summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/graph/example/inclusive_mean_geodesic.cpp
blob: d825a27dc4b9cba28ce7734a019c7438ffc41031 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// (C) Copyright Andrew Sutton 2007
//
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0 (See accompanying file
// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)

//[inclusive_mean_geodesic_example
#include <iostream>
#include <iomanip>

#include <boost/graph/directed_graph.hpp>
#include <boost/graph/exterior_property.hpp>
#include <boost/graph/floyd_warshall_shortest.hpp>
#include <boost/graph/geodesic_distance.hpp>
#include "helper.hpp"

using namespace std;
using namespace boost;

// This template structure defines the function that we will apply
// to compute both the per-vertex mean geodesic distances and the
// graph's mean geodesic distance.
template <typename Graph,
          typename DistanceType,
          typename ResultType,
          typename Divides = divides<ResultType> >
struct inclusive_average
{
    typedef DistanceType distance_type;
    typedef ResultType result_type;

    result_type operator ()(distance_type d, const Graph& g)
    {
        if(d == numeric_values<distance_type>::infinity()) {
            return numeric_values<result_type>::infinity();
        }
        else {
            return div(result_type(d), result_type(num_vertices(g)));
        }
    }
    Divides div;
};

// The Page type stores the name of each vertex in the graph and
// represents web pages that can be navigated to.
struct WebPage
{
    string name;
};

// The Link type stores an associated probability of traveling
// from one page to another.
struct Link
{
    float probability;
};

// Declare the graph type and its vertex and edge types.
typedef directed_graph<WebPage, Link> Graph;
typedef graph_traits<Graph>::vertex_descriptor Vertex;
typedef graph_traits<Graph>::edge_descriptor Edge;

// The name map provides an abstract accessor for the names of
// each vertex. This is used during graph creation.
typedef property_map<Graph, string WebPage::*>::type NameMap;

// Declare a matrix type and its corresponding property map that
// will contain the distances between each pair of vertices.
typedef exterior_vertex_property<Graph, float> DistanceProperty;
typedef DistanceProperty::matrix_type DistanceMatrix;
typedef DistanceProperty::matrix_map_type DistanceMatrixMap;

// Declare the weight map as an accessor into the bundled
// edge property.
typedef property_map<Graph, float Link::*>::type WeightMap;

// Declare a container and its corresponding property map that
// will contain the resulting mean geodesic distances of each
// vertex in the graph.
typedef exterior_vertex_property<Graph, float> GeodesicProperty;
typedef GeodesicProperty::container_type GeodesicContainer;
typedef GeodesicProperty::map_type GeodesicMap;

static float exclusive_geodesics(const Graph&, DistanceMatrixMap, GeodesicMap);
static float inclusive_geodesics(const Graph&, DistanceMatrixMap, GeodesicMap);

int
main(int argc, char *argv[])
{
    // Create the graph, a name map that providse abstract access
    // to the web page names, and the weight map as an accessor to
    // the edge weights (or probabilities).
    Graph g;
    NameMap nm(get(&WebPage::name, g));
    WeightMap wm(get(&Link::probability, g));

    // Read the weighted graph from standard input.
    read_weighted_graph(g, nm, wm, cin);

    // Compute the distances between all pairs of vertices using
    // the Floyd-Warshall algorithm. The weight map was created
    // above so it could be populated when the graph was read in.
    DistanceMatrix distances(num_vertices(g));
    DistanceMatrixMap dm(distances, g);
    floyd_warshall_all_pairs_shortest_paths(g, dm, weight_map(wm));

    // Create the containers and the respective property maps that
    // will contain the mean geodesics averaged both including
    // self-loop distances and excluding them.
    GeodesicContainer exclude(num_vertices(g));
    GeodesicContainer include(num_vertices(g));
    GeodesicMap exmap(exclude, g);
    GeodesicMap inmap(include, g);

    float ex = exclusive_geodesics(g, dm, exmap);
    float in = inclusive_geodesics(g, dm, inmap);

    // Print the mean geodesic distance of each vertex and finally,
    // the graph itself.
    cout << setw(12) << setiosflags(ios::left) << "vertex";
    cout << setw(12) << setiosflags(ios::left) << "excluding";
    cout << setw(12) << setiosflags(ios::left) << "including" << endl;
    graph_traits<Graph>::vertex_iterator i, end;
    for(boost::tie(i, end) = vertices(g); i != end; ++i) {
        cout << setw(12) << setiosflags(ios::left)
             << g[*i].name
             << setw(12) << get(exmap, *i)
             << setw(12) << get(inmap, *i) << endl;
    }
    cout << "small world (excluding self-loops): " << ex << endl;
    cout << "small world (including self-loops): " << in << endl;

    return 0;
}

float
exclusive_geodesics(const Graph& g, DistanceMatrixMap dm, GeodesicMap gm)
{
    // Compute the mean geodesic distances, which excludes distances
    // of self-loops by default. Return the measure for the entire graph.
    return all_mean_geodesics(g, dm, gm);
}


float
inclusive_geodesics(const Graph &g, DistanceMatrixMap dm, GeodesicMap gm)
{
    // Create a new measure object for computing the mean geodesic
    // distance of all vertices. This measure will actually be used
    // for both averages.
    inclusive_average<Graph, float, float> m;

    // Compute the mean geodesic distance using the inclusive average
    // to account for self-loop distances. Return the measure for the
    // entire graph.
    return all_mean_geodesics(g, dm, gm, m);
}
//]