summaryrefslogtreecommitdiffstats
path: root/src/spdk/dpdk/drivers/net/mlx4/mlx4_rxtx.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/spdk/dpdk/drivers/net/mlx4/mlx4_rxtx.c')
-rw-r--r--src/spdk/dpdk/drivers/net/mlx4/mlx4_rxtx.c1394
1 files changed, 1394 insertions, 0 deletions
diff --git a/src/spdk/dpdk/drivers/net/mlx4/mlx4_rxtx.c b/src/spdk/dpdk/drivers/net/mlx4/mlx4_rxtx.c
new file mode 100644
index 00000000..8c88effc
--- /dev/null
+++ b/src/spdk/dpdk/drivers/net/mlx4/mlx4_rxtx.c
@@ -0,0 +1,1394 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright 2017 6WIND S.A.
+ * Copyright 2017 Mellanox Technologies, Ltd
+ */
+
+/**
+ * @file
+ * Data plane functions for mlx4 driver.
+ */
+
+#include <assert.h>
+#include <stdint.h>
+#include <string.h>
+
+/* Verbs headers do not support -pedantic. */
+#ifdef PEDANTIC
+#pragma GCC diagnostic ignored "-Wpedantic"
+#endif
+#include <infiniband/verbs.h>
+#ifdef PEDANTIC
+#pragma GCC diagnostic error "-Wpedantic"
+#endif
+
+#include <rte_branch_prediction.h>
+#include <rte_common.h>
+#include <rte_io.h>
+#include <rte_mbuf.h>
+#include <rte_mempool.h>
+#include <rte_prefetch.h>
+
+#include "mlx4.h"
+#include "mlx4_prm.h"
+#include "mlx4_rxtx.h"
+#include "mlx4_utils.h"
+
+/**
+ * Pointer-value pair structure used in tx_post_send for saving the first
+ * DWORD (32 byte) of a TXBB.
+ */
+struct pv {
+ union {
+ volatile struct mlx4_wqe_data_seg *dseg;
+ volatile uint32_t *dst;
+ };
+ uint32_t val;
+};
+
+/** A helper structure for TSO packet handling. */
+struct tso_info {
+ /** Pointer to the array of saved first DWORD (32 byte) of a TXBB. */
+ struct pv *pv;
+ /** Current entry in the pv array. */
+ int pv_counter;
+ /** Total size of the WQE including padding. */
+ uint32_t wqe_size;
+ /** Size of TSO header to prepend to each packet to send. */
+ uint16_t tso_header_size;
+ /** Total size of the TSO segment in the WQE. */
+ uint16_t wqe_tso_seg_size;
+ /** Raw WQE size in units of 16 Bytes and without padding. */
+ uint8_t fence_size;
+};
+
+/** A table to translate Rx completion flags to packet type. */
+uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
+ /*
+ * The index to the array should have:
+ * bit[7] - MLX4_CQE_L2_TUNNEL
+ * bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
+ * bit[5] - MLX4_CQE_STATUS_UDP
+ * bit[4] - MLX4_CQE_STATUS_TCP
+ * bit[3] - MLX4_CQE_STATUS_IPV4OPT
+ * bit[2] - MLX4_CQE_STATUS_IPV6
+ * bit[1] - MLX4_CQE_STATUS_IPF
+ * bit[0] - MLX4_CQE_STATUS_IPV4
+ * giving a total of up to 256 entries.
+ */
+ /* L2 */
+ [0x00] = RTE_PTYPE_L2_ETHER,
+ /* L3 */
+ [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_NONFRAG,
+ [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_FRAG,
+ [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_FRAG,
+ [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_NONFRAG,
+ [0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_FRAG,
+ [0x08] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
+ RTE_PTYPE_L4_NONFRAG,
+ [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
+ RTE_PTYPE_L4_NONFRAG,
+ [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
+ RTE_PTYPE_L4_FRAG,
+ [0x0b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
+ RTE_PTYPE_L4_FRAG,
+ /* TCP */
+ [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_TCP,
+ [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_TCP,
+ [0x16] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_FRAG,
+ [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
+ RTE_PTYPE_L4_TCP,
+ [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
+ RTE_PTYPE_L4_TCP,
+ /* UDP */
+ [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_UDP,
+ [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_UDP,
+ [0x26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_FRAG,
+ [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
+ RTE_PTYPE_L4_UDP,
+ [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
+ RTE_PTYPE_L4_UDP,
+ /* Tunneled - L3 IPV6 */
+ [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
+ [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0x8b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_FRAG,
+ /* Tunneled - L3 IPV6, TCP */
+ [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [0x96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
+ [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
+ /* Tunneled - L3 IPV6, UDP */
+ [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ [0xa6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_UDP,
+ [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* Tunneled - L3 IPV4 */
+ [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
+ [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0xcb] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_FRAG,
+ /* Tunneled - L3 IPV4, TCP */
+ [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [0xd6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_TCP,
+ [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_TCP,
+ /* Tunneled - L3 IPV4, UDP */
+ [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ [0xe6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_UDP,
+ [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT |
+ RTE_PTYPE_INNER_L4_UDP,
+};
+
+/**
+ * Stamp TXBB burst so it won't be reused by the HW.
+ *
+ * Routine is used when freeing WQE used by the chip or when failing
+ * building an WQ entry has failed leaving partial information on the queue.
+ *
+ * @param sq
+ * Pointer to the SQ structure.
+ * @param start
+ * Pointer to the first TXBB to stamp.
+ * @param end
+ * Pointer to the followed end TXBB to stamp.
+ *
+ * @return
+ * Stamping burst size in byte units.
+ */
+static uint32_t
+mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start,
+ volatile uint32_t *end)
+{
+ uint32_t stamp = sq->stamp;
+ int32_t size = (intptr_t)end - (intptr_t)start;
+
+ assert(start != end);
+ /* Hold SQ ring wrap around. */
+ if (size < 0) {
+ size = (int32_t)sq->size + size;
+ do {
+ *start = stamp;
+ start += MLX4_SQ_STAMP_DWORDS;
+ } while (start != (volatile uint32_t *)sq->eob);
+ start = (volatile uint32_t *)sq->buf;
+ /* Flip invalid stamping ownership. */
+ stamp ^= RTE_BE32(1u << MLX4_SQ_OWNER_BIT);
+ sq->stamp = stamp;
+ if (start == end)
+ return size;
+ }
+ do {
+ *start = stamp;
+ start += MLX4_SQ_STAMP_DWORDS;
+ } while (start != end);
+ return (uint32_t)size;
+}
+
+/**
+ * Manage Tx completions.
+ *
+ * When sending a burst, mlx4_tx_burst() posts several WRs.
+ * To improve performance, a completion event is only required once every
+ * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
+ * for other WRs, but this information would not be used anyway.
+ *
+ * @param txq
+ * Pointer to Tx queue structure.
+ * @param elts_m
+ * Tx elements number mask.
+ * @param sq
+ * Pointer to the SQ structure.
+ */
+static void
+mlx4_txq_complete(struct txq *txq, const unsigned int elts_m,
+ struct mlx4_sq *sq)
+{
+ unsigned int elts_tail = txq->elts_tail;
+ struct mlx4_cq *cq = &txq->mcq;
+ volatile struct mlx4_cqe *cqe;
+ uint32_t completed;
+ uint32_t cons_index = cq->cons_index;
+ volatile uint32_t *first_txbb;
+
+ /*
+ * Traverse over all CQ entries reported and handle each WQ entry
+ * reported by them.
+ */
+ do {
+ cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
+ if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
+ !!(cons_index & cq->cqe_cnt)))
+ break;
+#ifndef NDEBUG
+ /*
+ * Make sure we read the CQE after we read the ownership bit.
+ */
+ rte_io_rmb();
+ if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
+ MLX4_CQE_OPCODE_ERROR)) {
+ volatile struct mlx4_err_cqe *cqe_err =
+ (volatile struct mlx4_err_cqe *)cqe;
+ ERROR("%p CQE error - vendor syndrome: 0x%x"
+ " syndrome: 0x%x\n",
+ (void *)txq, cqe_err->vendor_err,
+ cqe_err->syndrome);
+ break;
+ }
+#endif /* NDEBUG */
+ cons_index++;
+ } while (1);
+ completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init;
+ if (unlikely(!completed))
+ return;
+ /* First stamping address is the end of the last one. */
+ first_txbb = (&(*txq->elts)[elts_tail & elts_m])->eocb;
+ elts_tail += completed;
+ /* The new tail element holds the end address. */
+ sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb,
+ (&(*txq->elts)[elts_tail & elts_m])->eocb);
+ /* Update CQ consumer index. */
+ cq->cons_index = cons_index;
+ *cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
+ txq->elts_tail = elts_tail;
+}
+
+/**
+ * Write Tx data segment to the SQ.
+ *
+ * @param dseg
+ * Pointer to data segment in SQ.
+ * @param lkey
+ * Memory region lkey.
+ * @param addr
+ * Data address.
+ * @param byte_count
+ * Big endian bytes count of the data to send.
+ */
+static inline void
+mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
+ uint32_t lkey, uintptr_t addr, rte_be32_t byte_count)
+{
+ dseg->addr = rte_cpu_to_be_64(addr);
+ dseg->lkey = lkey;
+#if RTE_CACHE_LINE_SIZE < 64
+ /*
+ * Need a barrier here before writing the byte_count
+ * fields to make sure that all the data is visible
+ * before the byte_count field is set.
+ * Otherwise, if the segment begins a new cacheline,
+ * the HCA prefetcher could grab the 64-byte chunk and
+ * get a valid (!= 0xffffffff) byte count but stale
+ * data, and end up sending the wrong data.
+ */
+ rte_io_wmb();
+#endif /* RTE_CACHE_LINE_SIZE */
+ dseg->byte_count = byte_count;
+}
+
+/**
+ * Obtain and calculate TSO information needed for assembling a TSO WQE.
+ *
+ * @param buf
+ * Pointer to the first packet mbuf.
+ * @param txq
+ * Pointer to Tx queue structure.
+ * @param tinfo
+ * Pointer to a structure to fill the info with.
+ *
+ * @return
+ * 0 on success, negative value upon error.
+ */
+static inline int
+mlx4_tx_burst_tso_get_params(struct rte_mbuf *buf,
+ struct txq *txq,
+ struct tso_info *tinfo)
+{
+ struct mlx4_sq *sq = &txq->msq;
+ const uint8_t tunneled = txq->priv->hw_csum_l2tun &&
+ (buf->ol_flags & PKT_TX_TUNNEL_MASK);
+
+ tinfo->tso_header_size = buf->l2_len + buf->l3_len + buf->l4_len;
+ if (tunneled)
+ tinfo->tso_header_size +=
+ buf->outer_l2_len + buf->outer_l3_len;
+ if (unlikely(buf->tso_segsz == 0 ||
+ tinfo->tso_header_size == 0 ||
+ tinfo->tso_header_size > MLX4_MAX_TSO_HEADER ||
+ tinfo->tso_header_size > buf->data_len))
+ return -EINVAL;
+ /*
+ * Calculate the WQE TSO segment size
+ * Note:
+ * 1. An LSO segment must be padded such that the subsequent data
+ * segment is 16-byte aligned.
+ * 2. The start address of the TSO segment is always 16 Bytes aligned.
+ */
+ tinfo->wqe_tso_seg_size = RTE_ALIGN(sizeof(struct mlx4_wqe_lso_seg) +
+ tinfo->tso_header_size,
+ sizeof(struct mlx4_wqe_data_seg));
+ tinfo->fence_size = ((sizeof(struct mlx4_wqe_ctrl_seg) +
+ tinfo->wqe_tso_seg_size) >> MLX4_SEG_SHIFT) +
+ buf->nb_segs;
+ tinfo->wqe_size =
+ RTE_ALIGN((uint32_t)(tinfo->fence_size << MLX4_SEG_SHIFT),
+ MLX4_TXBB_SIZE);
+ /* Validate WQE size and WQE space in the send queue. */
+ if (sq->remain_size < tinfo->wqe_size ||
+ tinfo->wqe_size > MLX4_MAX_WQE_SIZE)
+ return -ENOMEM;
+ /* Init pv. */
+ tinfo->pv = (struct pv *)txq->bounce_buf;
+ tinfo->pv_counter = 0;
+ return 0;
+}
+
+/**
+ * Fill the TSO WQE data segments with info on buffers to transmit .
+ *
+ * @param buf
+ * Pointer to the first packet mbuf.
+ * @param txq
+ * Pointer to Tx queue structure.
+ * @param tinfo
+ * Pointer to TSO info to use.
+ * @param dseg
+ * Pointer to the first data segment in the TSO WQE.
+ * @param ctrl
+ * Pointer to the control segment in the TSO WQE.
+ *
+ * @return
+ * 0 on success, negative value upon error.
+ */
+static inline volatile struct mlx4_wqe_ctrl_seg *
+mlx4_tx_burst_fill_tso_dsegs(struct rte_mbuf *buf,
+ struct txq *txq,
+ struct tso_info *tinfo,
+ volatile struct mlx4_wqe_data_seg *dseg,
+ volatile struct mlx4_wqe_ctrl_seg *ctrl)
+{
+ uint32_t lkey;
+ int nb_segs = buf->nb_segs;
+ int nb_segs_txbb;
+ struct mlx4_sq *sq = &txq->msq;
+ struct rte_mbuf *sbuf = buf;
+ struct pv *pv = tinfo->pv;
+ int *pv_counter = &tinfo->pv_counter;
+ volatile struct mlx4_wqe_ctrl_seg *ctrl_next =
+ (volatile struct mlx4_wqe_ctrl_seg *)
+ ((volatile uint8_t *)ctrl + tinfo->wqe_size);
+ uint16_t data_len = sbuf->data_len - tinfo->tso_header_size;
+ uintptr_t data_addr = rte_pktmbuf_mtod_offset(sbuf, uintptr_t,
+ tinfo->tso_header_size);
+
+ do {
+ /* how many dseg entries do we have in the current TXBB ? */
+ nb_segs_txbb = (MLX4_TXBB_SIZE -
+ ((uintptr_t)dseg & (MLX4_TXBB_SIZE - 1))) >>
+ MLX4_SEG_SHIFT;
+ switch (nb_segs_txbb) {
+#ifndef NDEBUG
+ default:
+ /* Should never happen. */
+ rte_panic("%p: Invalid number of SGEs(%d) for a TXBB",
+ (void *)txq, nb_segs_txbb);
+ /* rte_panic never returns. */
+ break;
+#endif /* NDEBUG */
+ case 4:
+ /* Memory region key for this memory pool. */
+ lkey = mlx4_tx_mb2mr(txq, sbuf);
+ if (unlikely(lkey == (uint32_t)-1))
+ goto err;
+ dseg->addr = rte_cpu_to_be_64(data_addr);
+ dseg->lkey = lkey;
+ /*
+ * This data segment starts at the beginning of a new
+ * TXBB, so we need to postpone its byte_count writing
+ * for later.
+ */
+ pv[*pv_counter].dseg = dseg;
+ /*
+ * Zero length segment is treated as inline segment
+ * with zero data.
+ */
+ pv[(*pv_counter)++].val =
+ rte_cpu_to_be_32(data_len ?
+ data_len :
+ 0x80000000);
+ if (--nb_segs == 0)
+ return ctrl_next;
+ /* Prepare next buf info */
+ sbuf = sbuf->next;
+ dseg++;
+ data_len = sbuf->data_len;
+ data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
+ /* fallthrough */
+ case 3:
+ lkey = mlx4_tx_mb2mr(txq, sbuf);
+ if (unlikely(lkey == (uint32_t)-1))
+ goto err;
+ mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
+ rte_cpu_to_be_32(data_len ?
+ data_len :
+ 0x80000000));
+ if (--nb_segs == 0)
+ return ctrl_next;
+ /* Prepare next buf info */
+ sbuf = sbuf->next;
+ dseg++;
+ data_len = sbuf->data_len;
+ data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
+ /* fallthrough */
+ case 2:
+ lkey = mlx4_tx_mb2mr(txq, sbuf);
+ if (unlikely(lkey == (uint32_t)-1))
+ goto err;
+ mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
+ rte_cpu_to_be_32(data_len ?
+ data_len :
+ 0x80000000));
+ if (--nb_segs == 0)
+ return ctrl_next;
+ /* Prepare next buf info */
+ sbuf = sbuf->next;
+ dseg++;
+ data_len = sbuf->data_len;
+ data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
+ /* fallthrough */
+ case 1:
+ lkey = mlx4_tx_mb2mr(txq, sbuf);
+ if (unlikely(lkey == (uint32_t)-1))
+ goto err;
+ mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
+ rte_cpu_to_be_32(data_len ?
+ data_len :
+ 0x80000000));
+ if (--nb_segs == 0)
+ return ctrl_next;
+ /* Prepare next buf info */
+ sbuf = sbuf->next;
+ dseg++;
+ data_len = sbuf->data_len;
+ data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
+ /* fallthrough */
+ }
+ /* Wrap dseg if it points at the end of the queue. */
+ if ((volatile uint8_t *)dseg >= sq->eob)
+ dseg = (volatile struct mlx4_wqe_data_seg *)
+ ((volatile uint8_t *)dseg - sq->size);
+ } while (true);
+err:
+ return NULL;
+}
+
+/**
+ * Fill the packet's l2, l3 and l4 headers to the WQE.
+ *
+ * This will be used as the header for each TSO segment that is transmitted.
+ *
+ * @param buf
+ * Pointer to the first packet mbuf.
+ * @param txq
+ * Pointer to Tx queue structure.
+ * @param tinfo
+ * Pointer to TSO info to use.
+ * @param ctrl
+ * Pointer to the control segment in the TSO WQE.
+ *
+ * @return
+ * 0 on success, negative value upon error.
+ */
+static inline volatile struct mlx4_wqe_data_seg *
+mlx4_tx_burst_fill_tso_hdr(struct rte_mbuf *buf,
+ struct txq *txq,
+ struct tso_info *tinfo,
+ volatile struct mlx4_wqe_ctrl_seg *ctrl)
+{
+ volatile struct mlx4_wqe_lso_seg *tseg =
+ (volatile struct mlx4_wqe_lso_seg *)(ctrl + 1);
+ struct mlx4_sq *sq = &txq->msq;
+ struct pv *pv = tinfo->pv;
+ int *pv_counter = &tinfo->pv_counter;
+ int remain_size = tinfo->tso_header_size;
+ char *from = rte_pktmbuf_mtod(buf, char *);
+ uint16_t txbb_avail_space;
+ /* Union to overcome volatile constraints when copying TSO header. */
+ union {
+ volatile uint8_t *vto;
+ uint8_t *to;
+ } thdr = { .vto = (volatile uint8_t *)tseg->header, };
+
+ /*
+ * TSO data always starts at offset 20 from the beginning of the TXBB
+ * (16 byte ctrl + 4byte TSO desc). Since each TXBB is 64Byte aligned
+ * we can write the first 44 TSO header bytes without worry for TxQ
+ * wrapping or overwriting the first TXBB 32bit word.
+ */
+ txbb_avail_space = MLX4_TXBB_SIZE -
+ (sizeof(struct mlx4_wqe_ctrl_seg) +
+ sizeof(struct mlx4_wqe_lso_seg));
+ while (remain_size >= (int)(txbb_avail_space + sizeof(uint32_t))) {
+ /* Copy to end of txbb. */
+ rte_memcpy(thdr.to, from, txbb_avail_space);
+ from += txbb_avail_space;
+ thdr.to += txbb_avail_space;
+ /* New TXBB, Check for TxQ wrap. */
+ if (thdr.to >= sq->eob)
+ thdr.vto = sq->buf;
+ /* New TXBB, stash the first 32bits for later use. */
+ pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
+ pv[(*pv_counter)++].val = *(uint32_t *)from,
+ from += sizeof(uint32_t);
+ thdr.to += sizeof(uint32_t);
+ remain_size -= txbb_avail_space + sizeof(uint32_t);
+ /* Avail space in new TXBB is TXBB size - 4 */
+ txbb_avail_space = MLX4_TXBB_SIZE - sizeof(uint32_t);
+ }
+ if (remain_size > txbb_avail_space) {
+ rte_memcpy(thdr.to, from, txbb_avail_space);
+ from += txbb_avail_space;
+ thdr.to += txbb_avail_space;
+ remain_size -= txbb_avail_space;
+ /* New TXBB, Check for TxQ wrap. */
+ if (thdr.to >= sq->eob)
+ thdr.vto = sq->buf;
+ pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
+ rte_memcpy(&pv[*pv_counter].val, from, remain_size);
+ (*pv_counter)++;
+ } else if (remain_size) {
+ rte_memcpy(thdr.to, from, remain_size);
+ }
+ tseg->mss_hdr_size = rte_cpu_to_be_32((buf->tso_segsz << 16) |
+ tinfo->tso_header_size);
+ /* Calculate data segment location */
+ return (volatile struct mlx4_wqe_data_seg *)
+ ((uintptr_t)tseg + tinfo->wqe_tso_seg_size);
+}
+
+/**
+ * Write data segments and header for TSO uni/multi segment packet.
+ *
+ * @param buf
+ * Pointer to the first packet mbuf.
+ * @param txq
+ * Pointer to Tx queue structure.
+ * @param ctrl
+ * Pointer to the WQE control segment.
+ *
+ * @return
+ * Pointer to the next WQE control segment on success, NULL otherwise.
+ */
+static volatile struct mlx4_wqe_ctrl_seg *
+mlx4_tx_burst_tso(struct rte_mbuf *buf, struct txq *txq,
+ volatile struct mlx4_wqe_ctrl_seg *ctrl)
+{
+ volatile struct mlx4_wqe_data_seg *dseg;
+ volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
+ struct mlx4_sq *sq = &txq->msq;
+ struct tso_info tinfo;
+ struct pv *pv;
+ int pv_counter;
+ int ret;
+
+ ret = mlx4_tx_burst_tso_get_params(buf, txq, &tinfo);
+ if (unlikely(ret))
+ goto error;
+ dseg = mlx4_tx_burst_fill_tso_hdr(buf, txq, &tinfo, ctrl);
+ if (unlikely(dseg == NULL))
+ goto error;
+ if ((uintptr_t)dseg >= (uintptr_t)sq->eob)
+ dseg = (volatile struct mlx4_wqe_data_seg *)
+ ((uintptr_t)dseg - sq->size);
+ ctrl_next = mlx4_tx_burst_fill_tso_dsegs(buf, txq, &tinfo, dseg, ctrl);
+ if (unlikely(ctrl_next == NULL))
+ goto error;
+ /* Write the first DWORD of each TXBB save earlier. */
+ if (likely(tinfo.pv_counter)) {
+ pv = tinfo.pv;
+ pv_counter = tinfo.pv_counter;
+ /* Need a barrier here before writing the first TXBB word. */
+ rte_io_wmb();
+ do {
+ --pv_counter;
+ *pv[pv_counter].dst = pv[pv_counter].val;
+ } while (pv_counter > 0);
+ }
+ ctrl->fence_size = tinfo.fence_size;
+ sq->remain_size -= tinfo.wqe_size;
+ return ctrl_next;
+error:
+ txq->stats.odropped++;
+ return NULL;
+}
+
+/**
+ * Write data segments of multi-segment packet.
+ *
+ * @param buf
+ * Pointer to the first packet mbuf.
+ * @param txq
+ * Pointer to Tx queue structure.
+ * @param ctrl
+ * Pointer to the WQE control segment.
+ *
+ * @return
+ * Pointer to the next WQE control segment on success, NULL otherwise.
+ */
+static volatile struct mlx4_wqe_ctrl_seg *
+mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
+ volatile struct mlx4_wqe_ctrl_seg *ctrl)
+{
+ struct pv *pv = (struct pv *)txq->bounce_buf;
+ struct mlx4_sq *sq = &txq->msq;
+ struct rte_mbuf *sbuf = buf;
+ uint32_t lkey;
+ int pv_counter = 0;
+ int nb_segs = buf->nb_segs;
+ uint32_t wqe_size;
+ volatile struct mlx4_wqe_data_seg *dseg =
+ (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
+
+ ctrl->fence_size = 1 + nb_segs;
+ wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT),
+ MLX4_TXBB_SIZE);
+ /* Validate WQE size and WQE space in the send queue. */
+ if (sq->remain_size < wqe_size ||
+ wqe_size > MLX4_MAX_WQE_SIZE)
+ return NULL;
+ /*
+ * Fill the data segments with buffer information.
+ * First WQE TXBB head segment is always control segment,
+ * so jump to tail TXBB data segments code for the first
+ * WQE data segments filling.
+ */
+ goto txbb_tail_segs;
+txbb_head_seg:
+ /* Memory region key (big endian) for this memory pool. */
+ lkey = mlx4_tx_mb2mr(txq, sbuf);
+ if (unlikely(lkey == (uint32_t)-1)) {
+ DEBUG("%p: unable to get MP <-> MR association",
+ (void *)txq);
+ return NULL;
+ }
+ /* Handle WQE wraparound. */
+ if (dseg >=
+ (volatile struct mlx4_wqe_data_seg *)sq->eob)
+ dseg = (volatile struct mlx4_wqe_data_seg *)
+ sq->buf;
+ dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
+ dseg->lkey = lkey;
+ /*
+ * This data segment starts at the beginning of a new
+ * TXBB, so we need to postpone its byte_count writing
+ * for later.
+ */
+ pv[pv_counter].dseg = dseg;
+ /*
+ * Zero length segment is treated as inline segment
+ * with zero data.
+ */
+ pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
+ sbuf->data_len : 0x80000000);
+ sbuf = sbuf->next;
+ dseg++;
+ nb_segs--;
+txbb_tail_segs:
+ /* Jump to default if there are more than two segments remaining. */
+ switch (nb_segs) {
+ default:
+ lkey = mlx4_tx_mb2mr(txq, sbuf);
+ if (unlikely(lkey == (uint32_t)-1)) {
+ DEBUG("%p: unable to get MP <-> MR association",
+ (void *)txq);
+ return NULL;
+ }
+ mlx4_fill_tx_data_seg(dseg, lkey,
+ rte_pktmbuf_mtod(sbuf, uintptr_t),
+ rte_cpu_to_be_32(sbuf->data_len ?
+ sbuf->data_len :
+ 0x80000000));
+ sbuf = sbuf->next;
+ dseg++;
+ nb_segs--;
+ /* fallthrough */
+ case 2:
+ lkey = mlx4_tx_mb2mr(txq, sbuf);
+ if (unlikely(lkey == (uint32_t)-1)) {
+ DEBUG("%p: unable to get MP <-> MR association",
+ (void *)txq);
+ return NULL;
+ }
+ mlx4_fill_tx_data_seg(dseg, lkey,
+ rte_pktmbuf_mtod(sbuf, uintptr_t),
+ rte_cpu_to_be_32(sbuf->data_len ?
+ sbuf->data_len :
+ 0x80000000));
+ sbuf = sbuf->next;
+ dseg++;
+ nb_segs--;
+ /* fallthrough */
+ case 1:
+ lkey = mlx4_tx_mb2mr(txq, sbuf);
+ if (unlikely(lkey == (uint32_t)-1)) {
+ DEBUG("%p: unable to get MP <-> MR association",
+ (void *)txq);
+ return NULL;
+ }
+ mlx4_fill_tx_data_seg(dseg, lkey,
+ rte_pktmbuf_mtod(sbuf, uintptr_t),
+ rte_cpu_to_be_32(sbuf->data_len ?
+ sbuf->data_len :
+ 0x80000000));
+ nb_segs--;
+ if (nb_segs) {
+ sbuf = sbuf->next;
+ dseg++;
+ goto txbb_head_seg;
+ }
+ /* fallthrough */
+ case 0:
+ break;
+ }
+ /* Write the first DWORD of each TXBB save earlier. */
+ if (pv_counter) {
+ /* Need a barrier here before writing the byte_count. */
+ rte_io_wmb();
+ for (--pv_counter; pv_counter >= 0; pv_counter--)
+ pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
+ }
+ sq->remain_size -= wqe_size;
+ /* Align next WQE address to the next TXBB. */
+ return (volatile struct mlx4_wqe_ctrl_seg *)
+ ((volatile uint8_t *)ctrl + wqe_size);
+}
+
+/**
+ * DPDK callback for Tx.
+ *
+ * @param dpdk_txq
+ * Generic pointer to Tx queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+uint16_t
+mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ struct txq *txq = (struct txq *)dpdk_txq;
+ unsigned int elts_head = txq->elts_head;
+ const unsigned int elts_n = txq->elts_n;
+ const unsigned int elts_m = elts_n - 1;
+ unsigned int bytes_sent = 0;
+ unsigned int i;
+ unsigned int max = elts_head - txq->elts_tail;
+ struct mlx4_sq *sq = &txq->msq;
+ volatile struct mlx4_wqe_ctrl_seg *ctrl;
+ struct txq_elt *elt;
+
+ assert(txq->elts_comp_cd != 0);
+ if (likely(max >= txq->elts_comp_cd_init))
+ mlx4_txq_complete(txq, elts_m, sq);
+ max = elts_n - max;
+ assert(max >= 1);
+ assert(max <= elts_n);
+ /* Always leave one free entry in the ring. */
+ --max;
+ if (max > pkts_n)
+ max = pkts_n;
+ elt = &(*txq->elts)[elts_head & elts_m];
+ /* First Tx burst element saves the next WQE control segment. */
+ ctrl = elt->wqe;
+ for (i = 0; (i != max); ++i) {
+ struct rte_mbuf *buf = pkts[i];
+ struct txq_elt *elt_next = &(*txq->elts)[++elts_head & elts_m];
+ uint32_t owner_opcode = sq->owner_opcode;
+ volatile struct mlx4_wqe_data_seg *dseg =
+ (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
+ volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
+ union {
+ uint32_t flags;
+ uint16_t flags16[2];
+ } srcrb;
+ uint32_t lkey;
+ bool tso = txq->priv->tso && (buf->ol_flags & PKT_TX_TCP_SEG);
+
+ /* Clean up old buffer. */
+ if (likely(elt->buf != NULL)) {
+ struct rte_mbuf *tmp = elt->buf;
+
+#ifndef NDEBUG
+ /* Poisoning. */
+ memset(&elt->buf, 0x66, sizeof(struct rte_mbuf *));
+#endif
+ /* Faster than rte_pktmbuf_free(). */
+ do {
+ struct rte_mbuf *next = tmp->next;
+
+ rte_pktmbuf_free_seg(tmp);
+ tmp = next;
+ } while (tmp != NULL);
+ }
+ RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
+ if (tso) {
+ /* Change opcode to TSO */
+ owner_opcode &= ~MLX4_OPCODE_CONFIG_CMD;
+ owner_opcode |= MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR;
+ ctrl_next = mlx4_tx_burst_tso(buf, txq, ctrl);
+ if (!ctrl_next) {
+ elt->buf = NULL;
+ break;
+ }
+ } else if (buf->nb_segs == 1) {
+ /* Validate WQE space in the send queue. */
+ if (sq->remain_size < MLX4_TXBB_SIZE) {
+ elt->buf = NULL;
+ break;
+ }
+ lkey = mlx4_tx_mb2mr(txq, buf);
+ if (unlikely(lkey == (uint32_t)-1)) {
+ /* MR does not exist. */
+ DEBUG("%p: unable to get MP <-> MR association",
+ (void *)txq);
+ elt->buf = NULL;
+ break;
+ }
+ mlx4_fill_tx_data_seg(dseg++, lkey,
+ rte_pktmbuf_mtod(buf, uintptr_t),
+ rte_cpu_to_be_32(buf->data_len));
+ /* Set WQE size in 16-byte units. */
+ ctrl->fence_size = 0x2;
+ sq->remain_size -= MLX4_TXBB_SIZE;
+ /* Align next WQE address to the next TXBB. */
+ ctrl_next = ctrl + 0x4;
+ } else {
+ ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl);
+ if (!ctrl_next) {
+ elt->buf = NULL;
+ break;
+ }
+ }
+ /* Hold SQ ring wrap around. */
+ if ((volatile uint8_t *)ctrl_next >= sq->eob) {
+ ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *)
+ ((volatile uint8_t *)ctrl_next - sq->size);
+ /* Flip HW valid ownership. */
+ sq->owner_opcode ^= 1u << MLX4_SQ_OWNER_BIT;
+ }
+ /*
+ * For raw Ethernet, the SOLICIT flag is used to indicate
+ * that no ICRC should be calculated.
+ */
+ if (--txq->elts_comp_cd == 0) {
+ /* Save the completion burst end address. */
+ elt_next->eocb = (volatile uint32_t *)ctrl_next;
+ txq->elts_comp_cd = txq->elts_comp_cd_init;
+ srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
+ MLX4_WQE_CTRL_CQ_UPDATE);
+ } else {
+ srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
+ }
+ /* Enable HW checksum offload if requested */
+ if (txq->csum &&
+ (buf->ol_flags &
+ (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
+ const uint64_t is_tunneled = (buf->ol_flags &
+ (PKT_TX_TUNNEL_GRE |
+ PKT_TX_TUNNEL_VXLAN));
+
+ if (is_tunneled && txq->csum_l2tun) {
+ owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
+ MLX4_WQE_CTRL_IL4_HDR_CSUM;
+ if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
+ srcrb.flags |=
+ RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
+ } else {
+ srcrb.flags |=
+ RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
+ MLX4_WQE_CTRL_TCP_UDP_CSUM);
+ }
+ }
+ if (txq->lb) {
+ /*
+ * Copy destination MAC address to the WQE, this allows
+ * loopback in eSwitch, so that VFs and PF can
+ * communicate with each other.
+ */
+ srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
+ ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
+ sizeof(uint16_t)));
+ } else {
+ ctrl->imm = 0;
+ }
+ ctrl->srcrb_flags = srcrb.flags;
+ /*
+ * Make sure descriptor is fully written before
+ * setting ownership bit (because HW can start
+ * executing as soon as we do).
+ */
+ rte_io_wmb();
+ ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode);
+ elt->buf = buf;
+ bytes_sent += buf->pkt_len;
+ ctrl = ctrl_next;
+ elt = elt_next;
+ }
+ /* Take a shortcut if nothing must be sent. */
+ if (unlikely(i == 0))
+ return 0;
+ /* Save WQE address of the next Tx burst element. */
+ elt->wqe = ctrl;
+ /* Increment send statistics counters. */
+ txq->stats.opackets += i;
+ txq->stats.obytes += bytes_sent;
+ /* Make sure that descriptors are written before doorbell record. */
+ rte_wmb();
+ /* Ring QP doorbell. */
+ rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
+ txq->elts_head += i;
+ return i;
+}
+
+/**
+ * Translate Rx completion flags to packet type.
+ *
+ * @param[in] cqe
+ * Pointer to CQE.
+ *
+ * @return
+ * Packet type for struct rte_mbuf.
+ */
+static inline uint32_t
+rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
+ uint32_t l2tun_offload)
+{
+ uint8_t idx = 0;
+ uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
+ uint32_t status = rte_be_to_cpu_32(cqe->status);
+
+ /*
+ * The index to the array should have:
+ * bit[7] - MLX4_CQE_L2_TUNNEL
+ * bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
+ */
+ if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
+ idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
+ ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
+ /*
+ * The index to the array should have:
+ * bit[5] - MLX4_CQE_STATUS_UDP
+ * bit[4] - MLX4_CQE_STATUS_TCP
+ * bit[3] - MLX4_CQE_STATUS_IPV4OPT
+ * bit[2] - MLX4_CQE_STATUS_IPV6
+ * bit[1] - MLX4_CQE_STATUS_IPF
+ * bit[0] - MLX4_CQE_STATUS_IPV4
+ * giving a total of up to 256 entries.
+ */
+ idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
+ if (status & MLX4_CQE_STATUS_IPV6)
+ idx |= ((status & MLX4_CQE_STATUS_IPV6F) >> 11);
+ return mlx4_ptype_table[idx];
+}
+
+/**
+ * Translate Rx completion flags to offload flags.
+ *
+ * @param flags
+ * Rx completion flags returned by mlx4_cqe_flags().
+ * @param csum
+ * Whether Rx checksums are enabled.
+ * @param csum_l2tun
+ * Whether Rx L2 tunnel checksums are enabled.
+ *
+ * @return
+ * Offload flags (ol_flags) in mbuf format.
+ */
+static inline uint32_t
+rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
+{
+ uint32_t ol_flags = 0;
+
+ if (csum)
+ ol_flags |=
+ mlx4_transpose(flags,
+ MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
+ PKT_RX_IP_CKSUM_GOOD) |
+ mlx4_transpose(flags,
+ MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
+ PKT_RX_L4_CKSUM_GOOD);
+ if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
+ ol_flags |=
+ mlx4_transpose(flags,
+ MLX4_CQE_L2_TUNNEL_IPOK,
+ PKT_RX_IP_CKSUM_GOOD) |
+ mlx4_transpose(flags,
+ MLX4_CQE_L2_TUNNEL_L4_CSUM,
+ PKT_RX_L4_CKSUM_GOOD);
+ return ol_flags;
+}
+
+/**
+ * Extract checksum information from CQE flags.
+ *
+ * @param cqe
+ * Pointer to CQE structure.
+ * @param csum
+ * Whether Rx checksums are enabled.
+ * @param csum_l2tun
+ * Whether Rx L2 tunnel checksums are enabled.
+ *
+ * @return
+ * CQE checksum information.
+ */
+static inline uint32_t
+mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
+{
+ uint32_t flags = 0;
+
+ /*
+ * The relevant bits are in different locations on their
+ * CQE fields therefore we can join them in one 32bit
+ * variable.
+ */
+ if (csum)
+ flags = (rte_be_to_cpu_32(cqe->status) &
+ MLX4_CQE_STATUS_IPV4_CSUM_OK);
+ if (csum_l2tun)
+ flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
+ (MLX4_CQE_L2_TUNNEL |
+ MLX4_CQE_L2_TUNNEL_IPOK |
+ MLX4_CQE_L2_TUNNEL_L4_CSUM |
+ MLX4_CQE_L2_TUNNEL_IPV4));
+ return flags;
+}
+
+/**
+ * Poll one CQE from CQ.
+ *
+ * @param rxq
+ * Pointer to the receive queue structure.
+ * @param[out] out
+ * Just polled CQE.
+ *
+ * @return
+ * Number of bytes of the CQE, 0 in case there is no completion.
+ */
+static unsigned int
+mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
+{
+ int ret = 0;
+ volatile struct mlx4_cqe *cqe = NULL;
+ struct mlx4_cq *cq = &rxq->mcq;
+
+ cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
+ if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
+ !!(cq->cons_index & cq->cqe_cnt))
+ goto out;
+ /*
+ * Make sure we read CQ entry contents after we've checked the
+ * ownership bit.
+ */
+ rte_rmb();
+ assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
+ assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
+ MLX4_CQE_OPCODE_ERROR);
+ ret = rte_be_to_cpu_32(cqe->byte_cnt);
+ ++cq->cons_index;
+out:
+ *out = cqe;
+ return ret;
+}
+
+/**
+ * DPDK callback for Rx with scattered packets support.
+ *
+ * @param dpdk_rxq
+ * Generic pointer to Rx queue structure.
+ * @param[out] pkts
+ * Array to store received packets.
+ * @param pkts_n
+ * Maximum number of packets in array.
+ *
+ * @return
+ * Number of packets successfully received (<= pkts_n).
+ */
+uint16_t
+mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ struct rxq *rxq = dpdk_rxq;
+ const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
+ const uint16_t sges_n = rxq->sges_n;
+ struct rte_mbuf *pkt = NULL;
+ struct rte_mbuf *seg = NULL;
+ unsigned int i = 0;
+ uint32_t rq_ci = rxq->rq_ci << sges_n;
+ int len = 0;
+
+ while (pkts_n) {
+ volatile struct mlx4_cqe *cqe;
+ uint32_t idx = rq_ci & wr_cnt;
+ struct rte_mbuf *rep = (*rxq->elts)[idx];
+ volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
+
+ /* Update the 'next' pointer of the previous segment. */
+ if (pkt)
+ seg->next = rep;
+ seg = rep;
+ rte_prefetch0(seg);
+ rte_prefetch0(scat);
+ rep = rte_mbuf_raw_alloc(rxq->mp);
+ if (unlikely(rep == NULL)) {
+ ++rxq->stats.rx_nombuf;
+ if (!pkt) {
+ /*
+ * No buffers before we even started,
+ * bail out silently.
+ */
+ break;
+ }
+ while (pkt != seg) {
+ assert(pkt != (*rxq->elts)[idx]);
+ rep = pkt->next;
+ pkt->next = NULL;
+ pkt->nb_segs = 1;
+ rte_mbuf_raw_free(pkt);
+ pkt = rep;
+ }
+ break;
+ }
+ if (!pkt) {
+ /* Looking for the new packet. */
+ len = mlx4_cq_poll_one(rxq, &cqe);
+ if (!len) {
+ rte_mbuf_raw_free(rep);
+ break;
+ }
+ if (unlikely(len < 0)) {
+ /* Rx error, packet is likely too large. */
+ rte_mbuf_raw_free(rep);
+ ++rxq->stats.idropped;
+ goto skip;
+ }
+ pkt = seg;
+ assert(len >= (rxq->crc_present << 2));
+ /* Update packet information. */
+ pkt->packet_type =
+ rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
+ pkt->ol_flags = PKT_RX_RSS_HASH;
+ pkt->hash.rss = cqe->immed_rss_invalid;
+ if (rxq->crc_present)
+ len -= ETHER_CRC_LEN;
+ pkt->pkt_len = len;
+ if (rxq->csum | rxq->csum_l2tun) {
+ uint32_t flags =
+ mlx4_cqe_flags(cqe,
+ rxq->csum,
+ rxq->csum_l2tun);
+
+ pkt->ol_flags =
+ rxq_cq_to_ol_flags(flags,
+ rxq->csum,
+ rxq->csum_l2tun);
+ }
+ }
+ rep->nb_segs = 1;
+ rep->port = rxq->port_id;
+ rep->data_len = seg->data_len;
+ rep->data_off = seg->data_off;
+ (*rxq->elts)[idx] = rep;
+ /*
+ * Fill NIC descriptor with the new buffer. The lkey and size
+ * of the buffers are already known, only the buffer address
+ * changes.
+ */
+ scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
+ /* If there's only one MR, no need to replace LKey in WQE. */
+ if (unlikely(mlx4_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
+ scat->lkey = mlx4_rx_mb2mr(rxq, rep);
+ if (len > seg->data_len) {
+ len -= seg->data_len;
+ ++pkt->nb_segs;
+ ++rq_ci;
+ continue;
+ }
+ /* The last segment. */
+ seg->data_len = len;
+ /* Increment bytes counter. */
+ rxq->stats.ibytes += pkt->pkt_len;
+ /* Return packet. */
+ *(pkts++) = pkt;
+ pkt = NULL;
+ --pkts_n;
+ ++i;
+skip:
+ /* Align consumer index to the next stride. */
+ rq_ci >>= sges_n;
+ ++rq_ci;
+ rq_ci <<= sges_n;
+ }
+ if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
+ return 0;
+ /* Update the consumer index. */
+ rxq->rq_ci = rq_ci >> sges_n;
+ rte_wmb();
+ *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
+ *rxq->mcq.set_ci_db =
+ rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
+ /* Increment packets counter. */
+ rxq->stats.ipackets += i;
+ return i;
+}
+
+/**
+ * Dummy DPDK callback for Tx.
+ *
+ * This function is used to temporarily replace the real callback during
+ * unsafe control operations on the queue, or in case of error.
+ *
+ * @param dpdk_txq
+ * Generic pointer to Tx queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+uint16_t
+mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ (void)dpdk_txq;
+ (void)pkts;
+ (void)pkts_n;
+ return 0;
+}
+
+/**
+ * Dummy DPDK callback for Rx.
+ *
+ * This function is used to temporarily replace the real callback during
+ * unsafe control operations on the queue, or in case of error.
+ *
+ * @param dpdk_rxq
+ * Generic pointer to Rx queue structure.
+ * @param[out] pkts
+ * Array to store received packets.
+ * @param pkts_n
+ * Maximum number of packets in array.
+ *
+ * @return
+ * Number of packets successfully received (<= pkts_n).
+ */
+uint16_t
+mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ (void)dpdk_rxq;
+ (void)pkts;
+ (void)pkts_n;
+ return 0;
+}