blob: 58c5590106ba9afc4b8c1600ab1179a083022ec5 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Copyright Paul A. Bristow 2012.
// Copyright Christopher Kormanyos 2012.
// This file is written to be included from a Quickbook .qbk document.
// It can be compiled by the C++ compiler, and run. Any output can
// also be added here as comment or included or pasted in elsewhere.
// Caution: this file contains Quickbook markup as well as code
// and comments: don't change any of the special comment markups!
#ifdef _MSC_VER
# pragma warning (disable : 4512) // assignment operator could not be generated.
# pragma warning (disable : 4996)
#endif
//[big_seventh_example_1
/*`[h5 Using Boost.Multiprecision `cpp_float` for numerical calculations with high precision.]
The Boost.Multiprecision library can be used for computations requiring precision
exceeding that of standard built-in types such as float, double
and long double. For extended-precision calculations, Boost.Multiprecision
supplies a template data type called cpp_dec_float. The number of decimal
digits of precision is fixed at compile-time via template parameter.
To use these floating-point types and constants, we need some includes:
*/
#include <boost/math/constants/constants.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
// using boost::multiprecision::cpp_dec_float
#include <iostream>
#include <limits>
/*` So now we can demonstrate with some trivial calculations:
*/
//] //[big_seventh_example_1]
int main()
{
//[big_seventh_example_2
/*`Using `typedef cpp_dec_float_50` hides the complexity of multiprecision,
allows us to define variables with 50 decimal digit precision just like built-in `double`.
*/
using boost::multiprecision::cpp_dec_float_50;
cpp_dec_float_50 seventh = cpp_dec_float_50(1) / 7; // 1 / 7
/*`By default, output would only show the standard 6 decimal digits,
so set precision to show all 50 significant digits, including any trailing zeros.
*/
std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);
std::cout << std::showpoint << std::endl; // Append any trailing zeros.
std::cout << seventh << std::endl;
/*`which outputs:
0.14285714285714285714285714285714285714285714285714
We can also use Boost.Math __constants like [pi],
guaranteed to be initialized with the very last bit of precision for the floating-point type.
*/
std::cout << "pi = " << boost::math::constants::pi<cpp_dec_float_50>() << std::endl;
cpp_dec_float_50 circumference = boost::math::constants::pi<cpp_dec_float_50>() * 2 * seventh;
std::cout << "c = "<< circumference << std::endl;
/*`which outputs
pi = 3.1415926535897932384626433832795028841971693993751
c = 0.89759790102565521098932668093700082405633411410717
*/
//] [/big_seventh_example_2]
return 0;
} // int main()
/*
//[big_seventh_example_output
0.14285714285714285714285714285714285714285714285714
pi = 3.1415926535897932384626433832795028841971693993751
c = 0.89759790102565521098932668093700082405633411410717
//] //[big_seventh_example_output]
*/
|