw_ring = rxq->sw_ring; + while (nb_rx < nb_pkts) { + /* + * The order of operations here is important as the DD status + * bit must not be read after any other descriptor fields. + * rx_ring and rxdp are pointing to volatile data so the order + * of accesses cannot be reordered by the compiler. If they were + * not volatile, they could be reordered which could lead to + * using invalid descriptor fields when read from rxd. + */ + rxdp = &rx_ring[rx_id]; + status = rxdp->status; + if (! (status & E1000_RXD_STAT_DD)) + break; + rxd = *rxdp; + + /* + * End of packet. + * + * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is + * likely to be invalid and to be dropped by the various + * validation checks performed by the network stack. + * + * Allocate a new mbuf to replenish the RX ring descriptor. + * If the allocation fails: + * - arrange for that RX descriptor to be the first one + * being parsed the next time the receive function is + * invoked [on the same queue]. + * + * - Stop parsing the RX ring and return immediately. + * + * This policy do not drop the packet received in the RX + * descriptor for which the allocation of a new mbuf failed. + * Thus, it allows that packet to be later retrieved if + * mbuf have been freed in the mean time. + * As a side effect, holding RX descriptors instead of + * systematically giving them back to the NIC may lead to + * RX ring exhaustion situations. + * However, the NIC can gracefully prevent such situations + * to happen by sending specific "back-pressure" flow control + * frames to its peer(s). + */ + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " + "status=0x%x pkt_len=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) status, + (unsigned) rte_le_to_cpu_16(rxd.length)); + + nmb = rte_mbuf_raw_alloc(rxq->mb_pool); + if (nmb == NULL) { + PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " + "queue_id=%u", + (unsigned) rxq->port_id, + (unsigned) rxq->queue_id); + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; + break; + } + + nb_hold++; + rxe = &sw_ring[rx_id]; + rx_id++; + if (rx_id == rxq->nb_rx_desc) + rx_id = 0; + + /* Prefetch next mbuf while processing current one. */ + rte_em_prefetch(sw_ring[rx_id].mbuf); + + /* + * When next RX descriptor is on a cache-line boundary, + * prefetch the next 4 RX descriptors and the next 8 pointers + * to mbufs. + */ + if ((rx_id & 0x3) == 0) { + rte_em_prefetch(&rx_ring[rx_id]); + rte_em_prefetch(&sw_ring[rx_id]); + } + + /* Rearm RXD: attach new mbuf and reset status to zero. */ + + rxm = rxe->mbuf; + rxe->mbuf = nmb; + dma_addr = + rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb)); + rxdp->buffer_addr = dma_addr; + rxdp->status = 0; + + /* + * Initialize the returned mbuf. + * 1) setup generic mbuf fields: + * - number of segments, + * - next segment, + * - packet length, + * - RX port identifier. + * 2) integrate hardware offload data, if any: + * - RSS flag & hash, + * - IP checksum flag, + * - VLAN TCI, if any, + * - error flags. + */ + pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) - + rxq->crc_len); + rxm->data_off = RTE_PKTMBUF_HEADROOM; + rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off); + rxm->nb_segs = 1; + rxm->next = NULL; + rxm->pkt_len = pkt_len; + rxm->data_len = pkt_len; + rxm->port = rxq->port_id; + + rxm->ol_flags = rx_desc_status_to_pkt_flags(status); + rxm->ol_flags = rxm->ol_flags | + rx_desc_error_to_pkt_flags(rxd.errors); + + /* Only valid if PKT_RX_VLAN set in pkt_flags */ + rxm->vlan_tci = rte_le_to_cpu_16(rxd.special); + + /* + * Store the mbuf address into the next entry of the array + * of returned packets. + */ + rx_pkts[nb_rx++] = rxm; + } + rxq->rx_tail = rx_id; + + /* + * If the number of free RX descriptors is greater than the RX free + * threshold of the queue, advance the Receive Descriptor Tail (RDT) + * register. + * Update the RDT with the value of the last processed RX descriptor + * minus 1, to guarantee that the RDT register is never equal to the + * RDH register, which creates a "full" ring situtation from the + * hardware point of view... + */ + nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); + if (nb_hold > rxq->rx_free_thresh) { + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " + "nb_hold=%u nb_rx=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) nb_hold, + (unsigned) nb_rx); + rx_id = (uint16_t) ((rx_id == 0) ? + (rxq->nb_rx_desc - 1) : (rx_id - 1)); + E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); + nb_hold = 0; + } + rxq->nb_rx_hold = nb_hold; + return nb_rx; +} + +uint16_t +eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct em_rx_queue *rxq; + volatile struct e1000_rx_desc *rx_ring; + volatile struct e1000_rx_desc *rxdp; + struct em_rx_entry *sw_ring; + struct em_rx_entry *rxe; + struct rte_mbuf *first_seg; + struct rte_mbuf *last_seg; + struct rte_mbuf *rxm; + struct rte_mbuf *nmb; + struct e1000_rx_desc rxd; + uint64_t dma; /* Physical address of mbuf data buffer */ + uint16_t rx_id; + uint16_t nb_rx; + uint16_t nb_hold; + uint16_t data_len; + uint8_t status; + + rxq = rx_queue; + + nb_rx = 0; + nb_hold = 0; + rx_id = rxq->rx_tail; + rx_ring = rxq->rx_ring; + sw_ring = rxq->sw_ring; + + /* + * Retrieve RX context of current packet, if any. + */ + first_seg = rxq->pkt_first_seg; + last_seg = rxq->pkt_last_seg; + + while (nb_rx < nb_pkts) { + next_desc: + /* + * The order of operations here is important as the DD status + * bit must not be read after any other descriptor fields. + * rx_ring and rxdp are pointing to volatile data so the order + * of accesses cannot be reordered by the compiler. If they were + * not volatile, they could be reordered which could lead to + * using invalid descriptor fields when read from rxd. + */ + rxdp = &rx_ring[rx_id]; + status = rxdp->status; + if (! (status & E1000_RXD_STAT_DD)) + break; + rxd = *rxdp; + + /* + * Descriptor done. + * + * Allocate a new mbuf to replenish the RX ring descriptor. + * If the allocation fails: + * - arrange for that RX descriptor to be the first one + * being parsed the next time the receive function is + * invoked [on the same queue]. + * + * - Stop parsing the RX ring and return immediately. + * + * This policy does not drop the packet received in the RX + * descriptor for which the allocation of a new mbuf failed. + * Thus, it allows that packet to be later retrieved if + * mbuf have been freed in the mean time. + * As a side effect, holding RX descriptors instead of + * systematically giving them back to the NIC may lead to + * RX ring exhaustion situations. + * However, the NIC can gracefully prevent such situations + * to happen by sending specific "back-pressure" flow control + * frames to its peer(s). + */ + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " + "status=0x%x data_len=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) status, + (unsigned) rte_le_to_cpu_16(rxd.length)); + + nmb = rte_mbuf_raw_alloc(rxq->mb_pool); + if (nmb == NULL) { + PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " + "queue_id=%u", (unsigned) rxq->port_id, + (unsigned) rxq->queue_id); + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; + break; + } + + nb_hold++; + rxe = &sw_ring[rx_id]; + rx_id++; + if (rx_id == rxq->nb_rx_desc) + rx_id = 0; + + /* Prefetch next mbuf while processing current one. */ + rte_em_prefetch(sw_ring[rx_id].mbuf); + + /* + * When next RX descriptor is on a cache-line boundary, + * prefetch the next 4 RX descriptors and the next 8 pointers + * to mbufs. + */ + if ((rx_id & 0x3) == 0) { + rte_em_prefetch(&rx_ring[rx_id]); + rte_em_prefetch(&sw_ring[rx_id]); + } + + /* + * Update RX descriptor with the physical address of the new + * data buffer of the new allocated mbuf. + */ + rxm = rxe->mbuf; + rxe->mbuf = nmb; + dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb)); + rxdp->buffer_addr = dma; + rxdp->status = 0; + + /* + * Set data length & data buffer address of mbuf. + */ + data_len = rte_le_to_cpu_16(rxd.length); + rxm->data_len = data_len; + rxm->data_off = RTE_PKTMBUF_HEADROOM; + + /* + * If this is the first buffer of the received packet, + * set the pointer to the first mbuf of the packet and + * initialize its context. + * Otherwise, update the total length and the number of segments + * of the current scattered packet, and update the pointer to + * the last mbuf of the current packet. + */ + if (first_seg == NULL) { + first_seg = rxm; + first_seg->pkt_len = data_len; + first_seg->nb_segs = 1; + } else { + first_seg->pkt_len += data_len; + first_seg->nb_segs++; + last_seg->next = rxm; + } + + /* + * If this is not the last buffer of the received packet, + * update the pointer to the last mbuf of the current scattered + * packet and continue to parse the RX ring. + */ + if (! (status & E1000_RXD_STAT_EOP)) { + last_seg = rxm; + goto next_desc; + } + + /* + * This is the last buffer of the received packet. + * If the CRC is not stripped by the hardware: + * - Subtract the CRC length from the total packet length. + * - If the last buffer only contains the whole CRC or a part + * of it, free the mbuf associated to the last buffer. + * If part of the CRC is also contained in the previous + * mbuf, subtract the length of that CRC part from the + * data length of the previous mbuf. + */ + rxm->next = NULL; + if (unlikely(rxq->crc_len > 0)) { + first_seg->pkt_len -= ETHER_CRC_LEN; + if (data_len <= ETHER_CRC_LEN) { + rte_pktmbuf_free_seg(rxm); + first_seg->nb_segs--; + last_seg->data_len = (uint16_t) + (last_seg->data_len - + (ETHER_CRC_LEN - data_len)); + last_seg->next = NULL; + } else + rxm->data_len = + (uint16_t) (data_len - ETHER_CRC_LEN); + } + + /* + * Initialize the first mbuf of the returned packet: + * - RX port identifier, + * - hardware offload data, if any: + * - IP checksum flag, + * - error flags. + */ + first_seg->port = rxq->port_id; + + first_seg->ol_flags = rx_desc_status_to_pkt_flags(status); + first_seg->ol_flags = first_seg->ol_flags | + rx_desc_error_to_pkt_flags(rxd.errors); + + /* Only valid if PKT_RX_VLAN set in pkt_flags */ + rxm->vlan_tci = rte_le_to_cpu_16(rxd.special); + + /* Prefetch data of first segment, if configured to do so. */ + rte_packet_prefetch((char *)first_seg->buf_addr + + first_seg->data_off); + + /* + * Store the mbuf address into the next entry of the array + * of returned packets. + */ + rx_pkts[nb_rx++] = first_seg; + + /* + * Setup receipt context for a new packet. + */ + first_seg = NULL; + } + + /* + * Record index of the next RX descriptor to probe. + */ + rxq->rx_tail = rx_id; + + /* + * Save receive context. + */ + rxq->pkt_first_seg = first_seg; + rxq->pkt_last_seg = last_seg; + + /* + * If the number of free RX descriptors is greater than the RX free + * threshold of the queue, advance the Receive Descriptor Tail (RDT) + * register. + * Update the RDT with the value of the last processed RX descriptor + * minus 1, to guarantee that the RDT register is never equal to the + * RDH register, which creates a "full" ring situtation from the + * hardware point of view... + */ + nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); + if (nb_hold > rxq->rx_free_thresh) { + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " + "nb_hold=%u nb_rx=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) nb_hold, + (unsigned) nb_rx); + rx_id = (uint16_t) ((rx_id == 0) ? + (rxq->nb_rx_desc - 1) : (rx_id - 1)); + E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); + nb_hold = 0; + } + rxq->nb_rx_hold = nb_hold; + return nb_rx; +} + +#define EM_MAX_BUF_SIZE 16384 +#define EM_RCTL_FLXBUF_STEP 1024 + +static void +em_tx_queue_release_mbufs(struct em_tx_queue *txq) +{ + unsigned i; + + if (txq->sw_ring != NULL) { + for (i = 0; i != txq->nb_tx_desc; i++) { + if (txq->sw_ring[i].mbuf != NULL) { + rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); + txq->sw_ring[i].mbuf = NULL; + } + } + } +} + +static void +em_tx_queue_release(struct em_tx_queue *txq) +{ + if (txq != NULL) { + em_tx_queue_release_mbufs(txq); + rte_free(txq->sw_ring); + rte_free(txq); + } +} + +void +eth_em_tx_queue_release(void *txq) +{ + em_tx_queue_release(txq); +} + +/* (Re)set dynamic em_tx_queue fields to defaults */ +static void +em_reset_tx_queue(struct em_tx_queue *txq) +{ + uint16_t i, nb_desc, prev; + static const struct e1000_data_desc txd_init = { + .upper.fields = {.status = E1000_TXD_STAT_DD}, + }; + + nb_desc = txq->nb_tx_desc; + + /* Initialize ring entries */ + + prev = (uint16_t) (nb_desc - 1); + + for (i = 0; i < nb_desc; i++) { + txq->tx_ring[i] = txd_init; + txq->sw_ring[i].mbuf = NULL; + txq->sw_ring[i].last_id = i; + txq->sw_ring[prev].next_id = i; + prev = i; + } + + /* + * Always allow 1 descriptor to be un-allocated to avoid + * a H/W race condition + */ + txq->nb_tx_free = (uint16_t)(nb_desc - 1); + txq->last_desc_cleaned = (uint16_t)(nb_desc - 1); + txq->nb_tx_used = 0; + txq->tx_tail = 0; + + memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache)); +} + +uint64_t +em_get_tx_port_offloads_capa(struct rte_eth_dev *dev) +{ + uint64_t tx_offload_capa; + + RTE_SET_USED(dev); + tx_offload_capa = + DEV_TX_OFFLOAD_VLAN_INSERT | + DEV_TX_OFFLOAD_IPV4_CKSUM | + DEV_TX_OFFLOAD_UDP_CKSUM | + DEV_TX_OFFLOAD_TCP_CKSUM; + + return tx_offload_capa; +} + +uint64_t +em_get_tx_queue_offloads_capa(struct rte_eth_dev *dev) +{ + uint64_t tx_queue_offload_capa; + + /* + * As only one Tx queue can be used, let per queue offloading + * capability be same to per port queue offloading capability + * for better convenience. + */ + tx_queue_offload_capa = em_get_tx_port_offloads_capa(dev); + + return tx_queue_offload_capa; +} + +int +eth_em_tx_queue_setup(struct rte_eth_dev *dev, + uint16_t queue_idx, + uint16_t nb_desc, + unsigned int socket_id, + const struct rte_eth_txconf *tx_conf) +{ + const struct rte_memzone *tz; + struct em_tx_queue *txq; + struct e1000_hw *hw; + uint32_t tsize; + uint16_t tx_rs_thresh, tx_free_thresh; + uint64_t offloads; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads; + + /* + * Validate number of transmit descriptors. + * It must not exceed hardware maximum, and must be multiple + * of E1000_ALIGN. + */ + if (nb_desc % EM_TXD_ALIGN != 0 || + (nb_desc > E1000_MAX_RING_DESC) || + (nb_desc < E1000_MIN_RING_DESC)) { + return -(EINVAL); + } + + tx_free_thresh = tx_conf->tx_free_thresh; + if (tx_free_thresh == 0) + tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4, + DEFAULT_TX_FREE_THRESH); + + tx_rs_thresh = tx_conf->tx_rs_thresh; + if (tx_rs_thresh == 0) + tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh, + DEFAULT_TX_RS_THRESH); + + if (tx_free_thresh >= (nb_desc - 3)) { + PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the " + "number of TX descriptors minus 3. " + "(tx_free_thresh=%u port=%d queue=%d)", + (unsigned int)tx_free_thresh, + (int)dev->data->port_id, (int)queue_idx); + return -(EINVAL); + } + if (tx_rs_thresh > tx_free_thresh) { + PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to " + "tx_free_thresh. (tx_free_thresh=%u " + "tx_rs_thresh=%u port=%d queue=%d)", + (unsigned int)tx_free_thresh, + (unsigned int)tx_rs_thresh, + (int)dev->data->port_id, + (int)queue_idx); + return -(EINVAL); + } + + /* + * If rs_bit_thresh is greater than 1, then TX WTHRESH should be + * set to 0. If WTHRESH is greater than zero, the RS bit is ignored + * by the NIC and all descriptors are written back after the NIC + * accumulates WTHRESH descriptors. + */ + if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) { + PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if " + "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u " + "port=%d queue=%d)", (unsigned int)tx_rs_thresh, + (int)dev->data->port_id, (int)queue_idx); + return -(EINVAL); + } + + /* Free memory prior to re-allocation if needed... */ + if (dev->data->tx_queues[queue_idx] != NULL) { + em_tx_queue_release(dev->data->tx_queues[queue_idx]); + dev->data->tx_queues[queue_idx] = NULL; + } + + /* + * Allocate TX ring hardware descriptors. A memzone large enough to + * handle the maximum ring size is allocated in order to allow for + * resizing in later calls to the queue setup function. + */ + tsize = sizeof(txq->tx_ring[0]) * E1000_MAX_RING_DESC; + tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize, + RTE_CACHE_LINE_SIZE, socket_id); + if (tz == NULL) + return -ENOMEM; + + /* Allocate the tx queue data structure. */ + if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq), + RTE_CACHE_LINE_SIZE)) == NULL) + return -ENOMEM; + + /* Allocate software ring */ + if ((txq->sw_ring = rte_zmalloc("txq->sw_ring", + sizeof(txq->sw_ring[0]) * nb_desc, + RTE_CACHE_LINE_SIZE)) == NULL) { + em_tx_queue_release(txq); + return -ENOMEM; + } + + txq->nb_tx_desc = nb_desc; + txq->tx_free_thresh = tx_free_thresh; + txq->tx_rs_thresh = tx_rs_thresh; + txq->pthresh = tx_conf->tx_thresh.pthresh; + txq->hthresh = tx_conf->tx_thresh.hthresh; + txq->wthresh = tx_conf->tx_thresh.wthresh; + txq->queue_id = queue_idx; + txq->port_id = dev->data->port_id; + + txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx)); + txq->tx_ring_phys_addr = tz->iova; + txq->tx_ring = (struct e1000_data_desc *) tz->addr; + + PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, + txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr); + + em_reset_tx_queue(txq); + + dev->data->tx_queues[queue_idx] = txq; + txq->offloads = offloads; + return 0; +} + +static void +em_rx_queue_release_mbufs(struct em_rx_queue *rxq) +{ + unsigned i; + + if (rxq->sw_ring != NULL) { + for (i = 0; i != rxq->nb_rx_desc; i++) { + if (rxq->sw_ring[i].mbuf != NULL) { + rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); + rxq->sw_ring[i].mbuf = NULL; + } + } + } +} + +static void +em_rx_queue_release(struct em_rx_queue *rxq) +{ + if (rxq != NULL) { + em_rx_queue_release_mbufs(rxq); + rte_free(rxq->sw_ring); + rte_free(rxq); + } +} + +void +eth_em_rx_queue_release(void *rxq) +{ + em_rx_queue_release(rxq); +} + +/* Reset dynamic em_rx_queue fields back to defaults */ +static void +em_reset_rx_queue(struct em_rx_queue *rxq) +{ + rxq->rx_tail = 0; + rxq->nb_rx_hold = 0; + rxq->pkt_first_seg = NULL; + rxq->pkt_last_seg = NULL; +} + +uint64_t +em_get_rx_port_offloads_capa(struct rte_eth_dev *dev) +{ + uint64_t rx_offload_capa; + uint32_t max_rx_pktlen; + + max_rx_pktlen = em_get_max_pktlen(dev); + + rx_offload_capa = + DEV_RX_OFFLOAD_VLAN_STRIP | + DEV_RX_OFFLOAD_VLAN_FILTER | + DEV_RX_OFFLOAD_IPV4_CKSUM | + DEV_RX_OFFLOAD_UDP_CKSUM | + DEV_RX_OFFLOAD_TCP_CKSUM | + DEV_RX_OFFLOAD_CRC_STRIP | + DEV_RX_OFFLOAD_KEEP_CRC | + DEV_RX_OFFLOAD_SCATTER; + if (max_rx_pktlen > ETHER_MAX_LEN) + rx_offload_capa |= DEV_RX_OFFLOAD_JUMBO_FRAME; + + return rx_offload_capa; +} + +uint64_t +em_get_rx_queue_offloads_capa(struct rte_eth_dev *dev) +{ + uint64_t rx_queue_offload_capa; + + /* + * As only one Rx queue can be used, let per queue offloading + * capability be same to per port queue offloading capability + * for better convenience. + */ + rx_queue_offload_capa = em_get_rx_port_offloads_capa(dev); + + return rx_queue_offload_capa; +} + +int +eth_em_rx_queue_setup(struct rte_eth_dev *dev, + uint16_t queue_idx, + uint16_t nb_desc, + unsigned int socket_id, + const struct rte_eth_rxconf *rx_conf, + struct rte_mempool *mp) +{ + const struct rte_memzone *rz; + struct em_rx_queue *rxq; + struct e1000_hw *hw; + uint32_t rsize; + uint64_t offloads; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads; + + /* + * Validate number of receive descriptors. + * It must not exceed hardware maximum, and must be multiple + * of E1000_ALIGN. + */ + if (nb_desc % EM_RXD_ALIGN != 0 || + (nb_desc > E1000_MAX_RING_DESC) || + (nb_desc < E1000_MIN_RING_DESC)) { + return -EINVAL; + } + + /* + * EM devices don't support drop_en functionality + */ + if (rx_conf->rx_drop_en) { + PMD_INIT_LOG(ERR, "drop_en functionality not supported by " + "device"); + return -EINVAL; + } + + /* Free memory prior to re-allocation if needed. */ + if (dev->data->rx_queues[queue_idx] != NULL) { + em_rx_queue_release(dev->data->rx_queues[queue_idx]); + dev->data->rx_queues[queue_idx] = NULL; + } + + /* Allocate RX ring for max possible mumber of hardware descriptors. */ + rsize = sizeof(rxq->rx_ring[0]) * E1000_MAX_RING_DESC; + rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize, + RTE_CACHE_LINE_SIZE, socket_id); + if (rz == NULL) + return -ENOMEM; + + /* Allocate the RX queue data structure. */ + if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq), + RTE_CACHE_LINE_SIZE)) == NULL) + return -ENOMEM; + + /* Allocate software ring. */ + if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring", + sizeof (rxq->sw_ring[0]) * nb_desc, + RTE_CACHE_LINE_SIZE)) == NULL) { + em_rx_queue_release(rxq); + return -ENOMEM; + } + + rxq->mb_pool = mp; + rxq->nb_rx_desc = nb_desc; + rxq->pthresh = rx_conf->rx_thresh.pthresh; + rxq->hthresh = rx_conf->rx_thresh.hthresh; + rxq->wthresh = rx_conf->rx_thresh.wthresh; + rxq->rx_free_thresh = rx_conf->rx_free_thresh; + rxq->queue_id = queue_idx; + rxq->port_id = dev->data->port_id; + if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads)) + rxq->crc_len = ETHER_CRC_LEN; + else + rxq->crc_len = 0; + + rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx)); + rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx)); + rxq->rx_ring_phys_addr = rz->iova; + rxq->rx_ring = (struct e1000_rx_desc *) rz->addr; + + PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, + rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr); + + dev->data->rx_queues[queue_idx] = rxq; + em_reset_rx_queue(rxq); + rxq->offloads = offloads; + + return 0; +} + +uint32_t +eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) +{ +#define EM_RXQ_SCAN_INTERVAL 4 + volatile struct e1000_rx_desc *rxdp; + struct em_rx_queue *rxq; + uint32_t desc = 0; + + rxq = dev->data->rx_queues[rx_queue_id]; + rxdp = &(rxq->rx_ring[rxq->rx_tail]); + + while ((desc < rxq->nb_rx_desc) && + (rxdp->status & E1000_RXD_STAT_DD)) { + desc += EM_RXQ_SCAN_INTERVAL; + rxdp += EM_RXQ_SCAN_INTERVAL; + if (rxq->rx_tail + desc >= rxq->nb_rx_desc) + rxdp = &(rxq->rx_ring[rxq->rx_tail + + desc - rxq->nb_rx_desc]); + } + + return desc; +} + +int +eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset) +{ + volatile struct e1000_rx_desc *rxdp; + struct em_rx_queue *rxq = rx_queue; + uint32_t desc; + + if (unlikely(offset >= rxq->nb_rx_desc)) + return 0; + desc = rxq->rx_tail + offset; + if (desc >= rxq->nb_rx_desc) + desc -= rxq->nb_rx_desc; + + rxdp = &rxq->rx_ring[desc]; + return !!(rxdp->status & E1000_RXD_STAT_DD); +} + +int +eth_em_rx_descriptor_status(void *rx_queue, uint16_t offset) +{ + struct em_rx_queue *rxq = rx_queue; + volatile uint8_t *status; + uint32_t desc; + + if (unlikely(offset >= rxq->nb_rx_desc)) + return -EINVAL; + + if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold) + return RTE_ETH_RX_DESC_UNAVAIL; + + desc = rxq->rx_tail + offset; + if (desc >= rxq->nb_rx_desc) + desc -= rxq->nb_rx_desc; + + status = &rxq->rx_ring[desc].status; + if (*status & E1000_RXD_STAT_DD) + return RTE_ETH_RX_DESC_DONE; + + return RTE_ETH_RX_DESC_AVAIL; +} + +int +eth_em_tx_descriptor_status(void *tx_queue, uint16_t offset) +{ + struct em_tx_queue *txq = tx_queue; + volatile uint8_t *status; + uint32_t desc; + + if (unlikely(offset >= txq->nb_tx_desc)) + return -EINVAL; + + desc = txq->tx_tail + offset; + /* go to next desc that has the RS bit */ + desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) * + txq->tx_rs_thresh; + if (desc >= txq->nb_tx_desc) { + desc -= txq->nb_tx_desc; + if (desc >= txq->nb_tx_desc) + desc -= txq->nb_tx_desc; + } + + status = &txq->tx_ring[desc].upper.fields.status; + if (*status & E1000_TXD_STAT_DD) + return RTE_ETH_TX_DESC_DONE; + + return RTE_ETH_TX_DESC_FULL; +} + +void +em_dev_clear_queues(struct rte_eth_dev *dev) +{ + uint16_t i; + struct em_tx_queue *txq; + struct em_rx_queue *rxq; + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + txq = dev->data->tx_queues[i]; + if (txq != NULL) { + em_tx_queue_release_mbufs(txq); + em_reset_tx_queue(txq); + } + } + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + rxq = dev->data->rx_queues[i]; + if (rxq != NULL) { + em_rx_queue_release_mbufs(rxq); + em_reset_rx_queue(rxq); + } + } +} + +void +em_dev_free_queues(struct rte_eth_dev *dev) +{ + uint16_t i; + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + eth_em_rx_queue_release(dev->data->rx_queues[i]); + dev->data->rx_queues[i] = NULL; + } + dev->data->nb_rx_queues = 0; + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + eth_em_tx_queue_release(dev->data->tx_queues[i]); + dev->data->tx_queues[i] = NULL; + } + dev->data->nb_tx_queues = 0; +} + +/* + * Takes as input/output parameter RX buffer size. + * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register. + */ +static uint32_t +em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz) +{ + /* + * For BSIZE & BSEX all configurable sizes are: + * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX); + * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX); + * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX); + * 2048: rctl |= E1000_RCTL_SZ_2048; + * 1024: rctl |= E1000_RCTL_SZ_1024; + * 512: rctl |= E1000_RCTL_SZ_512; + * 256: rctl |= E1000_RCTL_SZ_256; + */ + static const struct { + uint32_t bufsz; + uint32_t rctl; + } bufsz_to_rctl[] = { + {16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)}, + {8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)}, + {4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)}, + {2048, E1000_RCTL_SZ_2048}, + {1024, E1000_RCTL_SZ_1024}, + {512, E1000_RCTL_SZ_512}, + {256, E1000_RCTL_SZ_256}, + }; + + int i; + uint32_t rctl_bsize; + + rctl_bsize = *bufsz; + + /* + * Starting from 82571 it is possible to specify RX buffer size + * by RCTL.FLXBUF. When this field is different from zero, the + * RX buffer size = RCTL.FLXBUF * 1K + * (e.g. t is possible to specify RX buffer size 1,2,...,15KB). + * It is working ok on real HW, but by some reason doesn't work + * on VMware emulated 82574L. + * So for now, always use BSIZE/BSEX to setup RX buffer size. + * If you don't plan to use it on VMware emulated 82574L and + * would like to specify RX buffer size in 1K granularity, + * uncomment the following lines: + * *************************************************************** + * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 && + * rctl_bsize >= EM_RCTL_FLXBUF_STEP) { + * rctl_bsize /= EM_RCTL_FLXBUF_STEP; + * *bufsz = rctl_bsize; + * return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT & + * E1000_RCTL_FLXBUF_MASK); + * } + * *************************************************************** + */ + + for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]); + i++) { + if (rctl_bsize >= bufsz_to_rctl[i].bufsz) { + *bufsz = bufsz_to_rctl[i].bufsz; + return bufsz_to_rctl[i].rctl; + } + } + + /* Should never happen. */ + return -EINVAL; +} + +static int +em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq) +{ + struct em_rx_entry *rxe = rxq->sw_ring; + uint64_t dma_addr; + unsigned i; + static const struct e1000_rx_desc rxd_init = { + .buffer_addr = 0, + }; + + /* Initialize software ring entries */ + for (i = 0; i < rxq->nb_rx_desc; i++) { + volatile struct e1000_rx_desc *rxd; + struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool); + + if (mbuf == NULL) { + PMD_INIT_LOG(ERR, "RX mbuf alloc failed " + "queue_id=%hu", rxq->queue_id); + return -ENOMEM; + } + + dma_addr = + rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); + + /* Clear HW ring memory */ + rxq->rx_ring[i] = rxd_init; + + rxd = &rxq->rx_ring[i]; + rxd->buffer_addr = dma_addr; + rxe[i].mbuf = mbuf; + } + + return 0; +} + +/********************************************************************* + * + * Enable receive unit. + * + **********************************************************************/ +int +eth_em_rx_init(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + struct em_rx_queue *rxq; + struct rte_eth_rxmode *rxmode; + uint32_t rctl; + uint32_t rfctl; + uint32_t rxcsum; + uint32_t rctl_bsize; + uint16_t i; + int ret; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + rxmode = &dev->data->dev_conf.rxmode; + + /* + * Make sure receives are disabled while setting + * up the descriptor ring. + */ + rctl = E1000_READ_REG(hw, E1000_RCTL); + E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); + + rfctl = E1000_READ_REG(hw, E1000_RFCTL); + + /* Disable extended descriptor type. */ + rfctl &= ~E1000_RFCTL_EXTEN; + /* Disable accelerated acknowledge */ + if (hw->mac.type == e1000_82574) + rfctl |= E1000_RFCTL_ACK_DIS; + + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); + + /* + * XXX TEMPORARY WORKAROUND: on some systems with 82573 + * long latencies are observed, like Lenovo X60. This + * change eliminates the problem, but since having positive + * values in RDTR is a known source of problems on other + * platforms another solution is being sought. + */ + if (hw->mac.type == e1000_82573) + E1000_WRITE_REG(hw, E1000_RDTR, 0x20); + + dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts; + + /* Determine RX bufsize. */ + rctl_bsize = EM_MAX_BUF_SIZE; + for (i = 0; i < dev->data->nb_rx_queues; i++) { + uint32_t buf_size; + + rxq = dev->data->rx_queues[i]; + buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) - + RTE_PKTMBUF_HEADROOM; + rctl_bsize = RTE_MIN(rctl_bsize, buf_size); + } + + rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize); + + /* Configure and enable each RX queue. */ + for (i = 0; i < dev->data->nb_rx_queues; i++) { + uint64_t bus_addr; + uint32_t rxdctl; + + rxq = dev->data->rx_queues[i]; + + /* Allocate buffers for descriptor rings and setup queue */ + ret = em_alloc_rx_queue_mbufs(rxq); + if (ret) + return ret; + + /* + * Reset crc_len in case it was changed after queue setup by a + * call to configure + */ + if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads)) + rxq->crc_len = ETHER_CRC_LEN; + else + rxq->crc_len = 0; + + bus_addr = rxq->rx_ring_phys_addr; + E1000_WRITE_REG(hw, E1000_RDLEN(i), + rxq->nb_rx_desc * + sizeof(*rxq->rx_ring)); + E1000_WRITE_REG(hw, E1000_RDBAH(i), + (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr); + + E1000_WRITE_REG(hw, E1000_RDH(i), 0); + E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1); + + rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); + rxdctl &= 0xFE000000; + rxdctl |= rxq->pthresh & 0x3F; + rxdctl |= (rxq->hthresh & 0x3F) << 8; + rxdctl |= (rxq->wthresh & 0x3F) << 16; + rxdctl |= E1000_RXDCTL_GRAN; + E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); + + /* + * Due to EM devices not having any sort of hardware + * limit for packet length, jumbo frame of any size + * can be accepted, thus we have to enable scattered + * rx if jumbo frames are enabled (or if buffer size + * is too small to accommodate non-jumbo packets) + * to avoid splitting packets that don't fit into + * one buffer. + */ + if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME || + rctl_bsize < ETHER_MAX_LEN) { + if (!dev->data->scattered_rx) + PMD_INIT_LOG(DEBUG, "forcing scatter mode"); + dev->rx_pkt_burst = + (eth_rx_burst_t)eth_em_recv_scattered_pkts; + dev->data->scattered_rx = 1; + } + } + + if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) { + if (!dev->data->scattered_rx) + PMD_INIT_LOG(DEBUG, "forcing scatter mode"); + dev->rx_pkt_burst = eth_em_recv_scattered_pkts; + dev->data->scattered_rx = 1; + } + + /* + * Setup the Checksum Register. + * Receive Full-Packet Checksum Offload is mutually exclusive with RSS. + */ + rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); + + if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) + rxcsum |= E1000_RXCSUM_IPOFL; + else + rxcsum &= ~E1000_RXCSUM_IPOFL; + E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); + + /* No MRQ or RSS support for now */ + + /* Set early receive threshold on appropriate hw */ + if ((hw->mac.type == e1000_ich9lan || + hw->mac.type == e1000_pch2lan || + hw->mac.type == e1000_ich10lan) && + rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) { + u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); + E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); + E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13)); + } + + if (hw->mac.type == e1000_pch2lan) { + if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) + e1000_lv_jumbo_workaround_ich8lan(hw, TRUE); + else + e1000_lv_jumbo_workaround_ich8lan(hw, FALSE); + } + + /* Setup the Receive Control Register. */ + if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads)) + rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */ + else + rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */ + + rctl &= ~(3 << E1000_RCTL_MO_SHIFT); + rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | + E1000_RCTL_RDMTS_HALF | + (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); + + /* Make sure VLAN Filters are off. */ + rctl &= ~E1000_RCTL_VFE; + /* Don't store bad packets. */ + rctl &= ~E1000_RCTL_SBP; + /* Legacy descriptor type. */ + rctl &= ~E1000_RCTL_DTYP_MASK; + + /* + * Configure support of jumbo frames, if any. + */ + if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) + rctl |= E1000_RCTL_LPE; + else + rctl &= ~E1000_RCTL_LPE; + + /* Enable Receives. */ + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + + return 0; +} + +/********************************************************************* + * + * Enable transmit unit. + * + **********************************************************************/ +void +eth_em_tx_init(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + struct em_tx_queue *txq; + uint32_t tctl; + uint32_t txdctl; + uint16_t i; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* Setup the Base and Length of the Tx Descriptor Rings. */ + for (i = 0; i < dev->data->nb_tx_queues; i++) { + uint64_t bus_addr; + + txq = dev->data->tx_queues[i]; + bus_addr = txq->tx_ring_phys_addr; + E1000_WRITE_REG(hw, E1000_TDLEN(i), + txq->nb_tx_desc * + sizeof(*txq->tx_ring)); + E1000_WRITE_REG(hw, E1000_TDBAH(i), + (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr); + + /* Setup the HW Tx Head and Tail descriptor pointers. */ + E1000_WRITE_REG(hw, E1000_TDT(i), 0); + E1000_WRITE_REG(hw, E1000_TDH(i), 0); + + /* Setup Transmit threshold registers. */ + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i)); + /* + * bit 22 is reserved, on some models should always be 0, + * on others - always 1. + */ + txdctl &= E1000_TXDCTL_COUNT_DESC; + txdctl |= txq->pthresh & 0x3F; + txdctl |= (txq->hthresh & 0x3F) << 8; + txdctl |= (txq->wthresh & 0x3F) << 16; + txdctl |= E1000_TXDCTL_GRAN; + E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); + } + + /* Program the Transmit Control Register. */ + tctl = E1000_READ_REG(hw, E1000_TCTL); + tctl &= ~E1000_TCTL_CT; + tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | + (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); + + /* This write will effectively turn on the transmit unit. */ + E1000_WRITE_REG(hw, E1000_TCTL, tctl); +} + +void +em_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_rxq_info *qinfo) +{ + struct em_rx_queue *rxq; + + rxq = dev->data->rx_queues[queue_id]; + + qinfo->mp = rxq->mb_pool; + qinfo->scattered_rx = dev->data->scattered_rx; + qinfo->nb_desc = rxq->nb_rx_desc; + qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; + qinfo->conf.offloads = rxq->offloads; +} + +void +em_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_txq_info *qinfo) +{ + struct em_tx_queue *txq; + + txq = dev->data->tx_queues[queue_id]; + + qinfo->nb_desc = txq->nb_tx_desc; + + qinfo->conf.tx_thresh.pthresh = txq->pthresh; + qinfo->conf.tx_thresh.hthresh = txq->hthresh; + qinfo->conf.tx_thresh.wthresh = txq->wthresh; + qinfo->conf.tx_free_thresh = txq->tx_free_thresh; + qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh; + qinfo->conf.offloads = txq->offloads; +} diff --git a/src/spdk/dpdk/drivers/net/e1000/igb_ethdev.c b/src/spdk/dpdk/drivers/net/e1000/igb_ethdev.c new file mode 100644 index 00000000..64dfe683 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/igb_ethdev.c @@ -0,0 +1,5692 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2010-2016 Intel Corporation + */ + +#include <sys/queue.h> +#include <stdio.h> +#include <errno.h> +#include <stdint.h> +#include <stdarg.h> + +#include <rte_common.h> +#include <rte_interrupts.h> +#include <rte_byteorder.h> +#include <rte_log.h> +#include <rte_debug.h> +#include <rte_pci.h> +#include <rte_bus_pci.h> +#include <rte_ether.h> +#include <rte_ethdev_driver.h> +#include <rte_ethdev_pci.h> +#include <rte_memory.h> +#include <rte_eal.h> +#include <rte_malloc.h> +#include <rte_dev.h> + +#include "e1000_logs.h" +#include "base/e1000_api.h" +#include "e1000_ethdev.h" +#include "igb_regs.h" + +/* + * Default values for port configuration + */ +#define IGB_DEFAULT_RX_FREE_THRESH 32 + +#define IGB_DEFAULT_RX_PTHRESH ((hw->mac.type == e1000_i354) ? 12 : 8) +#define IGB_DEFAULT_RX_HTHRESH 8 +#define IGB_DEFAULT_RX_WTHRESH ((hw->mac.type == e1000_82576) ? 1 : 4) + +#define IGB_DEFAULT_TX_PTHRESH ((hw->mac.type == e1000_i354) ? 20 : 8) +#define IGB_DEFAULT_TX_HTHRESH 1 +#define IGB_DEFAULT_TX_WTHRESH ((hw->mac.type == e1000_82576) ? 1 : 16) + +/* Bit shift and mask */ +#define IGB_4_BIT_WIDTH (CHAR_BIT / 2) +#define IGB_4_BIT_MASK RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t) +#define IGB_8_BIT_WIDTH CHAR_BIT +#define IGB_8_BIT_MASK UINT8_MAX + +/* Additional timesync values. */ +#define E1000_CYCLECOUNTER_MASK 0xffffffffffffffffULL +#define E1000_ETQF_FILTER_1588 3 +#define IGB_82576_TSYNC_SHIFT 16 +#define E1000_INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT) +#define E1000_INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT) +#define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000 + +#define E1000_VTIVAR_MISC 0x01740 +#define E1000_VTIVAR_MISC_MASK 0xFF +#define E1000_VTIVAR_VALID 0x80 +#define E1000_VTIVAR_MISC_MAILBOX 0 +#define E1000_VTIVAR_MISC_INTR_MASK 0x3 + +/* External VLAN Enable bit mask */ +#define E1000_CTRL_EXT_EXT_VLAN (1 << 26) + +/* External VLAN Ether Type bit mask and shift */ +#define E1000_VET_VET_EXT 0xFFFF0000 +#define E1000_VET_VET_EXT_SHIFT 16 + +static int eth_igb_configure(struct rte_eth_dev *dev); +static int eth_igb_start(struct rte_eth_dev *dev); +static void eth_igb_stop(struct rte_eth_dev *dev); +static int eth_igb_dev_set_link_up(struct rte_eth_dev *dev); +static int eth_igb_dev_set_link_down(struct rte_eth_dev *dev); +static void eth_igb_close(struct rte_eth_dev *dev); +static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev); +static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev); +static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev); +static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev); +static int eth_igb_link_update(struct rte_eth_dev *dev, + int wait_to_complete); +static int eth_igb_stats_get(struct rte_eth_dev *dev, + struct rte_eth_stats *rte_stats); +static int eth_igb_xstats_get(struct rte_eth_dev *dev, + struct rte_eth_xstat *xstats, unsigned n); +static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, + const uint64_t *ids, + uint64_t *values, unsigned int n); +static int eth_igb_xstats_get_names(struct rte_eth_dev *dev, + struct rte_eth_xstat_name *xstats_names, + unsigned int size); +static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev, + struct rte_eth_xstat_name *xstats_names, const uint64_t *ids, + unsigned int limit); +static void eth_igb_stats_reset(struct rte_eth_dev *dev); +static void eth_igb_xstats_reset(struct rte_eth_dev *dev); +static int eth_igb_fw_version_get(struct rte_eth_dev *dev, + char *fw_version, size_t fw_size); +static void eth_igb_infos_get(struct rte_eth_dev *dev, + struct rte_eth_dev_info *dev_info); +static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev); +static void eth_igbvf_infos_get(struct rte_eth_dev *dev, + struct rte_eth_dev_info *dev_info); +static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, + struct rte_eth_fc_conf *fc_conf); +static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, + struct rte_eth_fc_conf *fc_conf); +static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on); +static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev); +static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev); +static int eth_igb_interrupt_action(struct rte_eth_dev *dev, + struct rte_intr_handle *handle); +static void eth_igb_interrupt_handler(void *param); +static int igb_hardware_init(struct e1000_hw *hw); +static void igb_hw_control_acquire(struct e1000_hw *hw); +static void igb_hw_control_release(struct e1000_hw *hw); +static void igb_init_manageability(struct e1000_hw *hw); +static void igb_release_manageability(struct e1000_hw *hw); + +static int eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); + +static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev, + uint16_t vlan_id, int on); +static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, + enum rte_vlan_type vlan_type, + uint16_t tpid_id); +static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask); + +static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev); +static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev); +static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev); +static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev); +static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev); +static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev); + +static int eth_igb_led_on(struct rte_eth_dev *dev); +static int eth_igb_led_off(struct rte_eth_dev *dev); + +static void igb_intr_disable(struct e1000_hw *hw); +static int igb_get_rx_buffer_size(struct e1000_hw *hw); +static int eth_igb_rar_set(struct rte_eth_dev *dev, + struct ether_addr *mac_addr, + uint32_t index, uint32_t pool); +static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index); +static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev, + struct ether_addr *addr); + +static void igbvf_intr_disable(struct e1000_hw *hw); +static int igbvf_dev_configure(struct rte_eth_dev *dev); +static int igbvf_dev_start(struct rte_eth_dev *dev); +static void igbvf_dev_stop(struct rte_eth_dev *dev); +static void igbvf_dev_close(struct rte_eth_dev *dev); +static void igbvf_promiscuous_enable(struct rte_eth_dev *dev); +static void igbvf_promiscuous_disable(struct rte_eth_dev *dev); +static void igbvf_allmulticast_enable(struct rte_eth_dev *dev); +static void igbvf_allmulticast_disable(struct rte_eth_dev *dev); +static int eth_igbvf_link_update(struct e1000_hw *hw); +static int eth_igbvf_stats_get(struct rte_eth_dev *dev, + struct rte_eth_stats *rte_stats); +static int eth_igbvf_xstats_get(struct rte_eth_dev *dev, + struct rte_eth_xstat *xstats, unsigned n); +static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev, + struct rte_eth_xstat_name *xstats_names, + unsigned limit); +static void eth_igbvf_stats_reset(struct rte_eth_dev *dev); +static int igbvf_vlan_filter_set(struct rte_eth_dev *dev, + uint16_t vlan_id, int on); +static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on); +static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on); +static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev, + struct ether_addr *addr); +static int igbvf_get_reg_length(struct rte_eth_dev *dev); +static int igbvf_get_regs(struct rte_eth_dev *dev, + struct rte_dev_reg_info *regs); + +static int eth_igb_rss_reta_update(struct rte_eth_dev *dev, + struct rte_eth_rss_reta_entry64 *reta_conf, + uint16_t reta_size); +static int eth_igb_rss_reta_query(struct rte_eth_dev *dev, + struct rte_eth_rss_reta_entry64 *reta_conf, + uint16_t reta_size); + +static int eth_igb_syn_filter_get(struct rte_eth_dev *dev, + struct rte_eth_syn_filter *filter); +static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev, + enum rte_filter_op filter_op, + void *arg); +static int igb_add_2tuple_filter(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *ntuple_filter); +static int igb_remove_2tuple_filter(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *ntuple_filter); +static int eth_igb_get_flex_filter(struct rte_eth_dev *dev, + struct rte_eth_flex_filter *filter); +static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev, + enum rte_filter_op filter_op, + void *arg); +static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *ntuple_filter); +static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *ntuple_filter); +static int igb_get_ntuple_filter(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *filter); +static int igb_ntuple_filter_handle(struct rte_eth_dev *dev, + enum rte_filter_op filter_op, + void *arg); +static int igb_ethertype_filter_handle(struct rte_eth_dev *dev, + enum rte_filter_op filter_op, + void *arg); +static int igb_get_ethertype_filter(struct rte_eth_dev *dev, + struct rte_eth_ethertype_filter *filter); +static int eth_igb_filter_ctrl(struct rte_eth_dev *dev, + enum rte_filter_type filter_type, + enum rte_filter_op filter_op, + void *arg); +static int eth_igb_get_reg_length(struct rte_eth_dev *dev); +static int eth_igb_get_regs(struct rte_eth_dev *dev, + struct rte_dev_reg_info *regs); +static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev); +static int eth_igb_get_eeprom(struct rte_eth_dev *dev, + struct rte_dev_eeprom_info *eeprom); +static int eth_igb_set_eeprom(struct rte_eth_dev *dev, + struct rte_dev_eeprom_info *eeprom); +static int eth_igb_get_module_info(struct rte_eth_dev *dev, + struct rte_eth_dev_module_info *modinfo); +static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev, + struct rte_dev_eeprom_info *info); +static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev, + struct ether_addr *mc_addr_set, + uint32_t nb_mc_addr); +static int igb_timesync_enable(struct rte_eth_dev *dev); +static int igb_timesync_disable(struct rte_eth_dev *dev); +static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev, + struct timespec *timestamp, + uint32_t flags); +static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev, + struct timespec *timestamp); +static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta); +static int igb_timesync_read_time(struct rte_eth_dev *dev, + struct timespec *timestamp); +static int igb_timesync_write_time(struct rte_eth_dev *dev, + const struct timespec *timestamp); +static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, + uint16_t queue_id); +static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, + uint16_t queue_id); +static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction, + uint8_t queue, uint8_t msix_vector); +static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector, + uint8_t index, uint8_t offset); +static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev); +static void eth_igbvf_interrupt_handler(void *param); +static void igbvf_mbx_process(struct rte_eth_dev *dev); +static int igb_filter_restore(struct rte_eth_dev *dev); + +/* + * Define VF Stats MACRO for Non "cleared on read" register + */ +#define UPDATE_VF_STAT(reg, last, cur) \ +{ \ + u32 latest = E1000_READ_REG(hw, reg); \ + cur += (latest - last) & UINT_MAX; \ + last = latest; \ +} + +#define IGB_FC_PAUSE_TIME 0x0680 +#define IGB_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */ +#define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */ + +#define IGBVF_PMD_NAME "rte_igbvf_pmd" /* PMD name */ + +static enum e1000_fc_mode igb_fc_setting = e1000_fc_full; + +/* + * The set of PCI devices this driver supports + */ +static const struct rte_pci_id pci_id_igb_map[] = { + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) }, + + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) }, + + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) }, + + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) }, + { .vendor_id = 0, /* sentinel */ }, +}; + +/* + * The set of PCI devices this driver supports (for 82576&I350 VF) + */ +static const struct rte_pci_id pci_id_igbvf_map[] = { + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) }, + { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) }, + { .vendor_id = 0, /* sentinel */ }, +}; + +static const struct rte_eth_desc_lim rx_desc_lim = { + .nb_max = E1000_MAX_RING_DESC, + .nb_min = E1000_MIN_RING_DESC, + .nb_align = IGB_RXD_ALIGN, +}; + +static const struct rte_eth_desc_lim tx_desc_lim = { + .nb_max = E1000_MAX_RING_DESC, + .nb_min = E1000_MIN_RING_DESC, + .nb_align = IGB_RXD_ALIGN, + .nb_seg_max = IGB_TX_MAX_SEG, + .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG, +}; + +static const struct eth_dev_ops eth_igb_ops = { + .dev_configure = eth_igb_configure, + .dev_start = eth_igb_start, + .dev_stop = eth_igb_stop, + .dev_set_link_up = eth_igb_dev_set_link_up, + .dev_set_link_down = eth_igb_dev_set_link_down, + .dev_close = eth_igb_close, + .promiscuous_enable = eth_igb_promiscuous_enable, + .promiscuous_disable = eth_igb_promiscuous_disable, + .allmulticast_enable = eth_igb_allmulticast_enable, + .allmulticast_disable = eth_igb_allmulticast_disable, + .link_update = eth_igb_link_update, + .stats_get = eth_igb_stats_get, + .xstats_get = eth_igb_xstats_get, + .xstats_get_by_id = eth_igb_xstats_get_by_id, + .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id, + .xstats_get_names = eth_igb_xstats_get_names, + .stats_reset = eth_igb_stats_reset, + .xstats_reset = eth_igb_xstats_reset, + .fw_version_get = eth_igb_fw_version_get, + .dev_infos_get = eth_igb_infos_get, + .dev_supported_ptypes_get = eth_igb_supported_ptypes_get, + .mtu_set = eth_igb_mtu_set, + .vlan_filter_set = eth_igb_vlan_filter_set, + .vlan_tpid_set = eth_igb_vlan_tpid_set, + .vlan_offload_set = eth_igb_vlan_offload_set, + .rx_queue_setup = eth_igb_rx_queue_setup, + .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable, + .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable, + .rx_queue_release = eth_igb_rx_queue_release, + .rx_queue_count = eth_igb_rx_queue_count, + .rx_descriptor_done = eth_igb_rx_descriptor_done, + .rx_descriptor_status = eth_igb_rx_descriptor_status, + .tx_descriptor_status = eth_igb_tx_descriptor_status, + .tx_queue_setup = eth_igb_tx_queue_setup, + .tx_queue_release = eth_igb_tx_queue_release, + .tx_done_cleanup = eth_igb_tx_done_cleanup, + .dev_led_on = eth_igb_led_on, + .dev_led_off = eth_igb_led_off, + .flow_ctrl_get = eth_igb_flow_ctrl_get, + .flow_ctrl_set = eth_igb_flow_ctrl_set, + .mac_addr_add = eth_igb_rar_set, + .mac_addr_remove = eth_igb_rar_clear, + .mac_addr_set = eth_igb_default_mac_addr_set, + .reta_update = eth_igb_rss_reta_update, + .reta_query = eth_igb_rss_reta_query, + .rss_hash_update = eth_igb_rss_hash_update, + .rss_hash_conf_get = eth_igb_rss_hash_conf_get, + .filter_ctrl = eth_igb_filter_ctrl, + .set_mc_addr_list = eth_igb_set_mc_addr_list, + .rxq_info_get = igb_rxq_info_get, + .txq_info_get = igb_txq_info_get, + .timesync_enable = igb_timesync_enable, + .timesync_disable = igb_timesync_disable, + .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp, + .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp, + .get_reg = eth_igb_get_regs, + .get_eeprom_length = eth_igb_get_eeprom_length, + .get_eeprom = eth_igb_get_eeprom, + .set_eeprom = eth_igb_set_eeprom, + .get_module_info = eth_igb_get_module_info, + .get_module_eeprom = eth_igb_get_module_eeprom, + .timesync_adjust_time = igb_timesync_adjust_time, + .timesync_read_time = igb_timesync_read_time, + .timesync_write_time = igb_timesync_write_time, +}; + +/* + * dev_ops for virtual function, bare necessities for basic vf + * operation have been implemented + */ +static const struct eth_dev_ops igbvf_eth_dev_ops = { + .dev_configure = igbvf_dev_configure, + .dev_start = igbvf_dev_start, + .dev_stop = igbvf_dev_stop, + .dev_close = igbvf_dev_close, + .promiscuous_enable = igbvf_promiscuous_enable, + .promiscuous_disable = igbvf_promiscuous_disable, + .allmulticast_enable = igbvf_allmulticast_enable, + .allmulticast_disable = igbvf_allmulticast_disable, + .link_update = eth_igb_link_update, + .stats_get = eth_igbvf_stats_get, + .xstats_get = eth_igbvf_xstats_get, + .xstats_get_names = eth_igbvf_xstats_get_names, + .stats_reset = eth_igbvf_stats_reset, + .xstats_reset = eth_igbvf_stats_reset, + .vlan_filter_set = igbvf_vlan_filter_set, + .dev_infos_get = eth_igbvf_infos_get, + .dev_supported_ptypes_get = eth_igb_supported_ptypes_get, + .rx_queue_setup = eth_igb_rx_queue_setup, + .rx_queue_release = eth_igb_rx_queue_release, + .rx_descriptor_done = eth_igb_rx_descriptor_done, + .rx_descriptor_status = eth_igb_rx_descriptor_status, + .tx_descriptor_status = eth_igb_tx_descriptor_status, + .tx_queue_setup = eth_igb_tx_queue_setup, + .tx_queue_release = eth_igb_tx_queue_release, + .set_mc_addr_list = eth_igb_set_mc_addr_list, + .rxq_info_get = igb_rxq_info_get, + .txq_info_get = igb_txq_info_get, + .mac_addr_set = igbvf_default_mac_addr_set, + .get_reg = igbvf_get_regs, +}; + +/* store statistics names and its offset in stats structure */ +struct rte_igb_xstats_name_off { + char name[RTE_ETH_XSTATS_NAME_SIZE]; + unsigned offset; +}; + +static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = { + {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)}, + {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)}, + {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)}, + {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)}, + {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)}, + {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)}, + {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats, + ecol)}, + {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)}, + {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)}, + {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)}, + {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)}, + {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)}, + {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)}, + {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)}, + {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)}, + {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)}, + {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)}, + {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats, + fcruc)}, + {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)}, + {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)}, + {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)}, + {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)}, + {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats, + prc1023)}, + {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats, + prc1522)}, + {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)}, + {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)}, + {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)}, + {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)}, + {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)}, + {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)}, + {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)}, + {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)}, + {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)}, + {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)}, + {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)}, + {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)}, + {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)}, + {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)}, + {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)}, + {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)}, + {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)}, + {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats, + ptc1023)}, + {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats, + ptc1522)}, + {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)}, + {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)}, + {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)}, + {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)}, + {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)}, + {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)}, + {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)}, + + {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)}, +}; + +#define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \ + sizeof(rte_igb_stats_strings[0])) + +static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = { + {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)}, + {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)}, + {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)}, + {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)}, + {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)}, +}; + +#define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \ + sizeof(rte_igbvf_stats_strings[0])) + + +static inline void +igb_intr_enable(struct rte_eth_dev *dev) +{ + struct e1000_interrupt *intr = + E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + E1000_WRITE_REG(hw, E1000_IMS, intr->mask); + E1000_WRITE_FLUSH(hw); +} + +static void +igb_intr_disable(struct e1000_hw *hw) +{ + E1000_WRITE_REG(hw, E1000_IMC, ~0); + E1000_WRITE_FLUSH(hw); +} + +static inline void +igbvf_intr_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* only for mailbox */ + E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX); + E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX); + E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX); + E1000_WRITE_FLUSH(hw); +} + +/* only for mailbox now. If RX/TX needed, should extend this function. */ +static void +igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector) +{ + uint32_t tmp = 0; + + /* mailbox */ + tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK); + tmp |= E1000_VTIVAR_VALID; + E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp); +} + +static void +eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* Configure VF other cause ivar */ + igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX); +} + +static inline int32_t +igb_pf_reset_hw(struct e1000_hw *hw) +{ + uint32_t ctrl_ext; + int32_t status; + + status = e1000_reset_hw(hw); + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + /* Set PF Reset Done bit so PF/VF Mail Ops can work */ + ctrl_ext |= E1000_CTRL_EXT_PFRSTD; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + return status; +} + +static void +igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + + hw->vendor_id = pci_dev->id.vendor_id; + hw->device_id = pci_dev->id.device_id; + hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id; + hw->subsystem_device_id = pci_dev->id.subsystem_device_id; + + e1000_set_mac_type(hw); + + /* need to check if it is a vf device below */ +} + +static int +igb_reset_swfw_lock(struct e1000_hw *hw) +{ + int ret_val; + + /* + * Do mac ops initialization manually here, since we will need + * some function pointers set by this call. + */ + ret_val = e1000_init_mac_params(hw); + if (ret_val) + return ret_val; + + /* + * SMBI lock should not fail in this early stage. If this is the case, + * it is due to an improper exit of the application. + * So force the release of the faulty lock. + */ + if (e1000_get_hw_semaphore_generic(hw) < 0) { + PMD_DRV_LOG(DEBUG, "SMBI lock released"); + } + e1000_put_hw_semaphore_generic(hw); + + if (hw->mac.ops.acquire_swfw_sync != NULL) { + uint16_t mask; + + /* + * Phy lock should not fail in this early stage. If this is the case, + * it is due to an improper exit of the application. + * So force the release of the faulty lock. + */ + mask = E1000_SWFW_PHY0_SM << hw->bus.func; + if (hw->bus.func > E1000_FUNC_1) + mask <<= 2; + if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) { + PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released", + hw->bus.func); + } + hw->mac.ops.release_swfw_sync(hw, mask); + + /* + * This one is more tricky since it is common to all ports; but + * swfw_sync retries last long enough (1s) to be almost sure that if + * lock can not be taken it is due to an improper lock of the + * semaphore. + */ + mask = E1000_SWFW_EEP_SM; + if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) { + PMD_DRV_LOG(DEBUG, "SWFW common locks released"); + } + hw->mac.ops.release_swfw_sync(hw, mask); + } + + return E1000_SUCCESS; +} + +/* Remove all ntuple filters of the device */ +static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private); + struct e1000_5tuple_filter *p_5tuple; + struct e1000_2tuple_filter *p_2tuple; + + while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) { + TAILQ_REMOVE(&filter_info->fivetuple_list, + p_5tuple, entries); + rte_free(p_5tuple); + } + filter_info->fivetuple_mask = 0; + while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) { + TAILQ_REMOVE(&filter_info->twotuple_list, + p_2tuple, entries); + rte_free(p_2tuple); + } + filter_info->twotuple_mask = 0; + + return 0; +} + +/* Remove all flex filters of the device */ +static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private); + struct e1000_flex_filter *p_flex; + + while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) { + TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries); + rte_free(p_flex); + } + filter_info->flex_mask = 0; + + return 0; +} + +static int +eth_igb_dev_init(struct rte_eth_dev *eth_dev) +{ + int error = 0; + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); + struct e1000_vfta * shadow_vfta = + E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private); + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(eth_dev->data->dev_private); + + uint32_t ctrl_ext; + + eth_dev->dev_ops = ð_igb_ops; + eth_dev->rx_pkt_burst = ð_igb_recv_pkts; + eth_dev->tx_pkt_burst = ð_igb_xmit_pkts; + eth_dev->tx_pkt_prepare = ð_igb_prep_pkts; + + /* for secondary processes, we don't initialise any further as primary + * has already done this work. Only check we don't need a different + * RX function */ + if (rte_eal_process_type() != RTE_PROC_PRIMARY){ + if (eth_dev->data->scattered_rx) + eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts; + return 0; + } + + rte_eth_copy_pci_info(eth_dev, pci_dev); + + hw->hw_addr= (void *)pci_dev->mem_resource[0].addr; + + igb_identify_hardware(eth_dev, pci_dev); + if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) { + error = -EIO; + goto err_late; + } + + e1000_get_bus_info(hw); + + /* Reset any pending lock */ + if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) { + error = -EIO; + goto err_late; + } + + /* Finish initialization */ + if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) { + error = -EIO; + goto err_late; + } + + hw->mac.autoneg = 1; + hw->phy.autoneg_wait_to_complete = 0; + hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; + + /* Copper options */ + if (hw->phy.media_type == e1000_media_type_copper) { + hw->phy.mdix = 0; /* AUTO_ALL_MODES */ + hw->phy.disable_polarity_correction = 0; + hw->phy.ms_type = e1000_ms_hw_default; + } + + /* + * Start from a known state, this is important in reading the nvm + * and mac from that. + */ + igb_pf_reset_hw(hw); + + /* Make sure we have a good EEPROM before we read from it */ + if (e1000_validate_nvm_checksum(hw) < 0) { + /* + * Some PCI-E parts fail the first check due to + * the link being in sleep state, call it again, + * if it fails a second time its a real issue. + */ + if (e1000_validate_nvm_checksum(hw) < 0) { + PMD_INIT_LOG(ERR, "EEPROM checksum invalid"); + error = -EIO; + goto err_late; + } + } + + /* Read the permanent MAC address out of the EEPROM */ + if (e1000_read_mac_addr(hw) != 0) { + PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address"); + error = -EIO; + goto err_late; + } + + /* Allocate memory for storing MAC addresses */ + eth_dev->data->mac_addrs = rte_zmalloc("e1000", + ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0); + if (eth_dev->data->mac_addrs == NULL) { + PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to " + "store MAC addresses", + ETHER_ADDR_LEN * hw->mac.rar_entry_count); + error = -ENOMEM; + goto err_late; + } + + /* Copy the permanent MAC address */ + ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]); + + /* initialize the vfta */ + memset(shadow_vfta, 0, sizeof(*shadow_vfta)); + + /* Now initialize the hardware */ + if (igb_hardware_init(hw) != 0) { + PMD_INIT_LOG(ERR, "Hardware initialization failed"); + rte_free(eth_dev->data->mac_addrs); + eth_dev->data->mac_addrs = NULL; + error = -ENODEV; + goto err_late; + } + hw->mac.get_link_status = 1; + adapter->stopped = 0; + + /* Indicate SOL/IDER usage */ + if (e1000_check_reset_block(hw) < 0) { + PMD_INIT_LOG(ERR, "PHY reset is blocked due to" + "SOL/IDER session"); + } + + /* initialize PF if max_vfs not zero */ + igb_pf_host_init(eth_dev); + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + /* Set PF Reset Done bit so PF/VF Mail Ops can work */ + ctrl_ext |= E1000_CTRL_EXT_PFRSTD; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x", + eth_dev->data->port_id, pci_dev->id.vendor_id, + pci_dev->id.device_id); + + rte_intr_callback_register(&pci_dev->intr_handle, + eth_igb_interrupt_handler, + (void *)eth_dev); + + /* enable uio/vfio intr/eventfd mapping */ + rte_intr_enable(&pci_dev->intr_handle); + + /* enable support intr */ + igb_intr_enable(eth_dev); + + /* initialize filter info */ + memset(filter_info, 0, + sizeof(struct e1000_filter_info)); + + TAILQ_INIT(&filter_info->flex_list); + TAILQ_INIT(&filter_info->twotuple_list); + TAILQ_INIT(&filter_info->fivetuple_list); + + TAILQ_INIT(&igb_filter_ntuple_list); + TAILQ_INIT(&igb_filter_ethertype_list); + TAILQ_INIT(&igb_filter_syn_list); + TAILQ_INIT(&igb_filter_flex_list); + TAILQ_INIT(&igb_filter_rss_list); + TAILQ_INIT(&igb_flow_list); + + return 0; + +err_late: + igb_hw_control_release(hw); + + return error; +} + +static int +eth_igb_dev_uninit(struct rte_eth_dev *eth_dev) +{ + struct rte_pci_device *pci_dev; + struct rte_intr_handle *intr_handle; + struct e1000_hw *hw; + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(eth_dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private); + + PMD_INIT_FUNC_TRACE(); + + if (rte_eal_process_type() != RTE_PROC_PRIMARY) + return -EPERM; + + hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); + pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); + intr_handle = &pci_dev->intr_handle; + + if (adapter->stopped == 0) + eth_igb_close(eth_dev); + + eth_dev->dev_ops = NULL; + eth_dev->rx_pkt_burst = NULL; + eth_dev->tx_pkt_burst = NULL; + + /* Reset any pending lock */ + igb_reset_swfw_lock(hw); + + rte_free(eth_dev->data->mac_addrs); + eth_dev->data->mac_addrs = NULL; + + /* uninitialize PF if max_vfs not zero */ + igb_pf_host_uninit(eth_dev); + + /* disable uio intr before callback unregister */ + rte_intr_disable(intr_handle); + rte_intr_callback_unregister(intr_handle, + eth_igb_interrupt_handler, eth_dev); + + /* clear the SYN filter info */ + filter_info->syn_info = 0; + + /* clear the ethertype filters info */ + filter_info->ethertype_mask = 0; + memset(filter_info->ethertype_filters, 0, + E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter)); + + /* clear the rss filter info */ + memset(&filter_info->rss_info, 0, + sizeof(struct igb_rte_flow_rss_conf)); + + /* remove all ntuple filters of the device */ + igb_ntuple_filter_uninit(eth_dev); + + /* remove all flex filters of the device */ + igb_flex_filter_uninit(eth_dev); + + /* clear all the filters list */ + igb_filterlist_flush(eth_dev); + + return 0; +} + +/* + * Virtual Function device init + */ +static int +eth_igbvf_dev_init(struct rte_eth_dev *eth_dev) +{ + struct rte_pci_device *pci_dev; + struct rte_intr_handle *intr_handle; + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(eth_dev->data->dev_private); + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); + int diag; + struct ether_addr *perm_addr = (struct ether_addr *)hw->mac.perm_addr; + + PMD_INIT_FUNC_TRACE(); + + eth_dev->dev_ops = &igbvf_eth_dev_ops; + eth_dev->rx_pkt_burst = ð_igb_recv_pkts; + eth_dev->tx_pkt_burst = ð_igb_xmit_pkts; + eth_dev->tx_pkt_prepare = ð_igb_prep_pkts; + + /* for secondary processes, we don't initialise any further as primary + * has already done this work. Only check we don't need a different + * RX function */ + if (rte_eal_process_type() != RTE_PROC_PRIMARY){ + if (eth_dev->data->scattered_rx) + eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts; + return 0; + } + + pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); + rte_eth_copy_pci_info(eth_dev, pci_dev); + + hw->device_id = pci_dev->id.device_id; + hw->vendor_id = pci_dev->id.vendor_id; + hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; + adapter->stopped = 0; + + /* Initialize the shared code (base driver) */ + diag = e1000_setup_init_funcs(hw, TRUE); + if (diag != 0) { + PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d", + diag); + return -EIO; + } + + /* init_mailbox_params */ + hw->mbx.ops.init_params(hw); + + /* Disable the interrupts for VF */ + igbvf_intr_disable(hw); + + diag = hw->mac.ops.reset_hw(hw); + + /* Allocate memory for storing MAC addresses */ + eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN * + hw->mac.rar_entry_count, 0); + if (eth_dev->data->mac_addrs == NULL) { + PMD_INIT_LOG(ERR, + "Failed to allocate %d bytes needed to store MAC " + "addresses", + ETHER_ADDR_LEN * hw->mac.rar_entry_count); + return -ENOMEM; + } + + /* Generate a random MAC address, if none was assigned by PF. */ + if (is_zero_ether_addr(perm_addr)) { + eth_random_addr(perm_addr->addr_bytes); + PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF"); + PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address " + "%02x:%02x:%02x:%02x:%02x:%02x", + perm_addr->addr_bytes[0], + perm_addr->addr_bytes[1], + perm_addr->addr_bytes[2], + perm_addr->addr_bytes[3], + perm_addr->addr_bytes[4], + perm_addr->addr_bytes[5]); + } + + diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0); + if (diag) { + rte_free(eth_dev->data->mac_addrs); + eth_dev->data->mac_addrs = NULL; + return diag; + } + /* Copy the permanent MAC address */ + ether_addr_copy((struct ether_addr *) hw->mac.perm_addr, + ð_dev->data->mac_addrs[0]); + + PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x " + "mac.type=%s", + eth_dev->data->port_id, pci_dev->id.vendor_id, + pci_dev->id.device_id, "igb_mac_82576_vf"); + + intr_handle = &pci_dev->intr_handle; + rte_intr_callback_register(intr_handle, + eth_igbvf_interrupt_handler, eth_dev); + + return 0; +} + +static int +eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev) +{ + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(eth_dev->data->dev_private); + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); + + PMD_INIT_FUNC_TRACE(); + + if (rte_eal_process_type() != RTE_PROC_PRIMARY) + return -EPERM; + + if (adapter->stopped == 0) + igbvf_dev_close(eth_dev); + + eth_dev->dev_ops = NULL; + eth_dev->rx_pkt_burst = NULL; + eth_dev->tx_pkt_burst = NULL; + + rte_free(eth_dev->data->mac_addrs); + eth_dev->data->mac_addrs = NULL; + + /* disable uio intr before callback unregister */ + rte_intr_disable(&pci_dev->intr_handle); + rte_intr_callback_unregister(&pci_dev->intr_handle, + eth_igbvf_interrupt_handler, + (void *)eth_dev); + + return 0; +} + +static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, + struct rte_pci_device *pci_dev) +{ + return rte_eth_dev_pci_generic_probe(pci_dev, + sizeof(struct e1000_adapter), eth_igb_dev_init); +} + +static int eth_igb_pci_remove(struct rte_pci_device *pci_dev) +{ + return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit); +} + +static struct rte_pci_driver rte_igb_pmd = { + .id_table = pci_id_igb_map, + .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC | + RTE_PCI_DRV_IOVA_AS_VA, + .probe = eth_igb_pci_probe, + .remove = eth_igb_pci_remove, +}; + + +static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, + struct rte_pci_device *pci_dev) +{ + return rte_eth_dev_pci_generic_probe(pci_dev, + sizeof(struct e1000_adapter), eth_igbvf_dev_init); +} + +static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev) +{ + return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit); +} + +/* + * virtual function driver struct + */ +static struct rte_pci_driver rte_igbvf_pmd = { + .id_table = pci_id_igbvf_map, + .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_IOVA_AS_VA, + .probe = eth_igbvf_pci_probe, + .remove = eth_igbvf_pci_remove, +}; + +static void +igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + /* RCTL: enable VLAN filter since VMDq always use VLAN filter */ + uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl |= E1000_RCTL_VFE; + E1000_WRITE_REG(hw, E1000_RCTL, rctl); +} + +static int +igb_check_mq_mode(struct rte_eth_dev *dev) +{ + enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode; + enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode; + uint16_t nb_rx_q = dev->data->nb_rx_queues; + uint16_t nb_tx_q = dev->data->nb_tx_queues; + + if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) || + tx_mq_mode == ETH_MQ_TX_DCB || + tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) { + PMD_INIT_LOG(ERR, "DCB mode is not supported."); + return -EINVAL; + } + if (RTE_ETH_DEV_SRIOV(dev).active != 0) { + /* Check multi-queue mode. + * To no break software we accept ETH_MQ_RX_NONE as this might + * be used to turn off VLAN filter. + */ + + if (rx_mq_mode == ETH_MQ_RX_NONE || + rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) { + dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY; + RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1; + } else { + /* Only support one queue on VFs. + * RSS together with SRIOV is not supported. + */ + PMD_INIT_LOG(ERR, "SRIOV is active," + " wrong mq_mode rx %d.", + rx_mq_mode); + return -EINVAL; + } + /* TX mode is not used here, so mode might be ignored.*/ + if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) { + /* SRIOV only works in VMDq enable mode */ + PMD_INIT_LOG(WARNING, "SRIOV is active," + " TX mode %d is not supported. " + " Driver will behave as %d mode.", + tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY); + } + + /* check valid queue number */ + if ((nb_rx_q > 1) || (nb_tx_q > 1)) { + PMD_INIT_LOG(ERR, "SRIOV is active," + " only support one queue on VFs."); + return -EINVAL; + } + } else { + /* To no break software that set invalid mode, only display + * warning if invalid mode is used. + */ + if (rx_mq_mode != ETH_MQ_RX_NONE && + rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY && + rx_mq_mode != ETH_MQ_RX_RSS) { + /* RSS together with VMDq not supported*/ + PMD_INIT_LOG(ERR, "RX mode %d is not supported.", + rx_mq_mode); + return -EINVAL; + } + + if (tx_mq_mode != ETH_MQ_TX_NONE && + tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) { + PMD_INIT_LOG(WARNING, "TX mode %d is not supported." + " Due to txmode is meaningless in this" + " driver, just ignore.", + tx_mq_mode); + } + } + return 0; +} + +static int +eth_igb_configure(struct rte_eth_dev *dev) +{ + struct e1000_interrupt *intr = + E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); + int ret; + + PMD_INIT_FUNC_TRACE(); + + /* multipe queue mode checking */ + ret = igb_check_mq_mode(dev); + if (ret != 0) { + PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.", + ret); + return ret; + } + + intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; + PMD_INIT_FUNC_TRACE(); + + return 0; +} + +static void +eth_igb_rxtx_control(struct rte_eth_dev *dev, + bool enable) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t tctl, rctl; + + tctl = E1000_READ_REG(hw, E1000_TCTL); + rctl = E1000_READ_REG(hw, E1000_RCTL); + + if (enable) { + /* enable Tx/Rx */ + tctl |= E1000_TCTL_EN; + rctl |= E1000_RCTL_EN; + } else { + /* disable Tx/Rx */ + tctl &= ~E1000_TCTL_EN; + rctl &= ~E1000_RCTL_EN; + } + E1000_WRITE_REG(hw, E1000_TCTL, tctl); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + E1000_WRITE_FLUSH(hw); +} + +static int +eth_igb_start(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(dev->data->dev_private); + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + int ret, mask; + uint32_t intr_vector = 0; + uint32_t ctrl_ext; + uint32_t *speeds; + int num_speeds; + bool autoneg; + + PMD_INIT_FUNC_TRACE(); + + /* disable uio/vfio intr/eventfd mapping */ + rte_intr_disable(intr_handle); + + /* Power up the phy. Needed to make the link go Up */ + eth_igb_dev_set_link_up(dev); + + /* + * Packet Buffer Allocation (PBA) + * Writing PBA sets the receive portion of the buffer + * the remainder is used for the transmit buffer. + */ + if (hw->mac.type == e1000_82575) { + uint32_t pba; + + pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ + E1000_WRITE_REG(hw, E1000_PBA, pba); + } + + /* Put the address into the Receive Address Array */ + e1000_rar_set(hw, hw->mac.addr, 0); + + /* Initialize the hardware */ + if (igb_hardware_init(hw)) { + PMD_INIT_LOG(ERR, "Unable to initialize the hardware"); + return -EIO; + } + adapter->stopped = 0; + + E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN); + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + /* Set PF Reset Done bit so PF/VF Mail Ops can work */ + ctrl_ext |= E1000_CTRL_EXT_PFRSTD; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + /* configure PF module if SRIOV enabled */ + igb_pf_host_configure(dev); + + /* check and configure queue intr-vector mapping */ + if ((rte_intr_cap_multiple(intr_handle) || + !RTE_ETH_DEV_SRIOV(dev).active) && + dev->data->dev_conf.intr_conf.rxq != 0) { + intr_vector = dev->data->nb_rx_queues; + if (rte_intr_efd_enable(intr_handle, intr_vector)) + return -1; + } + + if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { + intr_handle->intr_vec = + rte_zmalloc("intr_vec", + dev->data->nb_rx_queues * sizeof(int), 0); + if (intr_handle->intr_vec == NULL) { + PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues" + " intr_vec", dev->data->nb_rx_queues); + return -ENOMEM; + } + } + + /* confiugre msix for rx interrupt */ + eth_igb_configure_msix_intr(dev); + + /* Configure for OS presence */ + igb_init_manageability(hw); + + eth_igb_tx_init(dev); + + /* This can fail when allocating mbufs for descriptor rings */ + ret = eth_igb_rx_init(dev); + if (ret) { + PMD_INIT_LOG(ERR, "Unable to initialize RX hardware"); + igb_dev_clear_queues(dev); + return ret; + } + + e1000_clear_hw_cntrs_base_generic(hw); + + /* + * VLAN Offload Settings + */ + mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \ + ETH_VLAN_EXTEND_MASK; + ret = eth_igb_vlan_offload_set(dev, mask); + if (ret) { + PMD_INIT_LOG(ERR, "Unable to set vlan offload"); + igb_dev_clear_queues(dev); + return ret; + } + + if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) { + /* Enable VLAN filter since VMDq always use VLAN filter */ + igb_vmdq_vlan_hw_filter_enable(dev); + } + + if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) || + (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) || + (hw->mac.type == e1000_i211)) { + /* Configure EITR with the maximum possible value (0xFFFF) */ + E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF); + } + + /* Setup link speed and duplex */ + speeds = &dev->data->dev_conf.link_speeds; + if (*speeds == ETH_LINK_SPEED_AUTONEG) { + hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; + hw->mac.autoneg = 1; + } else { + num_speeds = 0; + autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0; + + /* Reset */ + hw->phy.autoneg_advertised = 0; + + if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M | + ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M | + ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) { + num_speeds = -1; + goto error_invalid_config; + } + if (*speeds & ETH_LINK_SPEED_10M_HD) { + hw->phy.autoneg_advertised |= ADVERTISE_10_HALF; + num_speeds++; + } + if (*speeds & ETH_LINK_SPEED_10M) { + hw->phy.autoneg_advertised |= ADVERTISE_10_FULL; + num_speeds++; + } + if (*speeds & ETH_LINK_SPEED_100M_HD) { + hw->phy.autoneg_advertised |= ADVERTISE_100_HALF; + num_speeds++; + } + if (*speeds & ETH_LINK_SPEED_100M) { + hw->phy.autoneg_advertised |= ADVERTISE_100_FULL; + num_speeds++; + } + if (*speeds & ETH_LINK_SPEED_1G) { + hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL; + num_speeds++; + } + if (num_speeds == 0 || (!autoneg && (num_speeds > 1))) + goto error_invalid_config; + + /* Set/reset the mac.autoneg based on the link speed, + * fixed or not + */ + if (!autoneg) { + hw->mac.autoneg = 0; + hw->mac.forced_speed_duplex = + hw->phy.autoneg_advertised; + } else { + hw->mac.autoneg = 1; + } + } + + e1000_setup_link(hw); + + if (rte_intr_allow_others(intr_handle)) { + /* check if lsc interrupt is enabled */ + if (dev->data->dev_conf.intr_conf.lsc != 0) + eth_igb_lsc_interrupt_setup(dev, TRUE); + else + eth_igb_lsc_interrupt_setup(dev, FALSE); + } else { + rte_intr_callback_unregister(intr_handle, + eth_igb_interrupt_handler, + (void *)dev); + if (dev->data->dev_conf.intr_conf.lsc != 0) + PMD_INIT_LOG(INFO, "lsc won't enable because of" + " no intr multiplex"); + } + + /* check if rxq interrupt is enabled */ + if (dev->data->dev_conf.intr_conf.rxq != 0 && + rte_intr_dp_is_en(intr_handle)) + eth_igb_rxq_interrupt_setup(dev); + + /* enable uio/vfio intr/eventfd mapping */ + rte_intr_enable(intr_handle); + + /* resume enabled intr since hw reset */ + igb_intr_enable(dev); + + /* restore all types filter */ + igb_filter_restore(dev); + + eth_igb_rxtx_control(dev, true); + eth_igb_link_update(dev, 0); + + PMD_INIT_LOG(DEBUG, "<<"); + + return 0; + +error_invalid_config: + PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u", + dev->data->dev_conf.link_speeds, dev->data->port_id); + igb_dev_clear_queues(dev); + return -EINVAL; +} + +/********************************************************************* + * + * This routine disables all traffic on the adapter by issuing a + * global reset on the MAC. + * + **********************************************************************/ +static void +eth_igb_stop(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_eth_link link; + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + + eth_igb_rxtx_control(dev, false); + + igb_intr_disable(hw); + + /* disable intr eventfd mapping */ + rte_intr_disable(intr_handle); + + igb_pf_reset_hw(hw); + E1000_WRITE_REG(hw, E1000_WUC, 0); + + /* Set bit for Go Link disconnect */ + if (hw->mac.type >= e1000_82580) { + uint32_t phpm_reg; + + phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + phpm_reg |= E1000_82580_PM_GO_LINKD; + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); + } + + /* Power down the phy. Needed to make the link go Down */ + eth_igb_dev_set_link_down(dev); + + igb_dev_clear_queues(dev); + + /* clear the recorded link status */ + memset(&link, 0, sizeof(link)); + rte_eth_linkstatus_set(dev, &link); + + if (!rte_intr_allow_others(intr_handle)) + /* resume to the default handler */ + rte_intr_callback_register(intr_handle, + eth_igb_interrupt_handler, + (void *)dev); + + /* Clean datapath event and queue/vec mapping */ + rte_intr_efd_disable(intr_handle); + if (intr_handle->intr_vec != NULL) { + rte_free(intr_handle->intr_vec); + intr_handle->intr_vec = NULL; + } +} + +static int +eth_igb_dev_set_link_up(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + if (hw->phy.media_type == e1000_media_type_copper) + e1000_power_up_phy(hw); + else + e1000_power_up_fiber_serdes_link(hw); + + return 0; +} + +static int +eth_igb_dev_set_link_down(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + if (hw->phy.media_type == e1000_media_type_copper) + e1000_power_down_phy(hw); + else + e1000_shutdown_fiber_serdes_link(hw); + + return 0; +} + +static void +eth_igb_close(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(dev->data->dev_private); + struct rte_eth_link link; + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + + eth_igb_stop(dev); + adapter->stopped = 1; + + e1000_phy_hw_reset(hw); + igb_release_manageability(hw); + igb_hw_control_release(hw); + + /* Clear bit for Go Link disconnect */ + if (hw->mac.type >= e1000_82580) { + uint32_t phpm_reg; + + phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + phpm_reg &= ~E1000_82580_PM_GO_LINKD; + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); + } + + igb_dev_free_queues(dev); + + if (intr_handle->intr_vec) { + rte_free(intr_handle->intr_vec); + intr_handle->intr_vec = NULL; + } + + memset(&link, 0, sizeof(link)); + rte_eth_linkstatus_set(dev, &link); +} + +static int +igb_get_rx_buffer_size(struct e1000_hw *hw) +{ + uint32_t rx_buf_size; + if (hw->mac.type == e1000_82576) { + rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10; + } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) { + /* PBS needs to be translated according to a lookup table */ + rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf); + rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size); + rx_buf_size = (rx_buf_size << 10); + } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) { + rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10; + } else { + rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10; + } + + return rx_buf_size; +} + +/********************************************************************* + * + * Initialize the hardware + * + **********************************************************************/ +static int +igb_hardware_init(struct e1000_hw *hw) +{ + uint32_t rx_buf_size; + int diag; + + /* Let the firmware know the OS is in control */ + igb_hw_control_acquire(hw); + + /* + * These parameters control the automatic generation (Tx) and + * response (Rx) to Ethernet PAUSE frames. + * - High water mark should allow for at least two standard size (1518) + * frames to be received after sending an XOFF. + * - Low water mark works best when it is very near the high water mark. + * This allows the receiver to restart by sending XON when it has + * drained a bit. Here we use an arbitrary value of 1500 which will + * restart after one full frame is pulled from the buffer. There + * could be several smaller frames in the buffer and if so they will + * not trigger the XON until their total number reduces the buffer + * by 1500. + * - The pause time is fairly large at 1000 x 512ns = 512 usec. + */ + rx_buf_size = igb_get_rx_buffer_size(hw); + + hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2); + hw->fc.low_water = hw->fc.high_water - 1500; + hw->fc.pause_time = IGB_FC_PAUSE_TIME; + hw->fc.send_xon = 1; + + /* Set Flow control, use the tunable location if sane */ + if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4)) + hw->fc.requested_mode = igb_fc_setting; + else + hw->fc.requested_mode = e1000_fc_none; + + /* Issue a global reset */ + igb_pf_reset_hw(hw); + E1000_WRITE_REG(hw, E1000_WUC, 0); + + diag = e1000_init_hw(hw); + if (diag < 0) + return diag; + + E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN); + e1000_get_phy_info(hw); + e1000_check_for_link(hw); + + return 0; +} + +/* This function is based on igb_update_stats_counters() in igb/if_igb.c */ +static void +igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats) +{ + int pause_frames; + + uint64_t old_gprc = stats->gprc; + uint64_t old_gptc = stats->gptc; + uint64_t old_tpr = stats->tpr; + uint64_t old_tpt = stats->tpt; + uint64_t old_rpthc = stats->rpthc; + uint64_t old_hgptc = stats->hgptc; + + if(hw->phy.media_type == e1000_media_type_copper || + (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { + stats->symerrs += + E1000_READ_REG(hw,E1000_SYMERRS); + stats->sec += E1000_READ_REG(hw, E1000_SEC); + } + + stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS); + stats->mpc += E1000_READ_REG(hw, E1000_MPC); + stats->scc += E1000_READ_REG(hw, E1000_SCC); + stats->ecol += E1000_READ_REG(hw, E1000_ECOL); + + stats->mcc += E1000_READ_REG(hw, E1000_MCC); + stats->latecol += E1000_READ_REG(hw, E1000_LATECOL); + stats->colc += E1000_READ_REG(hw, E1000_COLC); + stats->dc += E1000_READ_REG(hw, E1000_DC); + stats->rlec += E1000_READ_REG(hw, E1000_RLEC); + stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC); + stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC); + /* + ** For watchdog management we need to know if we have been + ** paused during the last interval, so capture that here. + */ + pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC); + stats->xoffrxc += pause_frames; + stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC); + stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC); + stats->prc64 += E1000_READ_REG(hw, E1000_PRC64); + stats->prc127 += E1000_READ_REG(hw, E1000_PRC127); + stats->prc255 += E1000_READ_REG(hw, E1000_PRC255); + stats->prc511 += E1000_READ_REG(hw, E1000_PRC511); + stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023); + stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522); + stats->gprc += E1000_READ_REG(hw, E1000_GPRC); + stats->bprc += E1000_READ_REG(hw, E1000_BPRC); + stats->mprc += E1000_READ_REG(hw, E1000_MPRC); + stats->gptc += E1000_READ_REG(hw, E1000_GPTC); + + /* For the 64-bit byte counters the low dword must be read first. */ + /* Both registers clear on the read of the high dword */ + + /* Workaround CRC bytes included in size, take away 4 bytes/packet */ + stats->gorc += E1000_READ_REG(hw, E1000_GORCL); + stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32); + stats->gorc -= (stats->gprc - old_gprc) * ETHER_CRC_LEN; + stats->gotc += E1000_READ_REG(hw, E1000_GOTCL); + stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32); + stats->gotc -= (stats->gptc - old_gptc) * ETHER_CRC_LEN; + + stats->rnbc += E1000_READ_REG(hw, E1000_RNBC); + stats->ruc += E1000_READ_REG(hw, E1000_RUC); + stats->rfc += E1000_READ_REG(hw, E1000_RFC); + stats->roc += E1000_READ_REG(hw, E1000_ROC); + stats->rjc += E1000_READ_REG(hw, E1000_RJC); + + stats->tpr += E1000_READ_REG(hw, E1000_TPR); + stats->tpt += E1000_READ_REG(hw, E1000_TPT); + + stats->tor += E1000_READ_REG(hw, E1000_TORL); + stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32); + stats->tor -= (stats->tpr - old_tpr) * ETHER_CRC_LEN; + stats->tot += E1000_READ_REG(hw, E1000_TOTL); + stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32); + stats->tot -= (stats->tpt - old_tpt) * ETHER_CRC_LEN; + + stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64); + stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127); + stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255); + stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511); + stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023); + stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522); + stats->mptc += E1000_READ_REG(hw, E1000_MPTC); + stats->bptc += E1000_READ_REG(hw, E1000_BPTC); + + /* Interrupt Counts */ + + stats->iac += E1000_READ_REG(hw, E1000_IAC); + stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC); + stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC); + stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC); + stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC); + stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC); + stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC); + stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC); + stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC); + + /* Host to Card Statistics */ + + stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC); + stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC); + stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC); + stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC); + stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC); + stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC); + stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC); + stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL); + stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32); + stats->hgorc -= (stats->rpthc - old_rpthc) * ETHER_CRC_LEN; + stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL); + stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32); + stats->hgotc -= (stats->hgptc - old_hgptc) * ETHER_CRC_LEN; + stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS); + stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC); + stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC); + + stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC); + stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC); + stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS); + stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR); + stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC); + stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC); +} + +static int +eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_hw_stats *stats = + E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); + + igb_read_stats_registers(hw, stats); + + if (rte_stats == NULL) + return -EINVAL; + + /* Rx Errors */ + rte_stats->imissed = stats->mpc; + rte_stats->ierrors = stats->crcerrs + + stats->rlec + stats->ruc + stats->roc + + stats->rxerrc + stats->algnerrc + stats->cexterr; + + /* Tx Errors */ + rte_stats->oerrors = stats->ecol + stats->latecol; + + rte_stats->ipackets = stats->gprc; + rte_stats->opackets = stats->gptc; + rte_stats->ibytes = stats->gorc; + rte_stats->obytes = stats->gotc; + return 0; +} + +static void +eth_igb_stats_reset(struct rte_eth_dev *dev) +{ + struct e1000_hw_stats *hw_stats = + E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); + + /* HW registers are cleared on read */ + eth_igb_stats_get(dev, NULL); + + /* Reset software totals */ + memset(hw_stats, 0, sizeof(*hw_stats)); +} + +static void +eth_igb_xstats_reset(struct rte_eth_dev *dev) +{ + struct e1000_hw_stats *stats = + E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); + + /* HW registers are cleared on read */ + eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS); + + /* Reset software totals */ + memset(stats, 0, sizeof(*stats)); +} + +static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev, + struct rte_eth_xstat_name *xstats_names, + __rte_unused unsigned int size) +{ + unsigned i; + + if (xstats_names == NULL) + return IGB_NB_XSTATS; + + /* Note: limit checked in rte_eth_xstats_names() */ + + for (i = 0; i < IGB_NB_XSTATS; i++) { + snprintf(xstats_names[i].name, sizeof(xstats_names[i].name), + "%s", rte_igb_stats_strings[i].name); + } + + return IGB_NB_XSTATS; +} + +static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev, + struct rte_eth_xstat_name *xstats_names, const uint64_t *ids, + unsigned int limit) +{ + unsigned int i; + + if (!ids) { + if (xstats_names == NULL) + return IGB_NB_XSTATS; + + for (i = 0; i < IGB_NB_XSTATS; i++) + snprintf(xstats_names[i].name, + sizeof(xstats_names[i].name), + "%s", rte_igb_stats_strings[i].name); + + return IGB_NB_XSTATS; + + } else { + struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS]; + + eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL, + IGB_NB_XSTATS); + + for (i = 0; i < limit; i++) { + if (ids[i] >= IGB_NB_XSTATS) { + PMD_INIT_LOG(ERR, "id value isn't valid"); + return -1; + } + strcpy(xstats_names[i].name, + xstats_names_copy[ids[i]].name); + } + return limit; + } +} + +static int +eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, + unsigned n) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_hw_stats *hw_stats = + E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); + unsigned i; + + if (n < IGB_NB_XSTATS) + return IGB_NB_XSTATS; + + igb_read_stats_registers(hw, hw_stats); + + /* If this is a reset xstats is NULL, and we have cleared the + * registers by reading them. + */ + if (!xstats) + return 0; + + /* Extended stats */ + for (i = 0; i < IGB_NB_XSTATS; i++) { + xstats[i].id = i; + xstats[i].value = *(uint64_t *)(((char *)hw_stats) + + rte_igb_stats_strings[i].offset); + } + + return IGB_NB_XSTATS; +} + +static int +eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, + uint64_t *values, unsigned int n) +{ + unsigned int i; + + if (!ids) { + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_hw_stats *hw_stats = + E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); + + if (n < IGB_NB_XSTATS) + return IGB_NB_XSTATS; + + igb_read_stats_registers(hw, hw_stats); + + /* If this is a reset xstats is NULL, and we have cleared the + * registers by reading them. + */ + if (!values) + return 0; + + /* Extended stats */ + for (i = 0; i < IGB_NB_XSTATS; i++) + values[i] = *(uint64_t *)(((char *)hw_stats) + + rte_igb_stats_strings[i].offset); + + return IGB_NB_XSTATS; + + } else { + uint64_t values_copy[IGB_NB_XSTATS]; + + eth_igb_xstats_get_by_id(dev, NULL, values_copy, + IGB_NB_XSTATS); + + for (i = 0; i < n; i++) { + if (ids[i] >= IGB_NB_XSTATS) { + PMD_INIT_LOG(ERR, "id value isn't valid"); + return -1; + } + values[i] = values_copy[ids[i]]; + } + return n; + } +} + +static void +igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats) +{ + /* Good Rx packets, include VF loopback */ + UPDATE_VF_STAT(E1000_VFGPRC, + hw_stats->last_gprc, hw_stats->gprc); + + /* Good Rx octets, include VF loopback */ + UPDATE_VF_STAT(E1000_VFGORC, + hw_stats->last_gorc, hw_stats->gorc); + + /* Good Tx packets, include VF loopback */ + UPDATE_VF_STAT(E1000_VFGPTC, + hw_stats->last_gptc, hw_stats->gptc); + + /* Good Tx octets, include VF loopback */ + UPDATE_VF_STAT(E1000_VFGOTC, + hw_stats->last_gotc, hw_stats->gotc); + + /* Rx Multicst packets */ + UPDATE_VF_STAT(E1000_VFMPRC, + hw_stats->last_mprc, hw_stats->mprc); + + /* Good Rx loopback packets */ + UPDATE_VF_STAT(E1000_VFGPRLBC, + hw_stats->last_gprlbc, hw_stats->gprlbc); + + /* Good Rx loopback octets */ + UPDATE_VF_STAT(E1000_VFGORLBC, + hw_stats->last_gorlbc, hw_stats->gorlbc); + + /* Good Tx loopback packets */ + UPDATE_VF_STAT(E1000_VFGPTLBC, + hw_stats->last_gptlbc, hw_stats->gptlbc); + + /* Good Tx loopback octets */ + UPDATE_VF_STAT(E1000_VFGOTLBC, + hw_stats->last_gotlbc, hw_stats->gotlbc); +} + +static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev, + struct rte_eth_xstat_name *xstats_names, + __rte_unused unsigned limit) +{ + unsigned i; + + if (xstats_names != NULL) + for (i = 0; i < IGBVF_NB_XSTATS; i++) { + snprintf(xstats_names[i].name, + sizeof(xstats_names[i].name), "%s", + rte_igbvf_stats_strings[i].name); + } + return IGBVF_NB_XSTATS; +} + +static int +eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, + unsigned n) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *) + E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); + unsigned i; + + if (n < IGBVF_NB_XSTATS) + return IGBVF_NB_XSTATS; + + igbvf_read_stats_registers(hw, hw_stats); + + if (!xstats) + return 0; + + for (i = 0; i < IGBVF_NB_XSTATS; i++) { + xstats[i].id = i; + xstats[i].value = *(uint64_t *)(((char *)hw_stats) + + rte_igbvf_stats_strings[i].offset); + } + + return IGBVF_NB_XSTATS; +} + +static int +eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *) + E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); + + igbvf_read_stats_registers(hw, hw_stats); + + if (rte_stats == NULL) + return -EINVAL; + + rte_stats->ipackets = hw_stats->gprc; + rte_stats->ibytes = hw_stats->gorc; + rte_stats->opackets = hw_stats->gptc; + rte_stats->obytes = hw_stats->gotc; + return 0; +} + +static void +eth_igbvf_stats_reset(struct rte_eth_dev *dev) +{ + struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*) + E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); + + /* Sync HW register to the last stats */ + eth_igbvf_stats_get(dev, NULL); + + /* reset HW current stats*/ + memset(&hw_stats->gprc, 0, sizeof(*hw_stats) - + offsetof(struct e1000_vf_stats, gprc)); +} + +static int +eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version, + size_t fw_size) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_fw_version fw; + int ret; + + e1000_get_fw_version(hw, &fw); + + switch (hw->mac.type) { + case e1000_i210: + case e1000_i211: + if (!(e1000_get_flash_presence_i210(hw))) { + ret = snprintf(fw_version, fw_size, + "%2d.%2d-%d", + fw.invm_major, fw.invm_minor, + fw.invm_img_type); + break; + } + /* fall through */ + default: + /* if option rom is valid, display its version too */ + if (fw.or_valid) { + ret = snprintf(fw_version, fw_size, + "%d.%d, 0x%08x, %d.%d.%d", + fw.eep_major, fw.eep_minor, fw.etrack_id, + fw.or_major, fw.or_build, fw.or_patch); + /* no option rom */ + } else { + if (fw.etrack_id != 0X0000) { + ret = snprintf(fw_version, fw_size, + "%d.%d, 0x%08x", + fw.eep_major, fw.eep_minor, + fw.etrack_id); + } else { + ret = snprintf(fw_version, fw_size, + "%d.%d.%d", + fw.eep_major, fw.eep_minor, + fw.eep_build); + } + } + break; + } + + ret += 1; /* add the size of '\0' */ + if (fw_size < (u32)ret) + return ret; + else + return 0; +} + +static void +eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */ + dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */ + dev_info->max_mac_addrs = hw->mac.rar_entry_count; + dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev); + dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) | + dev_info->rx_queue_offload_capa; + dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev); + dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) | + dev_info->tx_queue_offload_capa; + + switch (hw->mac.type) { + case e1000_82575: + dev_info->max_rx_queues = 4; + dev_info->max_tx_queues = 4; + dev_info->max_vmdq_pools = 0; + break; + + case e1000_82576: + dev_info->max_rx_queues = 16; + dev_info->max_tx_queues = 16; + dev_info->max_vmdq_pools = ETH_8_POOLS; + dev_info->vmdq_queue_num = 16; + break; + + case e1000_82580: + dev_info->max_rx_queues = 8; + dev_info->max_tx_queues = 8; + dev_info->max_vmdq_pools = ETH_8_POOLS; + dev_info->vmdq_queue_num = 8; + break; + + case e1000_i350: + dev_info->max_rx_queues = 8; + dev_info->max_tx_queues = 8; + dev_info->max_vmdq_pools = ETH_8_POOLS; + dev_info->vmdq_queue_num = 8; + break; + + case e1000_i354: + dev_info->max_rx_queues = 8; + dev_info->max_tx_queues = 8; + break; + + case e1000_i210: + dev_info->max_rx_queues = 4; + dev_info->max_tx_queues = 4; + dev_info->max_vmdq_pools = 0; + break; + + case e1000_i211: + dev_info->max_rx_queues = 2; + dev_info->max_tx_queues = 2; + dev_info->max_vmdq_pools = 0; + break; + + default: + /* Should not happen */ + break; + } + dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t); + dev_info->reta_size = ETH_RSS_RETA_SIZE_128; + dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL; + + dev_info->default_rxconf = (struct rte_eth_rxconf) { + .rx_thresh = { + .pthresh = IGB_DEFAULT_RX_PTHRESH, + .hthresh = IGB_DEFAULT_RX_HTHRESH, + .wthresh = IGB_DEFAULT_RX_WTHRESH, + }, + .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH, + .rx_drop_en = 0, + .offloads = 0, + }; + + dev_info->default_txconf = (struct rte_eth_txconf) { + .tx_thresh = { + .pthresh = IGB_DEFAULT_TX_PTHRESH, + .hthresh = IGB_DEFAULT_TX_HTHRESH, + .wthresh = IGB_DEFAULT_TX_WTHRESH, + }, + .offloads = 0, + }; + + dev_info->rx_desc_lim = rx_desc_lim; + dev_info->tx_desc_lim = tx_desc_lim; + + dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M | + ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M | + ETH_LINK_SPEED_1G; +} + +static const uint32_t * +eth_igb_supported_ptypes_get(struct rte_eth_dev *dev) +{ + static const uint32_t ptypes[] = { + /* refers to igb_rxd_pkt_info_to_pkt_type() */ + RTE_PTYPE_L2_ETHER, + RTE_PTYPE_L3_IPV4, + RTE_PTYPE_L3_IPV4_EXT, + RTE_PTYPE_L3_IPV6, + RTE_PTYPE_L3_IPV6_EXT, + RTE_PTYPE_L4_TCP, + RTE_PTYPE_L4_UDP, + RTE_PTYPE_L4_SCTP, + RTE_PTYPE_TUNNEL_IP, + RTE_PTYPE_INNER_L3_IPV6, + RTE_PTYPE_INNER_L3_IPV6_EXT, + RTE_PTYPE_INNER_L4_TCP, + RTE_PTYPE_INNER_L4_UDP, + RTE_PTYPE_UNKNOWN + }; + + if (dev->rx_pkt_burst == eth_igb_recv_pkts || + dev->rx_pkt_burst == eth_igb_recv_scattered_pkts) + return ptypes; + return NULL; +} + +static void +eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */ + dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */ + dev_info->max_mac_addrs = hw->mac.rar_entry_count; + dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | + DEV_TX_OFFLOAD_IPV4_CKSUM | + DEV_TX_OFFLOAD_UDP_CKSUM | + DEV_TX_OFFLOAD_TCP_CKSUM | + DEV_TX_OFFLOAD_SCTP_CKSUM | + DEV_TX_OFFLOAD_TCP_TSO; + switch (hw->mac.type) { + case e1000_vfadapt: + dev_info->max_rx_queues = 2; + dev_info->max_tx_queues = 2; + break; + case e1000_vfadapt_i350: + dev_info->max_rx_queues = 1; + dev_info->max_tx_queues = 1; + break; + default: + /* Should not happen */ + break; + } + + dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev); + dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) | + dev_info->rx_queue_offload_capa; + dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev); + dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) | + dev_info->tx_queue_offload_capa; + + dev_info->default_rxconf = (struct rte_eth_rxconf) { + .rx_thresh = { + .pthresh = IGB_DEFAULT_RX_PTHRESH, + .hthresh = IGB_DEFAULT_RX_HTHRESH, + .wthresh = IGB_DEFAULT_RX_WTHRESH, + }, + .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH, + .rx_drop_en = 0, + .offloads = 0, + }; + + dev_info->default_txconf = (struct rte_eth_txconf) { + .tx_thresh = { + .pthresh = IGB_DEFAULT_TX_PTHRESH, + .hthresh = IGB_DEFAULT_TX_HTHRESH, + .wthresh = IGB_DEFAULT_TX_WTHRESH, + }, + .offloads = 0, + }; + + dev_info->rx_desc_lim = rx_desc_lim; + dev_info->tx_desc_lim = tx_desc_lim; +} + +/* return 0 means link status changed, -1 means not changed */ +static int +eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct rte_eth_link link; + int link_check, count; + + link_check = 0; + hw->mac.get_link_status = 1; + + /* possible wait-to-complete in up to 9 seconds */ + for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) { + /* Read the real link status */ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + /* Do the work to read phy */ + e1000_check_for_link(hw); + link_check = !hw->mac.get_link_status; + break; + + case e1000_media_type_fiber: + e1000_check_for_link(hw); + link_check = (E1000_READ_REG(hw, E1000_STATUS) & + E1000_STATUS_LU); + break; + + case e1000_media_type_internal_serdes: + e1000_check_for_link(hw); + link_check = hw->mac.serdes_has_link; + break; + + /* VF device is type_unknown */ + case e1000_media_type_unknown: + eth_igbvf_link_update(hw); + link_check = !hw->mac.get_link_status; + break; + + default: + break; + } + if (link_check || wait_to_complete == 0) + break; + rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL); + } + memset(&link, 0, sizeof(link)); + + /* Now we check if a transition has happened */ + if (link_check) { + uint16_t duplex, speed; + hw->mac.ops.get_link_up_info(hw, &speed, &duplex); + link.link_duplex = (duplex == FULL_DUPLEX) ? + ETH_LINK_FULL_DUPLEX : + ETH_LINK_HALF_DUPLEX; + link.link_speed = speed; + link.link_status = ETH_LINK_UP; + link.link_autoneg = !(dev->data->dev_conf.link_speeds & + ETH_LINK_SPEED_FIXED); + } else if (!link_check) { + link.link_speed = 0; + link.link_duplex = ETH_LINK_HALF_DUPLEX; + link.link_status = ETH_LINK_DOWN; + link.link_autoneg = ETH_LINK_FIXED; + } + + return rte_eth_linkstatus_set(dev, &link); +} + +/* + * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means + * that the driver is loaded. + */ +static void +igb_hw_control_acquire(struct e1000_hw *hw) +{ + uint32_t ctrl_ext; + + /* Let firmware know the driver has taken over */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); +} + +/* + * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means that the + * driver is no longer loaded. + */ +static void +igb_hw_control_release(struct e1000_hw *hw) +{ + uint32_t ctrl_ext; + + /* Let firmware taken over control of h/w */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, + ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); +} + +/* + * Bit of a misnomer, what this really means is + * to enable OS management of the system... aka + * to disable special hardware management features. + */ +static void +igb_init_manageability(struct e1000_hw *hw) +{ + if (e1000_enable_mng_pass_thru(hw)) { + uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H); + uint32_t manc = E1000_READ_REG(hw, E1000_MANC); + + /* disable hardware interception of ARP */ + manc &= ~(E1000_MANC_ARP_EN); + + /* enable receiving management packets to the host */ + manc |= E1000_MANC_EN_MNG2HOST; + manc2h |= 1 << 5; /* Mng Port 623 */ + manc2h |= 1 << 6; /* Mng Port 664 */ + E1000_WRITE_REG(hw, E1000_MANC2H, manc2h); + E1000_WRITE_REG(hw, E1000_MANC, manc); + } +} + +static void +igb_release_manageability(struct e1000_hw *hw) +{ + if (e1000_enable_mng_pass_thru(hw)) { + uint32_t manc = E1000_READ_REG(hw, E1000_MANC); + + manc |= E1000_MANC_ARP_EN; + manc &= ~E1000_MANC_EN_MNG2HOST; + + E1000_WRITE_REG(hw, E1000_MANC, manc); + } +} + +static void +eth_igb_promiscuous_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t rctl; + + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); +} + +static void +eth_igb_promiscuous_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t rctl; + + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl &= (~E1000_RCTL_UPE); + if (dev->data->all_multicast == 1) + rctl |= E1000_RCTL_MPE; + else + rctl &= (~E1000_RCTL_MPE); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); +} + +static void +eth_igb_allmulticast_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t rctl; + + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl |= E1000_RCTL_MPE; + E1000_WRITE_REG(hw, E1000_RCTL, rctl); +} + +static void +eth_igb_allmulticast_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t rctl; + + if (dev->data->promiscuous == 1) + return; /* must remain in all_multicast mode */ + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl &= (~E1000_RCTL_MPE); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); +} + +static int +eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vfta * shadow_vfta = + E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); + uint32_t vfta; + uint32_t vid_idx; + uint32_t vid_bit; + + vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) & + E1000_VFTA_ENTRY_MASK); + vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK)); + vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx); + if (on) + vfta |= vid_bit; + else + vfta &= ~vid_bit; + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta); + + /* update local VFTA copy */ + shadow_vfta->vfta[vid_idx] = vfta; + + return 0; +} + +static int +eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, + enum rte_vlan_type vlan_type, + uint16_t tpid) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t reg, qinq; + + qinq = E1000_READ_REG(hw, E1000_CTRL_EXT); + qinq &= E1000_CTRL_EXT_EXT_VLAN; + + /* only outer TPID of double VLAN can be configured*/ + if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) { + reg = E1000_READ_REG(hw, E1000_VET); + reg = (reg & (~E1000_VET_VET_EXT)) | + ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT); + E1000_WRITE_REG(hw, E1000_VET, reg); + + return 0; + } + + /* all other TPID values are read-only*/ + PMD_DRV_LOG(ERR, "Not supported"); + + return -ENOTSUP; +} + +static void +igb_vlan_hw_filter_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t reg; + + /* Filter Table Disable */ + reg = E1000_READ_REG(hw, E1000_RCTL); + reg &= ~E1000_RCTL_CFIEN; + reg &= ~E1000_RCTL_VFE; + E1000_WRITE_REG(hw, E1000_RCTL, reg); +} + +static void +igb_vlan_hw_filter_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vfta * shadow_vfta = + E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); + uint32_t reg; + int i; + + /* Filter Table Enable, CFI not used for packet acceptance */ + reg = E1000_READ_REG(hw, E1000_RCTL); + reg &= ~E1000_RCTL_CFIEN; + reg |= E1000_RCTL_VFE; + E1000_WRITE_REG(hw, E1000_RCTL, reg); + + /* restore VFTA table */ + for (i = 0; i < IGB_VFTA_SIZE; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]); +} + +static void +igb_vlan_hw_strip_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t reg; + + /* VLAN Mode Disable */ + reg = E1000_READ_REG(hw, E1000_CTRL); + reg &= ~E1000_CTRL_VME; + E1000_WRITE_REG(hw, E1000_CTRL, reg); +} + +static void +igb_vlan_hw_strip_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t reg; + + /* VLAN Mode Enable */ + reg = E1000_READ_REG(hw, E1000_CTRL); + reg |= E1000_CTRL_VME; + E1000_WRITE_REG(hw, E1000_CTRL, reg); +} + +static void +igb_vlan_hw_extend_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t reg; + + /* CTRL_EXT: Extended VLAN */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg &= ~E1000_CTRL_EXT_EXTEND_VLAN; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* Update maximum packet length */ + if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) + E1000_WRITE_REG(hw, E1000_RLPML, + dev->data->dev_conf.rxmode.max_rx_pkt_len + + VLAN_TAG_SIZE); +} + +static void +igb_vlan_hw_extend_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t reg; + + /* CTRL_EXT: Extended VLAN */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg |= E1000_CTRL_EXT_EXTEND_VLAN; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* Update maximum packet length */ + if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) + E1000_WRITE_REG(hw, E1000_RLPML, + dev->data->dev_conf.rxmode.max_rx_pkt_len + + 2 * VLAN_TAG_SIZE); +} + +static int +eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask) +{ + struct rte_eth_rxmode *rxmode; + + rxmode = &dev->data->dev_conf.rxmode; + if(mask & ETH_VLAN_STRIP_MASK){ + if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP) + igb_vlan_hw_strip_enable(dev); + else + igb_vlan_hw_strip_disable(dev); + } + + if(mask & ETH_VLAN_FILTER_MASK){ + if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER) + igb_vlan_hw_filter_enable(dev); + else + igb_vlan_hw_filter_disable(dev); + } + + if(mask & ETH_VLAN_EXTEND_MASK){ + if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND) + igb_vlan_hw_extend_enable(dev); + else + igb_vlan_hw_extend_disable(dev); + } + + return 0; +} + + +/** + * It enables the interrupt mask and then enable the interrupt. + * + * @param dev + * Pointer to struct rte_eth_dev. + * @param on + * Enable or Disable + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on) +{ + struct e1000_interrupt *intr = + E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); + + if (on) + intr->mask |= E1000_ICR_LSC; + else + intr->mask &= ~E1000_ICR_LSC; + + return 0; +} + +/* It clears the interrupt causes and enables the interrupt. + * It will be called once only during nic initialized. + * + * @param dev + * Pointer to struct rte_eth_dev. + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev) +{ + uint32_t mask, regval; + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct rte_eth_dev_info dev_info; + + memset(&dev_info, 0, sizeof(dev_info)); + eth_igb_infos_get(dev, &dev_info); + + mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues); + regval = E1000_READ_REG(hw, E1000_EIMS); + E1000_WRITE_REG(hw, E1000_EIMS, regval | mask); + + return 0; +} + +/* + * It reads ICR and gets interrupt causes, check it and set a bit flag + * to update link status. + * + * @param dev + * Pointer to struct rte_eth_dev. + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +eth_igb_interrupt_get_status(struct rte_eth_dev *dev) +{ + uint32_t icr; + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_interrupt *intr = + E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); + + igb_intr_disable(hw); + + /* read-on-clear nic registers here */ + icr = E1000_READ_REG(hw, E1000_ICR); + + intr->flags = 0; + if (icr & E1000_ICR_LSC) { + intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; + } + + if (icr & E1000_ICR_VMMB) + intr->flags |= E1000_FLAG_MAILBOX; + + return 0; +} + +/* + * It executes link_update after knowing an interrupt is prsent. + * + * @param dev + * Pointer to struct rte_eth_dev. + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +eth_igb_interrupt_action(struct rte_eth_dev *dev, + struct rte_intr_handle *intr_handle) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_interrupt *intr = + E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_eth_link link; + int ret; + + if (intr->flags & E1000_FLAG_MAILBOX) { + igb_pf_mbx_process(dev); + intr->flags &= ~E1000_FLAG_MAILBOX; + } + + igb_intr_enable(dev); + rte_intr_enable(intr_handle); + + if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) { + intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE; + + /* set get_link_status to check register later */ + hw->mac.get_link_status = 1; + ret = eth_igb_link_update(dev, 0); + + /* check if link has changed */ + if (ret < 0) + return 0; + + rte_eth_linkstatus_get(dev, &link); + if (link.link_status) { + PMD_INIT_LOG(INFO, + " Port %d: Link Up - speed %u Mbps - %s", + dev->data->port_id, + (unsigned)link.link_speed, + link.link_duplex == ETH_LINK_FULL_DUPLEX ? + "full-duplex" : "half-duplex"); + } else { + PMD_INIT_LOG(INFO, " Port %d: Link Down", + dev->data->port_id); + } + + PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d", + pci_dev->addr.domain, + pci_dev->addr.bus, + pci_dev->addr.devid, + pci_dev->addr.function); + _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, + NULL); + } + + return 0; +} + +/** + * Interrupt handler which shall be registered at first. + * + * @param handle + * Pointer to interrupt handle. + * @param param + * The address of parameter (struct rte_eth_dev *) regsitered before. + * + * @return + * void + */ +static void +eth_igb_interrupt_handler(void *param) +{ + struct rte_eth_dev *dev = (struct rte_eth_dev *)param; + + eth_igb_interrupt_get_status(dev); + eth_igb_interrupt_action(dev, dev->intr_handle); +} + +static int +eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev) +{ + uint32_t eicr; + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_interrupt *intr = + E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); + + igbvf_intr_disable(hw); + + /* read-on-clear nic registers here */ + eicr = E1000_READ_REG(hw, E1000_EICR); + intr->flags = 0; + + if (eicr == E1000_VTIVAR_MISC_MAILBOX) + intr->flags |= E1000_FLAG_MAILBOX; + + return 0; +} + +void igbvf_mbx_process(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_mbx_info *mbx = &hw->mbx; + u32 in_msg = 0; + + /* peek the message first */ + in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0)); + + /* PF reset VF event */ + if (in_msg == E1000_PF_CONTROL_MSG) { + /* dummy mbx read to ack pf */ + if (mbx->ops.read(hw, &in_msg, 1, 0)) + return; + _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET, + NULL); + } +} + +static int +eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle) +{ + struct e1000_interrupt *intr = + E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); + + if (intr->flags & E1000_FLAG_MAILBOX) { + igbvf_mbx_process(dev); + intr->flags &= ~E1000_FLAG_MAILBOX; + } + + igbvf_intr_enable(dev); + rte_intr_enable(intr_handle); + + return 0; +} + +static void +eth_igbvf_interrupt_handler(void *param) +{ + struct rte_eth_dev *dev = (struct rte_eth_dev *)param; + + eth_igbvf_interrupt_get_status(dev); + eth_igbvf_interrupt_action(dev, dev->intr_handle); +} + +static int +eth_igb_led_on(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP; +} + +static int +eth_igb_led_off(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP; +} + +static int +eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) +{ + struct e1000_hw *hw; + uint32_t ctrl; + int tx_pause; + int rx_pause; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + fc_conf->pause_time = hw->fc.pause_time; + fc_conf->high_water = hw->fc.high_water; + fc_conf->low_water = hw->fc.low_water; + fc_conf->send_xon = hw->fc.send_xon; + fc_conf->autoneg = hw->mac.autoneg; + + /* + * Return rx_pause and tx_pause status according to actual setting of + * the TFCE and RFCE bits in the CTRL register. + */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + if (ctrl & E1000_CTRL_TFCE) + tx_pause = 1; + else + tx_pause = 0; + + if (ctrl & E1000_CTRL_RFCE) + rx_pause = 1; + else + rx_pause = 0; + + if (rx_pause && tx_pause) + fc_conf->mode = RTE_FC_FULL; + else if (rx_pause) + fc_conf->mode = RTE_FC_RX_PAUSE; + else if (tx_pause) + fc_conf->mode = RTE_FC_TX_PAUSE; + else + fc_conf->mode = RTE_FC_NONE; + + return 0; +} + +static int +eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) +{ + struct e1000_hw *hw; + int err; + enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = { + e1000_fc_none, + e1000_fc_rx_pause, + e1000_fc_tx_pause, + e1000_fc_full + }; + uint32_t rx_buf_size; + uint32_t max_high_water; + uint32_t rctl; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + if (fc_conf->autoneg != hw->mac.autoneg) + return -ENOTSUP; + rx_buf_size = igb_get_rx_buffer_size(hw); + PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size); + + /* At least reserve one Ethernet frame for watermark */ + max_high_water = rx_buf_size - ETHER_MAX_LEN; + if ((fc_conf->high_water > max_high_water) || + (fc_conf->high_water < fc_conf->low_water)) { + PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value"); + PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water); + return -EINVAL; + } + + hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode]; + hw->fc.pause_time = fc_conf->pause_time; + hw->fc.high_water = fc_conf->high_water; + hw->fc.low_water = fc_conf->low_water; + hw->fc.send_xon = fc_conf->send_xon; + + err = e1000_setup_link_generic(hw); + if (err == E1000_SUCCESS) { + + /* check if we want to forward MAC frames - driver doesn't have native + * capability to do that, so we'll write the registers ourselves */ + + rctl = E1000_READ_REG(hw, E1000_RCTL); + + /* set or clear MFLCN.PMCF bit depending on configuration */ + if (fc_conf->mac_ctrl_frame_fwd != 0) + rctl |= E1000_RCTL_PMCF; + else + rctl &= ~E1000_RCTL_PMCF; + + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + E1000_WRITE_FLUSH(hw); + + return 0; + } + + PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err); + return -EIO; +} + +#define E1000_RAH_POOLSEL_SHIFT (18) +static int +eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr, + uint32_t index, uint32_t pool) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t rah; + + e1000_rar_set(hw, mac_addr->addr_bytes, index); + rah = E1000_READ_REG(hw, E1000_RAH(index)); + rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool)); + E1000_WRITE_REG(hw, E1000_RAH(index), rah); + return 0; +} + +static void +eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index) +{ + uint8_t addr[ETHER_ADDR_LEN]; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + memset(addr, 0, sizeof(addr)); + + e1000_rar_set(hw, addr, index); +} + +static int +eth_igb_default_mac_addr_set(struct rte_eth_dev *dev, + struct ether_addr *addr) +{ + eth_igb_rar_clear(dev, 0); + eth_igb_rar_set(dev, (void *)addr, 0, 0); + + return 0; +} +/* + * Virtual Function operations + */ +static void +igbvf_intr_disable(struct e1000_hw *hw) +{ + PMD_INIT_FUNC_TRACE(); + + /* Clear interrupt mask to stop from interrupts being generated */ + E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF); + + E1000_WRITE_FLUSH(hw); +} + +static void +igbvf_stop_adapter(struct rte_eth_dev *dev) +{ + u32 reg_val; + u16 i; + struct rte_eth_dev_info dev_info; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + memset(&dev_info, 0, sizeof(dev_info)); + eth_igbvf_infos_get(dev, &dev_info); + + /* Clear interrupt mask to stop from interrupts being generated */ + igbvf_intr_disable(hw); + + /* Clear any pending interrupts, flush previous writes */ + E1000_READ_REG(hw, E1000_EICR); + + /* Disable the transmit unit. Each queue must be disabled. */ + for (i = 0; i < dev_info.max_tx_queues; i++) + E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH); + + /* Disable the receive unit by stopping each queue */ + for (i = 0; i < dev_info.max_rx_queues; i++) { + reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i)); + reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE; + E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val); + while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE) + ; + } + + /* flush all queues disables */ + E1000_WRITE_FLUSH(hw); + msec_delay(2); +} + +static int eth_igbvf_link_update(struct e1000_hw *hw) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + struct e1000_mac_info *mac = &hw->mac; + int ret_val = E1000_SUCCESS; + + PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf"); + + /* + * We only want to run this if there has been a rst asserted. + * in this case that could mean a link change, device reset, + * or a virtual function reset + */ + + /* If we were hit with a reset or timeout drop the link */ + if (!e1000_check_for_rst(hw, 0) || !mbx->timeout) + mac->get_link_status = TRUE; + + if (!mac->get_link_status) + goto out; + + /* if link status is down no point in checking to see if pf is up */ + if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) + goto out; + + /* if we passed all the tests above then the link is up and we no + * longer need to check for link */ + mac->get_link_status = FALSE; + +out: + return ret_val; +} + + +static int +igbvf_dev_configure(struct rte_eth_dev *dev) +{ + struct rte_eth_conf* conf = &dev->data->dev_conf; + + PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d", + dev->data->port_id); + + /* + * VF has no ability to enable/disable HW CRC + * Keep the persistent behavior the same as Host PF + */ +#ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC + if (rte_eth_dev_must_keep_crc(conf->rxmode.offloads)) { + PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip"); + conf->rxmode.offloads |= DEV_RX_OFFLOAD_CRC_STRIP; + } +#else + if (!rte_eth_dev_must_keep_crc(conf->rxmode.offloads)) { + PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip"); + conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_CRC_STRIP; + } +#endif + + return 0; +} + +static int +igbvf_dev_start(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(dev->data->dev_private); + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + int ret; + uint32_t intr_vector = 0; + + PMD_INIT_FUNC_TRACE(); + + hw->mac.ops.reset_hw(hw); + adapter->stopped = 0; + + /* Set all vfta */ + igbvf_set_vfta_all(dev,1); + + eth_igbvf_tx_init(dev); + + /* This can fail when allocating mbufs for descriptor rings */ + ret = eth_igbvf_rx_init(dev); + if (ret) { + PMD_INIT_LOG(ERR, "Unable to initialize RX hardware"); + igb_dev_clear_queues(dev); + return ret; + } + + /* check and configure queue intr-vector mapping */ + if (rte_intr_cap_multiple(intr_handle) && + dev->data->dev_conf.intr_conf.rxq) { + intr_vector = dev->data->nb_rx_queues; + ret = rte_intr_efd_enable(intr_handle, intr_vector); + if (ret) + return ret; + } + + if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { + intr_handle->intr_vec = + rte_zmalloc("intr_vec", + dev->data->nb_rx_queues * sizeof(int), 0); + if (!intr_handle->intr_vec) { + PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues" + " intr_vec", dev->data->nb_rx_queues); + return -ENOMEM; + } + } + + eth_igbvf_configure_msix_intr(dev); + + /* enable uio/vfio intr/eventfd mapping */ + rte_intr_enable(intr_handle); + + /* resume enabled intr since hw reset */ + igbvf_intr_enable(dev); + + return 0; +} + +static void +igbvf_dev_stop(struct rte_eth_dev *dev) +{ + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + + PMD_INIT_FUNC_TRACE(); + + igbvf_stop_adapter(dev); + + /* + * Clear what we set, but we still keep shadow_vfta to + * restore after device starts + */ + igbvf_set_vfta_all(dev,0); + + igb_dev_clear_queues(dev); + + /* disable intr eventfd mapping */ + rte_intr_disable(intr_handle); + + /* Clean datapath event and queue/vec mapping */ + rte_intr_efd_disable(intr_handle); + if (intr_handle->intr_vec) { + rte_free(intr_handle->intr_vec); + intr_handle->intr_vec = NULL; + } +} + +static void +igbvf_dev_close(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_adapter *adapter = + E1000_DEV_PRIVATE(dev->data->dev_private); + struct ether_addr addr; + + PMD_INIT_FUNC_TRACE(); + + e1000_reset_hw(hw); + + igbvf_dev_stop(dev); + adapter->stopped = 1; + igb_dev_free_queues(dev); + + /** + * reprogram the RAR with a zero mac address, + * to ensure that the VF traffic goes to the PF + * after stop, close and detach of the VF. + **/ + + memset(&addr, 0, sizeof(addr)); + igbvf_default_mac_addr_set(dev, &addr); +} + +static void +igbvf_promiscuous_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* Set both unicast and multicast promisc */ + e1000_promisc_set_vf(hw, e1000_promisc_enabled); +} + +static void +igbvf_promiscuous_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* If in allmulticast mode leave multicast promisc */ + if (dev->data->all_multicast == 1) + e1000_promisc_set_vf(hw, e1000_promisc_multicast); + else + e1000_promisc_set_vf(hw, e1000_promisc_disabled); +} + +static void +igbvf_allmulticast_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* In promiscuous mode multicast promisc already set */ + if (dev->data->promiscuous == 0) + e1000_promisc_set_vf(hw, e1000_promisc_multicast); +} + +static void +igbvf_allmulticast_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* In promiscuous mode leave multicast promisc enabled */ + if (dev->data->promiscuous == 0) + e1000_promisc_set_vf(hw, e1000_promisc_disabled); +} + +static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + uint32_t msgbuf[2]; + s32 err; + + /* After set vlan, vlan strip will also be enabled in igb driver*/ + msgbuf[0] = E1000_VF_SET_VLAN; + msgbuf[1] = vid; + /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */ + if (on) + msgbuf[0] |= E1000_VF_SET_VLAN_ADD; + + err = mbx->ops.write_posted(hw, msgbuf, 2, 0); + if (err) + goto mbx_err; + + err = mbx->ops.read_posted(hw, msgbuf, 2, 0); + if (err) + goto mbx_err; + + msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; + if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)) + err = -EINVAL; + +mbx_err: + return err; +} + +static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vfta * shadow_vfta = + E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); + int i = 0, j = 0, vfta = 0, mask = 1; + + for (i = 0; i < IGB_VFTA_SIZE; i++){ + vfta = shadow_vfta->vfta[i]; + if(vfta){ + mask = 1; + for (j = 0; j < 32; j++){ + if(vfta & mask) + igbvf_set_vfta(hw, + (uint16_t)((i<<5)+j), on); + mask<<=1; + } + } + } + +} + +static int +igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vfta * shadow_vfta = + E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); + uint32_t vid_idx = 0; + uint32_t vid_bit = 0; + int ret = 0; + + PMD_INIT_FUNC_TRACE(); + + /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/ + ret = igbvf_set_vfta(hw, vlan_id, !!on); + if(ret){ + PMD_INIT_LOG(ERR, "Unable to set VF vlan"); + return ret; + } + vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F); + vid_bit = (uint32_t) (1 << (vlan_id & 0x1F)); + + /*Save what we set and retore it after device reset*/ + if (on) + shadow_vfta->vfta[vid_idx] |= vid_bit; + else + shadow_vfta->vfta[vid_idx] &= ~vid_bit; + + return 0; +} + +static int +igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* index is not used by rar_set() */ + hw->mac.ops.rar_set(hw, (void *)addr, 0); + return 0; +} + + +static int +eth_igb_rss_reta_update(struct rte_eth_dev *dev, + struct rte_eth_rss_reta_entry64 *reta_conf, + uint16_t reta_size) +{ + uint8_t i, j, mask; + uint32_t reta, r; + uint16_t idx, shift; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + if (reta_size != ETH_RSS_RETA_SIZE_128) { + PMD_DRV_LOG(ERR, "The size of hash lookup table configured " + "(%d) doesn't match the number hardware can supported " + "(%d)", reta_size, ETH_RSS_RETA_SIZE_128); + return -EINVAL; + } + + for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) { + idx = i / RTE_RETA_GROUP_SIZE; + shift = i % RTE_RETA_GROUP_SIZE; + mask = (uint8_t)((reta_conf[idx].mask >> shift) & + IGB_4_BIT_MASK); + if (!mask) + continue; + if (mask == IGB_4_BIT_MASK) + r = 0; + else + r = E1000_READ_REG(hw, E1000_RETA(i >> 2)); + for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) { + if (mask & (0x1 << j)) + reta |= reta_conf[idx].reta[shift + j] << + (CHAR_BIT * j); + else + reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j)); + } + E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); + } + + return 0; +} + +static int +eth_igb_rss_reta_query(struct rte_eth_dev *dev, + struct rte_eth_rss_reta_entry64 *reta_conf, + uint16_t reta_size) +{ + uint8_t i, j, mask; + uint32_t reta; + uint16_t idx, shift; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + if (reta_size != ETH_RSS_RETA_SIZE_128) { + PMD_DRV_LOG(ERR, "The size of hash lookup table configured " + "(%d) doesn't match the number hardware can supported " + "(%d)", reta_size, ETH_RSS_RETA_SIZE_128); + return -EINVAL; + } + + for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) { + idx = i / RTE_RETA_GROUP_SIZE; + shift = i % RTE_RETA_GROUP_SIZE; + mask = (uint8_t)((reta_conf[idx].mask >> shift) & + IGB_4_BIT_MASK); + if (!mask) + continue; + reta = E1000_READ_REG(hw, E1000_RETA(i >> 2)); + for (j = 0; j < IGB_4_BIT_WIDTH; j++) { + if (mask & (0x1 << j)) + reta_conf[idx].reta[shift + j] = + ((reta >> (CHAR_BIT * j)) & + IGB_8_BIT_MASK); + } + } + + return 0; +} + +int +eth_igb_syn_filter_set(struct rte_eth_dev *dev, + struct rte_eth_syn_filter *filter, + bool add) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + uint32_t synqf, rfctl; + + if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) + return -EINVAL; + + synqf = E1000_READ_REG(hw, E1000_SYNQF(0)); + + if (add) { + if (synqf & E1000_SYN_FILTER_ENABLE) + return -EINVAL; + + synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) & + E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE); + + rfctl = E1000_READ_REG(hw, E1000_RFCTL); + if (filter->hig_pri) + rfctl |= E1000_RFCTL_SYNQFP; + else + rfctl &= ~E1000_RFCTL_SYNQFP; + + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); + } else { + if (!(synqf & E1000_SYN_FILTER_ENABLE)) + return -ENOENT; + synqf = 0; + } + + filter_info->syn_info = synqf; + E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf); + E1000_WRITE_FLUSH(hw); + return 0; +} + +static int +eth_igb_syn_filter_get(struct rte_eth_dev *dev, + struct rte_eth_syn_filter *filter) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t synqf, rfctl; + + synqf = E1000_READ_REG(hw, E1000_SYNQF(0)); + if (synqf & E1000_SYN_FILTER_ENABLE) { + rfctl = E1000_READ_REG(hw, E1000_RFCTL); + filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0; + filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >> + E1000_SYN_FILTER_QUEUE_SHIFT); + return 0; + } + + return -ENOENT; +} + +static int +eth_igb_syn_filter_handle(struct rte_eth_dev *dev, + enum rte_filter_op filter_op, + void *arg) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + int ret; + + MAC_TYPE_FILTER_SUP(hw->mac.type); + + if (filter_op == RTE_ETH_FILTER_NOP) + return 0; + + if (arg == NULL) { + PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u", + filter_op); + return -EINVAL; + } + + switch (filter_op) { + case RTE_ETH_FILTER_ADD: + ret = eth_igb_syn_filter_set(dev, + (struct rte_eth_syn_filter *)arg, + TRUE); + break; + case RTE_ETH_FILTER_DELETE: + ret = eth_igb_syn_filter_set(dev, + (struct rte_eth_syn_filter *)arg, + FALSE); + break; + case RTE_ETH_FILTER_GET: + ret = eth_igb_syn_filter_get(dev, + (struct rte_eth_syn_filter *)arg); + break; + default: + PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op); + ret = -EINVAL; + break; + } + + return ret; +} + +/* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/ +static inline int +ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter, + struct e1000_2tuple_filter_info *filter_info) +{ + if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) + return -EINVAL; + if (filter->priority > E1000_2TUPLE_MAX_PRI) + return -EINVAL; /* filter index is out of range. */ + if (filter->tcp_flags > TCP_FLAG_ALL) + return -EINVAL; /* flags is invalid. */ + + switch (filter->dst_port_mask) { + case UINT16_MAX: + filter_info->dst_port_mask = 0; + filter_info->dst_port = filter->dst_port; + break; + case 0: + filter_info->dst_port_mask = 1; + break; + default: + PMD_DRV_LOG(ERR, "invalid dst_port mask."); + return -EINVAL; + } + + switch (filter->proto_mask) { + case UINT8_MAX: + filter_info->proto_mask = 0; + filter_info->proto = filter->proto; + break; + case 0: + filter_info->proto_mask = 1; + break; + default: + PMD_DRV_LOG(ERR, "invalid protocol mask."); + return -EINVAL; + } + + filter_info->priority = (uint8_t)filter->priority; + if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) + filter_info->tcp_flags = filter->tcp_flags; + else + filter_info->tcp_flags = 0; + + return 0; +} + +static inline struct e1000_2tuple_filter * +igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list, + struct e1000_2tuple_filter_info *key) +{ + struct e1000_2tuple_filter *it; + + TAILQ_FOREACH(it, filter_list, entries) { + if (memcmp(key, &it->filter_info, + sizeof(struct e1000_2tuple_filter_info)) == 0) { + return it; + } + } + return NULL; +} + +/* inject a igb 2tuple filter to HW */ +static inline void +igb_inject_2uple_filter(struct rte_eth_dev *dev, + struct e1000_2tuple_filter *filter) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t ttqf = E1000_TTQF_DISABLE_MASK; + uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP; + int i; + + i = filter->index; + imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT); + if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */ + imir |= E1000_IMIR_PORT_BP; + else + imir &= ~E1000_IMIR_PORT_BP; + + imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT; + + ttqf |= E1000_TTQF_QUEUE_ENABLE; + ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT); + ttqf |= (uint32_t)(filter->filter_info.proto & + E1000_TTQF_PROTOCOL_MASK); + if (filter->filter_info.proto_mask == 0) + ttqf &= ~E1000_TTQF_MASK_ENABLE; + + /* tcp flags bits setting. */ + if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) { + if (filter->filter_info.tcp_flags & TCP_URG_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_URG; + if (filter->filter_info.tcp_flags & TCP_ACK_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_ACK; + if (filter->filter_info.tcp_flags & TCP_PSH_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_PSH; + if (filter->filter_info.tcp_flags & TCP_RST_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_RST; + if (filter->filter_info.tcp_flags & TCP_SYN_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_SYN; + if (filter->filter_info.tcp_flags & TCP_FIN_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_FIN; + } else { + imir_ext |= E1000_IMIREXT_CTRL_BP; + } + E1000_WRITE_REG(hw, E1000_IMIR(i), imir); + E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf); + E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext); +} + +/* + * igb_add_2tuple_filter - add a 2tuple filter + * + * @param + * dev: Pointer to struct rte_eth_dev. + * ntuple_filter: ponter to the filter that will be added. + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +igb_add_2tuple_filter(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *ntuple_filter) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_2tuple_filter *filter; + int i, ret; + + filter = rte_zmalloc("e1000_2tuple_filter", + sizeof(struct e1000_2tuple_filter), 0); + if (filter == NULL) + return -ENOMEM; + + ret = ntuple_filter_to_2tuple(ntuple_filter, + &filter->filter_info); + if (ret < 0) { + rte_free(filter); + return ret; + } + if (igb_2tuple_filter_lookup(&filter_info->twotuple_list, + &filter->filter_info) != NULL) { + PMD_DRV_LOG(ERR, "filter exists."); + rte_free(filter); + return -EEXIST; + } + filter->queue = ntuple_filter->queue; + + /* + * look for an unused 2tuple filter index, + * and insert the filter to list. + */ + for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) { + if (!(filter_info->twotuple_mask & (1 << i))) { + filter_info->twotuple_mask |= 1 << i; + filter->index = i; + TAILQ_INSERT_TAIL(&filter_info->twotuple_list, + filter, + entries); + break; + } + } + if (i >= E1000_MAX_TTQF_FILTERS) { + PMD_DRV_LOG(ERR, "2tuple filters are full."); + rte_free(filter); + return -ENOSYS; + } + + igb_inject_2uple_filter(dev, filter); + return 0; +} + +int +igb_delete_2tuple_filter(struct rte_eth_dev *dev, + struct e1000_2tuple_filter *filter) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + + filter_info->twotuple_mask &= ~(1 << filter->index); + TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries); + rte_free(filter); + + E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK); + E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0); + E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0); + return 0; +} + +/* + * igb_remove_2tuple_filter - remove a 2tuple filter + * + * @param + * dev: Pointer to struct rte_eth_dev. + * ntuple_filter: ponter to the filter that will be removed. + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +igb_remove_2tuple_filter(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *ntuple_filter) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_2tuple_filter_info filter_2tuple; + struct e1000_2tuple_filter *filter; + int ret; + + memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info)); + ret = ntuple_filter_to_2tuple(ntuple_filter, + &filter_2tuple); + if (ret < 0) + return ret; + + filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list, + &filter_2tuple); + if (filter == NULL) { + PMD_DRV_LOG(ERR, "filter doesn't exist."); + return -ENOENT; + } + + igb_delete_2tuple_filter(dev, filter); + + return 0; +} + +/* inject a igb flex filter to HW */ +static inline void +igb_inject_flex_filter(struct rte_eth_dev *dev, + struct e1000_flex_filter *filter) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t wufc, queueing; + uint32_t reg_off; + uint8_t i, j = 0; + + wufc = E1000_READ_REG(hw, E1000_WUFC); + if (filter->index < E1000_MAX_FHFT) + reg_off = E1000_FHFT(filter->index); + else + reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT); + + E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ | + (E1000_WUFC_FLX0 << filter->index)); + queueing = filter->filter_info.len | + (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) | + (filter->filter_info.priority << + E1000_FHFT_QUEUEING_PRIO_SHIFT); + E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET, + queueing); + + for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) { + E1000_WRITE_REG(hw, reg_off, + filter->filter_info.dwords[j]); + reg_off += sizeof(uint32_t); + E1000_WRITE_REG(hw, reg_off, + filter->filter_info.dwords[++j]); + reg_off += sizeof(uint32_t); + E1000_WRITE_REG(hw, reg_off, + (uint32_t)filter->filter_info.mask[i]); + reg_off += sizeof(uint32_t) * 2; + ++j; + } +} + +static inline struct e1000_flex_filter * +eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list, + struct e1000_flex_filter_info *key) +{ + struct e1000_flex_filter *it; + + TAILQ_FOREACH(it, filter_list, entries) { + if (memcmp(key, &it->filter_info, + sizeof(struct e1000_flex_filter_info)) == 0) + return it; + } + + return NULL; +} + +/* remove a flex byte filter + * @param + * dev: Pointer to struct rte_eth_dev. + * filter: the pointer of the filter will be removed. + */ +void +igb_remove_flex_filter(struct rte_eth_dev *dev, + struct e1000_flex_filter *filter) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t wufc, i; + uint32_t reg_off; + + wufc = E1000_READ_REG(hw, E1000_WUFC); + if (filter->index < E1000_MAX_FHFT) + reg_off = E1000_FHFT(filter->index); + else + reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT); + + for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++) + E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0); + + E1000_WRITE_REG(hw, E1000_WUFC, wufc & + (~(E1000_WUFC_FLX0 << filter->index))); + + filter_info->flex_mask &= ~(1 << filter->index); + TAILQ_REMOVE(&filter_info->flex_list, filter, entries); + rte_free(filter); +} + +int +eth_igb_add_del_flex_filter(struct rte_eth_dev *dev, + struct rte_eth_flex_filter *filter, + bool add) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_flex_filter *flex_filter, *it; + uint32_t mask; + uint8_t shift, i; + + flex_filter = rte_zmalloc("e1000_flex_filter", + sizeof(struct e1000_flex_filter), 0); + if (flex_filter == NULL) + return -ENOMEM; + + flex_filter->filter_info.len = filter->len; + flex_filter->filter_info.priority = filter->priority; + memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len); + for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) { + mask = 0; + /* reverse bits in flex filter's mask*/ + for (shift = 0; shift < CHAR_BIT; shift++) { + if (filter->mask[i] & (0x01 << shift)) + mask |= (0x80 >> shift); + } + flex_filter->filter_info.mask[i] = mask; + } + + it = eth_igb_flex_filter_lookup(&filter_info->flex_list, + &flex_filter->filter_info); + if (it == NULL && !add) { + PMD_DRV_LOG(ERR, "filter doesn't exist."); + rte_free(flex_filter); + return -ENOENT; + } + if (it != NULL && add) { + PMD_DRV_LOG(ERR, "filter exists."); + rte_free(flex_filter); + return -EEXIST; + } + + if (add) { + flex_filter->queue = filter->queue; + /* + * look for an unused flex filter index + * and insert the filter into the list. + */ + for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) { + if (!(filter_info->flex_mask & (1 << i))) { + filter_info->flex_mask |= 1 << i; + flex_filter->index = i; + TAILQ_INSERT_TAIL(&filter_info->flex_list, + flex_filter, + entries); + break; + } + } + if (i >= E1000_MAX_FLEX_FILTERS) { + PMD_DRV_LOG(ERR, "flex filters are full."); + rte_free(flex_filter); + return -ENOSYS; + } + + igb_inject_flex_filter(dev, flex_filter); + + } else { + igb_remove_flex_filter(dev, it); + rte_free(flex_filter); + } + + return 0; +} + +static int +eth_igb_get_flex_filter(struct rte_eth_dev *dev, + struct rte_eth_flex_filter *filter) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_flex_filter flex_filter, *it; + uint32_t wufc, queueing, wufc_en = 0; + + memset(&flex_filter, 0, sizeof(struct e1000_flex_filter)); + flex_filter.filter_info.len = filter->len; + flex_filter.filter_info.priority = filter->priority; + memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len); + memcpy(flex_filter.filter_info.mask, filter->mask, + RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT); + + it = eth_igb_flex_filter_lookup(&filter_info->flex_list, + &flex_filter.filter_info); + if (it == NULL) { + PMD_DRV_LOG(ERR, "filter doesn't exist."); + return -ENOENT; + } + + wufc = E1000_READ_REG(hw, E1000_WUFC); + wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index); + + if ((wufc & wufc_en) == wufc_en) { + uint32_t reg_off = 0; + if (it->index < E1000_MAX_FHFT) + reg_off = E1000_FHFT(it->index); + else + reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT); + + queueing = E1000_READ_REG(hw, + reg_off + E1000_FHFT_QUEUEING_OFFSET); + filter->len = queueing & E1000_FHFT_QUEUEING_LEN; + filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >> + E1000_FHFT_QUEUEING_PRIO_SHIFT; + filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >> + E1000_FHFT_QUEUEING_QUEUE_SHIFT; + return 0; + } + return -ENOENT; +} + +static int +eth_igb_flex_filter_handle(struct rte_eth_dev *dev, + enum rte_filter_op filter_op, + void *arg) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct rte_eth_flex_filter *filter; + int ret = 0; + + MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); + + if (filter_op == RTE_ETH_FILTER_NOP) + return ret; + + if (arg == NULL) { + PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u", + filter_op); + return -EINVAL; + } + + filter = (struct rte_eth_flex_filter *)arg; + if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN + || filter->len % sizeof(uint64_t) != 0) { + PMD_DRV_LOG(ERR, "filter's length is out of range"); + return -EINVAL; + } + if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) { + PMD_DRV_LOG(ERR, "filter's priority is out of range"); + return -EINVAL; + } + + switch (filter_op) { + case RTE_ETH_FILTER_ADD: + ret = eth_igb_add_del_flex_filter(dev, filter, TRUE); + break; + case RTE_ETH_FILTER_DELETE: + ret = eth_igb_add_del_flex_filter(dev, filter, FALSE); + break; + case RTE_ETH_FILTER_GET: + ret = eth_igb_get_flex_filter(dev, filter); + break; + default: + PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op); + ret = -EINVAL; + break; + } + + return ret; +} + +/* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/ +static inline int +ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter, + struct e1000_5tuple_filter_info *filter_info) +{ + if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576) + return -EINVAL; + if (filter->priority > E1000_2TUPLE_MAX_PRI) + return -EINVAL; /* filter index is out of range. */ + if (filter->tcp_flags > TCP_FLAG_ALL) + return -EINVAL; /* flags is invalid. */ + + switch (filter->dst_ip_mask) { + case UINT32_MAX: + filter_info->dst_ip_mask = 0; + filter_info->dst_ip = filter->dst_ip; + break; + case 0: + filter_info->dst_ip_mask = 1; + break; + default: + PMD_DRV_LOG(ERR, "invalid dst_ip mask."); + return -EINVAL; + } + + switch (filter->src_ip_mask) { + case UINT32_MAX: + filter_info->src_ip_mask = 0; + filter_info->src_ip = filter->src_ip; + break; + case 0: + filter_info->src_ip_mask = 1; + break; + default: + PMD_DRV_LOG(ERR, "invalid src_ip mask."); + return -EINVAL; + } + + switch (filter->dst_port_mask) { + case UINT16_MAX: + filter_info->dst_port_mask = 0; + filter_info->dst_port = filter->dst_port; + break; + case 0: + filter_info->dst_port_mask = 1; + break; + default: + PMD_DRV_LOG(ERR, "invalid dst_port mask."); + return -EINVAL; + } + + switch (filter->src_port_mask) { + case UINT16_MAX: + filter_info->src_port_mask = 0; + filter_info->src_port = filter->src_port; + break; + case 0: + filter_info->src_port_mask = 1; + break; + default: + PMD_DRV_LOG(ERR, "invalid src_port mask."); + return -EINVAL; + } + + switch (filter->proto_mask) { + case UINT8_MAX: + filter_info->proto_mask = 0; + filter_info->proto = filter->proto; + break; + case 0: + filter_info->proto_mask = 1; + break; + default: + PMD_DRV_LOG(ERR, "invalid protocol mask."); + return -EINVAL; + } + + filter_info->priority = (uint8_t)filter->priority; + if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) + filter_info->tcp_flags = filter->tcp_flags; + else + filter_info->tcp_flags = 0; + + return 0; +} + +static inline struct e1000_5tuple_filter * +igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list, + struct e1000_5tuple_filter_info *key) +{ + struct e1000_5tuple_filter *it; + + TAILQ_FOREACH(it, filter_list, entries) { + if (memcmp(key, &it->filter_info, + sizeof(struct e1000_5tuple_filter_info)) == 0) { + return it; + } + } + return NULL; +} + +/* inject a igb 5-tuple filter to HW */ +static inline void +igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev, + struct e1000_5tuple_filter *filter) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK; + uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP; + uint8_t i; + + i = filter->index; + ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK; + if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */ + ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP; + if (filter->filter_info.dst_ip_mask == 0) + ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP; + if (filter->filter_info.src_port_mask == 0) + ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; + if (filter->filter_info.proto_mask == 0) + ftqf &= ~E1000_FTQF_MASK_PROTO_BP; + ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) & + E1000_FTQF_QUEUE_MASK; + ftqf |= E1000_FTQF_QUEUE_ENABLE; + E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf); + E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip); + E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip); + + spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT; + E1000_WRITE_REG(hw, E1000_SPQF(i), spqf); + + imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT); + if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */ + imir |= E1000_IMIR_PORT_BP; + else + imir &= ~E1000_IMIR_PORT_BP; + imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT; + + /* tcp flags bits setting. */ + if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) { + if (filter->filter_info.tcp_flags & TCP_URG_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_URG; + if (filter->filter_info.tcp_flags & TCP_ACK_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_ACK; + if (filter->filter_info.tcp_flags & TCP_PSH_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_PSH; + if (filter->filter_info.tcp_flags & TCP_RST_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_RST; + if (filter->filter_info.tcp_flags & TCP_SYN_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_SYN; + if (filter->filter_info.tcp_flags & TCP_FIN_FLAG) + imir_ext |= E1000_IMIREXT_CTRL_FIN; + } else { + imir_ext |= E1000_IMIREXT_CTRL_BP; + } + E1000_WRITE_REG(hw, E1000_IMIR(i), imir); + E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext); +} + +/* + * igb_add_5tuple_filter_82576 - add a 5tuple filter + * + * @param + * dev: Pointer to struct rte_eth_dev. + * ntuple_filter: ponter to the filter that will be added. + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +igb_add_5tuple_filter_82576(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *ntuple_filter) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_5tuple_filter *filter; + uint8_t i; + int ret; + + filter = rte_zmalloc("e1000_5tuple_filter", + sizeof(struct e1000_5tuple_filter), 0); + if (filter == NULL) + return -ENOMEM; + + ret = ntuple_filter_to_5tuple_82576(ntuple_filter, + &filter->filter_info); + if (ret < 0) { + rte_free(filter); + return ret; + } + + if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list, + &filter->filter_info) != NULL) { + PMD_DRV_LOG(ERR, "filter exists."); + rte_free(filter); + return -EEXIST; + } + filter->queue = ntuple_filter->queue; + + /* + * look for an unused 5tuple filter index, + * and insert the filter to list. + */ + for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) { + if (!(filter_info->fivetuple_mask & (1 << i))) { + filter_info->fivetuple_mask |= 1 << i; + filter->index = i; + TAILQ_INSERT_TAIL(&filter_info->fivetuple_list, + filter, + entries); + break; + } + } + if (i >= E1000_MAX_FTQF_FILTERS) { + PMD_DRV_LOG(ERR, "5tuple filters are full."); + rte_free(filter); + return -ENOSYS; + } + + igb_inject_5tuple_filter_82576(dev, filter); + return 0; +} + +int +igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev, + struct e1000_5tuple_filter *filter) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + + filter_info->fivetuple_mask &= ~(1 << filter->index); + TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries); + rte_free(filter); + + E1000_WRITE_REG(hw, E1000_FTQF(filter->index), + E1000_FTQF_VF_BP | E1000_FTQF_MASK); + E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0); + E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0); + E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0); + E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0); + E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0); + return 0; +} + +/* + * igb_remove_5tuple_filter_82576 - remove a 5tuple filter + * + * @param + * dev: Pointer to struct rte_eth_dev. + * ntuple_filter: ponter to the filter that will be removed. + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *ntuple_filter) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_5tuple_filter_info filter_5tuple; + struct e1000_5tuple_filter *filter; + int ret; + + memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info)); + ret = ntuple_filter_to_5tuple_82576(ntuple_filter, + &filter_5tuple); + if (ret < 0) + return ret; + + filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list, + &filter_5tuple); + if (filter == NULL) { + PMD_DRV_LOG(ERR, "filter doesn't exist."); + return -ENOENT; + } + + igb_delete_5tuple_filter_82576(dev, filter); + + return 0; +} + +static int +eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) +{ + uint32_t rctl; + struct e1000_hw *hw; + struct rte_eth_dev_info dev_info; + uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN + + VLAN_TAG_SIZE); + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + +#ifdef RTE_LIBRTE_82571_SUPPORT + /* XXX: not bigger than max_rx_pktlen */ + if (hw->mac.type == e1000_82571) + return -ENOTSUP; +#endif + eth_igb_infos_get(dev, &dev_info); + + /* check that mtu is within the allowed range */ + if ((mtu < ETHER_MIN_MTU) || + (frame_size > dev_info.max_rx_pktlen)) + return -EINVAL; + + /* refuse mtu that requires the support of scattered packets when this + * feature has not been enabled before. */ + if (!dev->data->scattered_rx && + frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) + return -EINVAL; + + rctl = E1000_READ_REG(hw, E1000_RCTL); + + /* switch to jumbo mode if needed */ + if (frame_size > ETHER_MAX_LEN) { + dev->data->dev_conf.rxmode.offloads |= + DEV_RX_OFFLOAD_JUMBO_FRAME; + rctl |= E1000_RCTL_LPE; + } else { + dev->data->dev_conf.rxmode.offloads &= + ~DEV_RX_OFFLOAD_JUMBO_FRAME; + rctl &= ~E1000_RCTL_LPE; + } + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + + /* update max frame size */ + dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size; + + E1000_WRITE_REG(hw, E1000_RLPML, + dev->data->dev_conf.rxmode.max_rx_pkt_len); + + return 0; +} + +/* + * igb_add_del_ntuple_filter - add or delete a ntuple filter + * + * @param + * dev: Pointer to struct rte_eth_dev. + * ntuple_filter: Pointer to struct rte_eth_ntuple_filter + * add: if true, add filter, if false, remove filter + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +int +igb_add_del_ntuple_filter(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *ntuple_filter, + bool add) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + int ret; + + switch (ntuple_filter->flags) { + case RTE_5TUPLE_FLAGS: + case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG): + if (hw->mac.type != e1000_82576) + return -ENOTSUP; + if (add) + ret = igb_add_5tuple_filter_82576(dev, + ntuple_filter); + else + ret = igb_remove_5tuple_filter_82576(dev, + ntuple_filter); + break; + case RTE_2TUPLE_FLAGS: + case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG): + if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 && + hw->mac.type != e1000_i210 && + hw->mac.type != e1000_i211) + return -ENOTSUP; + if (add) + ret = igb_add_2tuple_filter(dev, ntuple_filter); + else + ret = igb_remove_2tuple_filter(dev, ntuple_filter); + break; + default: + ret = -EINVAL; + break; + } + + return ret; +} + +/* + * igb_get_ntuple_filter - get a ntuple filter + * + * @param + * dev: Pointer to struct rte_eth_dev. + * ntuple_filter: Pointer to struct rte_eth_ntuple_filter + * + * @return + * - On success, zero. + * - On failure, a negative value. + */ +static int +igb_get_ntuple_filter(struct rte_eth_dev *dev, + struct rte_eth_ntuple_filter *ntuple_filter) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_5tuple_filter_info filter_5tuple; + struct e1000_2tuple_filter_info filter_2tuple; + struct e1000_5tuple_filter *p_5tuple_filter; + struct e1000_2tuple_filter *p_2tuple_filter; + int ret; + + switch (ntuple_filter->flags) { + case RTE_5TUPLE_FLAGS: + case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG): + if (hw->mac.type != e1000_82576) + return -ENOTSUP; + memset(&filter_5tuple, + 0, + sizeof(struct e1000_5tuple_filter_info)); + ret = ntuple_filter_to_5tuple_82576(ntuple_filter, + &filter_5tuple); + if (ret < 0) + return ret; + p_5tuple_filter = igb_5tuple_filter_lookup_82576( + &filter_info->fivetuple_list, + &filter_5tuple); + if (p_5tuple_filter == NULL) { + PMD_DRV_LOG(ERR, "filter doesn't exist."); + return -ENOENT; + } + ntuple_filter->queue = p_5tuple_filter->queue; + break; + case RTE_2TUPLE_FLAGS: + case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG): + if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350) + return -ENOTSUP; + memset(&filter_2tuple, + 0, + sizeof(struct e1000_2tuple_filter_info)); + ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple); + if (ret < 0) + return ret; + p_2tuple_filter = igb_2tuple_filter_lookup( + &filter_info->twotuple_list, + &filter_2tuple); + if (p_2tuple_filter == NULL) { + PMD_DRV_LOG(ERR, "filter doesn't exist."); + return -ENOENT; + } + ntuple_filter->queue = p_2tuple_filter->queue; + break; + default: + ret = -EINVAL; + break; + } + + return 0; +} + +/* + * igb_ntuple_filter_handle - Handle operations for ntuple filter. + * @dev: pointer to rte_eth_dev structure + * @filter_op:operation will be taken. + * @arg: a pointer to specific structure corresponding to the filter_op + */ +static int +igb_ntuple_filter_handle(struct rte_eth_dev *dev, + enum rte_filter_op filter_op, + void *arg) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + int ret; + + MAC_TYPE_FILTER_SUP(hw->mac.type); + + if (filter_op == RTE_ETH_FILTER_NOP) + return 0; + + if (arg == NULL) { + PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.", + filter_op); + return -EINVAL; + } + + switch (filter_op) { + case RTE_ETH_FILTER_ADD: + ret = igb_add_del_ntuple_filter(dev, + (struct rte_eth_ntuple_filter *)arg, + TRUE); + break; + case RTE_ETH_FILTER_DELETE: + ret = igb_add_del_ntuple_filter(dev, + (struct rte_eth_ntuple_filter *)arg, + FALSE); + break; + case RTE_ETH_FILTER_GET: + ret = igb_get_ntuple_filter(dev, + (struct rte_eth_ntuple_filter *)arg); + break; + default: + PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op); + ret = -EINVAL; + break; + } + return ret; +} + +static inline int +igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info, + uint16_t ethertype) +{ + int i; + + for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) { + if (filter_info->ethertype_filters[i].ethertype == ethertype && + (filter_info->ethertype_mask & (1 << i))) + return i; + } + return -1; +} + +static inline int +igb_ethertype_filter_insert(struct e1000_filter_info *filter_info, + uint16_t ethertype, uint32_t etqf) +{ + int i; + + for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) { + if (!(filter_info->ethertype_mask & (1 << i))) { + filter_info->ethertype_mask |= 1 << i; + filter_info->ethertype_filters[i].ethertype = ethertype; + filter_info->ethertype_filters[i].etqf = etqf; + return i; + } + } + return -1; +} + +int +igb_ethertype_filter_remove(struct e1000_filter_info *filter_info, + uint8_t idx) +{ + if (idx >= E1000_MAX_ETQF_FILTERS) + return -1; + filter_info->ethertype_mask &= ~(1 << idx); + filter_info->ethertype_filters[idx].ethertype = 0; + filter_info->ethertype_filters[idx].etqf = 0; + return idx; +} + + +int +igb_add_del_ethertype_filter(struct rte_eth_dev *dev, + struct rte_eth_ethertype_filter *filter, + bool add) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + uint32_t etqf = 0; + int ret; + + if (filter->ether_type == ETHER_TYPE_IPv4 || + filter->ether_type == ETHER_TYPE_IPv6) { + PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in" + " ethertype filter.", filter->ether_type); + return -EINVAL; + } + + if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) { + PMD_DRV_LOG(ERR, "mac compare is unsupported."); + return -EINVAL; + } + if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) { + PMD_DRV_LOG(ERR, "drop option is unsupported."); + return -EINVAL; + } + + ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type); + if (ret >= 0 && add) { + PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.", + filter->ether_type); + return -EEXIST; + } + if (ret < 0 && !add) { + PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.", + filter->ether_type); + return -ENOENT; + } + + if (add) { + etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE; + etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE); + etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT; + ret = igb_ethertype_filter_insert(filter_info, + filter->ether_type, etqf); + if (ret < 0) { + PMD_DRV_LOG(ERR, "ethertype filters are full."); + return -ENOSYS; + } + } else { + ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret); + if (ret < 0) + return -ENOSYS; + } + E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf); + E1000_WRITE_FLUSH(hw); + + return 0; +} + +static int +igb_get_ethertype_filter(struct rte_eth_dev *dev, + struct rte_eth_ethertype_filter *filter) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + uint32_t etqf; + int ret; + + ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type); + if (ret < 0) { + PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.", + filter->ether_type); + return -ENOENT; + } + + etqf = E1000_READ_REG(hw, E1000_ETQF(ret)); + if (etqf & E1000_ETQF_FILTER_ENABLE) { + filter->ether_type = etqf & E1000_ETQF_ETHERTYPE; + filter->flags = 0; + filter->queue = (etqf & E1000_ETQF_QUEUE) >> + E1000_ETQF_QUEUE_SHIFT; + return 0; + } + + return -ENOENT; +} + +/* + * igb_ethertype_filter_handle - Handle operations for ethertype filter. + * @dev: pointer to rte_eth_dev structure + * @filter_op:operation will be taken. + * @arg: a pointer to specific structure corresponding to the filter_op + */ +static int +igb_ethertype_filter_handle(struct rte_eth_dev *dev, + enum rte_filter_op filter_op, + void *arg) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + int ret; + + MAC_TYPE_FILTER_SUP(hw->mac.type); + + if (filter_op == RTE_ETH_FILTER_NOP) + return 0; + + if (arg == NULL) { + PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.", + filter_op); + return -EINVAL; + } + + switch (filter_op) { + case RTE_ETH_FILTER_ADD: + ret = igb_add_del_ethertype_filter(dev, + (struct rte_eth_ethertype_filter *)arg, + TRUE); + break; + case RTE_ETH_FILTER_DELETE: + ret = igb_add_del_ethertype_filter(dev, + (struct rte_eth_ethertype_filter *)arg, + FALSE); + break; + case RTE_ETH_FILTER_GET: + ret = igb_get_ethertype_filter(dev, + (struct rte_eth_ethertype_filter *)arg); + break; + default: + PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op); + ret = -EINVAL; + break; + } + return ret; +} + +static int +eth_igb_filter_ctrl(struct rte_eth_dev *dev, + enum rte_filter_type filter_type, + enum rte_filter_op filter_op, + void *arg) +{ + int ret = 0; + + switch (filter_type) { + case RTE_ETH_FILTER_NTUPLE: + ret = igb_ntuple_filter_handle(dev, filter_op, arg); + break; + case RTE_ETH_FILTER_ETHERTYPE: + ret = igb_ethertype_filter_handle(dev, filter_op, arg); + break; + case RTE_ETH_FILTER_SYN: + ret = eth_igb_syn_filter_handle(dev, filter_op, arg); + break; + case RTE_ETH_FILTER_FLEXIBLE: + ret = eth_igb_flex_filter_handle(dev, filter_op, arg); + break; + case RTE_ETH_FILTER_GENERIC: + if (filter_op != RTE_ETH_FILTER_GET) + return -EINVAL; + *(const void **)arg = &igb_flow_ops; + break; + default: + PMD_DRV_LOG(WARNING, "Filter type (%d) not supported", + filter_type); + break; + } + + return ret; +} + +static int +eth_igb_set_mc_addr_list(struct rte_eth_dev *dev, + struct ether_addr *mc_addr_set, + uint32_t nb_mc_addr) +{ + struct e1000_hw *hw; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr); + return 0; +} + +static uint64_t +igb_read_systime_cyclecounter(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint64_t systime_cycles; + + switch (hw->mac.type) { + case e1000_i210: + case e1000_i211: + /* + * Need to read System Time Residue Register to be able + * to read the other two registers. + */ + E1000_READ_REG(hw, E1000_SYSTIMR); + /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */ + systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML); + systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH) + * NSEC_PER_SEC; + break; + case e1000_82580: + case e1000_i350: + case e1000_i354: + /* + * Need to read System Time Residue Register to be able + * to read the other two registers. + */ + E1000_READ_REG(hw, E1000_SYSTIMR); + systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML); + /* Only the 8 LSB are valid. */ + systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH) + & 0xff) << 32; + break; + default: + systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML); + systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH) + << 32; + break; + } + + return systime_cycles; +} + +static uint64_t +igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint64_t rx_tstamp_cycles; + + switch (hw->mac.type) { + case e1000_i210: + case e1000_i211: + /* RXSTMPL stores ns and RXSTMPH stores seconds. */ + rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL); + rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH) + * NSEC_PER_SEC; + break; + case e1000_82580: + case e1000_i350: + case e1000_i354: + rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL); + /* Only the 8 LSB are valid. */ + rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH) + & 0xff) << 32; + break; + default: + rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL); + rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH) + << 32; + break; + } + + return rx_tstamp_cycles; +} + +static uint64_t +igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint64_t tx_tstamp_cycles; + + switch (hw->mac.type) { + case e1000_i210: + case e1000_i211: + /* RXSTMPL stores ns and RXSTMPH stores seconds. */ + tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL); + tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH) + * NSEC_PER_SEC; + break; + case e1000_82580: + case e1000_i350: + case e1000_i354: + tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL); + /* Only the 8 LSB are valid. */ + tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH) + & 0xff) << 32; + break; + default: + tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL); + tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH) + << 32; + break; + } + + return tx_tstamp_cycles; +} + +static void +igb_start_timecounters(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_adapter *adapter = + (struct e1000_adapter *)dev->data->dev_private; + uint32_t incval = 1; + uint32_t shift = 0; + uint64_t mask = E1000_CYCLECOUNTER_MASK; + + switch (hw->mac.type) { + case e1000_82580: + case e1000_i350: + case e1000_i354: + /* 32 LSB bits + 8 MSB bits = 40 bits */ + mask = (1ULL << 40) - 1; + /* fall-through */ + case e1000_i210: + case e1000_i211: + /* + * Start incrementing the register + * used to timestamp PTP packets. + */ + E1000_WRITE_REG(hw, E1000_TIMINCA, incval); + break; + case e1000_82576: + incval = E1000_INCVALUE_82576; + shift = IGB_82576_TSYNC_SHIFT; + E1000_WRITE_REG(hw, E1000_TIMINCA, + E1000_INCPERIOD_82576 | incval); + break; + default: + /* Not supported */ + return; + } + + memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter)); + memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter)); + memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter)); + + adapter->systime_tc.cc_mask = mask; + adapter->systime_tc.cc_shift = shift; + adapter->systime_tc.nsec_mask = (1ULL << shift) - 1; + + adapter->rx_tstamp_tc.cc_mask = mask; + adapter->rx_tstamp_tc.cc_shift = shift; + adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1; + + adapter->tx_tstamp_tc.cc_mask = mask; + adapter->tx_tstamp_tc.cc_shift = shift; + adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1; +} + +static int +igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta) +{ + struct e1000_adapter *adapter = + (struct e1000_adapter *)dev->data->dev_private; + + adapter->systime_tc.nsec += delta; + adapter->rx_tstamp_tc.nsec += delta; + adapter->tx_tstamp_tc.nsec += delta; + + return 0; +} + +static int +igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts) +{ + uint64_t ns; + struct e1000_adapter *adapter = + (struct e1000_adapter *)dev->data->dev_private; + + ns = rte_timespec_to_ns(ts); + + /* Set the timecounters to a new value. */ + adapter->systime_tc.nsec = ns; + adapter->rx_tstamp_tc.nsec = ns; + adapter->tx_tstamp_tc.nsec = ns; + + return 0; +} + +static int +igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts) +{ + uint64_t ns, systime_cycles; + struct e1000_adapter *adapter = + (struct e1000_adapter *)dev->data->dev_private; + + systime_cycles = igb_read_systime_cyclecounter(dev); + ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles); + *ts = rte_ns_to_timespec(ns); + + return 0; +} + +static int +igb_timesync_enable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t tsync_ctl; + uint32_t tsauxc; + + /* Stop the timesync system time. */ + E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0); + /* Reset the timesync system time value. */ + switch (hw->mac.type) { + case e1000_82580: + case e1000_i350: + case e1000_i354: + case e1000_i210: + case e1000_i211: + E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0); + /* fall-through */ + case e1000_82576: + E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0); + E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0); + break; + default: + /* Not supported. */ + return -ENOTSUP; + } + + /* Enable system time for it isn't on by default. */ + tsauxc = E1000_READ_REG(hw, E1000_TSAUXC); + tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME; + E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc); + + igb_start_timecounters(dev); + + /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */ + E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), + (ETHER_TYPE_1588 | + E1000_ETQF_FILTER_ENABLE | + E1000_ETQF_1588)); + + /* Enable timestamping of received PTP packets. */ + tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL); + tsync_ctl |= E1000_TSYNCRXCTL_ENABLED; + E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl); + + /* Enable Timestamping of transmitted PTP packets. */ + tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL); + tsync_ctl |= E1000_TSYNCTXCTL_ENABLED; + E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl); + + return 0; +} + +static int +igb_timesync_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t tsync_ctl; + + /* Disable timestamping of transmitted PTP packets. */ + tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL); + tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED; + E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl); + + /* Disable timestamping of received PTP packets. */ + tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL); + tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED; + E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl); + + /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */ + E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0); + + /* Stop incrementating the System Time registers. */ + E1000_WRITE_REG(hw, E1000_TIMINCA, 0); + + return 0; +} + +static int +igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev, + struct timespec *timestamp, + uint32_t flags __rte_unused) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_adapter *adapter = + (struct e1000_adapter *)dev->data->dev_private; + uint32_t tsync_rxctl; + uint64_t rx_tstamp_cycles; + uint64_t ns; + + tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL); + if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0) + return -EINVAL; + + rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev); + ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles); + *timestamp = rte_ns_to_timespec(ns); + + return 0; +} + +static int +igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev, + struct timespec *timestamp) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_adapter *adapter = + (struct e1000_adapter *)dev->data->dev_private; + uint32_t tsync_txctl; + uint64_t tx_tstamp_cycles; + uint64_t ns; + + tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL); + if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0) + return -EINVAL; + + tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev); + ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles); + *timestamp = rte_ns_to_timespec(ns); + + return 0; +} + +static int +eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused) +{ + int count = 0; + int g_ind = 0; + const struct reg_info *reg_group; + + while ((reg_group = igb_regs[g_ind++])) + count += igb_reg_group_count(reg_group); + + return count; +} + +static int +igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused) +{ + int count = 0; + int g_ind = 0; + const struct reg_info *reg_group; + + while ((reg_group = igbvf_regs[g_ind++])) + count += igb_reg_group_count(reg_group); + + return count; +} + +static int +eth_igb_get_regs(struct rte_eth_dev *dev, + struct rte_dev_reg_info *regs) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t *data = regs->data; + int g_ind = 0; + int count = 0; + const struct reg_info *reg_group; + + if (data == NULL) { + regs->length = eth_igb_get_reg_length(dev); + regs->width = sizeof(uint32_t); + return 0; + } + + /* Support only full register dump */ + if ((regs->length == 0) || + (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) { + regs->version = hw->mac.type << 24 | hw->revision_id << 16 | + hw->device_id; + while ((reg_group = igb_regs[g_ind++])) + count += igb_read_regs_group(dev, &data[count], + reg_group); + return 0; + } + + return -ENOTSUP; +} + +static int +igbvf_get_regs(struct rte_eth_dev *dev, + struct rte_dev_reg_info *regs) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t *data = regs->data; + int g_ind = 0; + int count = 0; + const struct reg_info *reg_group; + + if (data == NULL) { + regs->length = igbvf_get_reg_length(dev); + regs->width = sizeof(uint32_t); + return 0; + } + + /* Support only full register dump */ + if ((regs->length == 0) || + (regs->length == (uint32_t)igbvf_get_reg_length(dev))) { + regs->version = hw->mac.type << 24 | hw->revision_id << 16 | + hw->device_id; + while ((reg_group = igbvf_regs[g_ind++])) + count += igb_read_regs_group(dev, &data[count], + reg_group); + return 0; + } + + return -ENOTSUP; +} + +static int +eth_igb_get_eeprom_length(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* Return unit is byte count */ + return hw->nvm.word_size * 2; +} + +static int +eth_igb_get_eeprom(struct rte_eth_dev *dev, + struct rte_dev_eeprom_info *in_eeprom) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_nvm_info *nvm = &hw->nvm; + uint16_t *data = in_eeprom->data; + int first, length; + + first = in_eeprom->offset >> 1; + length = in_eeprom->length >> 1; + if ((first >= hw->nvm.word_size) || + ((first + length) >= hw->nvm.word_size)) + return -EINVAL; + + in_eeprom->magic = hw->vendor_id | + ((uint32_t)hw->device_id << 16); + + if ((nvm->ops.read) == NULL) + return -ENOTSUP; + + return nvm->ops.read(hw, first, length, data); +} + +static int +eth_igb_set_eeprom(struct rte_eth_dev *dev, + struct rte_dev_eeprom_info *in_eeprom) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_nvm_info *nvm = &hw->nvm; + uint16_t *data = in_eeprom->data; + int first, length; + + first = in_eeprom->offset >> 1; + length = in_eeprom->length >> 1; + if ((first >= hw->nvm.word_size) || + ((first + length) >= hw->nvm.word_size)) + return -EINVAL; + + in_eeprom->magic = (uint32_t)hw->vendor_id | + ((uint32_t)hw->device_id << 16); + + if ((nvm->ops.write) == NULL) + return -ENOTSUP; + return nvm->ops.write(hw, first, length, data); +} + +static int +eth_igb_get_module_info(struct rte_eth_dev *dev, + struct rte_eth_dev_module_info *modinfo) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + uint32_t status = 0; + uint16_t sff8472_rev, addr_mode; + bool page_swap = false; + + if (hw->phy.media_type == e1000_media_type_copper || + hw->phy.media_type == e1000_media_type_unknown) + return -EOPNOTSUPP; + + /* Check whether we support SFF-8472 or not */ + status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); + if (status) + return -EIO; + + /* addressing mode is not supported */ + status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); + if (status) + return -EIO; + + /* addressing mode is not supported */ + if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { + PMD_DRV_LOG(ERR, + "Address change required to access page 0xA2, " + "but not supported. Please report the module " + "type to the driver maintainers.\n"); + page_swap = true; + } + + if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { + /* We have an SFP, but it does not support SFF-8472 */ + modinfo->type = RTE_ETH_MODULE_SFF_8079; + modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN; + } else { + /* We have an SFP which supports a revision of SFF-8472 */ + modinfo->type = RTE_ETH_MODULE_SFF_8472; + modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN; + } + + return 0; +} + +static int +eth_igb_get_module_eeprom(struct rte_eth_dev *dev, + struct rte_dev_eeprom_info *info) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + uint32_t status = 0; + uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1]; + u16 first_word, last_word; + int i = 0; + + if (info->length == 0) + return -EINVAL; + + first_word = info->offset >> 1; + last_word = (info->offset + info->length - 1) >> 1; + + /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ + for (i = 0; i < last_word - first_word + 1; i++) { + status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2, + &dataword[i]); + if (status) { + /* Error occurred while reading module */ + return -EIO; + } + + dataword[i] = rte_be_to_cpu_16(dataword[i]); + } + + memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length); + + return 0; +} + +static int +eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + uint32_t vec = E1000_MISC_VEC_ID; + + if (rte_intr_allow_others(intr_handle)) + vec = E1000_RX_VEC_START; + + uint32_t mask = 1 << (queue_id + vec); + + E1000_WRITE_REG(hw, E1000_EIMC, mask); + E1000_WRITE_FLUSH(hw); + + return 0; +} + +static int +eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + uint32_t vec = E1000_MISC_VEC_ID; + + if (rte_intr_allow_others(intr_handle)) + vec = E1000_RX_VEC_START; + + uint32_t mask = 1 << (queue_id + vec); + uint32_t regval; + + regval = E1000_READ_REG(hw, E1000_EIMS); + E1000_WRITE_REG(hw, E1000_EIMS, regval | mask); + E1000_WRITE_FLUSH(hw); + + rte_intr_enable(intr_handle); + + return 0; +} + +static void +eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector, + uint8_t index, uint8_t offset) +{ + uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); + + /* clear bits */ + val &= ~((uint32_t)0xFF << offset); + + /* write vector and valid bit */ + val |= (msix_vector | E1000_IVAR_VALID) << offset; + + E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val); +} + +static void +eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction, + uint8_t queue, uint8_t msix_vector) +{ + uint32_t tmp = 0; + + if (hw->mac.type == e1000_82575) { + if (direction == 0) + tmp = E1000_EICR_RX_QUEUE0 << queue; + else if (direction == 1) + tmp = E1000_EICR_TX_QUEUE0 << queue; + E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp); + } else if (hw->mac.type == e1000_82576) { + if ((direction == 0) || (direction == 1)) + eth_igb_write_ivar(hw, msix_vector, queue & 0x7, + ((queue & 0x8) << 1) + + 8 * direction); + } else if ((hw->mac.type == e1000_82580) || + (hw->mac.type == e1000_i350) || + (hw->mac.type == e1000_i354) || + (hw->mac.type == e1000_i210) || + (hw->mac.type == e1000_i211)) { + if ((direction == 0) || (direction == 1)) + eth_igb_write_ivar(hw, msix_vector, + queue >> 1, + ((queue & 0x1) << 4) + + 8 * direction); + } +} + +/* Sets up the hardware to generate MSI-X interrupts properly + * @hw + * board private structure + */ +static void +eth_igb_configure_msix_intr(struct rte_eth_dev *dev) +{ + int queue_id; + uint32_t tmpval, regval, intr_mask; + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t vec = E1000_MISC_VEC_ID; + uint32_t base = E1000_MISC_VEC_ID; + uint32_t misc_shift = 0; + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); + struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; + + /* won't configure msix register if no mapping is done + * between intr vector and event fd + */ + if (!rte_intr_dp_is_en(intr_handle)) + return; + + if (rte_intr_allow_others(intr_handle)) { + vec = base = E1000_RX_VEC_START; + misc_shift = 1; + } + + /* set interrupt vector for other causes */ + if (hw->mac.type == e1000_82575) { + tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT); + /* enable MSI-X PBA support */ + tmpval |= E1000_CTRL_EXT_PBA_CLR; + + /* Auto-Mask interrupts upon ICR read */ + tmpval |= E1000_CTRL_EXT_EIAME; + tmpval |= E1000_CTRL_EXT_IRCA; + + E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval); + + /* enable msix_other interrupt */ + E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER); + regval = E1000_READ_REG(hw, E1000_EIAC); + E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER); + regval = E1000_READ_REG(hw, E1000_EIAM); + E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER); + } else if ((hw->mac.type == e1000_82576) || + (hw->mac.type == e1000_82580) || + (hw->mac.type == e1000_i350) || + (hw->mac.type == e1000_i354) || + (hw->mac.type == e1000_i210) || + (hw->mac.type == e1000_i211)) { + /* turn on MSI-X capability first */ + E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE | + E1000_GPIE_PBA | E1000_GPIE_EIAME | + E1000_GPIE_NSICR); + intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) << + misc_shift; + regval = E1000_READ_REG(hw, E1000_EIAC); + E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask); + + /* enable msix_other interrupt */ + regval = E1000_READ_REG(hw, E1000_EIMS); + E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask); + tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8; + E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval); + } + + /* use EIAM to auto-mask when MSI-X interrupt + * is asserted, this saves a register write for every interrupt + */ + intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) << + misc_shift; + regval = E1000_READ_REG(hw, E1000_EIAM); + E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask); + + for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) { + eth_igb_assign_msix_vector(hw, 0, queue_id, vec); + intr_handle->intr_vec[queue_id] = vec; + if (vec < base + intr_handle->nb_efd - 1) + vec++; + } + + E1000_WRITE_FLUSH(hw); +} + +/* restore n-tuple filter */ +static inline void +igb_ntuple_filter_restore(struct rte_eth_dev *dev) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_5tuple_filter *p_5tuple; + struct e1000_2tuple_filter *p_2tuple; + + TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) { + igb_inject_5tuple_filter_82576(dev, p_5tuple); + } + + TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) { + igb_inject_2uple_filter(dev, p_2tuple); + } +} + +/* restore SYN filter */ +static inline void +igb_syn_filter_restore(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + uint32_t synqf; + + synqf = filter_info->syn_info; + + if (synqf & E1000_SYN_FILTER_ENABLE) { + E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf); + E1000_WRITE_FLUSH(hw); + } +} + +/* restore ethernet type filter */ +static inline void +igb_ethertype_filter_restore(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + int i; + + for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) { + if (filter_info->ethertype_mask & (1 << i)) { + E1000_WRITE_REG(hw, E1000_ETQF(i), + filter_info->ethertype_filters[i].etqf); + E1000_WRITE_FLUSH(hw); + } + } +} + +/* restore flex byte filter */ +static inline void +igb_flex_filter_restore(struct rte_eth_dev *dev) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_flex_filter *flex_filter; + + TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) { + igb_inject_flex_filter(dev, flex_filter); + } +} + +/* restore rss filter */ +static inline void +igb_rss_filter_restore(struct rte_eth_dev *dev) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + + if (filter_info->rss_info.conf.queue_num) + igb_config_rss_filter(dev, &filter_info->rss_info, TRUE); +} + +/* restore all types filter */ +static int +igb_filter_restore(struct rte_eth_dev *dev) +{ + igb_ntuple_filter_restore(dev); + igb_ethertype_filter_restore(dev); + igb_syn_filter_restore(dev); + igb_flex_filter_restore(dev); + igb_rss_filter_restore(dev); + + return 0; +} + +RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd); +RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map); +RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci"); +RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd); +RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map); +RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci"); + +/* see e1000_logs.c */ +RTE_INIT(e1000_init_log) +{ + e1000_igb_init_log(); +} diff --git a/src/spdk/dpdk/drivers/net/e1000/igb_flow.c b/src/spdk/dpdk/drivers/net/e1000/igb_flow.c new file mode 100644 index 00000000..07385291 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/igb_flow.c @@ -0,0 +1,1911 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2010-2016 Intel Corporation + */ + +#include <sys/queue.h> +#include <stdio.h> +#include <errno.h> +#include <stdint.h> +#include <stdarg.h> + +#include <rte_common.h> +#include <rte_interrupts.h> +#include <rte_byteorder.h> +#include <rte_log.h> +#include <rte_debug.h> +#include <rte_pci.h> +#include <rte_ether.h> +#include <rte_ethdev_driver.h> +#include <rte_ethdev_pci.h> +#include <rte_memory.h> +#include <rte_eal.h> +#include <rte_atomic.h> +#include <rte_malloc.h> +#include <rte_dev.h> +#include <rte_flow.h> +#include <rte_flow_driver.h> + +#include "e1000_logs.h" +#include "base/e1000_api.h" +#include "e1000_ethdev.h" + +#define NEXT_ITEM_OF_PATTERN(item, pattern, index) \ + do { \ + item = (pattern) + (index); \ + while (item->type == RTE_FLOW_ITEM_TYPE_VOID) { \ + (index)++; \ + item = (pattern) + (index); \ + } \ + } while (0) + +#define NEXT_ITEM_OF_ACTION(act, actions, index) \ + do { \ + act = (actions) + (index); \ + while (act->type == RTE_FLOW_ACTION_TYPE_VOID) {\ + (index)++; \ + act = (actions) + (index); \ + } \ + } while (0) + +#define IGB_FLEX_RAW_NUM 12 + +/** + * Please aware there's an asumption for all the parsers. + * rte_flow_item is using big endian, rte_flow_attr and + * rte_flow_action are using CPU order. + * Because the pattern is used to describe the packets, + * normally the packets should use network order. + */ + +/** + * Parse the rule to see if it is a n-tuple rule. + * And get the n-tuple filter info BTW. + * pattern: + * The first not void item can be ETH or IPV4. + * The second not void item must be IPV4 if the first one is ETH. + * The third not void item must be UDP or TCP or SCTP + * The next not void item must be END. + * action: + * The first not void action should be QUEUE. + * The next not void action should be END. + * pattern example: + * ITEM Spec Mask + * ETH NULL NULL + * IPV4 src_addr 192.168.1.20 0xFFFFFFFF + * dst_addr 192.167.3.50 0xFFFFFFFF + * next_proto_id 17 0xFF + * UDP/TCP/ src_port 80 0xFFFF + * SCTP dst_port 80 0xFFFF + * END + * other members in mask and spec should set to 0x00. + * item->last should be NULL. + */ +static int +cons_parse_ntuple_filter(const struct rte_flow_attr *attr, + const struct rte_flow_item pattern[], + const struct rte_flow_action actions[], + struct rte_eth_ntuple_filter *filter, + struct rte_flow_error *error) +{ + const struct rte_flow_item *item; + const struct rte_flow_action *act; + const struct rte_flow_item_ipv4 *ipv4_spec; + const struct rte_flow_item_ipv4 *ipv4_mask; + const struct rte_flow_item_tcp *tcp_spec; + const struct rte_flow_item_tcp *tcp_mask; + const struct rte_flow_item_udp *udp_spec; + const struct rte_flow_item_udp *udp_mask; + const struct rte_flow_item_sctp *sctp_spec; + const struct rte_flow_item_sctp *sctp_mask; + uint32_t index; + + if (!pattern) { + rte_flow_error_set(error, + EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, + NULL, "NULL pattern."); + return -rte_errno; + } + + if (!actions) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION_NUM, + NULL, "NULL action."); + return -rte_errno; + } + if (!attr) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR, + NULL, "NULL attribute."); + return -rte_errno; + } + + /* parse pattern */ + index = 0; + + /* the first not void item can be MAC or IPv4 */ + NEXT_ITEM_OF_PATTERN(item, pattern, index); + + if (item->type != RTE_FLOW_ITEM_TYPE_ETH && + item->type != RTE_FLOW_ITEM_TYPE_IPV4) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ntuple filter"); + return -rte_errno; + } + /* Skip Ethernet */ + if (item->type == RTE_FLOW_ITEM_TYPE_ETH) { + /*Not supported last point for range*/ + if (item->last) { + rte_flow_error_set(error, + EINVAL, + RTE_FLOW_ERROR_TYPE_UNSPECIFIED, + item, "Not supported last point for range"); + return -rte_errno; + } + /* if the first item is MAC, the content should be NULL */ + if (item->spec || item->mask) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ntuple filter"); + return -rte_errno; + } + /* check if the next not void item is IPv4 */ + index++; + NEXT_ITEM_OF_PATTERN(item, pattern, index); + if (item->type != RTE_FLOW_ITEM_TYPE_IPV4) { + rte_flow_error_set(error, + EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ntuple filter"); + return -rte_errno; + } + } + + /* get the IPv4 info */ + if (!item->spec || !item->mask) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Invalid ntuple mask"); + return -rte_errno; + } + /* Not supported last point for range */ + if (item->last) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_UNSPECIFIED, + item, "Not supported last point for range"); + return -rte_errno; + } + + ipv4_mask = item->mask; + /** + * Only support src & dst addresses, protocol, + * others should be masked. + */ + + if (ipv4_mask->hdr.version_ihl || + ipv4_mask->hdr.type_of_service || + ipv4_mask->hdr.total_length || + ipv4_mask->hdr.packet_id || + ipv4_mask->hdr.fragment_offset || + ipv4_mask->hdr.time_to_live || + ipv4_mask->hdr.hdr_checksum) { + rte_flow_error_set(error, + EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ntuple filter"); + return -rte_errno; + } + + filter->dst_ip_mask = ipv4_mask->hdr.dst_addr; + filter->src_ip_mask = ipv4_mask->hdr.src_addr; + filter->proto_mask = ipv4_mask->hdr.next_proto_id; + + ipv4_spec = item->spec; + filter->dst_ip = ipv4_spec->hdr.dst_addr; + filter->src_ip = ipv4_spec->hdr.src_addr; + filter->proto = ipv4_spec->hdr.next_proto_id; + + /* check if the next not void item is TCP or UDP or SCTP */ + index++; + NEXT_ITEM_OF_PATTERN(item, pattern, index); + if (item->type != RTE_FLOW_ITEM_TYPE_TCP && + item->type != RTE_FLOW_ITEM_TYPE_UDP && + item->type != RTE_FLOW_ITEM_TYPE_SCTP) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ntuple filter"); + return -rte_errno; + } + + /* Not supported last point for range */ + if (item->last) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_UNSPECIFIED, + item, "Not supported last point for range"); + return -rte_errno; + } + + /* get the TCP/UDP/SCTP info */ + if (item->type == RTE_FLOW_ITEM_TYPE_TCP) { + if (item->spec && item->mask) { + tcp_mask = item->mask; + + /** + * Only support src & dst ports, tcp flags, + * others should be masked. + */ + if (tcp_mask->hdr.sent_seq || + tcp_mask->hdr.recv_ack || + tcp_mask->hdr.data_off || + tcp_mask->hdr.rx_win || + tcp_mask->hdr.cksum || + tcp_mask->hdr.tcp_urp) { + memset(filter, 0, + sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ntuple filter"); + return -rte_errno; + } + + filter->dst_port_mask = tcp_mask->hdr.dst_port; + filter->src_port_mask = tcp_mask->hdr.src_port; + if (tcp_mask->hdr.tcp_flags == 0xFF) { + filter->flags |= RTE_NTUPLE_FLAGS_TCP_FLAG; + } else if (!tcp_mask->hdr.tcp_flags) { + filter->flags &= ~RTE_NTUPLE_FLAGS_TCP_FLAG; + } else { + memset(filter, 0, + sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ntuple filter"); + return -rte_errno; + } + + tcp_spec = item->spec; + filter->dst_port = tcp_spec->hdr.dst_port; + filter->src_port = tcp_spec->hdr.src_port; + filter->tcp_flags = tcp_spec->hdr.tcp_flags; + } + } else if (item->type == RTE_FLOW_ITEM_TYPE_UDP) { + if (item->spec && item->mask) { + udp_mask = item->mask; + + /** + * Only support src & dst ports, + * others should be masked. + */ + if (udp_mask->hdr.dgram_len || + udp_mask->hdr.dgram_cksum) { + memset(filter, 0, + sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ntuple filter"); + return -rte_errno; + } + + filter->dst_port_mask = udp_mask->hdr.dst_port; + filter->src_port_mask = udp_mask->hdr.src_port; + + udp_spec = item->spec; + filter->dst_port = udp_spec->hdr.dst_port; + filter->src_port = udp_spec->hdr.src_port; + } + } else { + if (item->spec && item->mask) { + sctp_mask = item->mask; + + /** + * Only support src & dst ports, + * others should be masked. + */ + if (sctp_mask->hdr.tag || + sctp_mask->hdr.cksum) { + memset(filter, 0, + sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ntuple filter"); + return -rte_errno; + } + + filter->dst_port_mask = sctp_mask->hdr.dst_port; + filter->src_port_mask = sctp_mask->hdr.src_port; + + sctp_spec = (const struct rte_flow_item_sctp *) + item->spec; + filter->dst_port = sctp_spec->hdr.dst_port; + filter->src_port = sctp_spec->hdr.src_port; + } + } + /* check if the next not void item is END */ + index++; + NEXT_ITEM_OF_PATTERN(item, pattern, index); + if (item->type != RTE_FLOW_ITEM_TYPE_END) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ntuple filter"); + return -rte_errno; + } + + /* parse action */ + index = 0; + + /** + * n-tuple only supports forwarding, + * check if the first not void action is QUEUE. + */ + NEXT_ITEM_OF_ACTION(act, actions, index); + if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + item, "Not supported action."); + return -rte_errno; + } + filter->queue = + ((const struct rte_flow_action_queue *)act->conf)->index; + + /* check if the next not void item is END */ + index++; + NEXT_ITEM_OF_ACTION(act, actions, index); + if (act->type != RTE_FLOW_ACTION_TYPE_END) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + act, "Not supported action."); + return -rte_errno; + } + + /* parse attr */ + /* must be input direction */ + if (!attr->ingress) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, + attr, "Only support ingress."); + return -rte_errno; + } + + /* not supported */ + if (attr->egress) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, + attr, "Not support egress."); + return -rte_errno; + } + + /* not supported */ + if (attr->transfer) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, + attr, "No support for transfer."); + return -rte_errno; + } + + if (attr->priority > 0xFFFF) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, + attr, "Error priority."); + return -rte_errno; + } + filter->priority = (uint16_t)attr->priority; + + return 0; +} + +/* a specific function for igb because the flags is specific */ +static int +igb_parse_ntuple_filter(struct rte_eth_dev *dev, + const struct rte_flow_attr *attr, + const struct rte_flow_item pattern[], + const struct rte_flow_action actions[], + struct rte_eth_ntuple_filter *filter, + struct rte_flow_error *error) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + int ret; + + MAC_TYPE_FILTER_SUP(hw->mac.type); + + ret = cons_parse_ntuple_filter(attr, pattern, actions, filter, error); + + if (ret) + return ret; + + /* Igb doesn't support many priorities. */ + if (filter->priority > E1000_2TUPLE_MAX_PRI) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "Priority not supported by ntuple filter"); + return -rte_errno; + } + + if (hw->mac.type == e1000_82576) { + if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "queue number not " + "supported by ntuple filter"); + return -rte_errno; + } + filter->flags |= RTE_5TUPLE_FLAGS; + } else { + if (filter->src_ip_mask || filter->dst_ip_mask || + filter->src_port_mask) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "only two tuple are " + "supported by this filter"); + return -rte_errno; + } + if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) { + memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "queue number not " + "supported by ntuple filter"); + return -rte_errno; + } + filter->flags |= RTE_2TUPLE_FLAGS; + } + + return 0; +} + +/** + * Parse the rule to see if it is a ethertype rule. + * And get the ethertype filter info BTW. + * pattern: + * The first not void item can be ETH. + * The next not void item must be END. + * action: + * The first not void action should be QUEUE. + * The next not void action should be END. + * pattern example: + * ITEM Spec Mask + * ETH type 0x0807 0xFFFF + * END + * other members in mask and spec should set to 0x00. + * item->last should be NULL. + */ +static int +cons_parse_ethertype_filter(const struct rte_flow_attr *attr, + const struct rte_flow_item *pattern, + const struct rte_flow_action *actions, + struct rte_eth_ethertype_filter *filter, + struct rte_flow_error *error) +{ + const struct rte_flow_item *item; + const struct rte_flow_action *act; + const struct rte_flow_item_eth *eth_spec; + const struct rte_flow_item_eth *eth_mask; + const struct rte_flow_action_queue *act_q; + uint32_t index; + + if (!pattern) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM_NUM, + NULL, "NULL pattern."); + return -rte_errno; + } + + if (!actions) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION_NUM, + NULL, "NULL action."); + return -rte_errno; + } + + if (!attr) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR, + NULL, "NULL attribute."); + return -rte_errno; + } + + /* Parse pattern */ + index = 0; + + /* The first non-void item should be MAC. */ + NEXT_ITEM_OF_PATTERN(item, pattern, index); + if (item->type != RTE_FLOW_ITEM_TYPE_ETH) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ethertype filter"); + return -rte_errno; + } + + /*Not supported last point for range*/ + if (item->last) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_UNSPECIFIED, + item, "Not supported last point for range"); + return -rte_errno; + } + + /* Get the MAC info. */ + if (!item->spec || !item->mask) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ethertype filter"); + return -rte_errno; + } + + eth_spec = item->spec; + eth_mask = item->mask; + + /* Mask bits of source MAC address must be full of 0. + * Mask bits of destination MAC address must be full + * of 1 or full of 0. + */ + if (!is_zero_ether_addr(ð_mask->src) || + (!is_zero_ether_addr(ð_mask->dst) && + !is_broadcast_ether_addr(ð_mask->dst))) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Invalid ether address mask"); + return -rte_errno; + } + + if ((eth_mask->type & UINT16_MAX) != UINT16_MAX) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Invalid ethertype mask"); + return -rte_errno; + } + + /* If mask bits of destination MAC address + * are full of 1, set RTE_ETHTYPE_FLAGS_MAC. + */ + if (is_broadcast_ether_addr(ð_mask->dst)) { + filter->mac_addr = eth_spec->dst; + filter->flags |= RTE_ETHTYPE_FLAGS_MAC; + } else { + filter->flags &= ~RTE_ETHTYPE_FLAGS_MAC; + } + filter->ether_type = rte_be_to_cpu_16(eth_spec->type); + + /* Check if the next non-void item is END. */ + index++; + NEXT_ITEM_OF_PATTERN(item, pattern, index); + if (item->type != RTE_FLOW_ITEM_TYPE_END) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by ethertype filter."); + return -rte_errno; + } + + /* Parse action */ + + index = 0; + /* Check if the first non-void action is QUEUE or DROP. */ + NEXT_ITEM_OF_ACTION(act, actions, index); + if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE && + act->type != RTE_FLOW_ACTION_TYPE_DROP) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + act, "Not supported action."); + return -rte_errno; + } + + if (act->type == RTE_FLOW_ACTION_TYPE_QUEUE) { + act_q = (const struct rte_flow_action_queue *)act->conf; + filter->queue = act_q->index; + } else { + filter->flags |= RTE_ETHTYPE_FLAGS_DROP; + } + + /* Check if the next non-void item is END */ + index++; + NEXT_ITEM_OF_ACTION(act, actions, index); + if (act->type != RTE_FLOW_ACTION_TYPE_END) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + act, "Not supported action."); + return -rte_errno; + } + + /* Parse attr */ + /* Must be input direction */ + if (!attr->ingress) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, + attr, "Only support ingress."); + return -rte_errno; + } + + /* Not supported */ + if (attr->egress) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, + attr, "Not support egress."); + return -rte_errno; + } + + /* Not supported */ + if (attr->transfer) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, + attr, "No support for transfer."); + return -rte_errno; + } + + /* Not supported */ + if (attr->priority) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, + attr, "Not support priority."); + return -rte_errno; + } + + /* Not supported */ + if (attr->group) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_GROUP, + attr, "Not support group."); + return -rte_errno; + } + + return 0; +} + +static int +igb_parse_ethertype_filter(struct rte_eth_dev *dev, + const struct rte_flow_attr *attr, + const struct rte_flow_item pattern[], + const struct rte_flow_action actions[], + struct rte_eth_ethertype_filter *filter, + struct rte_flow_error *error) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + int ret; + + MAC_TYPE_FILTER_SUP(hw->mac.type); + + ret = cons_parse_ethertype_filter(attr, pattern, + actions, filter, error); + + if (ret) + return ret; + + if (hw->mac.type == e1000_82576) { + if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576) { + memset(filter, 0, sizeof( + struct rte_eth_ethertype_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "queue number not supported " + "by ethertype filter"); + return -rte_errno; + } + } else { + if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) { + memset(filter, 0, sizeof( + struct rte_eth_ethertype_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "queue number not supported " + "by ethertype filter"); + return -rte_errno; + } + } + + if (filter->ether_type == ETHER_TYPE_IPv4 || + filter->ether_type == ETHER_TYPE_IPv6) { + memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "IPv4/IPv6 not supported by ethertype filter"); + return -rte_errno; + } + + if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) { + memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "mac compare is unsupported"); + return -rte_errno; + } + + if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) { + memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "drop option is unsupported"); + return -rte_errno; + } + + return 0; +} + +/** + * Parse the rule to see if it is a TCP SYN rule. + * And get the TCP SYN filter info BTW. + * pattern: + * The first not void item must be ETH. + * The second not void item must be IPV4 or IPV6. + * The third not void item must be TCP. + * The next not void item must be END. + * action: + * The first not void action should be QUEUE. + * The next not void action should be END. + * pattern example: + * ITEM Spec Mask + * ETH NULL NULL + * IPV4/IPV6 NULL NULL + * TCP tcp_flags 0x02 0xFF + * END + * other members in mask and spec should set to 0x00. + * item->last should be NULL. + */ +static int +cons_parse_syn_filter(const struct rte_flow_attr *attr, + const struct rte_flow_item pattern[], + const struct rte_flow_action actions[], + struct rte_eth_syn_filter *filter, + struct rte_flow_error *error) +{ + const struct rte_flow_item *item; + const struct rte_flow_action *act; + const struct rte_flow_item_tcp *tcp_spec; + const struct rte_flow_item_tcp *tcp_mask; + const struct rte_flow_action_queue *act_q; + uint32_t index; + + if (!pattern) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM_NUM, + NULL, "NULL pattern."); + return -rte_errno; + } + + if (!actions) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION_NUM, + NULL, "NULL action."); + return -rte_errno; + } + + if (!attr) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR, + NULL, "NULL attribute."); + return -rte_errno; + } + + /* parse pattern */ + index = 0; + + /* the first not void item should be MAC or IPv4 or IPv6 or TCP */ + NEXT_ITEM_OF_PATTERN(item, pattern, index); + if (item->type != RTE_FLOW_ITEM_TYPE_ETH && + item->type != RTE_FLOW_ITEM_TYPE_IPV4 && + item->type != RTE_FLOW_ITEM_TYPE_IPV6 && + item->type != RTE_FLOW_ITEM_TYPE_TCP) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by syn filter"); + return -rte_errno; + } + /*Not supported last point for range*/ + if (item->last) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_UNSPECIFIED, + item, "Not supported last point for range"); + return -rte_errno; + } + + /* Skip Ethernet */ + if (item->type == RTE_FLOW_ITEM_TYPE_ETH) { + /* if the item is MAC, the content should be NULL */ + if (item->spec || item->mask) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Invalid SYN address mask"); + return -rte_errno; + } + + /* check if the next not void item is IPv4 or IPv6 */ + index++; + NEXT_ITEM_OF_PATTERN(item, pattern, index); + if (item->type != RTE_FLOW_ITEM_TYPE_IPV4 && + item->type != RTE_FLOW_ITEM_TYPE_IPV6) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by syn filter"); + return -rte_errno; + } + } + + /* Skip IP */ + if (item->type == RTE_FLOW_ITEM_TYPE_IPV4 || + item->type == RTE_FLOW_ITEM_TYPE_IPV6) { + /* if the item is IP, the content should be NULL */ + if (item->spec || item->mask) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Invalid SYN mask"); + return -rte_errno; + } + + /* check if the next not void item is TCP */ + index++; + NEXT_ITEM_OF_PATTERN(item, pattern, index); + if (item->type != RTE_FLOW_ITEM_TYPE_TCP) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by syn filter"); + return -rte_errno; + } + } + + /* Get the TCP info. Only support SYN. */ + if (!item->spec || !item->mask) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Invalid SYN mask"); + return -rte_errno; + } + /*Not supported last point for range*/ + if (item->last) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_UNSPECIFIED, + item, "Not supported last point for range"); + return -rte_errno; + } + + tcp_spec = item->spec; + tcp_mask = item->mask; + if (!(tcp_spec->hdr.tcp_flags & TCP_SYN_FLAG) || + tcp_mask->hdr.src_port || + tcp_mask->hdr.dst_port || + tcp_mask->hdr.sent_seq || + tcp_mask->hdr.recv_ack || + tcp_mask->hdr.data_off || + tcp_mask->hdr.tcp_flags != TCP_SYN_FLAG || + tcp_mask->hdr.rx_win || + tcp_mask->hdr.cksum || + tcp_mask->hdr.tcp_urp) { + memset(filter, 0, sizeof(struct rte_eth_syn_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by syn filter"); + return -rte_errno; + } + + /* check if the next not void item is END */ + index++; + NEXT_ITEM_OF_PATTERN(item, pattern, index); + if (item->type != RTE_FLOW_ITEM_TYPE_END) { + memset(filter, 0, sizeof(struct rte_eth_syn_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by syn filter"); + return -rte_errno; + } + + /* parse action */ + index = 0; + + /* check if the first not void action is QUEUE. */ + NEXT_ITEM_OF_ACTION(act, actions, index); + if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) { + memset(filter, 0, sizeof(struct rte_eth_syn_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + act, "Not supported action."); + return -rte_errno; + } + + act_q = (const struct rte_flow_action_queue *)act->conf; + filter->queue = act_q->index; + + /* check if the next not void item is END */ + index++; + NEXT_ITEM_OF_ACTION(act, actions, index); + if (act->type != RTE_FLOW_ACTION_TYPE_END) { + memset(filter, 0, sizeof(struct rte_eth_syn_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + act, "Not supported action."); + return -rte_errno; + } + + /* parse attr */ + /* must be input direction */ + if (!attr->ingress) { + memset(filter, 0, sizeof(struct rte_eth_syn_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, + attr, "Only support ingress."); + return -rte_errno; + } + + /* not supported */ + if (attr->egress) { + memset(filter, 0, sizeof(struct rte_eth_syn_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, + attr, "Not support egress."); + return -rte_errno; + } + + /* not supported */ + if (attr->transfer) { + memset(filter, 0, sizeof(struct rte_eth_syn_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, + attr, "No support for transfer."); + return -rte_errno; + } + + /* Support 2 priorities, the lowest or highest. */ + if (!attr->priority) { + filter->hig_pri = 0; + } else if (attr->priority == (uint32_t)~0U) { + filter->hig_pri = 1; + } else { + memset(filter, 0, sizeof(struct rte_eth_syn_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, + attr, "Not support priority."); + return -rte_errno; + } + + return 0; +} + +static int +igb_parse_syn_filter(struct rte_eth_dev *dev, + const struct rte_flow_attr *attr, + const struct rte_flow_item pattern[], + const struct rte_flow_action actions[], + struct rte_eth_syn_filter *filter, + struct rte_flow_error *error) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + int ret; + + MAC_TYPE_FILTER_SUP(hw->mac.type); + + ret = cons_parse_syn_filter(attr, pattern, + actions, filter, error); + + if (hw->mac.type == e1000_82576) { + if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576) { + memset(filter, 0, sizeof(struct rte_eth_syn_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "queue number not " + "supported by syn filter"); + return -rte_errno; + } + } else { + if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) { + memset(filter, 0, sizeof(struct rte_eth_syn_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "queue number not " + "supported by syn filter"); + return -rte_errno; + } + } + + if (ret) + return ret; + + return 0; +} + +/** + * Parse the rule to see if it is a flex byte rule. + * And get the flex byte filter info BTW. + * pattern: + * The first not void item must be RAW. + * The second not void item can be RAW or END. + * The third not void item can be RAW or END. + * The last not void item must be END. + * action: + * The first not void action should be QUEUE. + * The next not void action should be END. + * pattern example: + * ITEM Spec Mask + * RAW relative 0 0x1 + * offset 0 0xFFFFFFFF + * pattern {0x08, 0x06} {0xFF, 0xFF} + * RAW relative 1 0x1 + * offset 100 0xFFFFFFFF + * pattern {0x11, 0x22, 0x33} {0xFF, 0xFF, 0xFF} + * END + * other members in mask and spec should set to 0x00. + * item->last should be NULL. + */ +static int +cons_parse_flex_filter(const struct rte_flow_attr *attr, + const struct rte_flow_item pattern[], + const struct rte_flow_action actions[], + struct rte_eth_flex_filter *filter, + struct rte_flow_error *error) +{ + const struct rte_flow_item *item; + const struct rte_flow_action *act; + const struct rte_flow_item_raw *raw_spec; + const struct rte_flow_item_raw *raw_mask; + const struct rte_flow_action_queue *act_q; + uint32_t index, i, offset, total_offset; + uint32_t max_offset = 0; + int32_t shift, j, raw_index = 0; + int32_t relative[IGB_FLEX_RAW_NUM] = {0}; + int32_t raw_offset[IGB_FLEX_RAW_NUM] = {0}; + + if (!pattern) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM_NUM, + NULL, "NULL pattern."); + return -rte_errno; + } + + if (!actions) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION_NUM, + NULL, "NULL action."); + return -rte_errno; + } + + if (!attr) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR, + NULL, "NULL attribute."); + return -rte_errno; + } + + /* parse pattern */ + index = 0; + +item_loop: + + /* the first not void item should be RAW */ + NEXT_ITEM_OF_PATTERN(item, pattern, index); + if (item->type != RTE_FLOW_ITEM_TYPE_RAW) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by flex filter"); + return -rte_errno; + } + /*Not supported last point for range*/ + if (item->last) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_UNSPECIFIED, + item, "Not supported last point for range"); + return -rte_errno; + } + + raw_spec = item->spec; + raw_mask = item->mask; + + if (!raw_mask->length || + !raw_mask->relative) { + memset(filter, 0, sizeof(struct rte_eth_flex_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by flex filter"); + return -rte_errno; + } + + if (raw_mask->offset) + offset = raw_spec->offset; + else + offset = 0; + + for (j = 0; j < raw_spec->length; j++) { + if (raw_mask->pattern[j] != 0xFF) { + memset(filter, 0, sizeof(struct rte_eth_flex_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by flex filter"); + return -rte_errno; + } + } + + total_offset = 0; + + if (raw_spec->relative) { + for (j = raw_index; j > 0; j--) { + total_offset += raw_offset[j - 1]; + if (!relative[j - 1]) + break; + } + if (total_offset + raw_spec->length + offset > max_offset) + max_offset = total_offset + raw_spec->length + offset; + } else { + if (raw_spec->length + offset > max_offset) + max_offset = raw_spec->length + offset; + } + + if ((raw_spec->length + offset + total_offset) > + RTE_FLEX_FILTER_MAXLEN) { + memset(filter, 0, sizeof(struct rte_eth_flex_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by flex filter"); + return -rte_errno; + } + + if (raw_spec->relative == 0) { + for (j = 0; j < raw_spec->length; j++) + filter->bytes[offset + j] = + raw_spec->pattern[j]; + j = offset / CHAR_BIT; + shift = offset % CHAR_BIT; + } else { + for (j = 0; j < raw_spec->length; j++) + filter->bytes[total_offset + offset + j] = + raw_spec->pattern[j]; + j = (total_offset + offset) / CHAR_BIT; + shift = (total_offset + offset) % CHAR_BIT; + } + + i = 0; + + for ( ; shift < CHAR_BIT; shift++) { + filter->mask[j] |= (0x80 >> shift); + i++; + if (i == raw_spec->length) + break; + if (shift == (CHAR_BIT - 1)) { + j++; + shift = -1; + } + } + + relative[raw_index] = raw_spec->relative; + raw_offset[raw_index] = offset + raw_spec->length; + raw_index++; + + /* check if the next not void item is RAW */ + index++; + NEXT_ITEM_OF_PATTERN(item, pattern, index); + if (item->type != RTE_FLOW_ITEM_TYPE_RAW && + item->type != RTE_FLOW_ITEM_TYPE_END) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + item, "Not supported by flex filter"); + return -rte_errno; + } + + /* go back to parser */ + if (item->type == RTE_FLOW_ITEM_TYPE_RAW) { + /* if the item is RAW, the content should be parse */ + goto item_loop; + } + + filter->len = RTE_ALIGN(max_offset, 8); + + /* parse action */ + index = 0; + + /* check if the first not void action is QUEUE. */ + NEXT_ITEM_OF_ACTION(act, actions, index); + if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) { + memset(filter, 0, sizeof(struct rte_eth_flex_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + act, "Not supported action."); + return -rte_errno; + } + + act_q = (const struct rte_flow_action_queue *)act->conf; + filter->queue = act_q->index; + + /* check if the next not void item is END */ + index++; + NEXT_ITEM_OF_ACTION(act, actions, index); + if (act->type != RTE_FLOW_ACTION_TYPE_END) { + memset(filter, 0, sizeof(struct rte_eth_flex_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + act, "Not supported action."); + return -rte_errno; + } + + /* parse attr */ + /* must be input direction */ + if (!attr->ingress) { + memset(filter, 0, sizeof(struct rte_eth_flex_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, + attr, "Only support ingress."); + return -rte_errno; + } + + /* not supported */ + if (attr->egress) { + memset(filter, 0, sizeof(struct rte_eth_flex_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, + attr, "Not support egress."); + return -rte_errno; + } + + /* not supported */ + if (attr->transfer) { + memset(filter, 0, sizeof(struct rte_eth_flex_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, + attr, "No support for transfer."); + return -rte_errno; + } + + if (attr->priority > 0xFFFF) { + memset(filter, 0, sizeof(struct rte_eth_flex_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, + attr, "Error priority."); + return -rte_errno; + } + + filter->priority = (uint16_t)attr->priority; + + return 0; +} + +static int +igb_parse_flex_filter(struct rte_eth_dev *dev, + const struct rte_flow_attr *attr, + const struct rte_flow_item pattern[], + const struct rte_flow_action actions[], + struct rte_eth_flex_filter *filter, + struct rte_flow_error *error) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + int ret; + + MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); + + ret = cons_parse_flex_filter(attr, pattern, + actions, filter, error); + + if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) { + memset(filter, 0, sizeof(struct rte_eth_flex_filter)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ITEM, + NULL, "queue number not supported by flex filter"); + return -rte_errno; + } + + if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN || + filter->len % sizeof(uint64_t) != 0) { + PMD_DRV_LOG(ERR, "filter's length is out of range"); + return -EINVAL; + } + + if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) { + PMD_DRV_LOG(ERR, "filter's priority is out of range"); + return -EINVAL; + } + + if (ret) + return ret; + + return 0; +} + +static int +igb_parse_rss_filter(struct rte_eth_dev *dev, + const struct rte_flow_attr *attr, + const struct rte_flow_action actions[], + struct igb_rte_flow_rss_conf *rss_conf, + struct rte_flow_error *error) +{ + const struct rte_flow_action *act; + const struct rte_flow_action_rss *rss; + uint16_t n, index; + + /** + * rss only supports forwarding, + * check if the first not void action is RSS. + */ + index = 0; + NEXT_ITEM_OF_ACTION(act, actions, index); + if (act->type != RTE_FLOW_ACTION_TYPE_RSS) { + memset(rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + act, "Not supported action."); + return -rte_errno; + } + + rss = (const struct rte_flow_action_rss *)act->conf; + + if (!rss || !rss->queue_num) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + act, + "no valid queues"); + return -rte_errno; + } + + for (n = 0; n < rss->queue_num; n++) { + if (rss->queue[n] >= dev->data->nb_rx_queues) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + act, + "queue id > max number of queues"); + return -rte_errno; + } + } + + if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT) + return rte_flow_error_set + (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act, + "non-default RSS hash functions are not supported"); + if (rss->level) + return rte_flow_error_set + (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act, + "a nonzero RSS encapsulation level is not supported"); + if (rss->key_len && rss->key_len != RTE_DIM(rss_conf->key)) + return rte_flow_error_set + (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act, + "RSS hash key must be exactly 40 bytes"); + if (rss->queue_num > RTE_DIM(rss_conf->queue)) + return rte_flow_error_set + (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act, + "too many queues for RSS context"); + if (igb_rss_conf_init(rss_conf, rss)) + return rte_flow_error_set + (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, + "RSS context initialization failure"); + + /* check if the next not void item is END */ + index++; + NEXT_ITEM_OF_ACTION(act, actions, index); + if (act->type != RTE_FLOW_ACTION_TYPE_END) { + memset(rss_conf, 0, sizeof(struct rte_eth_rss_conf)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ACTION, + act, "Not supported action."); + return -rte_errno; + } + + /* parse attr */ + /* must be input direction */ + if (!attr->ingress) { + memset(rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, + attr, "Only support ingress."); + return -rte_errno; + } + + /* not supported */ + if (attr->egress) { + memset(rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, + attr, "Not support egress."); + return -rte_errno; + } + + /* not supported */ + if (attr->transfer) { + memset(rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, + attr, "No support for transfer."); + return -rte_errno; + } + + if (attr->priority > 0xFFFF) { + memset(rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf)); + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, + attr, "Error priority."); + return -rte_errno; + } + + return 0; +} + +/** + * Create a flow rule. + * Theorically one rule can match more than one filters. + * We will let it use the filter which it hitt first. + * So, the sequence matters. + */ +static struct rte_flow * +igb_flow_create(struct rte_eth_dev *dev, + const struct rte_flow_attr *attr, + const struct rte_flow_item pattern[], + const struct rte_flow_action actions[], + struct rte_flow_error *error) +{ + int ret; + struct rte_eth_ntuple_filter ntuple_filter; + struct rte_eth_ethertype_filter ethertype_filter; + struct rte_eth_syn_filter syn_filter; + struct rte_eth_flex_filter flex_filter; + struct igb_rte_flow_rss_conf rss_conf; + struct rte_flow *flow = NULL; + struct igb_ntuple_filter_ele *ntuple_filter_ptr; + struct igb_ethertype_filter_ele *ethertype_filter_ptr; + struct igb_eth_syn_filter_ele *syn_filter_ptr; + struct igb_flex_filter_ele *flex_filter_ptr; + struct igb_rss_conf_ele *rss_filter_ptr; + struct igb_flow_mem *igb_flow_mem_ptr; + + flow = rte_zmalloc("igb_rte_flow", sizeof(struct rte_flow), 0); + if (!flow) { + PMD_DRV_LOG(ERR, "failed to allocate memory"); + return (struct rte_flow *)flow; + } + igb_flow_mem_ptr = rte_zmalloc("igb_flow_mem", + sizeof(struct igb_flow_mem), 0); + if (!igb_flow_mem_ptr) { + PMD_DRV_LOG(ERR, "failed to allocate memory"); + rte_free(flow); + return NULL; + } + igb_flow_mem_ptr->flow = flow; + igb_flow_mem_ptr->dev = dev; + TAILQ_INSERT_TAIL(&igb_flow_list, + igb_flow_mem_ptr, entries); + + memset(&ntuple_filter, 0, sizeof(struct rte_eth_ntuple_filter)); + ret = igb_parse_ntuple_filter(dev, attr, pattern, + actions, &ntuple_filter, error); + if (!ret) { + ret = igb_add_del_ntuple_filter(dev, &ntuple_filter, TRUE); + if (!ret) { + ntuple_filter_ptr = rte_zmalloc("igb_ntuple_filter", + sizeof(struct igb_ntuple_filter_ele), 0); + if (!ntuple_filter_ptr) { + PMD_DRV_LOG(ERR, "failed to allocate memory"); + goto out; + } + + rte_memcpy(&ntuple_filter_ptr->filter_info, + &ntuple_filter, + sizeof(struct rte_eth_ntuple_filter)); + TAILQ_INSERT_TAIL(&igb_filter_ntuple_list, + ntuple_filter_ptr, entries); + flow->rule = ntuple_filter_ptr; + flow->filter_type = RTE_ETH_FILTER_NTUPLE; + return flow; + } + goto out; + } + + memset(ðertype_filter, 0, sizeof(struct rte_eth_ethertype_filter)); + ret = igb_parse_ethertype_filter(dev, attr, pattern, + actions, ðertype_filter, error); + if (!ret) { + ret = igb_add_del_ethertype_filter(dev, + ðertype_filter, TRUE); + if (!ret) { + ethertype_filter_ptr = rte_zmalloc( + "igb_ethertype_filter", + sizeof(struct igb_ethertype_filter_ele), 0); + if (!ethertype_filter_ptr) { + PMD_DRV_LOG(ERR, "failed to allocate memory"); + goto out; + } + + rte_memcpy(ðertype_filter_ptr->filter_info, + ðertype_filter, + sizeof(struct rte_eth_ethertype_filter)); + TAILQ_INSERT_TAIL(&igb_filter_ethertype_list, + ethertype_filter_ptr, entries); + flow->rule = ethertype_filter_ptr; + flow->filter_type = RTE_ETH_FILTER_ETHERTYPE; + return flow; + } + goto out; + } + + memset(&syn_filter, 0, sizeof(struct rte_eth_syn_filter)); + ret = igb_parse_syn_filter(dev, attr, pattern, + actions, &syn_filter, error); + if (!ret) { + ret = eth_igb_syn_filter_set(dev, &syn_filter, TRUE); + if (!ret) { + syn_filter_ptr = rte_zmalloc("igb_syn_filter", + sizeof(struct igb_eth_syn_filter_ele), 0); + if (!syn_filter_ptr) { + PMD_DRV_LOG(ERR, "failed to allocate memory"); + goto out; + } + + rte_memcpy(&syn_filter_ptr->filter_info, + &syn_filter, + sizeof(struct rte_eth_syn_filter)); + TAILQ_INSERT_TAIL(&igb_filter_syn_list, + syn_filter_ptr, + entries); + flow->rule = syn_filter_ptr; + flow->filter_type = RTE_ETH_FILTER_SYN; + return flow; + } + goto out; + } + + memset(&flex_filter, 0, sizeof(struct rte_eth_flex_filter)); + ret = igb_parse_flex_filter(dev, attr, pattern, + actions, &flex_filter, error); + if (!ret) { + ret = eth_igb_add_del_flex_filter(dev, &flex_filter, TRUE); + if (!ret) { + flex_filter_ptr = rte_zmalloc("igb_flex_filter", + sizeof(struct igb_flex_filter_ele), 0); + if (!flex_filter_ptr) { + PMD_DRV_LOG(ERR, "failed to allocate memory"); + goto out; + } + + rte_memcpy(&flex_filter_ptr->filter_info, + &flex_filter, + sizeof(struct rte_eth_flex_filter)); + TAILQ_INSERT_TAIL(&igb_filter_flex_list, + flex_filter_ptr, entries); + flow->rule = flex_filter_ptr; + flow->filter_type = RTE_ETH_FILTER_FLEXIBLE; + return flow; + } + } + + memset(&rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf)); + ret = igb_parse_rss_filter(dev, attr, + actions, &rss_conf, error); + if (!ret) { + ret = igb_config_rss_filter(dev, &rss_conf, TRUE); + if (!ret) { + rss_filter_ptr = rte_zmalloc("igb_rss_filter", + sizeof(struct igb_rss_conf_ele), 0); + if (!rss_filter_ptr) { + PMD_DRV_LOG(ERR, "failed to allocate memory"); + goto out; + } + igb_rss_conf_init(&rss_filter_ptr->filter_info, + &rss_conf.conf); + TAILQ_INSERT_TAIL(&igb_filter_rss_list, + rss_filter_ptr, entries); + flow->rule = rss_filter_ptr; + flow->filter_type = RTE_ETH_FILTER_HASH; + return flow; + } + } + +out: + TAILQ_REMOVE(&igb_flow_list, + igb_flow_mem_ptr, entries); + rte_flow_error_set(error, -ret, + RTE_FLOW_ERROR_TYPE_HANDLE, NULL, + "Failed to create flow."); + rte_free(igb_flow_mem_ptr); + rte_free(flow); + return NULL; +} + +/** + * Check if the flow rule is supported by igb. + * It only checkes the format. Don't guarantee the rule can be programmed into + * the HW. Because there can be no enough room for the rule. + */ +static int +igb_flow_validate(__rte_unused struct rte_eth_dev *dev, + const struct rte_flow_attr *attr, + const struct rte_flow_item pattern[], + const struct rte_flow_action actions[], + struct rte_flow_error *error) +{ + struct rte_eth_ntuple_filter ntuple_filter; + struct rte_eth_ethertype_filter ethertype_filter; + struct rte_eth_syn_filter syn_filter; + struct rte_eth_flex_filter flex_filter; + struct igb_rte_flow_rss_conf rss_conf; + int ret; + + memset(&ntuple_filter, 0, sizeof(struct rte_eth_ntuple_filter)); + ret = igb_parse_ntuple_filter(dev, attr, pattern, + actions, &ntuple_filter, error); + if (!ret) + return 0; + + memset(ðertype_filter, 0, sizeof(struct rte_eth_ethertype_filter)); + ret = igb_parse_ethertype_filter(dev, attr, pattern, + actions, ðertype_filter, error); + if (!ret) + return 0; + + memset(&syn_filter, 0, sizeof(struct rte_eth_syn_filter)); + ret = igb_parse_syn_filter(dev, attr, pattern, + actions, &syn_filter, error); + if (!ret) + return 0; + + memset(&flex_filter, 0, sizeof(struct rte_eth_flex_filter)); + ret = igb_parse_flex_filter(dev, attr, pattern, + actions, &flex_filter, error); + if (!ret) + return 0; + + memset(&rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf)); + ret = igb_parse_rss_filter(dev, attr, + actions, &rss_conf, error); + + return ret; +} + +/* Destroy a flow rule on igb. */ +static int +igb_flow_destroy(struct rte_eth_dev *dev, + struct rte_flow *flow, + struct rte_flow_error *error) +{ + int ret; + struct rte_flow *pmd_flow = flow; + enum rte_filter_type filter_type = pmd_flow->filter_type; + struct igb_ntuple_filter_ele *ntuple_filter_ptr; + struct igb_ethertype_filter_ele *ethertype_filter_ptr; + struct igb_eth_syn_filter_ele *syn_filter_ptr; + struct igb_flex_filter_ele *flex_filter_ptr; + struct igb_flow_mem *igb_flow_mem_ptr; + struct igb_rss_conf_ele *rss_filter_ptr; + + switch (filter_type) { + case RTE_ETH_FILTER_NTUPLE: + ntuple_filter_ptr = (struct igb_ntuple_filter_ele *) + pmd_flow->rule; + ret = igb_add_del_ntuple_filter(dev, + &ntuple_filter_ptr->filter_info, FALSE); + if (!ret) { + TAILQ_REMOVE(&igb_filter_ntuple_list, + ntuple_filter_ptr, entries); + rte_free(ntuple_filter_ptr); + } + break; + case RTE_ETH_FILTER_ETHERTYPE: + ethertype_filter_ptr = (struct igb_ethertype_filter_ele *) + pmd_flow->rule; + ret = igb_add_del_ethertype_filter(dev, + ðertype_filter_ptr->filter_info, FALSE); + if (!ret) { + TAILQ_REMOVE(&igb_filter_ethertype_list, + ethertype_filter_ptr, entries); + rte_free(ethertype_filter_ptr); + } + break; + case RTE_ETH_FILTER_SYN: + syn_filter_ptr = (struct igb_eth_syn_filter_ele *) + pmd_flow->rule; + ret = eth_igb_syn_filter_set(dev, + &syn_filter_ptr->filter_info, FALSE); + if (!ret) { + TAILQ_REMOVE(&igb_filter_syn_list, + syn_filter_ptr, entries); + rte_free(syn_filter_ptr); + } + break; + case RTE_ETH_FILTER_FLEXIBLE: + flex_filter_ptr = (struct igb_flex_filter_ele *) + pmd_flow->rule; + ret = eth_igb_add_del_flex_filter(dev, + &flex_filter_ptr->filter_info, FALSE); + if (!ret) { + TAILQ_REMOVE(&igb_filter_flex_list, + flex_filter_ptr, entries); + rte_free(flex_filter_ptr); + } + break; + case RTE_ETH_FILTER_HASH: + rss_filter_ptr = (struct igb_rss_conf_ele *) + pmd_flow->rule; + ret = igb_config_rss_filter(dev, + &rss_filter_ptr->filter_info, FALSE); + if (!ret) { + TAILQ_REMOVE(&igb_filter_rss_list, + rss_filter_ptr, entries); + rte_free(rss_filter_ptr); + } + break; + default: + PMD_DRV_LOG(WARNING, "Filter type (%d) not supported", + filter_type); + ret = -EINVAL; + break; + } + + if (ret) { + rte_flow_error_set(error, EINVAL, + RTE_FLOW_ERROR_TYPE_HANDLE, + NULL, "Failed to destroy flow"); + return ret; + } + + TAILQ_FOREACH(igb_flow_mem_ptr, &igb_flow_list, entries) { + if (igb_flow_mem_ptr->flow == pmd_flow) { + TAILQ_REMOVE(&igb_flow_list, + igb_flow_mem_ptr, entries); + rte_free(igb_flow_mem_ptr); + } + } + rte_free(flow); + + return ret; +} + +/* remove all the n-tuple filters */ +static void +igb_clear_all_ntuple_filter(struct rte_eth_dev *dev) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_5tuple_filter *p_5tuple; + struct e1000_2tuple_filter *p_2tuple; + + while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) + igb_delete_5tuple_filter_82576(dev, p_5tuple); + + while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) + igb_delete_2tuple_filter(dev, p_2tuple); +} + +/* remove all the ether type filters */ +static void +igb_clear_all_ethertype_filter(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + int i; + + for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) { + if (filter_info->ethertype_mask & (1 << i)) { + (void)igb_ethertype_filter_remove(filter_info, + (uint8_t)i); + E1000_WRITE_REG(hw, E1000_ETQF(i), 0); + E1000_WRITE_FLUSH(hw); + } + } +} + +/* remove the SYN filter */ +static void +igb_clear_syn_filter(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + + if (filter_info->syn_info & E1000_SYN_FILTER_ENABLE) { + filter_info->syn_info = 0; + E1000_WRITE_REG(hw, E1000_SYNQF(0), 0); + E1000_WRITE_FLUSH(hw); + } +} + +/* remove all the flex filters */ +static void +igb_clear_all_flex_filter(struct rte_eth_dev *dev) +{ + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_flex_filter *flex_filter; + + while ((flex_filter = TAILQ_FIRST(&filter_info->flex_list))) + igb_remove_flex_filter(dev, flex_filter); +} + +/* remove the rss filter */ +static void +igb_clear_rss_filter(struct rte_eth_dev *dev) +{ + struct e1000_filter_info *filter = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + + if (filter->rss_info.conf.queue_num) + igb_config_rss_filter(dev, &filter->rss_info, FALSE); +} + +void +igb_filterlist_flush(struct rte_eth_dev *dev) +{ + struct igb_ntuple_filter_ele *ntuple_filter_ptr; + struct igb_ethertype_filter_ele *ethertype_filter_ptr; + struct igb_eth_syn_filter_ele *syn_filter_ptr; + struct igb_flex_filter_ele *flex_filter_ptr; + struct igb_rss_conf_ele *rss_filter_ptr; + struct igb_flow_mem *igb_flow_mem_ptr; + enum rte_filter_type filter_type; + struct rte_flow *pmd_flow; + + TAILQ_FOREACH(igb_flow_mem_ptr, &igb_flow_list, entries) { + if (igb_flow_mem_ptr->dev == dev) { + pmd_flow = igb_flow_mem_ptr->flow; + filter_type = pmd_flow->filter_type; + + switch (filter_type) { + case RTE_ETH_FILTER_NTUPLE: + ntuple_filter_ptr = + (struct igb_ntuple_filter_ele *) + pmd_flow->rule; + TAILQ_REMOVE(&igb_filter_ntuple_list, + ntuple_filter_ptr, entries); + rte_free(ntuple_filter_ptr); + break; + case RTE_ETH_FILTER_ETHERTYPE: + ethertype_filter_ptr = + (struct igb_ethertype_filter_ele *) + pmd_flow->rule; + TAILQ_REMOVE(&igb_filter_ethertype_list, + ethertype_filter_ptr, entries); + rte_free(ethertype_filter_ptr); + break; + case RTE_ETH_FILTER_SYN: + syn_filter_ptr = + (struct igb_eth_syn_filter_ele *) + pmd_flow->rule; + TAILQ_REMOVE(&igb_filter_syn_list, + syn_filter_ptr, entries); + rte_free(syn_filter_ptr); + break; + case RTE_ETH_FILTER_FLEXIBLE: + flex_filter_ptr = + (struct igb_flex_filter_ele *) + pmd_flow->rule; + TAILQ_REMOVE(&igb_filter_flex_list, + flex_filter_ptr, entries); + rte_free(flex_filter_ptr); + break; + case RTE_ETH_FILTER_HASH: + rss_filter_ptr = + (struct igb_rss_conf_ele *) + pmd_flow->rule; + TAILQ_REMOVE(&igb_filter_rss_list, + rss_filter_ptr, entries); + rte_free(rss_filter_ptr); + break; + default: + PMD_DRV_LOG(WARNING, "Filter type" + "(%d) not supported", filter_type); + break; + } + TAILQ_REMOVE(&igb_flow_list, + igb_flow_mem_ptr, + entries); + rte_free(igb_flow_mem_ptr->flow); + rte_free(igb_flow_mem_ptr); + } + } +} + +/* Destroy all flow rules associated with a port on igb. */ +static int +igb_flow_flush(struct rte_eth_dev *dev, + __rte_unused struct rte_flow_error *error) +{ + igb_clear_all_ntuple_filter(dev); + igb_clear_all_ethertype_filter(dev); + igb_clear_syn_filter(dev); + igb_clear_all_flex_filter(dev); + igb_clear_rss_filter(dev); + igb_filterlist_flush(dev); + + return 0; +} + +const struct rte_flow_ops igb_flow_ops = { + .validate = igb_flow_validate, + .create = igb_flow_create, + .destroy = igb_flow_destroy, + .flush = igb_flow_flush, +}; diff --git a/src/spdk/dpdk/drivers/net/e1000/igb_pf.c b/src/spdk/dpdk/drivers/net/e1000/igb_pf.c new file mode 100644 index 00000000..b9f2e539 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/igb_pf.c @@ -0,0 +1,512 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2010-2016 Intel Corporation + */ + +#include <stdio.h> +#include <errno.h> +#include <stdint.h> +#include <stdlib.h> +#include <unistd.h> +#include <stdarg.h> +#include <inttypes.h> + +#include <rte_bus_pci.h> +#include <rte_interrupts.h> +#include <rte_log.h> +#include <rte_debug.h> +#include <rte_eal.h> +#include <rte_ether.h> +#include <rte_ethdev_driver.h> +#include <rte_memcpy.h> +#include <rte_malloc.h> +#include <rte_random.h> + +#include "base/e1000_defines.h" +#include "base/e1000_regs.h" +#include "base/e1000_hw.h" +#include "e1000_ethdev.h" + +static inline uint16_t +dev_num_vf(struct rte_eth_dev *eth_dev) +{ + struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); + + return pci_dev->max_vfs; +} + +static inline +int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num) +{ + unsigned char vf_mac_addr[ETHER_ADDR_LEN]; + struct e1000_vf_info *vfinfo = + *E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private); + uint16_t vfn; + + for (vfn = 0; vfn < vf_num; vfn++) { + eth_random_addr(vf_mac_addr); + /* keep the random address as default */ + memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr, + ETHER_ADDR_LEN); + } + + return 0; +} + +static inline int +igb_mb_intr_setup(struct rte_eth_dev *dev) +{ + struct e1000_interrupt *intr = + E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); + + intr->mask |= E1000_ICR_VMMB; + + return 0; +} + +void igb_pf_host_init(struct rte_eth_dev *eth_dev) +{ + struct e1000_vf_info **vfinfo = + E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private); + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); + uint16_t vf_num; + uint8_t nb_queue; + + RTE_ETH_DEV_SRIOV(eth_dev).active = 0; + if (0 == (vf_num = dev_num_vf(eth_dev))) + return; + + if (hw->mac.type == e1000_i350) + nb_queue = 1; + else if(hw->mac.type == e1000_82576) + /* per datasheet, it should be 2, but 1 seems correct */ + nb_queue = 1; + else + return; + + *vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0); + if (*vfinfo == NULL) + rte_panic("Cannot allocate memory for private VF data\n"); + + RTE_ETH_DEV_SRIOV(eth_dev).active = ETH_8_POOLS; + RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue; + RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num; + RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue); + + igb_vf_perm_addr_gen(eth_dev, vf_num); + + /* set mb interrupt mask */ + igb_mb_intr_setup(eth_dev); + + return; +} + +void igb_pf_host_uninit(struct rte_eth_dev *dev) +{ + struct e1000_vf_info **vfinfo; + uint16_t vf_num; + + PMD_INIT_FUNC_TRACE(); + + vfinfo = E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private); + + RTE_ETH_DEV_SRIOV(dev).active = 0; + RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 0; + RTE_ETH_DEV_SRIOV(dev).def_vmdq_idx = 0; + RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx = 0; + + vf_num = dev_num_vf(dev); + if (vf_num == 0) + return; + + rte_free(*vfinfo); + *vfinfo = NULL; +} + +#define E1000_RAH_POOLSEL_SHIFT (18) +int igb_pf_host_configure(struct rte_eth_dev *eth_dev) +{ + uint32_t vtctl; + uint16_t vf_num; + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); + uint32_t vlanctrl; + int i; + uint32_t rah; + + if (0 == (vf_num = dev_num_vf(eth_dev))) + return -1; + + /* enable VMDq and set the default pool for PF */ + vtctl = E1000_READ_REG(hw, E1000_VT_CTL); + vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK; + vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx + << E1000_VT_CTL_DEFAULT_POOL_SHIFT; + vtctl |= E1000_VT_CTL_VM_REPL_EN; + E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl); + + /* Enable pools reserved to PF only */ + E1000_WRITE_REG(hw, E1000_VFRE, (~0U) << vf_num); + E1000_WRITE_REG(hw, E1000_VFTE, (~0U) << vf_num); + + /* PFDMA Tx General Switch Control Enables VMDQ loopback */ + if (hw->mac.type == e1000_i350) + E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN); + else + E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN); + + /* clear VMDq map to perment rar 0 */ + rah = E1000_READ_REG(hw, E1000_RAH(0)); + rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT); + E1000_WRITE_REG(hw, E1000_RAH(0), rah); + + /* clear VMDq map to scan rar 32 */ + rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count)); + rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT); + E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah); + + /* set VMDq map to default PF pool */ + rah = E1000_READ_REG(hw, E1000_RAH(0)); + rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx + + E1000_RAH_POOLSEL_SHIFT)); + E1000_WRITE_REG(hw, E1000_RAH(0), rah); + + /* + * enable vlan filtering and allow all vlan tags through + */ + vlanctrl = E1000_READ_REG(hw, E1000_RCTL); + vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */ + E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl); + + /* VFTA - enable all vlan filters */ + for (i = 0; i < IGB_VFTA_SIZE; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF); + } + + /* Enable/Disable MAC Anti-Spoofing */ + e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num); + + return 0; +} + +static void +set_rx_mode(struct rte_eth_dev *dev) +{ + struct rte_eth_dev_data *dev_data = dev->data; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE; + uint16_t vfn = dev_num_vf(dev); + + /* Check for Promiscuous and All Multicast modes */ + fctrl = E1000_READ_REG(hw, E1000_RCTL); + + /* set all bits that we expect to always be set */ + fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */ + fctrl |= E1000_RCTL_BAM; + + /* clear the bits we are changing the status of */ + fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); + + if (dev_data->promiscuous) { + fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); + vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); + } else { + if (dev_data->all_multicast) { + fctrl |= E1000_RCTL_MPE; + vmolr |= E1000_VMOLR_MPME; + } else { + vmolr |= E1000_VMOLR_ROMPE; + } + } + + if ((hw->mac.type == e1000_82576) || + (hw->mac.type == e1000_i350)) { + vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) & + ~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE | + E1000_VMOLR_ROPE); + E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr); + } + + E1000_WRITE_REG(hw, E1000_RCTL, fctrl); +} + +static inline void +igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vf_info *vfinfo = + *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); + uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf)); + + vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | + E1000_VMOLR_BAM | E1000_VMOLR_AUPE); + E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr); + + E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0); + + /* reset multicast table array for vf */ + vfinfo[vf].num_vf_mc_hashes = 0; + + /* reset rx mode */ + set_rx_mode(dev); +} + +static inline void +igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t reg; + + /* enable transmit and receive for vf */ + reg = E1000_READ_REG(hw, E1000_VFTE); + reg |= (reg | (1 << vf)); + E1000_WRITE_REG(hw, E1000_VFTE, reg); + + reg = E1000_READ_REG(hw, E1000_VFRE); + reg |= (reg | (1 << vf)); + E1000_WRITE_REG(hw, E1000_VFRE, reg); + + igb_vf_reset_event(dev, vf); +} + +static int +igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vf_info *vfinfo = + *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); + unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses; + int rar_entry = hw->mac.rar_entry_count - (vf + 1); + uint8_t *new_mac = (uint8_t *)(&msgbuf[1]); + uint32_t rah; + + igb_vf_reset_msg(dev, vf); + + hw->mac.ops.rar_set(hw, vf_mac, rar_entry); + rah = E1000_READ_REG(hw, E1000_RAH(rar_entry)); + rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT)); + E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah); + + /* reply to reset with ack and vf mac address */ + msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; + rte_memcpy(new_mac, vf_mac, ETHER_ADDR_LEN); + e1000_write_mbx(hw, msgbuf, 3, vf); + + return 0; +} + +static int +igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vf_info *vfinfo = + *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); + int rar_entry = hw->mac.rar_entry_count - (vf + 1); + uint8_t *new_mac = (uint8_t *)(&msgbuf[1]); + int rah; + + if (is_unicast_ether_addr((struct ether_addr *)new_mac)) { + if (!is_zero_ether_addr((struct ether_addr *)new_mac)) + rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac, + sizeof(vfinfo[vf].vf_mac_addresses)); + hw->mac.ops.rar_set(hw, new_mac, rar_entry); + rah = E1000_READ_REG(hw, E1000_RAH(rar_entry)); + rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + vf)); + E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah); + return 0; + } + return -1; +} + +static int +igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf) +{ + int i; + uint32_t vector_bit; + uint32_t vector_reg; + uint32_t mta_reg; + int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> + E1000_VT_MSGINFO_SHIFT; + uint16_t *hash_list = (uint16_t *)&msgbuf[1]; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vf_info *vfinfo = + *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); + + /* only so many hash values supported */ + entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES); + + /* + * salt away the number of multi cast addresses assigned + * to this VF for later use to restore when the PF multi cast + * list changes + */ + vfinfo->num_vf_mc_hashes = (uint16_t)entries; + + /* + * VFs are limited to using the MTA hash table for their multicast + * addresses + */ + for (i = 0; i < entries; i++) { + vfinfo->vf_mc_hashes[i] = hash_list[i]; + } + + for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) { + vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F; + vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F; + mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg); + mta_reg |= (1 << vector_bit); + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg); + } + + return 0; +} + +static int +igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf) +{ + int add, vid; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct e1000_vf_info *vfinfo = + *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); + uint32_t vid_idx, vid_bit, vfta; + + add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) + >> E1000_VT_MSGINFO_SHIFT; + vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); + + if (add) + vfinfo[vf].vlan_count++; + else if (vfinfo[vf].vlan_count) + vfinfo[vf].vlan_count--; + + vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) & + E1000_VFTA_ENTRY_MASK); + vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK)); + vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx); + if (add) + vfta |= vid_bit; + else + vfta &= ~vid_bit; + + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta); + E1000_WRITE_FLUSH(hw); + + return 0; +} + +static int +igb_vf_set_rlpml(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint16_t rlpml = msgbuf[1] & E1000_VMOLR_RLPML_MASK; + uint32_t max_frame = rlpml + ETHER_HDR_LEN + ETHER_CRC_LEN; + uint32_t vmolr; + + if ((max_frame < ETHER_MIN_LEN) || (max_frame > ETHER_MAX_JUMBO_FRAME_LEN)) + return -1; + + vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf)); + + vmolr &= ~E1000_VMOLR_RLPML_MASK; + vmolr |= rlpml; + + /* Enable Long Packet support */ + vmolr |= E1000_VMOLR_LPE; + + E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr); + E1000_WRITE_FLUSH(hw); + + return 0; +} + +static int +igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf) +{ + uint16_t mbx_size = E1000_VFMAILBOX_SIZE; + uint32_t msgbuf[E1000_VFMAILBOX_SIZE]; + int32_t retval; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf); + if (retval) { + PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf); + return retval; + } + + /* do nothing with the message already processed */ + if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) + return retval; + + /* flush the ack before we write any messages back */ + E1000_WRITE_FLUSH(hw); + + /* perform VF reset */ + if (msgbuf[0] == E1000_VF_RESET) { + return igb_vf_reset(dev, vf, msgbuf); + } + + /* check & process VF to PF mailbox message */ + switch ((msgbuf[0] & 0xFFFF)) { + case E1000_VF_SET_MAC_ADDR: + retval = igb_vf_set_mac_addr(dev, vf, msgbuf); + break; + case E1000_VF_SET_MULTICAST: + retval = igb_vf_set_multicast(dev, vf, msgbuf); + break; + case E1000_VF_SET_LPE: + retval = igb_vf_set_rlpml(dev, vf, msgbuf); + break; + case E1000_VF_SET_VLAN: + retval = igb_vf_set_vlan(dev, vf, msgbuf); + break; + default: + PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x", + (unsigned) msgbuf[0]); + retval = E1000_ERR_MBX; + break; + } + + /* response the VF according to the message process result */ + if (retval) + msgbuf[0] |= E1000_VT_MSGTYPE_NACK; + else + msgbuf[0] |= E1000_VT_MSGTYPE_ACK; + + msgbuf[0] |= E1000_VT_MSGTYPE_CTS; + + e1000_write_mbx(hw, msgbuf, 1, vf); + + return retval; +} + +static inline void +igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf) +{ + uint32_t msg = E1000_VT_MSGTYPE_NACK; + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + e1000_write_mbx(hw, &msg, 1, vf); +} + +void igb_pf_mbx_process(struct rte_eth_dev *eth_dev) +{ + uint16_t vf; + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); + + for (vf = 0; vf < dev_num_vf(eth_dev); vf++) { + /* check & process vf function level reset */ + if (!e1000_check_for_rst(hw, vf)) + igb_vf_reset_event(eth_dev, vf); + + /* check & process vf mailbox messages */ + if (!e1000_check_for_msg(hw, vf)) + igb_rcv_msg_from_vf(eth_dev, vf); + + /* check & process acks from vf */ + if (!e1000_check_for_ack(hw, vf)) + igb_rcv_ack_from_vf(eth_dev, vf); + } +} diff --git a/src/spdk/dpdk/drivers/net/e1000/igb_regs.h b/src/spdk/dpdk/drivers/net/e1000/igb_regs.h new file mode 100644 index 00000000..cacd49c7 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/igb_regs.h @@ -0,0 +1,194 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2015 Intel Corporation + */ +#ifndef _IGB_REGS_H_ +#define _IGB_REGS_H_ + +#include "e1000_ethdev.h" + +struct reg_info { + uint32_t base_addr; + uint32_t count; + uint32_t stride; + const char *name; +}; + +static const struct reg_info igb_regs_general[] = { + {E1000_CTRL, 1, 1, "E1000_CTRL"}, + {E1000_STATUS, 1, 1, "E1000_STATUS"}, + {E1000_CTRL_EXT, 1, 1, "E1000_CTRL_EXT"}, + {E1000_MDIC, 1, 1, "E1000_MDIC"}, + {E1000_SCTL, 1, 1, "E1000_SCTL"}, + {E1000_CONNSW, 1, 1, "E1000_CONNSW"}, + {E1000_VET, 1, 1, "E1000_VET"}, + {E1000_LEDCTL, 1, 1, "E1000_LEDCTL"}, + {E1000_PBA, 1, 1, "E1000_PBA"}, + {E1000_PBS, 1, 1, "E1000_PBS"}, + {E1000_FRTIMER, 1, 1, "E1000_FRTIMER"}, + {E1000_TCPTIMER, 1, 1, "E1000_TCPTIMER"}, + {0, 0, 0, ""} +}; + +static const struct reg_info igb_regs_nvm[] = { + {E1000_EECD, 1, 1, "E1000_EECD"}, + {0, 0, 0, ""} +}; + +static const struct reg_info igb_regs_interrupt[] = { + {E1000_EICS, 1, 1, "E1000_EICS"}, + {E1000_EIMS, 1, 1, "E1000_EIMS"}, + {E1000_EIMC, 1, 1, "E1000_EIMC"}, + {E1000_EIAC, 1, 1, "E1000_EIAC"}, + {E1000_EIAM, 1, 1, "E1000_EIAM"}, + {E1000_ICS, 1, 1, "E1000_ICS"}, + {E1000_IMS, 1, 1, "E1000_IMS"}, + {E1000_IMC, 1, 1, "E1000_IMC"}, + {E1000_IAC, 1, 1, "E1000_IAC"}, + {E1000_IAM, 1, 1, "E1000_IAM"}, + {E1000_IMIRVP, 1, 1, "E1000_IMIRVP"}, + {E1000_EITR(0), 10, 4, "E1000_EITR"}, + {E1000_IMIR(0), 8, 4, "E1000_IMIR"}, + {E1000_IMIREXT(0), 8, 4, "E1000_IMIREXT"}, + {0, 0, 0, ""} +}; + +static const struct reg_info igb_regs_fctl[] = { + {E1000_FCAL, 1, 1, "E1000_FCAL"}, + {E1000_FCAH, 1, 1, "E1000_FCAH"}, + {E1000_FCTTV, 1, 1, "E1000_FCTTV"}, + {E1000_FCRTL, 1, 1, "E1000_FCRTL"}, + {E1000_FCRTH, 1, 1, "E1000_FCRTH"}, + {E1000_FCRTV, 1, 1, "E1000_FCRTV"}, + {0, 0, 0, ""} +}; + +static const struct reg_info igb_regs_rxdma[] = { + {E1000_RDBAL(0), 4, 0x100, "E1000_RDBAL"}, + {E1000_RDBAH(0), 4, 0x100, "E1000_RDBAH"}, + {E1000_RDLEN(0), 4, 0x100, "E1000_RDLEN"}, + {E1000_RDH(0), 4, 0x100, "E1000_RDH"}, + {E1000_RDT(0), 4, 0x100, "E1000_RDT"}, + {E1000_RXCTL(0), 4, 0x100, "E1000_RXCTL"}, + {E1000_SRRCTL(0), 4, 0x100, "E1000_SRRCTL"}, + {E1000_DCA_RXCTRL(0), 4, 0x100, "E1000_DCA_RXCTRL"}, + {0, 0, 0, ""} +}; + +static const struct reg_info igb_regs_rx[] = { + {E1000_RCTL, 1, 1, "E1000_RCTL"}, + {E1000_RXCSUM, 1, 1, "E1000_RXCSUM"}, + {E1000_RLPML, 1, 1, "E1000_RLPML"}, + {E1000_RFCTL, 1, 1, "E1000_RFCTL"}, + {E1000_MRQC, 1, 1, "E1000_MRQC"}, + {E1000_VT_CTL, 1, 1, "E1000_VT_CTL"}, + {E1000_RAL(0), 16, 8, "E1000_RAL"}, + {E1000_RAH(0), 16, 8, "E1000_RAH"}, + {0, 0, 0, ""} +}; + +static const struct reg_info igb_regs_tx[] = { + {E1000_TCTL, 1, 1, "E1000_TCTL"}, + {E1000_TCTL_EXT, 1, 1, "E1000_TCTL_EXT"}, + {E1000_TIPG, 1, 1, "E1000_TIPG"}, + {E1000_DTXCTL, 1, 1, "E1000_DTXCTL"}, + {E1000_TDBAL(0), 4, 0x100, "E1000_TDBAL"}, + {E1000_TDBAH(0), 4, 0x100, "E1000_TDBAH"}, + {E1000_TDLEN(0), 4, 0x100, "E1000_TDLEN"}, + {E1000_TDH(0), 4, 0x100, "E1000_TDLEN"}, + {E1000_TDT(0), 4, 0x100, "E1000_TDT"}, + {E1000_TXDCTL(0), 4, 0x100, "E1000_TXDCTL"}, + {E1000_TDWBAL(0), 4, 0x100, "E1000_TDWBAL"}, + {E1000_TDWBAH(0), 4, 0x100, "E1000_TDWBAH"}, + {E1000_DCA_TXCTRL(0), 4, 0x100, "E1000_DCA_TXCTRL"}, + {E1000_TDFH, 1, 1, "E1000_TDFH"}, + {E1000_TDFT, 1, 1, "E1000_TDFT"}, + {E1000_TDFHS, 1, 1, "E1000_TDFHS"}, + {E1000_TDFPC, 1, 1, "E1000_TDFPC"}, + {0, 0, 0, ""} +}; + +static const struct reg_info igb_regs_wakeup[] = { + {E1000_WUC, 1, 1, "E1000_WUC"}, + {E1000_WUFC, 1, 1, "E1000_WUFC"}, + {E1000_WUS, 1, 1, "E1000_WUS"}, + {E1000_IPAV, 1, 1, "E1000_IPAV"}, + {E1000_WUPL, 1, 1, "E1000_WUPL"}, + {E1000_IP4AT_REG(0), 4, 8, "E1000_IP4AT_REG"}, + {E1000_IP6AT_REG(0), 4, 4, "E1000_IP6AT_REG"}, + {E1000_WUPM_REG(0), 4, 4, "E1000_WUPM_REG"}, + {E1000_FFMT_REG(0), 4, 8, "E1000_FFMT_REG"}, + {E1000_FFVT_REG(0), 4, 8, "E1000_FFVT_REG"}, + {E1000_FFLT_REG(0), 4, 8, "E1000_FFLT_REG"}, + {0, 0, 0, ""} +}; + +static const struct reg_info igb_regs_mac[] = { + {E1000_PCS_CFG0, 1, 1, "E1000_PCS_CFG0"}, + {E1000_PCS_LCTL, 1, 1, "E1000_PCS_LCTL"}, + {E1000_PCS_LSTAT, 1, 1, "E1000_PCS_LSTAT"}, + {E1000_PCS_ANADV, 1, 1, "E1000_PCS_ANADV"}, + {E1000_PCS_LPAB, 1, 1, "E1000_PCS_LPAB"}, + {E1000_PCS_NPTX, 1, 1, "E1000_PCS_NPTX"}, + {E1000_PCS_LPABNP, 1, 1, "E1000_PCS_LPABNP"}, + {0, 0, 0, ""} +}; + +static const struct reg_info *igb_regs[] = { + igb_regs_general, + igb_regs_nvm, + igb_regs_interrupt, + igb_regs_fctl, + igb_regs_rxdma, + igb_regs_rx, + igb_regs_tx, + igb_regs_wakeup, + igb_regs_mac, + NULL}; + +/* FIXME: reading igb_regs_interrupt results side-effect which doesn't + * work with VFIO; re-install igb_regs_interrupt once issue is resolved. + */ +static const struct reg_info *igbvf_regs[] = { + igb_regs_general, + igb_regs_rxdma, + igb_regs_tx, + NULL}; + +static inline int +igb_read_regs(struct e1000_hw *hw, const struct reg_info *reg, + uint32_t *reg_buf) +{ + unsigned int i; + + for (i = 0; i < reg->count; i++) { + reg_buf[i] = E1000_READ_REG(hw, + reg->base_addr + i * reg->stride); + } + return reg->count; +}; + +static inline int +igb_reg_group_count(const struct reg_info *regs) +{ + int count = 0; + int i = 0; + + while (regs[i].count) + count += regs[i++].count; + return count; +}; + +static inline int +igb_read_regs_group(struct rte_eth_dev *dev, uint32_t *reg_buf, + const struct reg_info *regs) +{ + int count = 0; + int i = 0; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + while (regs[i].count) + count += igb_read_regs(hw, ®s[i++], ®_buf[count]); + return count; +}; + +#endif /* _IGB_REGS_H_ */ diff --git a/src/spdk/dpdk/drivers/net/e1000/igb_rxtx.c b/src/spdk/dpdk/drivers/net/e1000/igb_rxtx.c new file mode 100644 index 00000000..b955068a --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/igb_rxtx.c @@ -0,0 +1,2952 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2010-2016 Intel Corporation + */ + +#include <sys/queue.h> + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <errno.h> +#include <stdint.h> +#include <stdarg.h> +#include <inttypes.h> + +#include <rte_interrupts.h> +#include <rte_byteorder.h> +#include <rte_common.h> +#include <rte_log.h> +#include <rte_debug.h> +#include <rte_pci.h> +#include <rte_memory.h> +#include <rte_memcpy.h> +#include <rte_memzone.h> +#include <rte_launch.h> +#include <rte_eal.h> +#include <rte_per_lcore.h> +#include <rte_lcore.h> +#include <rte_atomic.h> +#include <rte_branch_prediction.h> +#include <rte_mempool.h> +#include <rte_malloc.h> +#include <rte_mbuf.h> +#include <rte_ether.h> +#include <rte_ethdev_driver.h> +#include <rte_prefetch.h> +#include <rte_udp.h> +#include <rte_tcp.h> +#include <rte_sctp.h> +#include <rte_net.h> +#include <rte_string_fns.h> + +#include "e1000_logs.h" +#include "base/e1000_api.h" +#include "e1000_ethdev.h" + +#ifdef RTE_LIBRTE_IEEE1588 +#define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST +#else +#define IGB_TX_IEEE1588_TMST 0 +#endif +/* Bit Mask to indicate what bits required for building TX context */ +#define IGB_TX_OFFLOAD_MASK ( \ + PKT_TX_VLAN_PKT | \ + PKT_TX_IP_CKSUM | \ + PKT_TX_L4_MASK | \ + PKT_TX_TCP_SEG | \ + IGB_TX_IEEE1588_TMST) + +#define IGB_TX_OFFLOAD_NOTSUP_MASK \ + (PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK) + +/** + * Structure associated with each descriptor of the RX ring of a RX queue. + */ +struct igb_rx_entry { + struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */ +}; + +/** + * Structure associated with each descriptor of the TX ring of a TX queue. + */ +struct igb_tx_entry { + struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */ + uint16_t next_id; /**< Index of next descriptor in ring. */ + uint16_t last_id; /**< Index of last scattered descriptor. */ +}; + +/** + * rx queue flags + */ +enum igb_rxq_flags { + IGB_RXQ_FLAG_LB_BSWAP_VLAN = 0x01, +}; + +/** + * Structure associated with each RX queue. + */ +struct igb_rx_queue { + struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */ + volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */ + uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */ + volatile uint32_t *rdt_reg_addr; /**< RDT register address. */ + volatile uint32_t *rdh_reg_addr; /**< RDH register address. */ + struct igb_rx_entry *sw_ring; /**< address of RX software ring. */ + struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */ + struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */ + uint16_t nb_rx_desc; /**< number of RX descriptors. */ + uint16_t rx_tail; /**< current value of RDT register. */ + uint16_t nb_rx_hold; /**< number of held free RX desc. */ + uint16_t rx_free_thresh; /**< max free RX desc to hold. */ + uint16_t queue_id; /**< RX queue index. */ + uint16_t reg_idx; /**< RX queue register index. */ + uint16_t port_id; /**< Device port identifier. */ + uint8_t pthresh; /**< Prefetch threshold register. */ + uint8_t hthresh; /**< Host threshold register. */ + uint8_t wthresh; /**< Write-back threshold register. */ + uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */ + uint8_t drop_en; /**< If not 0, set SRRCTL.Drop_En. */ + uint32_t flags; /**< RX flags. */ + uint64_t offloads; /**< offloads of DEV_RX_OFFLOAD_* */ +}; + +/** + * Hardware context number + */ +enum igb_advctx_num { + IGB_CTX_0 = 0, /**< CTX0 */ + IGB_CTX_1 = 1, /**< CTX1 */ + IGB_CTX_NUM = 2, /**< CTX_NUM */ +}; + +/** Offload features */ +union igb_tx_offload { + uint64_t data; + struct { + uint64_t l3_len:9; /**< L3 (IP) Header Length. */ + uint64_t l2_len:7; /**< L2 (MAC) Header Length. */ + uint64_t vlan_tci:16; /**< VLAN Tag Control Identifier(CPU order). */ + uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */ + uint64_t tso_segsz:16; /**< TCP TSO segment size. */ + + /* uint64_t unused:8; */ + }; +}; + +/* + * Compare mask for igb_tx_offload.data, + * should be in sync with igb_tx_offload layout. + * */ +#define TX_MACIP_LEN_CMP_MASK 0x000000000000FFFFULL /**< L2L3 header mask. */ +#define TX_VLAN_CMP_MASK 0x00000000FFFF0000ULL /**< Vlan mask. */ +#define TX_TCP_LEN_CMP_MASK 0x000000FF00000000ULL /**< TCP header mask. */ +#define TX_TSO_MSS_CMP_MASK 0x00FFFF0000000000ULL /**< TSO segsz mask. */ +/** Mac + IP + TCP + Mss mask. */ +#define TX_TSO_CMP_MASK \ + (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK) + +/** + * Strucutre to check if new context need be built + */ +struct igb_advctx_info { + uint64_t flags; /**< ol_flags related to context build. */ + /** tx offload: vlan, tso, l2-l3-l4 lengths. */ + union igb_tx_offload tx_offload; + /** compare mask for tx offload. */ + union igb_tx_offload tx_offload_mask; +}; + +/** + * Structure associated with each TX queue. + */ +struct igb_tx_queue { + volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */ + uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */ + struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */ + volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */ + uint32_t txd_type; /**< Device-specific TXD type */ + uint16_t nb_tx_desc; /**< number of TX descriptors. */ + uint16_t tx_tail; /**< Current value of TDT register. */ + uint16_t tx_head; + /**< Index of first used TX descriptor. */ + uint16_t queue_id; /**< TX queue index. */ + uint16_t reg_idx; /**< TX queue register index. */ + uint16_t port_id; /**< Device port identifier. */ + uint8_t pthresh; /**< Prefetch threshold register. */ + uint8_t hthresh; /**< Host threshold register. */ + uint8_t wthresh; /**< Write-back threshold register. */ + uint32_t ctx_curr; + /**< Current used hardware descriptor. */ + uint32_t ctx_start; + /**< Start context position for transmit queue. */ + struct igb_advctx_info ctx_cache[IGB_CTX_NUM]; + /**< Hardware context history.*/ + uint64_t offloads; /**< offloads of DEV_TX_OFFLOAD_* */ +}; + +#if 1 +#define RTE_PMD_USE_PREFETCH +#endif + +#ifdef RTE_PMD_USE_PREFETCH +#define rte_igb_prefetch(p) rte_prefetch0(p) +#else +#define rte_igb_prefetch(p) do {} while(0) +#endif + +#ifdef RTE_PMD_PACKET_PREFETCH +#define rte_packet_prefetch(p) rte_prefetch1(p) +#else +#define rte_packet_prefetch(p) do {} while(0) +#endif + +/* + * Macro for VMDq feature for 1 GbE NIC. + */ +#define E1000_VMOLR_SIZE (8) +#define IGB_TSO_MAX_HDRLEN (512) +#define IGB_TSO_MAX_MSS (9216) + +/********************************************************************* + * + * TX function + * + **********************************************************************/ + +/* + *There're some limitations in hardware for TCP segmentation offload. We + *should check whether the parameters are valid. + */ +static inline uint64_t +check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para) +{ + if (!(ol_req & PKT_TX_TCP_SEG)) + return ol_req; + if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len + + ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) { + ol_req &= ~PKT_TX_TCP_SEG; + ol_req |= PKT_TX_TCP_CKSUM; + } + return ol_req; +} + +/* + * Advanced context descriptor are almost same between igb/ixgbe + * This is a separate function, looking for optimization opportunity here + * Rework required to go with the pre-defined values. + */ + +static inline void +igbe_set_xmit_ctx(struct igb_tx_queue* txq, + volatile struct e1000_adv_tx_context_desc *ctx_txd, + uint64_t ol_flags, union igb_tx_offload tx_offload) +{ + uint32_t type_tucmd_mlhl; + uint32_t mss_l4len_idx; + uint32_t ctx_idx, ctx_curr; + uint32_t vlan_macip_lens; + union igb_tx_offload tx_offload_mask; + + ctx_curr = txq->ctx_curr; + ctx_idx = ctx_curr + txq->ctx_start; + + tx_offload_mask.data = 0; + type_tucmd_mlhl = 0; + + /* Specify which HW CTX to upload. */ + mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT); + + if (ol_flags & PKT_TX_VLAN_PKT) + tx_offload_mask.data |= TX_VLAN_CMP_MASK; + + /* check if TCP segmentation required for this packet */ + if (ol_flags & PKT_TX_TCP_SEG) { + /* implies IP cksum in IPv4 */ + if (ol_flags & PKT_TX_IP_CKSUM) + type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 | + E1000_ADVTXD_TUCMD_L4T_TCP | + E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; + else + type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 | + E1000_ADVTXD_TUCMD_L4T_TCP | + E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; + + tx_offload_mask.data |= TX_TSO_CMP_MASK; + mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT; + mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT; + } else { /* no TSO, check if hardware checksum is needed */ + if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK)) + tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK; + + if (ol_flags & PKT_TX_IP_CKSUM) + type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4; + + switch (ol_flags & PKT_TX_L4_MASK) { + case PKT_TX_UDP_CKSUM: + type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP | + E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; + mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT; + break; + case PKT_TX_TCP_CKSUM: + type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP | + E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; + mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT; + break; + case PKT_TX_SCTP_CKSUM: + type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP | + E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; + mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT; + break; + default: + type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV | + E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; + break; + } + } + + txq->ctx_cache[ctx_curr].flags = ol_flags; + txq->ctx_cache[ctx_curr].tx_offload.data = + tx_offload_mask.data & tx_offload.data; + txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask; + + ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl); + vlan_macip_lens = (uint32_t)tx_offload.data; + ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens); + ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx); + ctx_txd->seqnum_seed = 0; +} + +/* + * Check which hardware context can be used. Use the existing match + * or create a new context descriptor. + */ +static inline uint32_t +what_advctx_update(struct igb_tx_queue *txq, uint64_t flags, + union igb_tx_offload tx_offload) +{ + /* If match with the current context */ + if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) && + (txq->ctx_cache[txq->ctx_curr].tx_offload.data == + (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) { + return txq->ctx_curr; + } + + /* If match with the second context */ + txq->ctx_curr ^= 1; + if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) && + (txq->ctx_cache[txq->ctx_curr].tx_offload.data == + (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) { + return txq->ctx_curr; + } + + /* Mismatch, use the previous context */ + return IGB_CTX_NUM; +} + +static inline uint32_t +tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags) +{ + static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM}; + static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM}; + uint32_t tmp; + + tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM]; + tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0]; + tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0]; + return tmp; +} + +static inline uint32_t +tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags) +{ + uint32_t cmdtype; + static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE}; + static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE}; + cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0]; + cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0]; + return cmdtype; +} + +uint16_t +eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + struct igb_tx_queue *txq; + struct igb_tx_entry *sw_ring; + struct igb_tx_entry *txe, *txn; + volatile union e1000_adv_tx_desc *txr; + volatile union e1000_adv_tx_desc *txd; + struct rte_mbuf *tx_pkt; + struct rte_mbuf *m_seg; + uint64_t buf_dma_addr; + uint32_t olinfo_status; + uint32_t cmd_type_len; + uint32_t pkt_len; + uint16_t slen; + uint64_t ol_flags; + uint16_t tx_end; + uint16_t tx_id; + uint16_t tx_last; + uint16_t nb_tx; + uint64_t tx_ol_req; + uint32_t new_ctx = 0; + uint32_t ctx = 0; + union igb_tx_offload tx_offload = {0}; + + txq = tx_queue; + sw_ring = txq->sw_ring; + txr = txq->tx_ring; + tx_id = txq->tx_tail; + txe = &sw_ring[tx_id]; + + for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { + tx_pkt = *tx_pkts++; + pkt_len = tx_pkt->pkt_len; + + RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf); + + /* + * The number of descriptors that must be allocated for a + * packet is the number of segments of that packet, plus 1 + * Context Descriptor for the VLAN Tag Identifier, if any. + * Determine the last TX descriptor to allocate in the TX ring + * for the packet, starting from the current position (tx_id) + * in the ring. + */ + tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1); + + ol_flags = tx_pkt->ol_flags; + tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK; + + /* If a Context Descriptor need be built . */ + if (tx_ol_req) { + tx_offload.l2_len = tx_pkt->l2_len; + tx_offload.l3_len = tx_pkt->l3_len; + tx_offload.l4_len = tx_pkt->l4_len; + tx_offload.vlan_tci = tx_pkt->vlan_tci; + tx_offload.tso_segsz = tx_pkt->tso_segsz; + tx_ol_req = check_tso_para(tx_ol_req, tx_offload); + + ctx = what_advctx_update(txq, tx_ol_req, tx_offload); + /* Only allocate context descriptor if required*/ + new_ctx = (ctx == IGB_CTX_NUM); + ctx = txq->ctx_curr + txq->ctx_start; + tx_last = (uint16_t) (tx_last + new_ctx); + } + if (tx_last >= txq->nb_tx_desc) + tx_last = (uint16_t) (tx_last - txq->nb_tx_desc); + + PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u" + " tx_first=%u tx_last=%u", + (unsigned) txq->port_id, + (unsigned) txq->queue_id, + (unsigned) pkt_len, + (unsigned) tx_id, + (unsigned) tx_last); + + /* + * Check if there are enough free descriptors in the TX ring + * to transmit the next packet. + * This operation is based on the two following rules: + * + * 1- Only check that the last needed TX descriptor can be + * allocated (by construction, if that descriptor is free, + * all intermediate ones are also free). + * + * For this purpose, the index of the last TX descriptor + * used for a packet (the "last descriptor" of a packet) + * is recorded in the TX entries (the last one included) + * that are associated with all TX descriptors allocated + * for that packet. + * + * 2- Avoid to allocate the last free TX descriptor of the + * ring, in order to never set the TDT register with the + * same value stored in parallel by the NIC in the TDH + * register, which makes the TX engine of the NIC enter + * in a deadlock situation. + * + * By extension, avoid to allocate a free descriptor that + * belongs to the last set of free descriptors allocated + * to the same packet previously transmitted. + */ + + /* + * The "last descriptor" of the previously sent packet, if any, + * which used the last descriptor to allocate. + */ + tx_end = sw_ring[tx_last].last_id; + + /* + * The next descriptor following that "last descriptor" in the + * ring. + */ + tx_end = sw_ring[tx_end].next_id; + + /* + * The "last descriptor" associated with that next descriptor. + */ + tx_end = sw_ring[tx_end].last_id; + + /* + * Check that this descriptor is free. + */ + if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) { + if (nb_tx == 0) + return 0; + goto end_of_tx; + } + + /* + * Set common flags of all TX Data Descriptors. + * + * The following bits must be set in all Data Descriptors: + * - E1000_ADVTXD_DTYP_DATA + * - E1000_ADVTXD_DCMD_DEXT + * + * The following bits must be set in the first Data Descriptor + * and are ignored in the other ones: + * - E1000_ADVTXD_DCMD_IFCS + * - E1000_ADVTXD_MAC_1588 + * - E1000_ADVTXD_DCMD_VLE + * + * The following bits must only be set in the last Data + * Descriptor: + * - E1000_TXD_CMD_EOP + * + * The following bits can be set in any Data Descriptor, but + * are only set in the last Data Descriptor: + * - E1000_TXD_CMD_RS + */ + cmd_type_len = txq->txd_type | + E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT; + if (tx_ol_req & PKT_TX_TCP_SEG) + pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len); + olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT); +#if defined(RTE_LIBRTE_IEEE1588) + if (ol_flags & PKT_TX_IEEE1588_TMST) + cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP; +#endif + if (tx_ol_req) { + /* Setup TX Advanced context descriptor if required */ + if (new_ctx) { + volatile struct e1000_adv_tx_context_desc * + ctx_txd; + + ctx_txd = (volatile struct + e1000_adv_tx_context_desc *) + &txr[tx_id]; + + txn = &sw_ring[txe->next_id]; + RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf); + + if (txe->mbuf != NULL) { + rte_pktmbuf_free_seg(txe->mbuf); + txe->mbuf = NULL; + } + + igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload); + + txe->last_id = tx_last; + tx_id = txe->next_id; + txe = txn; + } + + /* Setup the TX Advanced Data Descriptor */ + cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req); + olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req); + olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT); + } + + m_seg = tx_pkt; + do { + txn = &sw_ring[txe->next_id]; + txd = &txr[tx_id]; + + if (txe->mbuf != NULL) + rte_pktmbuf_free_seg(txe->mbuf); + txe->mbuf = m_seg; + + /* + * Set up transmit descriptor. + */ + slen = (uint16_t) m_seg->data_len; + buf_dma_addr = rte_mbuf_data_iova(m_seg); + txd->read.buffer_addr = + rte_cpu_to_le_64(buf_dma_addr); + txd->read.cmd_type_len = + rte_cpu_to_le_32(cmd_type_len | slen); + txd->read.olinfo_status = + rte_cpu_to_le_32(olinfo_status); + txe->last_id = tx_last; + tx_id = txe->next_id; + txe = txn; + m_seg = m_seg->next; + } while (m_seg != NULL); + + /* + * The last packet data descriptor needs End Of Packet (EOP) + * and Report Status (RS). + */ + txd->read.cmd_type_len |= + rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS); + } + end_of_tx: + rte_wmb(); + + /* + * Set the Transmit Descriptor Tail (TDT). + */ + E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id); + PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", + (unsigned) txq->port_id, (unsigned) txq->queue_id, + (unsigned) tx_id, (unsigned) nb_tx); + txq->tx_tail = tx_id; + + return nb_tx; +} + +/********************************************************************* + * + * TX prep functions + * + **********************************************************************/ +uint16_t +eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + int i, ret; + struct rte_mbuf *m; + + for (i = 0; i < nb_pkts; i++) { + m = tx_pkts[i]; + + /* Check some limitations for TSO in hardware */ + if (m->ol_flags & PKT_TX_TCP_SEG) + if ((m->tso_segsz > IGB_TSO_MAX_MSS) || + (m->l2_len + m->l3_len + m->l4_len > + IGB_TSO_MAX_HDRLEN)) { + rte_errno = -EINVAL; + return i; + } + + if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) { + rte_errno = -ENOTSUP; + return i; + } + +#ifdef RTE_LIBRTE_ETHDEV_DEBUG + ret = rte_validate_tx_offload(m); + if (ret != 0) { + rte_errno = ret; + return i; + } +#endif + ret = rte_net_intel_cksum_prepare(m); + if (ret != 0) { + rte_errno = ret; + return i; + } + } + + return i; +} + +/********************************************************************* + * + * RX functions + * + **********************************************************************/ +#define IGB_PACKET_TYPE_IPV4 0X01 +#define IGB_PACKET_TYPE_IPV4_TCP 0X11 +#define IGB_PACKET_TYPE_IPV4_UDP 0X21 +#define IGB_PACKET_TYPE_IPV4_SCTP 0X41 +#define IGB_PACKET_TYPE_IPV4_EXT 0X03 +#define IGB_PACKET_TYPE_IPV4_EXT_SCTP 0X43 +#define IGB_PACKET_TYPE_IPV6 0X04 +#define IGB_PACKET_TYPE_IPV6_TCP 0X14 +#define IGB_PACKET_TYPE_IPV6_UDP 0X24 +#define IGB_PACKET_TYPE_IPV6_EXT 0X0C +#define IGB_PACKET_TYPE_IPV6_EXT_TCP 0X1C +#define IGB_PACKET_TYPE_IPV6_EXT_UDP 0X2C +#define IGB_PACKET_TYPE_IPV4_IPV6 0X05 +#define IGB_PACKET_TYPE_IPV4_IPV6_TCP 0X15 +#define IGB_PACKET_TYPE_IPV4_IPV6_UDP 0X25 +#define IGB_PACKET_TYPE_IPV4_IPV6_EXT 0X0D +#define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D +#define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D +#define IGB_PACKET_TYPE_MAX 0X80 +#define IGB_PACKET_TYPE_MASK 0X7F +#define IGB_PACKET_TYPE_SHIFT 0X04 +static inline uint32_t +igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info) +{ + static const uint32_t + ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = { + [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4, + [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4_EXT, + [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV6, + [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6, + [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV6_EXT, + [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT, + [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP, + [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP, + [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP, + [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP, + [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP, + [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP, + [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP, + [IGB_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP, + [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP, + [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP, + [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP, + [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP, + }; + if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF)) + return RTE_PTYPE_UNKNOWN; + + pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK; + + return ptype_table[pkt_info]; +} + +static inline uint64_t +rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs) +{ + uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ? 0 : PKT_RX_RSS_HASH; + +#if defined(RTE_LIBRTE_IEEE1588) + static uint32_t ip_pkt_etqf_map[8] = { + 0, 0, 0, PKT_RX_IEEE1588_PTP, + 0, 0, 0, 0, + }; + + struct rte_eth_dev dev = rte_eth_devices[rxq->port_id]; + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private); + + /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */ + if (hw->mac.type == e1000_i210) + pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07]; + else + pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07]; +#else + RTE_SET_USED(rxq); +#endif + + return pkt_flags; +} + +static inline uint64_t +rx_desc_status_to_pkt_flags(uint32_t rx_status) +{ + uint64_t pkt_flags; + + /* Check if VLAN present */ + pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ? + PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0); + +#if defined(RTE_LIBRTE_IEEE1588) + if (rx_status & E1000_RXD_STAT_TMST) + pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST; +#endif + return pkt_flags; +} + +static inline uint64_t +rx_desc_error_to_pkt_flags(uint32_t rx_status) +{ + /* + * Bit 30: IPE, IPv4 checksum error + * Bit 29: L4I, L4I integrity error + */ + + static uint64_t error_to_pkt_flags_map[4] = { + PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD, + PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD, + PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD, + PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD + }; + return error_to_pkt_flags_map[(rx_status >> + E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK]; +} + +uint16_t +eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct igb_rx_queue *rxq; + volatile union e1000_adv_rx_desc *rx_ring; + volatile union e1000_adv_rx_desc *rxdp; + struct igb_rx_entry *sw_ring; + struct igb_rx_entry *rxe; + struct rte_mbuf *rxm; + struct rte_mbuf *nmb; + union e1000_adv_rx_desc rxd; + uint64_t dma_addr; + uint32_t staterr; + uint32_t hlen_type_rss; + uint16_t pkt_len; + uint16_t rx_id; + uint16_t nb_rx; + uint16_t nb_hold; + uint64_t pkt_flags; + + nb_rx = 0; + nb_hold = 0; + rxq = rx_queue; + rx_id = rxq->rx_tail; + rx_ring = rxq->rx_ring; + sw_ring = rxq->sw_ring; + while (nb_rx < nb_pkts) { + /* + * The order of operations here is important as the DD status + * bit must not be read after any other descriptor fields. + * rx_ring and rxdp are pointing to volatile data so the order + * of accesses cannot be reordered by the compiler. If they were + * not volatile, they could be reordered which could lead to + * using invalid descriptor fields when read from rxd. + */ + rxdp = &rx_ring[rx_id]; + staterr = rxdp->wb.upper.status_error; + if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD))) + break; + rxd = *rxdp; + + /* + * End of packet. + * + * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is + * likely to be invalid and to be dropped by the various + * validation checks performed by the network stack. + * + * Allocate a new mbuf to replenish the RX ring descriptor. + * If the allocation fails: + * - arrange for that RX descriptor to be the first one + * being parsed the next time the receive function is + * invoked [on the same queue]. + * + * - Stop parsing the RX ring and return immediately. + * + * This policy do not drop the packet received in the RX + * descriptor for which the allocation of a new mbuf failed. + * Thus, it allows that packet to be later retrieved if + * mbuf have been freed in the mean time. + * As a side effect, holding RX descriptors instead of + * systematically giving them back to the NIC may lead to + * RX ring exhaustion situations. + * However, the NIC can gracefully prevent such situations + * to happen by sending specific "back-pressure" flow control + * frames to its peer(s). + */ + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " + "staterr=0x%x pkt_len=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) staterr, + (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length)); + + nmb = rte_mbuf_raw_alloc(rxq->mb_pool); + if (nmb == NULL) { + PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " + "queue_id=%u", (unsigned) rxq->port_id, + (unsigned) rxq->queue_id); + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; + break; + } + + nb_hold++; + rxe = &sw_ring[rx_id]; + rx_id++; + if (rx_id == rxq->nb_rx_desc) + rx_id = 0; + + /* Prefetch next mbuf while processing current one. */ + rte_igb_prefetch(sw_ring[rx_id].mbuf); + + /* + * When next RX descriptor is on a cache-line boundary, + * prefetch the next 4 RX descriptors and the next 8 pointers + * to mbufs. + */ + if ((rx_id & 0x3) == 0) { + rte_igb_prefetch(&rx_ring[rx_id]); + rte_igb_prefetch(&sw_ring[rx_id]); + } + + rxm = rxe->mbuf; + rxe->mbuf = nmb; + dma_addr = + rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb)); + rxdp->read.hdr_addr = 0; + rxdp->read.pkt_addr = dma_addr; + + /* + * Initialize the returned mbuf. + * 1) setup generic mbuf fields: + * - number of segments, + * - next segment, + * - packet length, + * - RX port identifier. + * 2) integrate hardware offload data, if any: + * - RSS flag & hash, + * - IP checksum flag, + * - VLAN TCI, if any, + * - error flags. + */ + pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) - + rxq->crc_len); + rxm->data_off = RTE_PKTMBUF_HEADROOM; + rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off); + rxm->nb_segs = 1; + rxm->next = NULL; + rxm->pkt_len = pkt_len; + rxm->data_len = pkt_len; + rxm->port = rxq->port_id; + + rxm->hash.rss = rxd.wb.lower.hi_dword.rss; + hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data); + + /* + * The vlan_tci field is only valid when PKT_RX_VLAN is + * set in the pkt_flags field and must be in CPU byte order. + */ + if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) && + (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) { + rxm->vlan_tci = rte_be_to_cpu_16(rxd.wb.upper.vlan); + } else { + rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan); + } + pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss); + pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr); + pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr); + rxm->ol_flags = pkt_flags; + rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower. + lo_dword.hs_rss.pkt_info); + + /* + * Store the mbuf address into the next entry of the array + * of returned packets. + */ + rx_pkts[nb_rx++] = rxm; + } + rxq->rx_tail = rx_id; + + /* + * If the number of free RX descriptors is greater than the RX free + * threshold of the queue, advance the Receive Descriptor Tail (RDT) + * register. + * Update the RDT with the value of the last processed RX descriptor + * minus 1, to guarantee that the RDT register is never equal to the + * RDH register, which creates a "full" ring situtation from the + * hardware point of view... + */ + nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); + if (nb_hold > rxq->rx_free_thresh) { + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " + "nb_hold=%u nb_rx=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) nb_hold, + (unsigned) nb_rx); + rx_id = (uint16_t) ((rx_id == 0) ? + (rxq->nb_rx_desc - 1) : (rx_id - 1)); + E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); + nb_hold = 0; + } + rxq->nb_rx_hold = nb_hold; + return nb_rx; +} + +uint16_t +eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct igb_rx_queue *rxq; + volatile union e1000_adv_rx_desc *rx_ring; + volatile union e1000_adv_rx_desc *rxdp; + struct igb_rx_entry *sw_ring; + struct igb_rx_entry *rxe; + struct rte_mbuf *first_seg; + struct rte_mbuf *last_seg; + struct rte_mbuf *rxm; + struct rte_mbuf *nmb; + union e1000_adv_rx_desc rxd; + uint64_t dma; /* Physical address of mbuf data buffer */ + uint32_t staterr; + uint32_t hlen_type_rss; + uint16_t rx_id; + uint16_t nb_rx; + uint16_t nb_hold; + uint16_t data_len; + uint64_t pkt_flags; + + nb_rx = 0; + nb_hold = 0; + rxq = rx_queue; + rx_id = rxq->rx_tail; + rx_ring = rxq->rx_ring; + sw_ring = rxq->sw_ring; + + /* + * Retrieve RX context of current packet, if any. + */ + first_seg = rxq->pkt_first_seg; + last_seg = rxq->pkt_last_seg; + + while (nb_rx < nb_pkts) { + next_desc: + /* + * The order of operations here is important as the DD status + * bit must not be read after any other descriptor fields. + * rx_ring and rxdp are pointing to volatile data so the order + * of accesses cannot be reordered by the compiler. If they were + * not volatile, they could be reordered which could lead to + * using invalid descriptor fields when read from rxd. + */ + rxdp = &rx_ring[rx_id]; + staterr = rxdp->wb.upper.status_error; + if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD))) + break; + rxd = *rxdp; + + /* + * Descriptor done. + * + * Allocate a new mbuf to replenish the RX ring descriptor. + * If the allocation fails: + * - arrange for that RX descriptor to be the first one + * being parsed the next time the receive function is + * invoked [on the same queue]. + * + * - Stop parsing the RX ring and return immediately. + * + * This policy does not drop the packet received in the RX + * descriptor for which the allocation of a new mbuf failed. + * Thus, it allows that packet to be later retrieved if + * mbuf have been freed in the mean time. + * As a side effect, holding RX descriptors instead of + * systematically giving them back to the NIC may lead to + * RX ring exhaustion situations. + * However, the NIC can gracefully prevent such situations + * to happen by sending specific "back-pressure" flow control + * frames to its peer(s). + */ + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " + "staterr=0x%x data_len=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) staterr, + (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length)); + + nmb = rte_mbuf_raw_alloc(rxq->mb_pool); + if (nmb == NULL) { + PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " + "queue_id=%u", (unsigned) rxq->port_id, + (unsigned) rxq->queue_id); + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; + break; + } + + nb_hold++; + rxe = &sw_ring[rx_id]; + rx_id++; + if (rx_id == rxq->nb_rx_desc) + rx_id = 0; + + /* Prefetch next mbuf while processing current one. */ + rte_igb_prefetch(sw_ring[rx_id].mbuf); + + /* + * When next RX descriptor is on a cache-line boundary, + * prefetch the next 4 RX descriptors and the next 8 pointers + * to mbufs. + */ + if ((rx_id & 0x3) == 0) { + rte_igb_prefetch(&rx_ring[rx_id]); + rte_igb_prefetch(&sw_ring[rx_id]); + } + + /* + * Update RX descriptor with the physical address of the new + * data buffer of the new allocated mbuf. + */ + rxm = rxe->mbuf; + rxe->mbuf = nmb; + dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb)); + rxdp->read.pkt_addr = dma; + rxdp->read.hdr_addr = 0; + + /* + * Set data length & data buffer address of mbuf. + */ + data_len = rte_le_to_cpu_16(rxd.wb.upper.length); + rxm->data_len = data_len; + rxm->data_off = RTE_PKTMBUF_HEADROOM; + + /* + * If this is the first buffer of the received packet, + * set the pointer to the first mbuf of the packet and + * initialize its context. + * Otherwise, update the total length and the number of segments + * of the current scattered packet, and update the pointer to + * the last mbuf of the current packet. + */ + if (first_seg == NULL) { + first_seg = rxm; + first_seg->pkt_len = data_len; + first_seg->nb_segs = 1; + } else { + first_seg->pkt_len += data_len; + first_seg->nb_segs++; + last_seg->next = rxm; + } + + /* + * If this is not the last buffer of the received packet, + * update the pointer to the last mbuf of the current scattered + * packet and continue to parse the RX ring. + */ + if (! (staterr & E1000_RXD_STAT_EOP)) { + last_seg = rxm; + goto next_desc; + } + + /* + * This is the last buffer of the received packet. + * If the CRC is not stripped by the hardware: + * - Subtract the CRC length from the total packet length. + * - If the last buffer only contains the whole CRC or a part + * of it, free the mbuf associated to the last buffer. + * If part of the CRC is also contained in the previous + * mbuf, subtract the length of that CRC part from the + * data length of the previous mbuf. + */ + rxm->next = NULL; + if (unlikely(rxq->crc_len > 0)) { + first_seg->pkt_len -= ETHER_CRC_LEN; + if (data_len <= ETHER_CRC_LEN) { + rte_pktmbuf_free_seg(rxm); + first_seg->nb_segs--; + last_seg->data_len = (uint16_t) + (last_seg->data_len - + (ETHER_CRC_LEN - data_len)); + last_seg->next = NULL; + } else + rxm->data_len = + (uint16_t) (data_len - ETHER_CRC_LEN); + } + + /* + * Initialize the first mbuf of the returned packet: + * - RX port identifier, + * - hardware offload data, if any: + * - RSS flag & hash, + * - IP checksum flag, + * - VLAN TCI, if any, + * - error flags. + */ + first_seg->port = rxq->port_id; + first_seg->hash.rss = rxd.wb.lower.hi_dword.rss; + + /* + * The vlan_tci field is only valid when PKT_RX_VLAN is + * set in the pkt_flags field and must be in CPU byte order. + */ + if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) && + (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) { + first_seg->vlan_tci = + rte_be_to_cpu_16(rxd.wb.upper.vlan); + } else { + first_seg->vlan_tci = + rte_le_to_cpu_16(rxd.wb.upper.vlan); + } + hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data); + pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss); + pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr); + pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr); + first_seg->ol_flags = pkt_flags; + first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb. + lower.lo_dword.hs_rss.pkt_info); + + /* Prefetch data of first segment, if configured to do so. */ + rte_packet_prefetch((char *)first_seg->buf_addr + + first_seg->data_off); + + /* + * Store the mbuf address into the next entry of the array + * of returned packets. + */ + rx_pkts[nb_rx++] = first_seg; + + /* + * Setup receipt context for a new packet. + */ + first_seg = NULL; + } + + /* + * Record index of the next RX descriptor to probe. + */ + rxq->rx_tail = rx_id; + + /* + * Save receive context. + */ + rxq->pkt_first_seg = first_seg; + rxq->pkt_last_seg = last_seg; + + /* + * If the number of free RX descriptors is greater than the RX free + * threshold of the queue, advance the Receive Descriptor Tail (RDT) + * register. + * Update the RDT with the value of the last processed RX descriptor + * minus 1, to guarantee that the RDT register is never equal to the + * RDH register, which creates a "full" ring situtation from the + * hardware point of view... + */ + nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); + if (nb_hold > rxq->rx_free_thresh) { + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " + "nb_hold=%u nb_rx=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) nb_hold, + (unsigned) nb_rx); + rx_id = (uint16_t) ((rx_id == 0) ? + (rxq->nb_rx_desc - 1) : (rx_id - 1)); + E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); + nb_hold = 0; + } + rxq->nb_rx_hold = nb_hold; + return nb_rx; +} + +/* + * Maximum number of Ring Descriptors. + * + * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring + * desscriptors should meet the following condition: + * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0 + */ + +static void +igb_tx_queue_release_mbufs(struct igb_tx_queue *txq) +{ + unsigned i; + + if (txq->sw_ring != NULL) { + for (i = 0; i < txq->nb_tx_desc; i++) { + if (txq->sw_ring[i].mbuf != NULL) { + rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); + txq->sw_ring[i].mbuf = NULL; + } + } + } +} + +static void +igb_tx_queue_release(struct igb_tx_queue *txq) +{ + if (txq != NULL) { + igb_tx_queue_release_mbufs(txq); + rte_free(txq->sw_ring); + rte_free(txq); + } +} + +void +eth_igb_tx_queue_release(void *txq) +{ + igb_tx_queue_release(txq); +} + +static int +igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt) +{ + struct igb_tx_entry *sw_ring; + volatile union e1000_adv_tx_desc *txr; + uint16_t tx_first; /* First segment analyzed. */ + uint16_t tx_id; /* Current segment being processed. */ + uint16_t tx_last; /* Last segment in the current packet. */ + uint16_t tx_next; /* First segment of the next packet. */ + int count; + + if (txq != NULL) { + count = 0; + sw_ring = txq->sw_ring; + txr = txq->tx_ring; + + /* + * tx_tail is the last sent packet on the sw_ring. Goto the end + * of that packet (the last segment in the packet chain) and + * then the next segment will be the start of the oldest segment + * in the sw_ring. This is the first packet that will be + * attempted to be freed. + */ + + /* Get last segment in most recently added packet. */ + tx_first = sw_ring[txq->tx_tail].last_id; + + /* Get the next segment, which is the oldest segment in ring. */ + tx_first = sw_ring[tx_first].next_id; + + /* Set the current index to the first. */ + tx_id = tx_first; + + /* + * Loop through each packet. For each packet, verify that an + * mbuf exists and that the last segment is free. If so, free + * it and move on. + */ + while (1) { + tx_last = sw_ring[tx_id].last_id; + + if (sw_ring[tx_last].mbuf) { + if (txr[tx_last].wb.status & + E1000_TXD_STAT_DD) { + /* + * Increment the number of packets + * freed. + */ + count++; + + /* Get the start of the next packet. */ + tx_next = sw_ring[tx_last].next_id; + + /* + * Loop through all segments in a + * packet. + */ + do { + rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf); + sw_ring[tx_id].mbuf = NULL; + sw_ring[tx_id].last_id = tx_id; + + /* Move to next segemnt. */ + tx_id = sw_ring[tx_id].next_id; + + } while (tx_id != tx_next); + + if (unlikely(count == (int)free_cnt)) + break; + } else + /* + * mbuf still in use, nothing left to + * free. + */ + break; + } else { + /* + * There are multiple reasons to be here: + * 1) All the packets on the ring have been + * freed - tx_id is equal to tx_first + * and some packets have been freed. + * - Done, exit + * 2) Interfaces has not sent a rings worth of + * packets yet, so the segment after tail is + * still empty. Or a previous call to this + * function freed some of the segments but + * not all so there is a hole in the list. + * Hopefully this is a rare case. + * - Walk the list and find the next mbuf. If + * there isn't one, then done. + */ + if (likely((tx_id == tx_first) && (count != 0))) + break; + + /* + * Walk the list and find the next mbuf, if any. + */ + do { + /* Move to next segemnt. */ + tx_id = sw_ring[tx_id].next_id; + + if (sw_ring[tx_id].mbuf) + break; + + } while (tx_id != tx_first); + + /* + * Determine why previous loop bailed. If there + * is not an mbuf, done. + */ + if (sw_ring[tx_id].mbuf == NULL) + break; + } + } + } else + count = -ENODEV; + + return count; +} + +int +eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt) +{ + return igb_tx_done_cleanup(txq, free_cnt); +} + +static void +igb_reset_tx_queue_stat(struct igb_tx_queue *txq) +{ + txq->tx_head = 0; + txq->tx_tail = 0; + txq->ctx_curr = 0; + memset((void*)&txq->ctx_cache, 0, + IGB_CTX_NUM * sizeof(struct igb_advctx_info)); +} + +static void +igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev) +{ + static const union e1000_adv_tx_desc zeroed_desc = {{0}}; + struct igb_tx_entry *txe = txq->sw_ring; + uint16_t i, prev; + struct e1000_hw *hw; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + /* Zero out HW ring memory */ + for (i = 0; i < txq->nb_tx_desc; i++) { + txq->tx_ring[i] = zeroed_desc; + } + + /* Initialize ring entries */ + prev = (uint16_t)(txq->nb_tx_desc - 1); + for (i = 0; i < txq->nb_tx_desc; i++) { + volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]); + + txd->wb.status = E1000_TXD_STAT_DD; + txe[i].mbuf = NULL; + txe[i].last_id = i; + txe[prev].next_id = i; + prev = i; + } + + txq->txd_type = E1000_ADVTXD_DTYP_DATA; + /* 82575 specific, each tx queue will use 2 hw contexts */ + if (hw->mac.type == e1000_82575) + txq->ctx_start = txq->queue_id * IGB_CTX_NUM; + + igb_reset_tx_queue_stat(txq); +} + +uint64_t +igb_get_tx_port_offloads_capa(struct rte_eth_dev *dev) +{ + uint64_t rx_offload_capa; + + RTE_SET_USED(dev); + rx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | + DEV_TX_OFFLOAD_IPV4_CKSUM | + DEV_TX_OFFLOAD_UDP_CKSUM | + DEV_TX_OFFLOAD_TCP_CKSUM | + DEV_TX_OFFLOAD_SCTP_CKSUM | + DEV_TX_OFFLOAD_TCP_TSO | + DEV_TX_OFFLOAD_MULTI_SEGS; + + return rx_offload_capa; +} + +uint64_t +igb_get_tx_queue_offloads_capa(struct rte_eth_dev *dev) +{ + uint64_t rx_queue_offload_capa; + + rx_queue_offload_capa = igb_get_tx_port_offloads_capa(dev); + + return rx_queue_offload_capa; +} + +int +eth_igb_tx_queue_setup(struct rte_eth_dev *dev, + uint16_t queue_idx, + uint16_t nb_desc, + unsigned int socket_id, + const struct rte_eth_txconf *tx_conf) +{ + const struct rte_memzone *tz; + struct igb_tx_queue *txq; + struct e1000_hw *hw; + uint32_t size; + uint64_t offloads; + + offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* + * Validate number of transmit descriptors. + * It must not exceed hardware maximum, and must be multiple + * of E1000_ALIGN. + */ + if (nb_desc % IGB_TXD_ALIGN != 0 || + (nb_desc > E1000_MAX_RING_DESC) || + (nb_desc < E1000_MIN_RING_DESC)) { + return -EINVAL; + } + + /* + * The tx_free_thresh and tx_rs_thresh values are not used in the 1G + * driver. + */ + if (tx_conf->tx_free_thresh != 0) + PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not " + "used for the 1G driver."); + if (tx_conf->tx_rs_thresh != 0) + PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not " + "used for the 1G driver."); + if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576) + PMD_INIT_LOG(INFO, "To improve 1G driver performance, " + "consider setting the TX WTHRESH value to 4, 8, " + "or 16."); + + /* Free memory prior to re-allocation if needed */ + if (dev->data->tx_queues[queue_idx] != NULL) { + igb_tx_queue_release(dev->data->tx_queues[queue_idx]); + dev->data->tx_queues[queue_idx] = NULL; + } + + /* First allocate the tx queue data structure */ + txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue), + RTE_CACHE_LINE_SIZE); + if (txq == NULL) + return -ENOMEM; + + /* + * Allocate TX ring hardware descriptors. A memzone large enough to + * handle the maximum ring size is allocated in order to allow for + * resizing in later calls to the queue setup function. + */ + size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC; + tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size, + E1000_ALIGN, socket_id); + if (tz == NULL) { + igb_tx_queue_release(txq); + return -ENOMEM; + } + + txq->nb_tx_desc = nb_desc; + txq->pthresh = tx_conf->tx_thresh.pthresh; + txq->hthresh = tx_conf->tx_thresh.hthresh; + txq->wthresh = tx_conf->tx_thresh.wthresh; + if (txq->wthresh > 0 && hw->mac.type == e1000_82576) + txq->wthresh = 1; + txq->queue_id = queue_idx; + txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ? + queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx); + txq->port_id = dev->data->port_id; + + txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx)); + txq->tx_ring_phys_addr = tz->iova; + + txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr; + /* Allocate software ring */ + txq->sw_ring = rte_zmalloc("txq->sw_ring", + sizeof(struct igb_tx_entry) * nb_desc, + RTE_CACHE_LINE_SIZE); + if (txq->sw_ring == NULL) { + igb_tx_queue_release(txq); + return -ENOMEM; + } + PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, + txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr); + + igb_reset_tx_queue(txq, dev); + dev->tx_pkt_burst = eth_igb_xmit_pkts; + dev->tx_pkt_prepare = ð_igb_prep_pkts; + dev->data->tx_queues[queue_idx] = txq; + txq->offloads = offloads; + + return 0; +} + +static void +igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq) +{ + unsigned i; + + if (rxq->sw_ring != NULL) { + for (i = 0; i < rxq->nb_rx_desc; i++) { + if (rxq->sw_ring[i].mbuf != NULL) { + rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); + rxq->sw_ring[i].mbuf = NULL; + } + } + } +} + +static void +igb_rx_queue_release(struct igb_rx_queue *rxq) +{ + if (rxq != NULL) { + igb_rx_queue_release_mbufs(rxq); + rte_free(rxq->sw_ring); + rte_free(rxq); + } +} + +void +eth_igb_rx_queue_release(void *rxq) +{ + igb_rx_queue_release(rxq); +} + +static void +igb_reset_rx_queue(struct igb_rx_queue *rxq) +{ + static const union e1000_adv_rx_desc zeroed_desc = {{0}}; + unsigned i; + + /* Zero out HW ring memory */ + for (i = 0; i < rxq->nb_rx_desc; i++) { + rxq->rx_ring[i] = zeroed_desc; + } + + rxq->rx_tail = 0; + rxq->pkt_first_seg = NULL; + rxq->pkt_last_seg = NULL; +} + +uint64_t +igb_get_rx_port_offloads_capa(struct rte_eth_dev *dev) +{ + uint64_t rx_offload_capa; + + RTE_SET_USED(dev); + rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | + DEV_RX_OFFLOAD_VLAN_FILTER | + DEV_RX_OFFLOAD_IPV4_CKSUM | + DEV_RX_OFFLOAD_UDP_CKSUM | + DEV_RX_OFFLOAD_TCP_CKSUM | + DEV_RX_OFFLOAD_JUMBO_FRAME | + DEV_RX_OFFLOAD_CRC_STRIP | + DEV_RX_OFFLOAD_KEEP_CRC | + DEV_RX_OFFLOAD_SCATTER; + + return rx_offload_capa; +} + +uint64_t +igb_get_rx_queue_offloads_capa(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint64_t rx_queue_offload_capa; + + switch (hw->mac.type) { + case e1000_vfadapt_i350: + /* + * As only one Rx queue can be used, let per queue offloading + * capability be same to per port queue offloading capability + * for better convenience. + */ + rx_queue_offload_capa = igb_get_rx_port_offloads_capa(dev); + break; + default: + rx_queue_offload_capa = 0; + } + return rx_queue_offload_capa; +} + +int +eth_igb_rx_queue_setup(struct rte_eth_dev *dev, + uint16_t queue_idx, + uint16_t nb_desc, + unsigned int socket_id, + const struct rte_eth_rxconf *rx_conf, + struct rte_mempool *mp) +{ + const struct rte_memzone *rz; + struct igb_rx_queue *rxq; + struct e1000_hw *hw; + unsigned int size; + uint64_t offloads; + + offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* + * Validate number of receive descriptors. + * It must not exceed hardware maximum, and must be multiple + * of E1000_ALIGN. + */ + if (nb_desc % IGB_RXD_ALIGN != 0 || + (nb_desc > E1000_MAX_RING_DESC) || + (nb_desc < E1000_MIN_RING_DESC)) { + return -EINVAL; + } + + /* Free memory prior to re-allocation if needed */ + if (dev->data->rx_queues[queue_idx] != NULL) { + igb_rx_queue_release(dev->data->rx_queues[queue_idx]); + dev->data->rx_queues[queue_idx] = NULL; + } + + /* First allocate the RX queue data structure. */ + rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue), + RTE_CACHE_LINE_SIZE); + if (rxq == NULL) + return -ENOMEM; + rxq->offloads = offloads; + rxq->mb_pool = mp; + rxq->nb_rx_desc = nb_desc; + rxq->pthresh = rx_conf->rx_thresh.pthresh; + rxq->hthresh = rx_conf->rx_thresh.hthresh; + rxq->wthresh = rx_conf->rx_thresh.wthresh; + if (rxq->wthresh > 0 && + (hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350)) + rxq->wthresh = 1; + rxq->drop_en = rx_conf->rx_drop_en; + rxq->rx_free_thresh = rx_conf->rx_free_thresh; + rxq->queue_id = queue_idx; + rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ? + queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx); + rxq->port_id = dev->data->port_id; + if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads)) + rxq->crc_len = ETHER_CRC_LEN; + else + rxq->crc_len = 0; + + /* + * Allocate RX ring hardware descriptors. A memzone large enough to + * handle the maximum ring size is allocated in order to allow for + * resizing in later calls to the queue setup function. + */ + size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC; + rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size, + E1000_ALIGN, socket_id); + if (rz == NULL) { + igb_rx_queue_release(rxq); + return -ENOMEM; + } + rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx)); + rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx)); + rxq->rx_ring_phys_addr = rz->iova; + rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr; + + /* Allocate software ring. */ + rxq->sw_ring = rte_zmalloc("rxq->sw_ring", + sizeof(struct igb_rx_entry) * nb_desc, + RTE_CACHE_LINE_SIZE); + if (rxq->sw_ring == NULL) { + igb_rx_queue_release(rxq); + return -ENOMEM; + } + PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, + rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr); + + dev->data->rx_queues[queue_idx] = rxq; + igb_reset_rx_queue(rxq); + + return 0; +} + +uint32_t +eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) +{ +#define IGB_RXQ_SCAN_INTERVAL 4 + volatile union e1000_adv_rx_desc *rxdp; + struct igb_rx_queue *rxq; + uint32_t desc = 0; + + rxq = dev->data->rx_queues[rx_queue_id]; + rxdp = &(rxq->rx_ring[rxq->rx_tail]); + + while ((desc < rxq->nb_rx_desc) && + (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) { + desc += IGB_RXQ_SCAN_INTERVAL; + rxdp += IGB_RXQ_SCAN_INTERVAL; + if (rxq->rx_tail + desc >= rxq->nb_rx_desc) + rxdp = &(rxq->rx_ring[rxq->rx_tail + + desc - rxq->nb_rx_desc]); + } + + return desc; +} + +int +eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset) +{ + volatile union e1000_adv_rx_desc *rxdp; + struct igb_rx_queue *rxq = rx_queue; + uint32_t desc; + + if (unlikely(offset >= rxq->nb_rx_desc)) + return 0; + desc = rxq->rx_tail + offset; + if (desc >= rxq->nb_rx_desc) + desc -= rxq->nb_rx_desc; + + rxdp = &rxq->rx_ring[desc]; + return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD); +} + +int +eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset) +{ + struct igb_rx_queue *rxq = rx_queue; + volatile uint32_t *status; + uint32_t desc; + + if (unlikely(offset >= rxq->nb_rx_desc)) + return -EINVAL; + + if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold) + return RTE_ETH_RX_DESC_UNAVAIL; + + desc = rxq->rx_tail + offset; + if (desc >= rxq->nb_rx_desc) + desc -= rxq->nb_rx_desc; + + status = &rxq->rx_ring[desc].wb.upper.status_error; + if (*status & rte_cpu_to_le_32(E1000_RXD_STAT_DD)) + return RTE_ETH_RX_DESC_DONE; + + return RTE_ETH_RX_DESC_AVAIL; +} + +int +eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset) +{ + struct igb_tx_queue *txq = tx_queue; + volatile uint32_t *status; + uint32_t desc; + + if (unlikely(offset >= txq->nb_tx_desc)) + return -EINVAL; + + desc = txq->tx_tail + offset; + if (desc >= txq->nb_tx_desc) + desc -= txq->nb_tx_desc; + + status = &txq->tx_ring[desc].wb.status; + if (*status & rte_cpu_to_le_32(E1000_TXD_STAT_DD)) + return RTE_ETH_TX_DESC_DONE; + + return RTE_ETH_TX_DESC_FULL; +} + +void +igb_dev_clear_queues(struct rte_eth_dev *dev) +{ + uint16_t i; + struct igb_tx_queue *txq; + struct igb_rx_queue *rxq; + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + txq = dev->data->tx_queues[i]; + if (txq != NULL) { + igb_tx_queue_release_mbufs(txq); + igb_reset_tx_queue(txq, dev); + } + } + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + rxq = dev->data->rx_queues[i]; + if (rxq != NULL) { + igb_rx_queue_release_mbufs(rxq); + igb_reset_rx_queue(rxq); + } + } +} + +void +igb_dev_free_queues(struct rte_eth_dev *dev) +{ + uint16_t i; + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + eth_igb_rx_queue_release(dev->data->rx_queues[i]); + dev->data->rx_queues[i] = NULL; + } + dev->data->nb_rx_queues = 0; + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + eth_igb_tx_queue_release(dev->data->tx_queues[i]); + dev->data->tx_queues[i] = NULL; + } + dev->data->nb_tx_queues = 0; +} + +/** + * Receive Side Scaling (RSS). + * See section 7.1.1.7 in the following document: + * "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009 + * + * Principles: + * The source and destination IP addresses of the IP header and the source and + * destination ports of TCP/UDP headers, if any, of received packets are hashed + * against a configurable random key to compute a 32-bit RSS hash result. + * The seven (7) LSBs of the 32-bit hash result are used as an index into a + * 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit + * RSS output index which is used as the RX queue index where to store the + * received packets. + * The following output is supplied in the RX write-back descriptor: + * - 32-bit result of the Microsoft RSS hash function, + * - 4-bit RSS type field. + */ + +/* + * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet. + * Used as the default key. + */ +static uint8_t rss_intel_key[40] = { + 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, + 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0, + 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4, + 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, + 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA, +}; + +static void +igb_rss_disable(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + uint32_t mrqc; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + mrqc = E1000_READ_REG(hw, E1000_MRQC); + mrqc &= ~E1000_MRQC_ENABLE_MASK; + E1000_WRITE_REG(hw, E1000_MRQC, mrqc); +} + +static void +igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf) +{ + uint8_t *hash_key; + uint32_t rss_key; + uint32_t mrqc; + uint64_t rss_hf; + uint16_t i; + + hash_key = rss_conf->rss_key; + if (hash_key != NULL) { + /* Fill in RSS hash key */ + for (i = 0; i < 10; i++) { + rss_key = hash_key[(i * 4)]; + rss_key |= hash_key[(i * 4) + 1] << 8; + rss_key |= hash_key[(i * 4) + 2] << 16; + rss_key |= hash_key[(i * 4) + 3] << 24; + E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key); + } + } + + /* Set configured hashing protocols in MRQC register */ + rss_hf = rss_conf->rss_hf; + mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */ + if (rss_hf & ETH_RSS_IPV4) + mrqc |= E1000_MRQC_RSS_FIELD_IPV4; + if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) + mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP; + if (rss_hf & ETH_RSS_IPV6) + mrqc |= E1000_MRQC_RSS_FIELD_IPV6; + if (rss_hf & ETH_RSS_IPV6_EX) + mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX; + if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP) + mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP; + if (rss_hf & ETH_RSS_IPV6_TCP_EX) + mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; + if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP) + mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; + if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP) + mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; + if (rss_hf & ETH_RSS_IPV6_UDP_EX) + mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX; + E1000_WRITE_REG(hw, E1000_MRQC, mrqc); +} + +int +eth_igb_rss_hash_update(struct rte_eth_dev *dev, + struct rte_eth_rss_conf *rss_conf) +{ + struct e1000_hw *hw; + uint32_t mrqc; + uint64_t rss_hf; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* + * Before changing anything, first check that the update RSS operation + * does not attempt to disable RSS, if RSS was enabled at + * initialization time, or does not attempt to enable RSS, if RSS was + * disabled at initialization time. + */ + rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL; + mrqc = E1000_READ_REG(hw, E1000_MRQC); + if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */ + if (rss_hf != 0) /* Enable RSS */ + return -(EINVAL); + return 0; /* Nothing to do */ + } + /* RSS enabled */ + if (rss_hf == 0) /* Disable RSS */ + return -(EINVAL); + igb_hw_rss_hash_set(hw, rss_conf); + return 0; +} + +int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev, + struct rte_eth_rss_conf *rss_conf) +{ + struct e1000_hw *hw; + uint8_t *hash_key; + uint32_t rss_key; + uint32_t mrqc; + uint64_t rss_hf; + uint16_t i; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + hash_key = rss_conf->rss_key; + if (hash_key != NULL) { + /* Return RSS hash key */ + for (i = 0; i < 10; i++) { + rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i); + hash_key[(i * 4)] = rss_key & 0x000000FF; + hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF; + hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF; + hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF; + } + } + + /* Get RSS functions configured in MRQC register */ + mrqc = E1000_READ_REG(hw, E1000_MRQC); + if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */ + rss_conf->rss_hf = 0; + return 0; + } + rss_hf = 0; + if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) + rss_hf |= ETH_RSS_IPV4; + if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) + rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP; + if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) + rss_hf |= ETH_RSS_IPV6; + if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX) + rss_hf |= ETH_RSS_IPV6_EX; + if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) + rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP; + if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX) + rss_hf |= ETH_RSS_IPV6_TCP_EX; + if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP) + rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP; + if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP) + rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP; + if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX) + rss_hf |= ETH_RSS_IPV6_UDP_EX; + rss_conf->rss_hf = rss_hf; + return 0; +} + +static void +igb_rss_configure(struct rte_eth_dev *dev) +{ + struct rte_eth_rss_conf rss_conf; + struct e1000_hw *hw; + uint32_t shift; + uint16_t i; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* Fill in redirection table. */ + shift = (hw->mac.type == e1000_82575) ? 6 : 0; + for (i = 0; i < 128; i++) { + union e1000_reta { + uint32_t dword; + uint8_t bytes[4]; + } reta; + uint8_t q_idx; + + q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ? + i % dev->data->nb_rx_queues : 0); + reta.bytes[i & 3] = (uint8_t) (q_idx << shift); + if ((i & 3) == 3) + E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword); + } + + /* + * Configure the RSS key and the RSS protocols used to compute + * the RSS hash of input packets. + */ + rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf; + if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) { + igb_rss_disable(dev); + return; + } + if (rss_conf.rss_key == NULL) + rss_conf.rss_key = rss_intel_key; /* Default hash key */ + igb_hw_rss_hash_set(hw, &rss_conf); +} + +/* + * Check if the mac type support VMDq or not. + * Return 1 if it supports, otherwise, return 0. + */ +static int +igb_is_vmdq_supported(const struct rte_eth_dev *dev) +{ + const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + switch (hw->mac.type) { + case e1000_82576: + case e1000_82580: + case e1000_i350: + return 1; + case e1000_82540: + case e1000_82541: + case e1000_82542: + case e1000_82543: + case e1000_82544: + case e1000_82545: + case e1000_82546: + case e1000_82547: + case e1000_82571: + case e1000_82572: + case e1000_82573: + case e1000_82574: + case e1000_82583: + case e1000_i210: + case e1000_i211: + default: + PMD_INIT_LOG(ERR, "Cannot support VMDq feature"); + return 0; + } +} + +static int +igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev) +{ + struct rte_eth_vmdq_rx_conf *cfg; + struct e1000_hw *hw; + uint32_t mrqc, vt_ctl, vmolr, rctl; + int i; + + PMD_INIT_FUNC_TRACE(); + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf; + + /* Check if mac type can support VMDq, return value of 0 means NOT support */ + if (igb_is_vmdq_supported(dev) == 0) + return -1; + + igb_rss_disable(dev); + + /* RCTL: eanble VLAN filter */ + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl |= E1000_RCTL_VFE; + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + + /* MRQC: enable vmdq */ + mrqc = E1000_READ_REG(hw, E1000_MRQC); + mrqc |= E1000_MRQC_ENABLE_VMDQ; + E1000_WRITE_REG(hw, E1000_MRQC, mrqc); + + /* VTCTL: pool selection according to VLAN tag */ + vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); + if (cfg->enable_default_pool) + vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT); + vt_ctl |= E1000_VT_CTL_IGNORE_MAC; + E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); + + for (i = 0; i < E1000_VMOLR_SIZE; i++) { + vmolr = E1000_READ_REG(hw, E1000_VMOLR(i)); + vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE | + E1000_VMOLR_ROPE | E1000_VMOLR_BAM | + E1000_VMOLR_MPME); + + if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG) + vmolr |= E1000_VMOLR_AUPE; + if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC) + vmolr |= E1000_VMOLR_ROMPE; + if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC) + vmolr |= E1000_VMOLR_ROPE; + if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST) + vmolr |= E1000_VMOLR_BAM; + if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST) + vmolr |= E1000_VMOLR_MPME; + + E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr); + } + + /* + * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1 + * Both 82576 and 82580 support it + */ + if (hw->mac.type != e1000_i350) { + for (i = 0; i < E1000_VMOLR_SIZE; i++) { + vmolr = E1000_READ_REG(hw, E1000_VMOLR(i)); + vmolr |= E1000_VMOLR_STRVLAN; + E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr); + } + } + + /* VFTA - enable all vlan filters */ + for (i = 0; i < IGB_VFTA_SIZE; i++) + E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX); + + /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */ + if (hw->mac.type != e1000_82580) + E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK); + + /* + * RAH/RAL - allow pools to read specific mac addresses + * In this case, all pools should be able to read from mac addr 0 + */ + E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX)); + E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX); + + /* VLVF: set up filters for vlan tags as configured */ + for (i = 0; i < cfg->nb_pool_maps; i++) { + /* set vlan id in VF register and set the valid bit */ + E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \ + (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \ + ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \ + E1000_VLVF_POOLSEL_MASK))); + } + + E1000_WRITE_FLUSH(hw); + + return 0; +} + + +/********************************************************************* + * + * Enable receive unit. + * + **********************************************************************/ + +static int +igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq) +{ + struct igb_rx_entry *rxe = rxq->sw_ring; + uint64_t dma_addr; + unsigned i; + + /* Initialize software ring entries. */ + for (i = 0; i < rxq->nb_rx_desc; i++) { + volatile union e1000_adv_rx_desc *rxd; + struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool); + + if (mbuf == NULL) { + PMD_INIT_LOG(ERR, "RX mbuf alloc failed " + "queue_id=%hu", rxq->queue_id); + return -ENOMEM; + } + dma_addr = + rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); + rxd = &rxq->rx_ring[i]; + rxd->read.hdr_addr = 0; + rxd->read.pkt_addr = dma_addr; + rxe[i].mbuf = mbuf; + } + + return 0; +} + +#define E1000_MRQC_DEF_Q_SHIFT (3) +static int +igb_dev_mq_rx_configure(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw = + E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + uint32_t mrqc; + + if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) { + /* + * SRIOV active scheme + * FIXME if support RSS together with VMDq & SRIOV + */ + mrqc = E1000_MRQC_ENABLE_VMDQ; + /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */ + mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT; + E1000_WRITE_REG(hw, E1000_MRQC, mrqc); + } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) { + /* + * SRIOV inactive scheme + */ + switch (dev->data->dev_conf.rxmode.mq_mode) { + case ETH_MQ_RX_RSS: + igb_rss_configure(dev); + break; + case ETH_MQ_RX_VMDQ_ONLY: + /*Configure general VMDQ only RX parameters*/ + igb_vmdq_rx_hw_configure(dev); + break; + case ETH_MQ_RX_NONE: + /* if mq_mode is none, disable rss mode.*/ + default: + igb_rss_disable(dev); + break; + } + } + + return 0; +} + +int +eth_igb_rx_init(struct rte_eth_dev *dev) +{ + struct rte_eth_rxmode *rxmode; + struct e1000_hw *hw; + struct igb_rx_queue *rxq; + uint32_t rctl; + uint32_t rxcsum; + uint32_t srrctl; + uint16_t buf_size; + uint16_t rctl_bsize; + uint16_t i; + int ret; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + srrctl = 0; + + /* + * Make sure receives are disabled while setting + * up the descriptor ring. + */ + rctl = E1000_READ_REG(hw, E1000_RCTL); + E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); + + rxmode = &dev->data->dev_conf.rxmode; + + /* + * Configure support of jumbo frames, if any. + */ + if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) { + rctl |= E1000_RCTL_LPE; + + /* + * Set maximum packet length by default, and might be updated + * together with enabling/disabling dual VLAN. + */ + E1000_WRITE_REG(hw, E1000_RLPML, + dev->data->dev_conf.rxmode.max_rx_pkt_len + + VLAN_TAG_SIZE); + } else + rctl &= ~E1000_RCTL_LPE; + + /* Configure and enable each RX queue. */ + rctl_bsize = 0; + dev->rx_pkt_burst = eth_igb_recv_pkts; + for (i = 0; i < dev->data->nb_rx_queues; i++) { + uint64_t bus_addr; + uint32_t rxdctl; + + rxq = dev->data->rx_queues[i]; + + rxq->flags = 0; + /* + * i350 and i354 vlan packets have vlan tags byte swapped. + */ + if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i354) { + rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN; + PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required"); + } else { + PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required"); + } + + /* Allocate buffers for descriptor rings and set up queue */ + ret = igb_alloc_rx_queue_mbufs(rxq); + if (ret) + return ret; + + /* + * Reset crc_len in case it was changed after queue setup by a + * call to configure + */ + if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads)) + rxq->crc_len = ETHER_CRC_LEN; + else + rxq->crc_len = 0; + + bus_addr = rxq->rx_ring_phys_addr; + E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx), + rxq->nb_rx_desc * + sizeof(union e1000_adv_rx_desc)); + E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx), + (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr); + + srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; + + /* + * Configure RX buffer size. + */ + buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) - + RTE_PKTMBUF_HEADROOM); + if (buf_size >= 1024) { + /* + * Configure the BSIZEPACKET field of the SRRCTL + * register of the queue. + * Value is in 1 KB resolution, from 1 KB to 127 KB. + * If this field is equal to 0b, then RCTL.BSIZE + * determines the RX packet buffer size. + */ + srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) & + E1000_SRRCTL_BSIZEPKT_MASK); + buf_size = (uint16_t) ((srrctl & + E1000_SRRCTL_BSIZEPKT_MASK) << + E1000_SRRCTL_BSIZEPKT_SHIFT); + + /* It adds dual VLAN length for supporting dual VLAN */ + if ((dev->data->dev_conf.rxmode.max_rx_pkt_len + + 2 * VLAN_TAG_SIZE) > buf_size){ + if (!dev->data->scattered_rx) + PMD_INIT_LOG(DEBUG, + "forcing scatter mode"); + dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; + dev->data->scattered_rx = 1; + } + } else { + /* + * Use BSIZE field of the device RCTL register. + */ + if ((rctl_bsize == 0) || (rctl_bsize > buf_size)) + rctl_bsize = buf_size; + if (!dev->data->scattered_rx) + PMD_INIT_LOG(DEBUG, "forcing scatter mode"); + dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; + dev->data->scattered_rx = 1; + } + + /* Set if packets are dropped when no descriptors available */ + if (rxq->drop_en) + srrctl |= E1000_SRRCTL_DROP_EN; + + E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl); + + /* Enable this RX queue. */ + rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx)); + rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; + rxdctl &= 0xFFF00000; + rxdctl |= (rxq->pthresh & 0x1F); + rxdctl |= ((rxq->hthresh & 0x1F) << 8); + rxdctl |= ((rxq->wthresh & 0x1F) << 16); + E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl); + } + + if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) { + if (!dev->data->scattered_rx) + PMD_INIT_LOG(DEBUG, "forcing scatter mode"); + dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; + dev->data->scattered_rx = 1; + } + + /* + * Setup BSIZE field of RCTL register, if needed. + * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL + * register, since the code above configures the SRRCTL register of + * the RX queue in such a case. + * All configurable sizes are: + * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX); + * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX); + * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX); + * 2048: rctl |= E1000_RCTL_SZ_2048; + * 1024: rctl |= E1000_RCTL_SZ_1024; + * 512: rctl |= E1000_RCTL_SZ_512; + * 256: rctl |= E1000_RCTL_SZ_256; + */ + if (rctl_bsize > 0) { + if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */ + rctl |= E1000_RCTL_SZ_512; + else /* 256 <= buf_size < 512 - use 256 */ + rctl |= E1000_RCTL_SZ_256; + } + + /* + * Configure RSS if device configured with multiple RX queues. + */ + igb_dev_mq_rx_configure(dev); + + /* Update the rctl since igb_dev_mq_rx_configure may change its value */ + rctl |= E1000_READ_REG(hw, E1000_RCTL); + + /* + * Setup the Checksum Register. + * Receive Full-Packet Checksum Offload is mutually exclusive with RSS. + */ + rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); + rxcsum |= E1000_RXCSUM_PCSD; + + /* Enable both L3/L4 rx checksum offload */ + if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM) + rxcsum |= E1000_RXCSUM_IPOFL; + else + rxcsum &= ~E1000_RXCSUM_IPOFL; + if (rxmode->offloads & + (DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM)) + rxcsum |= E1000_RXCSUM_TUOFL; + else + rxcsum &= ~E1000_RXCSUM_TUOFL; + if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) + rxcsum |= E1000_RXCSUM_CRCOFL; + else + rxcsum &= ~E1000_RXCSUM_CRCOFL; + + E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); + + /* Setup the Receive Control Register. */ + if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads)) { + rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */ + + /* clear STRCRC bit in all queues */ + if (hw->mac.type == e1000_i350 || + hw->mac.type == e1000_i210 || + hw->mac.type == e1000_i211 || + hw->mac.type == e1000_i354) { + for (i = 0; i < dev->data->nb_rx_queues; i++) { + rxq = dev->data->rx_queues[i]; + uint32_t dvmolr = E1000_READ_REG(hw, + E1000_DVMOLR(rxq->reg_idx)); + dvmolr &= ~E1000_DVMOLR_STRCRC; + E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr); + } + } + } else { + rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */ + + /* set STRCRC bit in all queues */ + if (hw->mac.type == e1000_i350 || + hw->mac.type == e1000_i210 || + hw->mac.type == e1000_i211 || + hw->mac.type == e1000_i354) { + for (i = 0; i < dev->data->nb_rx_queues; i++) { + rxq = dev->data->rx_queues[i]; + uint32_t dvmolr = E1000_READ_REG(hw, + E1000_DVMOLR(rxq->reg_idx)); + dvmolr |= E1000_DVMOLR_STRCRC; + E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr); + } + } + } + + rctl &= ~(3 << E1000_RCTL_MO_SHIFT); + rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | + E1000_RCTL_RDMTS_HALF | + (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); + + /* Make sure VLAN Filters are off. */ + if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY) + rctl &= ~E1000_RCTL_VFE; + /* Don't store bad packets. */ + rctl &= ~E1000_RCTL_SBP; + + /* Enable Receives. */ + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + + /* + * Setup the HW Rx Head and Tail Descriptor Pointers. + * This needs to be done after enable. + */ + for (i = 0; i < dev->data->nb_rx_queues; i++) { + rxq = dev->data->rx_queues[i]; + E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0); + E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1); + } + + return 0; +} + +/********************************************************************* + * + * Enable transmit unit. + * + **********************************************************************/ +void +eth_igb_tx_init(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + struct igb_tx_queue *txq; + uint32_t tctl; + uint32_t txdctl; + uint16_t i; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* Setup the Base and Length of the Tx Descriptor Rings. */ + for (i = 0; i < dev->data->nb_tx_queues; i++) { + uint64_t bus_addr; + txq = dev->data->tx_queues[i]; + bus_addr = txq->tx_ring_phys_addr; + + E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx), + txq->nb_tx_desc * + sizeof(union e1000_adv_tx_desc)); + E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx), + (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr); + + /* Setup the HW Tx Head and Tail descriptor pointers. */ + E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0); + E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0); + + /* Setup Transmit threshold registers. */ + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx)); + txdctl |= txq->pthresh & 0x1F; + txdctl |= ((txq->hthresh & 0x1F) << 8); + txdctl |= ((txq->wthresh & 0x1F) << 16); + txdctl |= E1000_TXDCTL_QUEUE_ENABLE; + E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl); + } + + /* Program the Transmit Control Register. */ + tctl = E1000_READ_REG(hw, E1000_TCTL); + tctl &= ~E1000_TCTL_CT; + tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | + (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); + + e1000_config_collision_dist(hw); + + /* This write will effectively turn on the transmit unit. */ + E1000_WRITE_REG(hw, E1000_TCTL, tctl); +} + +/********************************************************************* + * + * Enable VF receive unit. + * + **********************************************************************/ +int +eth_igbvf_rx_init(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + struct igb_rx_queue *rxq; + uint32_t srrctl; + uint16_t buf_size; + uint16_t rctl_bsize; + uint16_t i; + int ret; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* setup MTU */ + e1000_rlpml_set_vf(hw, + (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len + + VLAN_TAG_SIZE)); + + /* Configure and enable each RX queue. */ + rctl_bsize = 0; + dev->rx_pkt_burst = eth_igb_recv_pkts; + for (i = 0; i < dev->data->nb_rx_queues; i++) { + uint64_t bus_addr; + uint32_t rxdctl; + + rxq = dev->data->rx_queues[i]; + + rxq->flags = 0; + /* + * i350VF LB vlan packets have vlan tags byte swapped. + */ + if (hw->mac.type == e1000_vfadapt_i350) { + rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN; + PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required"); + } else { + PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required"); + } + + /* Allocate buffers for descriptor rings and set up queue */ + ret = igb_alloc_rx_queue_mbufs(rxq); + if (ret) + return ret; + + bus_addr = rxq->rx_ring_phys_addr; + E1000_WRITE_REG(hw, E1000_RDLEN(i), + rxq->nb_rx_desc * + sizeof(union e1000_adv_rx_desc)); + E1000_WRITE_REG(hw, E1000_RDBAH(i), + (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr); + + srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; + + /* + * Configure RX buffer size. + */ + buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) - + RTE_PKTMBUF_HEADROOM); + if (buf_size >= 1024) { + /* + * Configure the BSIZEPACKET field of the SRRCTL + * register of the queue. + * Value is in 1 KB resolution, from 1 KB to 127 KB. + * If this field is equal to 0b, then RCTL.BSIZE + * determines the RX packet buffer size. + */ + srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) & + E1000_SRRCTL_BSIZEPKT_MASK); + buf_size = (uint16_t) ((srrctl & + E1000_SRRCTL_BSIZEPKT_MASK) << + E1000_SRRCTL_BSIZEPKT_SHIFT); + + /* It adds dual VLAN length for supporting dual VLAN */ + if ((dev->data->dev_conf.rxmode.max_rx_pkt_len + + 2 * VLAN_TAG_SIZE) > buf_size){ + if (!dev->data->scattered_rx) + PMD_INIT_LOG(DEBUG, + "forcing scatter mode"); + dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; + dev->data->scattered_rx = 1; + } + } else { + /* + * Use BSIZE field of the device RCTL register. + */ + if ((rctl_bsize == 0) || (rctl_bsize > buf_size)) + rctl_bsize = buf_size; + if (!dev->data->scattered_rx) + PMD_INIT_LOG(DEBUG, "forcing scatter mode"); + dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; + dev->data->scattered_rx = 1; + } + + /* Set if packets are dropped when no descriptors available */ + if (rxq->drop_en) + srrctl |= E1000_SRRCTL_DROP_EN; + + E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); + + /* Enable this RX queue. */ + rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); + rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; + rxdctl &= 0xFFF00000; + rxdctl |= (rxq->pthresh & 0x1F); + rxdctl |= ((rxq->hthresh & 0x1F) << 8); + if (hw->mac.type == e1000_vfadapt) { + /* + * Workaround of 82576 VF Erratum + * force set WTHRESH to 1 + * to avoid Write-Back not triggered sometimes + */ + rxdctl |= 0x10000; + PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !"); + } + else + rxdctl |= ((rxq->wthresh & 0x1F) << 16); + E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); + } + + if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) { + if (!dev->data->scattered_rx) + PMD_INIT_LOG(DEBUG, "forcing scatter mode"); + dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; + dev->data->scattered_rx = 1; + } + + /* + * Setup the HW Rx Head and Tail Descriptor Pointers. + * This needs to be done after enable. + */ + for (i = 0; i < dev->data->nb_rx_queues; i++) { + rxq = dev->data->rx_queues[i]; + E1000_WRITE_REG(hw, E1000_RDH(i), 0); + E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1); + } + + return 0; +} + +/********************************************************************* + * + * Enable VF transmit unit. + * + **********************************************************************/ +void +eth_igbvf_tx_init(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + struct igb_tx_queue *txq; + uint32_t txdctl; + uint16_t i; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* Setup the Base and Length of the Tx Descriptor Rings. */ + for (i = 0; i < dev->data->nb_tx_queues; i++) { + uint64_t bus_addr; + + txq = dev->data->tx_queues[i]; + bus_addr = txq->tx_ring_phys_addr; + E1000_WRITE_REG(hw, E1000_TDLEN(i), + txq->nb_tx_desc * + sizeof(union e1000_adv_tx_desc)); + E1000_WRITE_REG(hw, E1000_TDBAH(i), + (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr); + + /* Setup the HW Tx Head and Tail descriptor pointers. */ + E1000_WRITE_REG(hw, E1000_TDT(i), 0); + E1000_WRITE_REG(hw, E1000_TDH(i), 0); + + /* Setup Transmit threshold registers. */ + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i)); + txdctl |= txq->pthresh & 0x1F; + txdctl |= ((txq->hthresh & 0x1F) << 8); + if (hw->mac.type == e1000_82576) { + /* + * Workaround of 82576 VF Erratum + * force set WTHRESH to 1 + * to avoid Write-Back not triggered sometimes + */ + txdctl |= 0x10000; + PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !"); + } + else + txdctl |= ((txq->wthresh & 0x1F) << 16); + txdctl |= E1000_TXDCTL_QUEUE_ENABLE; + E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); + } + +} + +void +igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_rxq_info *qinfo) +{ + struct igb_rx_queue *rxq; + + rxq = dev->data->rx_queues[queue_id]; + + qinfo->mp = rxq->mb_pool; + qinfo->scattered_rx = dev->data->scattered_rx; + qinfo->nb_desc = rxq->nb_rx_desc; + + qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; + qinfo->conf.rx_drop_en = rxq->drop_en; + qinfo->conf.offloads = rxq->offloads; +} + +void +igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_txq_info *qinfo) +{ + struct igb_tx_queue *txq; + + txq = dev->data->tx_queues[queue_id]; + + qinfo->nb_desc = txq->nb_tx_desc; + + qinfo->conf.tx_thresh.pthresh = txq->pthresh; + qinfo->conf.tx_thresh.hthresh = txq->hthresh; + qinfo->conf.tx_thresh.wthresh = txq->wthresh; + qinfo->conf.offloads = txq->offloads; +} + +int +igb_rss_conf_init(struct igb_rte_flow_rss_conf *out, + const struct rte_flow_action_rss *in) +{ + if (in->key_len > RTE_DIM(out->key) || + in->queue_num > RTE_DIM(out->queue)) + return -EINVAL; + out->conf = (struct rte_flow_action_rss){ + .func = in->func, + .level = in->level, + .types = in->types, + .key_len = in->key_len, + .queue_num = in->queue_num, + .key = memcpy(out->key, in->key, in->key_len), + .queue = memcpy(out->queue, in->queue, + sizeof(*in->queue) * in->queue_num), + }; + return 0; +} + +int +igb_action_rss_same(const struct rte_flow_action_rss *comp, + const struct rte_flow_action_rss *with) +{ + return (comp->func == with->func && + comp->level == with->level && + comp->types == with->types && + comp->key_len == with->key_len && + comp->queue_num == with->queue_num && + !memcmp(comp->key, with->key, with->key_len) && + !memcmp(comp->queue, with->queue, + sizeof(*with->queue) * with->queue_num)); +} + +int +igb_config_rss_filter(struct rte_eth_dev *dev, + struct igb_rte_flow_rss_conf *conf, bool add) +{ + uint32_t shift; + uint16_t i, j; + struct rte_eth_rss_conf rss_conf = { + .rss_key = conf->conf.key_len ? + (void *)(uintptr_t)conf->conf.key : NULL, + .rss_key_len = conf->conf.key_len, + .rss_hf = conf->conf.types, + }; + struct e1000_filter_info *filter_info = + E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); + struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + if (!add) { + if (igb_action_rss_same(&filter_info->rss_info.conf, + &conf->conf)) { + igb_rss_disable(dev); + memset(&filter_info->rss_info, 0, + sizeof(struct igb_rte_flow_rss_conf)); + return 0; + } + return -EINVAL; + } + + if (filter_info->rss_info.conf.queue_num) + return -EINVAL; + + /* Fill in redirection table. */ + shift = (hw->mac.type == e1000_82575) ? 6 : 0; + for (i = 0, j = 0; i < 128; i++, j++) { + union e1000_reta { + uint32_t dword; + uint8_t bytes[4]; + } reta; + uint8_t q_idx; + + if (j == conf->conf.queue_num) + j = 0; + q_idx = conf->conf.queue[j]; + reta.bytes[i & 3] = (uint8_t)(q_idx << shift); + if ((i & 3) == 3) + E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword); + } + + /* Configure the RSS key and the RSS protocols used to compute + * the RSS hash of input packets. + */ + if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) { + igb_rss_disable(dev); + return 0; + } + if (rss_conf.rss_key == NULL) + rss_conf.rss_key = rss_intel_key; /* Default hash key */ + igb_hw_rss_hash_set(hw, &rss_conf); + + if (igb_rss_conf_init(&filter_info->rss_info, &conf->conf)) + return -EINVAL; + + return 0; +} diff --git a/src/spdk/dpdk/drivers/net/e1000/meson.build b/src/spdk/dpdk/drivers/net/e1000/meson.build new file mode 100644 index 00000000..cf456995 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/meson.build @@ -0,0 +1,17 @@ +# SPDX-License-Identifier: BSD-3-Clause +# Copyright(c) 2017 Intel Corporation + +subdir('base') +objs = [base_objs] + +sources = files( + 'e1000_logs.c', + 'em_ethdev.c', + 'em_rxtx.c', + 'igb_ethdev.c', + 'igb_flow.c', + 'igb_pf.c', + 'igb_rxtx.c' +) + +includes += include_directories('base') diff --git a/src/spdk/dpdk/drivers/net/e1000/rte_pmd_e1000_version.map b/src/spdk/dpdk/drivers/net/e1000/rte_pmd_e1000_version.map new file mode 100644 index 00000000..ef353984 --- /dev/null +++ b/src/spdk/dpdk/drivers/net/e1000/rte_pmd_e1000_version.map @@ -0,0 +1,4 @@ +DPDK_2.0 { + + local: *; +}; |