1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2004-2009 Sage Weil <sage@newdream.net>
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*
*/
#ifndef CEPH_AUTHTYPES_H
#define CEPH_AUTHTYPES_H
#include "Crypto.h"
#include "common/entity_name.h"
// The _MAX values are a bit wonky here because we are overloading the first
// byte of the auth payload to identify both the type of authentication to be
// used *and* the encoding version for the authenticator. So, we define a
// range.
enum {
AUTH_MODE_NONE = 0,
AUTH_MODE_AUTHORIZER = 1,
AUTH_MODE_AUTHORIZER_MAX = 9,
AUTH_MODE_MON = 10,
AUTH_MODE_MON_MAX = 19,
};
class Cond;
struct EntityAuth {
CryptoKey key;
map<string, bufferlist> caps;
void encode(bufferlist& bl) const {
__u8 struct_v = 2;
using ceph::encode;
encode(struct_v, bl);
encode((uint64_t)CEPH_AUTH_UID_DEFAULT, bl);
encode(key, bl);
encode(caps, bl);
}
void decode(bufferlist::const_iterator& bl) {
using ceph::decode;
__u8 struct_v;
decode(struct_v, bl);
if (struct_v >= 2) {
uint64_t old_auid;
decode(old_auid, bl);
}
decode(key, bl);
decode(caps, bl);
}
};
WRITE_CLASS_ENCODER(EntityAuth)
static inline ostream& operator<<(ostream& out, const EntityAuth& a) {
return out << "auth(key=" << a.key << ")";
}
struct AuthCapsInfo {
bool allow_all;
bufferlist caps;
AuthCapsInfo() : allow_all(false) {}
void encode(bufferlist& bl) const {
using ceph::encode;
__u8 struct_v = 1;
encode(struct_v, bl);
__u8 a = (__u8)allow_all;
encode(a, bl);
encode(caps, bl);
}
void decode(bufferlist::const_iterator& bl) {
using ceph::decode;
__u8 struct_v;
decode(struct_v, bl);
__u8 a;
decode(a, bl);
allow_all = (bool)a;
decode(caps, bl);
}
};
WRITE_CLASS_ENCODER(AuthCapsInfo)
/*
* The ticket (if properly validated) authorizes the principal use
* services as described by 'caps' during the specified validity
* period.
*/
struct AuthTicket {
EntityName name;
uint64_t global_id; /* global instance id */
utime_t created, renew_after, expires;
AuthCapsInfo caps;
__u32 flags;
AuthTicket() : global_id(0), flags(0){}
void init_timestamps(utime_t now, double ttl) {
created = now;
expires = now;
expires += ttl;
renew_after = now;
renew_after += ttl / 2.0;
}
void encode(bufferlist& bl) const {
using ceph::encode;
__u8 struct_v = 2;
encode(struct_v, bl);
encode(name, bl);
encode(global_id, bl);
encode((uint64_t)CEPH_AUTH_UID_DEFAULT, bl);
encode(created, bl);
encode(expires, bl);
encode(caps, bl);
encode(flags, bl);
}
void decode(bufferlist::const_iterator& bl) {
using ceph::decode;
__u8 struct_v;
decode(struct_v, bl);
decode(name, bl);
decode(global_id, bl);
if (struct_v >= 2) {
uint64_t old_auid;
decode(old_auid, bl);
}
decode(created, bl);
decode(expires, bl);
decode(caps, bl);
decode(flags, bl);
}
};
WRITE_CLASS_ENCODER(AuthTicket)
/*
* abstract authorizer class
*/
struct AuthAuthorizer {
__u32 protocol;
bufferlist bl;
CryptoKey session_key;
explicit AuthAuthorizer(__u32 p) : protocol(p) {}
virtual ~AuthAuthorizer() {}
virtual bool verify_reply(bufferlist::const_iterator& reply,
std::string *connection_secret) = 0;
virtual bool add_challenge(CephContext *cct, const bufferlist& challenge) = 0;
};
struct AuthAuthorizerChallenge {
virtual ~AuthAuthorizerChallenge() {}
};
struct AuthConnectionMeta {
uint32_t auth_method = CEPH_AUTH_UNKNOWN; //< CEPH_AUTH_*
/// client: initial empty, but populated if server said bad method
std::vector<uint32_t> allowed_methods;
int auth_mode = AUTH_MODE_NONE; ///< AUTH_MODE_*
int con_mode = 0; ///< negotiated mode
bool is_mode_crc() const {
return con_mode == CEPH_CON_MODE_CRC;
}
bool is_mode_secure() const {
return con_mode == CEPH_CON_MODE_SECURE;
}
CryptoKey session_key; ///< per-ticket key
size_t get_connection_secret_length() const {
switch (con_mode) {
case CEPH_CON_MODE_CRC:
return 0;
case CEPH_CON_MODE_SECURE:
return 16 * 4;
}
return 0;
}
std::string connection_secret; ///< per-connection key
std::unique_ptr<AuthAuthorizer> authorizer;
std::unique_ptr<AuthAuthorizerChallenge> authorizer_challenge;
///< set if msgr1 peer doesn't support CEPHX_V2
bool skip_authorizer_challenge = false;
};
/*
* Key management
*/
#define KEY_ROTATE_NUM 3 /* prev, current, next */
struct ExpiringCryptoKey {
CryptoKey key;
utime_t expiration;
void encode(bufferlist& bl) const {
using ceph::encode;
__u8 struct_v = 1;
encode(struct_v, bl);
encode(key, bl);
encode(expiration, bl);
}
void decode(bufferlist::const_iterator& bl) {
using ceph::decode;
__u8 struct_v;
decode(struct_v, bl);
decode(key, bl);
decode(expiration, bl);
}
};
WRITE_CLASS_ENCODER(ExpiringCryptoKey)
static inline ostream& operator<<(ostream& out, const ExpiringCryptoKey& c)
{
return out << c.key << " expires " << c.expiration;
}
struct RotatingSecrets {
map<uint64_t, ExpiringCryptoKey> secrets;
version_t max_ver;
RotatingSecrets() : max_ver(0) {}
void encode(bufferlist& bl) const {
using ceph::encode;
__u8 struct_v = 1;
encode(struct_v, bl);
encode(secrets, bl);
encode(max_ver, bl);
}
void decode(bufferlist::const_iterator& bl) {
using ceph::decode;
__u8 struct_v;
decode(struct_v, bl);
decode(secrets, bl);
decode(max_ver, bl);
}
uint64_t add(ExpiringCryptoKey& key) {
secrets[++max_ver] = key;
while (secrets.size() > KEY_ROTATE_NUM)
secrets.erase(secrets.begin());
return max_ver;
}
bool need_new_secrets() const {
return secrets.size() < KEY_ROTATE_NUM;
}
bool need_new_secrets(utime_t now) const {
return secrets.size() < KEY_ROTATE_NUM || current().expiration <= now;
}
ExpiringCryptoKey& previous() {
return secrets.begin()->second;
}
ExpiringCryptoKey& current() {
map<uint64_t, ExpiringCryptoKey>::iterator p = secrets.begin();
++p;
return p->second;
}
const ExpiringCryptoKey& current() const {
map<uint64_t, ExpiringCryptoKey>::const_iterator p = secrets.begin();
++p;
return p->second;
}
ExpiringCryptoKey& next() {
return secrets.rbegin()->second;
}
bool empty() {
return secrets.empty();
}
void dump();
};
WRITE_CLASS_ENCODER(RotatingSecrets)
class KeyStore {
public:
virtual ~KeyStore() {}
virtual bool get_secret(const EntityName& name, CryptoKey& secret) const = 0;
virtual bool get_service_secret(uint32_t service_id, uint64_t secret_id,
CryptoKey& secret) const = 0;
};
inline bool auth_principal_needs_rotating_keys(EntityName& name)
{
uint32_t ty(name.get_type());
return ((ty == CEPH_ENTITY_TYPE_OSD)
|| (ty == CEPH_ENTITY_TYPE_MDS)
|| (ty == CEPH_ENTITY_TYPE_MGR));
}
#endif
|