diff options
Diffstat (limited to 'src/spdk/examples/nvme/hello_world')
-rw-r--r-- | src/spdk/examples/nvme/hello_world/.gitignore | 1 | ||||
-rw-r--r-- | src/spdk/examples/nvme/hello_world/Makefile | 39 | ||||
-rw-r--r-- | src/spdk/examples/nvme/hello_world/hello_world.c | 370 |
3 files changed, 410 insertions, 0 deletions
diff --git a/src/spdk/examples/nvme/hello_world/.gitignore b/src/spdk/examples/nvme/hello_world/.gitignore new file mode 100644 index 00000000..242c034c --- /dev/null +++ b/src/spdk/examples/nvme/hello_world/.gitignore @@ -0,0 +1 @@ +hello_world diff --git a/src/spdk/examples/nvme/hello_world/Makefile b/src/spdk/examples/nvme/hello_world/Makefile new file mode 100644 index 00000000..890d761a --- /dev/null +++ b/src/spdk/examples/nvme/hello_world/Makefile @@ -0,0 +1,39 @@ +# +# BSD LICENSE +# +# Copyright (c) Intel Corporation. +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# * Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# * Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# * Neither the name of Intel Corporation nor the names of its +# contributors may be used to endorse or promote products derived +# from this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +# + +SPDK_ROOT_DIR := $(abspath $(CURDIR)/../../..) +include $(SPDK_ROOT_DIR)/mk/spdk.common.mk + +APP = hello_world + +include $(SPDK_ROOT_DIR)/mk/nvme.libtest.mk diff --git a/src/spdk/examples/nvme/hello_world/hello_world.c b/src/spdk/examples/nvme/hello_world/hello_world.c new file mode 100644 index 00000000..34913073 --- /dev/null +++ b/src/spdk/examples/nvme/hello_world/hello_world.c @@ -0,0 +1,370 @@ +/*- + * BSD LICENSE + * + * Copyright (c) Intel Corporation. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "spdk/stdinc.h" + +#include "spdk/nvme.h" +#include "spdk/env.h" + +struct ctrlr_entry { + struct spdk_nvme_ctrlr *ctrlr; + struct ctrlr_entry *next; + char name[1024]; +}; + +struct ns_entry { + struct spdk_nvme_ctrlr *ctrlr; + struct spdk_nvme_ns *ns; + struct ns_entry *next; + struct spdk_nvme_qpair *qpair; +}; + +static struct ctrlr_entry *g_controllers = NULL; +static struct ns_entry *g_namespaces = NULL; + +static void +register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) +{ + struct ns_entry *entry; + const struct spdk_nvme_ctrlr_data *cdata; + + /* + * spdk_nvme_ctrlr is the logical abstraction in SPDK for an NVMe + * controller. During initialization, the IDENTIFY data for the + * controller is read using an NVMe admin command, and that data + * can be retrieved using spdk_nvme_ctrlr_get_data() to get + * detailed information on the controller. Refer to the NVMe + * specification for more details on IDENTIFY for NVMe controllers. + */ + cdata = spdk_nvme_ctrlr_get_data(ctrlr); + + if (!spdk_nvme_ns_is_active(ns)) { + printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n", + cdata->mn, cdata->sn, + spdk_nvme_ns_get_id(ns)); + return; + } + + entry = malloc(sizeof(struct ns_entry)); + if (entry == NULL) { + perror("ns_entry malloc"); + exit(1); + } + + entry->ctrlr = ctrlr; + entry->ns = ns; + entry->next = g_namespaces; + g_namespaces = entry; + + printf(" Namespace ID: %d size: %juGB\n", spdk_nvme_ns_get_id(ns), + spdk_nvme_ns_get_size(ns) / 1000000000); +} + +struct hello_world_sequence { + struct ns_entry *ns_entry; + char *buf; + unsigned using_cmb_io; + int is_completed; +}; + +static void +read_complete(void *arg, const struct spdk_nvme_cpl *completion) +{ + struct hello_world_sequence *sequence = arg; + + /* + * The read I/O has completed. Print the contents of the + * buffer, free the buffer, then mark the sequence as + * completed. This will trigger the hello_world() function + * to exit its polling loop. + */ + printf("%s", sequence->buf); + spdk_free(sequence->buf); + sequence->is_completed = 1; +} + +static void +write_complete(void *arg, const struct spdk_nvme_cpl *completion) +{ + struct hello_world_sequence *sequence = arg; + struct ns_entry *ns_entry = sequence->ns_entry; + int rc; + + /* + * The write I/O has completed. Free the buffer associated with + * the write I/O and allocate a new zeroed buffer for reading + * the data back from the NVMe namespace. + */ + if (sequence->using_cmb_io) { + spdk_nvme_ctrlr_free_cmb_io_buffer(ns_entry->ctrlr, sequence->buf, 0x1000); + } else { + spdk_free(sequence->buf); + } + sequence->buf = spdk_zmalloc(0x1000, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); + + rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, sequence->buf, + 0, /* LBA start */ + 1, /* number of LBAs */ + read_complete, (void *)sequence, 0); + if (rc != 0) { + fprintf(stderr, "starting read I/O failed\n"); + exit(1); + } +} + +static void +hello_world(void) +{ + struct ns_entry *ns_entry; + struct hello_world_sequence sequence; + int rc; + + ns_entry = g_namespaces; + while (ns_entry != NULL) { + /* + * Allocate an I/O qpair that we can use to submit read/write requests + * to namespaces on the controller. NVMe controllers typically support + * many qpairs per controller. Any I/O qpair allocated for a controller + * can submit I/O to any namespace on that controller. + * + * The SPDK NVMe driver provides no synchronization for qpair accesses - + * the application must ensure only a single thread submits I/O to a + * qpair, and that same thread must also check for completions on that + * qpair. This enables extremely efficient I/O processing by making all + * I/O operations completely lockless. + */ + ns_entry->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, NULL, 0); + if (ns_entry->qpair == NULL) { + printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair() failed\n"); + return; + } + + /* + * Use spdk_dma_zmalloc to allocate a 4KB zeroed buffer. This memory + * will be pinned, which is required for data buffers used for SPDK NVMe + * I/O operations. + */ + sequence.using_cmb_io = 1; + sequence.buf = spdk_nvme_ctrlr_alloc_cmb_io_buffer(ns_entry->ctrlr, 0x1000); + if (sequence.buf == NULL) { + sequence.using_cmb_io = 0; + sequence.buf = spdk_zmalloc(0x1000, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); + } + if (sequence.buf == NULL) { + printf("ERROR: write buffer allocation failed\n"); + return; + } + if (sequence.using_cmb_io) { + printf("INFO: using controller memory buffer for IO\n"); + } else { + printf("INFO: using host memory buffer for IO\n"); + } + sequence.is_completed = 0; + sequence.ns_entry = ns_entry; + + /* + * Print "Hello world!" to sequence.buf. We will write this data to LBA + * 0 on the namespace, and then later read it back into a separate buffer + * to demonstrate the full I/O path. + */ + snprintf(sequence.buf, 0x1000, "%s", "Hello world!\n"); + + /* + * Write the data buffer to LBA 0 of this namespace. "write_complete" and + * "&sequence" are specified as the completion callback function and + * argument respectively. write_complete() will be called with the + * value of &sequence as a parameter when the write I/O is completed. + * This allows users to potentially specify different completion + * callback routines for each I/O, as well as pass a unique handle + * as an argument so the application knows which I/O has completed. + * + * Note that the SPDK NVMe driver will only check for completions + * when the application calls spdk_nvme_qpair_process_completions(). + * It is the responsibility of the application to trigger the polling + * process. + */ + rc = spdk_nvme_ns_cmd_write(ns_entry->ns, ns_entry->qpair, sequence.buf, + 0, /* LBA start */ + 1, /* number of LBAs */ + write_complete, &sequence, 0); + if (rc != 0) { + fprintf(stderr, "starting write I/O failed\n"); + exit(1); + } + + /* + * Poll for completions. 0 here means process all available completions. + * In certain usage models, the caller may specify a positive integer + * instead of 0 to signify the maximum number of completions it should + * process. This function will never block - if there are no + * completions pending on the specified qpair, it will return immediately. + * + * When the write I/O completes, write_complete() will submit a new I/O + * to read LBA 0 into a separate buffer, specifying read_complete() as its + * completion routine. When the read I/O completes, read_complete() will + * print the buffer contents and set sequence.is_completed = 1. That will + * break this loop and then exit the program. + */ + while (!sequence.is_completed) { + spdk_nvme_qpair_process_completions(ns_entry->qpair, 0); + } + + /* + * Free the I/O qpair. This typically is done when an application exits. + * But SPDK does support freeing and then reallocating qpairs during + * operation. It is the responsibility of the caller to ensure all + * pending I/O are completed before trying to free the qpair. + */ + spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair); + ns_entry = ns_entry->next; + } +} + +static bool +probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, + struct spdk_nvme_ctrlr_opts *opts) +{ + printf("Attaching to %s\n", trid->traddr); + + return true; +} + +static void +attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, + struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) +{ + int nsid, num_ns; + struct ctrlr_entry *entry; + struct spdk_nvme_ns *ns; + const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr); + + entry = malloc(sizeof(struct ctrlr_entry)); + if (entry == NULL) { + perror("ctrlr_entry malloc"); + exit(1); + } + + printf("Attached to %s\n", trid->traddr); + + snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); + + entry->ctrlr = ctrlr; + entry->next = g_controllers; + g_controllers = entry; + + /* + * Each controller has one or more namespaces. An NVMe namespace is basically + * equivalent to a SCSI LUN. The controller's IDENTIFY data tells us how + * many namespaces exist on the controller. For Intel(R) P3X00 controllers, + * it will just be one namespace. + * + * Note that in NVMe, namespace IDs start at 1, not 0. + */ + num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr); + printf("Using controller %s with %d namespaces.\n", entry->name, num_ns); + for (nsid = 1; nsid <= num_ns; nsid++) { + ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); + if (ns == NULL) { + continue; + } + register_ns(ctrlr, ns); + } +} + +static void +cleanup(void) +{ + struct ns_entry *ns_entry = g_namespaces; + struct ctrlr_entry *ctrlr_entry = g_controllers; + + while (ns_entry) { + struct ns_entry *next = ns_entry->next; + free(ns_entry); + ns_entry = next; + } + + while (ctrlr_entry) { + struct ctrlr_entry *next = ctrlr_entry->next; + + spdk_nvme_detach(ctrlr_entry->ctrlr); + free(ctrlr_entry); + ctrlr_entry = next; + } +} + +int main(int argc, char **argv) +{ + int rc; + struct spdk_env_opts opts; + + /* + * SPDK relies on an abstraction around the local environment + * named env that handles memory allocation and PCI device operations. + * This library must be initialized first. + * + */ + spdk_env_opts_init(&opts); + opts.name = "hello_world"; + opts.shm_id = 0; + if (spdk_env_init(&opts) < 0) { + fprintf(stderr, "Unable to initialize SPDK env\n"); + return 1; + } + + printf("Initializing NVMe Controllers\n"); + + /* + * Start the SPDK NVMe enumeration process. probe_cb will be called + * for each NVMe controller found, giving our application a choice on + * whether to attach to each controller. attach_cb will then be + * called for each controller after the SPDK NVMe driver has completed + * initializing the controller we chose to attach. + */ + rc = spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL); + if (rc != 0) { + fprintf(stderr, "spdk_nvme_probe() failed\n"); + cleanup(); + return 1; + } + + if (g_controllers == NULL) { + fprintf(stderr, "no NVMe controllers found\n"); + cleanup(); + return 1; + } + + printf("Initialization complete.\n"); + hello_world(); + cleanup(); + return 0; +} |