summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/example/bessel_zeros_example.cpp
blob: 0d3ec3ccc444a31336f7a15515e6faf7f00b928c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
// Copyright Christopher Kormanyos 2013.
// Copyright Paul A. Bristow 2013.
// Copyright John Maddock 2013.

// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or
// copy at http://www.boost.org/LICENSE_1_0.txt).

#ifdef _MSC_VER
#  pragma warning (disable : 4512) // assignment operator could not be generated.
#  pragma warning (disable : 4996) // assignment operator could not be generated.
#endif

#include <iostream>
#include <limits>
#include <vector>
#include <algorithm>
#include <iomanip>
#include <iterator>

// Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/BesselFunctionZeros.html
// Test values can be calculated using [@wolframalpha.com WolframAplha]
// See also http://dlmf.nist.gov/10.21

//[bessel_zero_example_1

/*`This example demonstrates calculating zeros of the Bessel, Neumann and Airy functions.
It also shows how Boost.Math and Boost.Multiprecision can be combined to provide
a many decimal digit precision. For 50 decimal digit precision we need to include
*/

  #include <boost/multiprecision/cpp_dec_float.hpp>

/*`and a `typedef` for `float_type` may be convenient
(allowing a quick switch to re-compute at built-in `double` or other precision)
*/
  typedef boost::multiprecision::cpp_dec_float_50 float_type;

//`To use the functions for finding zeros of the functions we need

  #include <boost/math/special_functions/bessel.hpp>

//`This file includes the forward declaration signatures for the zero-finding functions:

//  #include <boost/math/special_functions/math_fwd.hpp>

/*`but more details are in the full documentation, for example at
[@http://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/bessel_over.html Boost.Math Bessel functions]
*/

/*`This example shows obtaining both a single zero of the Bessel function,
and then placing multiple zeros into a container like `std::vector` by providing an iterator.
The signature of the single value function is:

  template <class T>
  inline typename detail::bessel_traits<T, T, policies::policy<> >::result_type
    cyl_bessel_j_zero(T v,  // Floating-point value for Jv.
    int m); // start index.

The result type is controlled by the floating-point type of parameter `v`
(but subject to the usual __precision_policy and __promotion_policy).

The signature of multiple zeros function is:

  template <class T, class OutputIterator>
  inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv.
                                int start_index, // 1-based start index.
                                unsigned number_of_zeros,
                                OutputIterator out_it); // iterator into container for zeros.

There is also a version which allows control of the __policy_section for error handling and precision.

  template <class T, class OutputIterator, class Policy>
  inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv.
                                int start_index, // 1-based start index.
                                unsigned number_of_zeros,
                                OutputIterator out_it,
                                const Policy& pol); // iterator into container for zeros.

*/
//]  [/bessel_zero_example_1]

//[bessel_zero_example_iterator_1]
/*`We use the `cyl_bessel_j_zero` output iterator parameter `out_it`
to create a sum of 1/zeros[super 2] by defining a custom output iterator:
*/

template <class T>
struct output_summation_iterator
{
   output_summation_iterator(T* p) : p_sum(p)
   {}
   output_summation_iterator& operator*()
   { return *this; }
    output_summation_iterator& operator++()
   { return *this; }
   output_summation_iterator& operator++(int)
   { return *this; }
   output_summation_iterator& operator = (T const& val)
   {
     *p_sum += 1./ (val * val); // Summing 1/zero^2.
     return *this;
   }
private:
   T* p_sum;
};


//] [/bessel_zero_example_iterator_1]

int main()
{
  try
  {
//[bessel_zero_example_2]

/*`[tip It is always wise to place code using Boost.Math inside try'n'catch blocks;
this will ensure that helpful error messages can be shown when exceptional conditions arise.]

First, evaluate a single Bessel zero.

The precision is controlled by the float-point type of template parameter `T` of `v`
so this example has `double` precision, at least 15 but up to 17 decimal digits (for the common 64-bit double).
*/
    double root = boost::math::cyl_bessel_j_zero(0.0, 1);
    // Displaying with default precision of 6 decimal digits:
    std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40483
    // And with all the guaranteed (15) digits:
    std::cout.precision(std::numeric_limits<double>::digits10);
    std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40482555769577
/*`But note that because the parameter `v` controls the precision of the result,
`v` [*must be a floating-point type].
So if you provide an integer type, say 0, rather than 0.0, then it will fail to compile thus:
``
    root = boost::math::cyl_bessel_j_zero(0, 1);
``
with this error message
``
  error C2338: Order must be a floating-point type.
``

Optionally, we can use a policy to ignore errors, C-style, returning some value
perhaps infinity or NaN, or the best that can be done. (See __user_error_handling).

To create a (possibly unwise!) policy that ignores all errors:
*/

  typedef boost::math::policies::policy
    <
      boost::math::policies::domain_error<boost::math::policies::ignore_error>,
      boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
      boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
      boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
      boost::math::policies::pole_error<boost::math::policies::ignore_error>,
      boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
    > ignore_all_policy;

    double inf = std::numeric_limits<double>::infinity();
    double nan = std::numeric_limits<double>::quiet_NaN();

    std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 0) " << std::endl;
    double dodgy_root = boost::math::cyl_bessel_j_zero(-1.0, 0, ignore_all_policy());
    std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 1) " << dodgy_root << std::endl; // 1.#QNAN
    double inf_root = boost::math::cyl_bessel_j_zero(inf, 1, ignore_all_policy());
    std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; // 1.#QNAN
    double nan_root = boost::math::cyl_bessel_j_zero(nan, 1, ignore_all_policy());
    std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; // 1.#QNAN

/*`Another version of `cyl_bessel_j_zero` allows calculation of multiple zeros with one call,
placing the results in a container, often `std::vector`.
For example, generate five `double` roots of J[sub v] for integral order 2.

showing the same results as column J[sub 2](x) in table 1 of
[@ http://mathworld.wolfram.com/BesselFunctionZeros.html Wolfram Bessel Function Zeros].

*/
    unsigned int n_roots = 5U;
    std::vector<double> roots;
    boost::math::cyl_bessel_j_zero(2.0, 1, n_roots, std::back_inserter(roots));
    std::copy(roots.begin(),
              roots.end(),
              std::ostream_iterator<double>(std::cout, "\n"));

/*`Or generate 50 decimal digit roots of J[sub v] for non-integral order `v = 71/19`.

We set the precision of the output stream and show trailing zeros to display a fixed 50 decimal digits.
*/
    std::cout.precision(std::numeric_limits<float_type>::digits10); // 50 decimal digits.
    std::cout << std::showpoint << std::endl; // Show trailing zeros.

    float_type x = float_type(71) / 19;
    float_type r = boost::math::cyl_bessel_j_zero(x, 1); // 1st root.
    std::cout << "x = " << x << ", r = " << r << std::endl;

    r = boost::math::cyl_bessel_j_zero(x, 20U); // 20th root.
    std::cout << "x = " << x << ", r = " << r << std::endl;

    std::vector<float_type> zeros;
    boost::math::cyl_bessel_j_zero(x, 1, 3, std::back_inserter(zeros));

    std::cout << "cyl_bessel_j_zeros" << std::endl;
    // Print the roots to the output stream.
    std::copy(zeros.begin(), zeros.end(),
              std::ostream_iterator<float_type>(std::cout, "\n"));

/*`The Neumann function zeros are evaluated very similarly:
*/
    using boost::math::cyl_neumann_zero;

    double zn = cyl_neumann_zero(2., 1);

    std::cout << "cyl_neumann_zero(2., 1) = " << std::endl;
    //double zn0 = zn;
    //    std::cout << "zn0 = " << std::endl;
    //    std::cout << zn0 << std::endl;
    //
    std::cout << zn << std::endl;
    //  std::cout << cyl_neumann_zero(2., 1) << std::endl;

    std::vector<float> nzeros(3); // Space for 3 zeros.
    cyl_neumann_zero<float>(2.F, 1, nzeros.size(), nzeros.begin());

    std::cout << "cyl_neumann_zero<float>(2.F, 1, " << std::endl;
    // Print the zeros to the output stream.
    std::copy(nzeros.begin(), nzeros.end(),
              std::ostream_iterator<float>(std::cout, "\n"));

    std::cout << cyl_neumann_zero(static_cast<float_type>(220)/100, 1) << std::endl;
    // 3.6154383428745996706772556069431792744372398748422

/*`Finally we show how the output iterator can be used to compute a sum of zeros.

(See [@https://doi.org/10.1017/S2040618500034067 Ian N. Sneddon, Infinite Sums of Bessel Zeros],
page 150 equation 40).
*/
//] [/bessel_zero_example_2]

    {
//[bessel_zero_example_iterator_2]
/*`The sum is calculated for many values, converging on the analytical exact value of `1/8`.
*/
    using boost::math::cyl_bessel_j_zero;
    double nu = 1.;
    double sum = 0;
    output_summation_iterator<double> it(&sum);  // sum of 1/zeros^2
    cyl_bessel_j_zero(nu, 1, 10000, it);

    double s = 1/(4 * (nu + 1)); // 0.125 = 1/8 is exact analytical solution.
    std::cout << std::setprecision(6) << "nu = " << nu << ", sum = " << sum
      << ", exact = " << s << std::endl;
    // nu = 1.00000, sum = 0.124990, exact = 0.125000
//] [/bessel_zero_example_iterator_2]
    }
  }
  catch (std::exception& ex)
  {
    std::cout << "Thrown exception " << ex.what() << std::endl;
  }

//[bessel_zero_example_iterator_3]

/*`Examples below show effect of 'bad' arguments that throw a `domain_error` exception.
*/
  try
  { // Try a negative rank m.
    std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << std::endl;
    float dodgy_root = boost::math::cyl_bessel_j_zero(-1.F, -1);
    std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << dodgy_root << std::endl;
    // Throw exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int):
    // Order argument is -1, but must be >= 0 !
  }
  catch (std::exception& ex)
  {
    std::cout << "Throw exception " << ex.what() << std::endl;
  }

/*`[note The type shown is the type [*after promotion],
using __precision_policy and __promotion_policy, from `float` to `double` in this case.]

In this example the promotion goes:

# Arguments are `float` and `int`.
# Treat `int` "as if" it were a `double`, so arguments are `float` and `double`.
# Common type is `double` - so that's the precision we want (and the type that will be returned).
# Evaluate internally as `long double` for full `double` precision.

See full code for other examples that promote from `double` to `long double`.

*/

//] [/bessel_zero_example_iterator_3]
    try
  { // order v = inf
     std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << std::endl;
     float infF = std::numeric_limits<float>::infinity();
     float inf_root = boost::math::cyl_bessel_j_zero(infF, 1);
      std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << inf_root << std::endl;
     //  boost::math::cyl_bessel_j_zero(-1.F, -1) 
     //Thrown exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int):
     // Requested the -1'th zero, but the rank must be positive !
  }
  catch (std::exception& ex)
  {
    std::cout << "Thrown exception " << ex.what() << std::endl;
  }
  try
  { // order v = inf
     double inf = std::numeric_limits<double>::infinity();
     double inf_root = boost::math::cyl_bessel_j_zero(inf, 1);
     std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl;
     // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, unsigned):
     // Order argument is 1.#INF, but must be finite >= 0 !
  }
  catch (std::exception& ex)
  {
    std::cout << "Thrown exception " << ex.what() << std::endl;
  }

  try
  { // order v = NaN
     double nan = std::numeric_limits<double>::quiet_NaN();
     double nan_root = boost::math::cyl_bessel_j_zero(nan, 1);
     std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl;
     // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, unsigned):
     // Order argument is 1.#QNAN, but must be finite >= 0 !
  }
  catch (std::exception& ex)
  {
    std::cout << "Thrown exception " << ex.what() << std::endl;
  }

  try
  {   // Try a negative m.
    double dodgy_root = boost::math::cyl_bessel_j_zero(0.0, -1);
    //  warning C4146: unary minus operator applied to unsigned type, result still unsigned.
    std::cout << "boost::math::cyl_bessel_j_zero(0.0, -1) " << dodgy_root << std::endl;
    //  boost::math::cyl_bessel_j_zero(0.0, -1) 6.74652e+009
    // This *should* fail because m is unreasonably large.

  }
  catch (std::exception& ex)
  {
    std::cout << "Thrown exception " << ex.what() << std::endl;
  }

  try
  { // m = inf
     double inf = std::numeric_limits<double>::infinity();
     double inf_root = boost::math::cyl_bessel_j_zero(0.0, inf);
     // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data.
     std::cout << "boost::math::cyl_bessel_j_zero(0.0, inf) " << inf_root << std::endl;
     // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int):
     // Requested the 0'th zero, but must be > 0 !

  }
  catch (std::exception& ex)
  {
    std::cout << "Thrown exception " << ex.what() << std::endl;
  }

  try
  { // m = NaN
     std::cout << "boost::math::cyl_bessel_j_zero(0.0, nan) " << std::endl ;
     double nan = std::numeric_limits<double>::quiet_NaN();
     double nan_root = boost::math::cyl_bessel_j_zero(0.0, nan);
     // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data.
     std::cout << nan_root << std::endl;
     // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int):
     // Requested the 0'th zero, but must be > 0 !
  }
  catch (std::exception& ex)
  {
    std::cout << "Thrown exception " << ex.what() << std::endl;
  }

 } // int main()

/*
Mathematica: Table[N[BesselJZero[71/19, n], 50], {n, 1, 20, 1}]

7.2731751938316489503185694262290765588963196701623
10.724858308883141732536172745851416647110749599085
14.018504599452388106120459558042660282427471931581
17.25249845917041718216248716654977734919590383861
20.456678874044517595180234083894285885460502077814
23.64363089714234522494551422714731959985405172504
26.819671140255087745421311470965019261522390519297
29.988343117423674742679141796661432043878868194142
33.151796897690520871250862469973445265444791966114
36.3114160002162074157243540350393860813165201842
39.468132467505236587945197808083337887765967032029
42.622597801391236474855034831297954018844433480227
45.775281464536847753390206207806726581495950012439
48.926530489173566198367766817478553992471739894799
52.076607045343002794279746041878924876873478063472
55.225712944912571393594224327817265689059002890192
58.374006101538886436775188150439025201735151418932
61.521611873000965273726742659353136266390944103571
64.66863105379093036834648221487366079456596628716
67.815145619696290925556791375555951165111460585458

Mathematica: Table[N[BesselKZero[2, n], 50], {n, 1, 5, 1}]
n |
1 | 3.3842417671495934727014260185379031127323883259329
2 | 6.7938075132682675382911671098369487124493222183854
3 | 10.023477979360037978505391792081418280789658279097


*/

 /*
[bessel_zero_output]

  boost::math::cyl_bessel_j_zero(0.0, 1) 2.40483
  boost::math::cyl_bessel_j_zero(0.0, 1) 2.40482555769577
  boost::math::cyl_bessel_j_zero(-1.0, 1) 1.#QNAN
  boost::math::cyl_bessel_j_zero(inf, 1) 1.#QNAN
  boost::math::cyl_bessel_j_zero(nan, 1) 1.#QNAN
  5.13562230184068
  8.41724414039986
  11.6198411721491
  14.7959517823513
  17.9598194949878

  x = 3.7368421052631578947368421052631578947368421052632, r = 7.2731751938316489503185694262290765588963196701623
  x = 3.7368421052631578947368421052631578947368421052632, r = 67.815145619696290925556791375555951165111460585458
  7.2731751938316489503185694262290765588963196701623
  10.724858308883141732536172745851416647110749599085
  14.018504599452388106120459558042660282427471931581
  cyl_neumann_zero(2., 1) = 3.3842417671495935000000000000000000000000000000000
  3.3842418193817139000000000000000000000000000000000
  6.7938075065612793000000000000000000000000000000000
  10.023477554321289000000000000000000000000000000000
  3.6154383428745996706772556069431792744372398748422
  nu = 1.00000, sum = 0.124990, exact = 0.125000
  Throw exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int): Order argument is -1, but must be >= 0 !
  Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Order argument is 1.#INF, but must be finite >= 0 !
  Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Order argument is 1.#QNAN, but must be finite >= 0 !
  Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -1'th zero, but must be > 0 !
  Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -2147483648'th zero, but must be > 0 !
  Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -2147483648'th zero, but must be > 0 !


] [/bessel_zero_output]
*/