1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
|
//! \file
//! \brief Brent_minimise_example.cpp
// Copyright Paul A. Bristow 2015, 2018.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Note that this file contains Quickbook mark-up as well as code
// and comments, don't change any of the special comment mark-ups!
// For some diagnostic information:
//#define BOOST_MATH_INSTRUMENT
// If quadmath float128 is available:
//#define BOOST_HAVE_QUADMATH
// Example of finding minimum of a function with Brent's method.
//[brent_minimise_include_1
#include <boost/math/tools/minima.hpp>
//] [/brent_minimise_include_1]
#include <boost/math/special_functions/next.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/math/special_functions/pow.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/test/tools/floating_point_comparison.hpp> // For is_close_at)tolerance and is_small
//[brent_minimise_mp_include_0
#include <boost/multiprecision/cpp_dec_float.hpp> // For decimal boost::multiprecision::cpp_dec_float_50.
#include <boost/multiprecision/cpp_bin_float.hpp> // For binary boost::multiprecision::cpp_bin_float_50;
//] [/brent_minimise_mp_include_0]
//#ifndef _MSC_VER // float128 is not yet supported by Microsoft compiler at 2018.
#ifdef BOOST_HAVE_QUADMATH // Define only if GCC or Intel, and have quadmath.lib or .dll library available.
# include <boost/multiprecision/float128.hpp>
#endif
#include <iostream>
// using std::cout; using std::endl;
#include <iomanip>
// using std::setw; using std::setprecision;
#include <limits>
using std::numeric_limits;
#include <tuple>
#include <utility> // pair, make_pair
#include <type_traits>
#include <typeinfo>
//typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<50>,
// boost::multiprecision::et_off>
// cpp_dec_float_50_et_off;
//
// typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<50>,
// boost::multiprecision::et_off>
// cpp_bin_float_50_et_off;
// http://en.wikipedia.org/wiki/Brent%27s_method Brent's method
// An example of a function for which we want to find a minimum.
double f(double x)
{
return (x + 3) * (x - 1) * (x - 1);
}
//[brent_minimise_double_functor
struct funcdouble
{
double operator()(double const& x)
{
return (x + 3) * (x - 1) * (x - 1); // (x + 3)(x - 1)^2
}
};
//] [/brent_minimise_double_functor]
//[brent_minimise_T_functor
struct func
{
template <class T>
T operator()(T const& x)
{
return (x + 3) * (x - 1) * (x - 1); // (x + 3)(x - 1)^2
}
};
//] [/brent_minimise_T_functor]
//! Test if two values are close within a given tolerance.
template<typename FPT>
inline bool
is_close_to(FPT left, FPT right, FPT tolerance)
{
return boost::math::fpc::close_at_tolerance<FPT>(tolerance) (left, right);
}
//[brent_minimise_close
//! Compare if value got is close to expected,
//! checking first if expected is very small
//! (to avoid divide by tiny or zero during comparison)
//! before comparing expect with value got.
template <class T>
bool is_close(T expect, T got, T tolerance)
{
using boost::math::fpc::close_at_tolerance;
using boost::math::fpc::is_small;
using boost::math::fpc::FPC_STRONG;
if (is_small<T>(expect, tolerance))
{
return is_small<T>(got, tolerance);
}
return close_at_tolerance<T>(tolerance, FPC_STRONG) (expect, got);
} // bool is_close(T expect, T got, T tolerance)
//] [/brent_minimise_close]
//[brent_minimise_T_show
//! Example template function to find and show minima.
//! \tparam T floating-point or fixed_point type.
template <class T>
void show_minima()
{
using boost::math::tools::brent_find_minima;
using std::sqrt;
try
{ // Always use try'n'catch blocks with Boost.Math to ensure you get any error messages.
int bits = std::numeric_limits<T>::digits/2; // Maximum is digits/2;
std::streamsize prec = static_cast<int>(2 + sqrt((double)bits)); // Number of significant decimal digits.
std::streamsize precision = std::cout.precision(prec); // Save and set.
std::cout << "\n\nFor type: " << typeid(T).name()
<< ",\n epsilon = " << std::numeric_limits<T>::epsilon()
// << ", precision of " << bits << " bits"
<< ",\n the maximum theoretical precision from Brent's minimization is "
<< sqrt(std::numeric_limits<T>::epsilon())
<< "\n Displaying to std::numeric_limits<T>::digits10 " << prec << ", significant decimal digits."
<< std::endl;
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
// Construct using string, not double, avoids loss of precision.
//T bracket_min = static_cast<T>("-4");
//T bracket_max = static_cast<T>("1.3333333333333333333333333333333333333333333333333");
// Construction from double may cause loss of precision for multiprecision types like cpp_bin_float,
// but brackets values are good enough for using Brent minimization.
T bracket_min = static_cast<T>(-4);
T bracket_max = static_cast<T>(1.3333333333333333333333333333333333333333333333333);
std::pair<T, T> r = brent_find_minima<func, T>(func(), bracket_min, bracket_max, bits, it);
std::cout << " x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second;
if (it < maxit)
{
std::cout << ",\n met " << bits << " bits precision" << ", after " << it << " iterations." << std::endl;
}
else
{
std::cout << ",\n did NOT meet " << bits << " bits precision" << " after " << it << " iterations!" << std::endl;
}
// Check that result is that expected (compared to theoretical uncertainty).
T uncertainty = sqrt(std::numeric_limits<T>::epsilon());
std::cout << std::boolalpha << "x == 1 (compared to uncertainty " << uncertainty << ") is "
<< is_close(static_cast<T>(1), r.first, uncertainty) << std::endl;
std::cout << std::boolalpha << "f(x) == (0 compared to uncertainty " << uncertainty << ") is "
<< is_close(static_cast<T>(0), r.second, uncertainty) << std::endl;
// Problems with this using multiprecision with expression template on?
std::cout.precision(precision); // Restore.
}
catch (const std::exception& e)
{ // Always useful to include try & catch blocks because default policies
// are to throw exceptions on arguments that cause errors like underflow, overflow.
// Lacking try & catch blocks, the program will abort without a message below,
// which may give some helpful clues as to the cause of the exception.
std::cout <<
"\n""Message from thrown exception was:\n " << e.what() << std::endl;
}
} // void show_minima()
//] [/brent_minimise_T_show]
int main()
{
using boost::math::tools::brent_find_minima;
using std::sqrt;
std::cout << "Brent's minimisation examples." << std::endl;
std::cout << std::boolalpha << std::endl;
std::cout << std::showpoint << std::endl; // Show trailing zeros.
// Tip - using
// std::cout.precision(std::numeric_limits<T>::digits10);
// during debugging is wise because it warns
// if construction of multiprecision involves conversion from double
// by finding random or zero digits after 17th decimal digit.
// Specific type double - unlimited iterations (unwise?).
{
std::cout << "\nType double - unlimited iterations (unwise?)" << std::endl;
//[brent_minimise_double_1
const int double_bits = std::numeric_limits<double>::digits;
std::pair<double, double> r = brent_find_minima(funcdouble(), -4., 4. / 3, double_bits);
std::streamsize precision_1 = std::cout.precision(std::numeric_limits<double>::digits10);
// Show all double precision decimal digits and trailing zeros.
std::cout << "x at minimum = " << r.first
<< ", f(" << r.first << ") = " << r.second << std::endl;
//] [/brent_minimise_double_1]
std::cout << "x at minimum = " << (r.first - 1.) / r.first << std::endl;
// x at minimum = 1.00000000112345, f(1.00000000112345) = 5.04852568272458e-018
double uncertainty = sqrt(std::numeric_limits<double>::epsilon());
std::cout << "Uncertainty sqrt(epsilon) = " << uncertainty << std::endl;
// sqrt(epsilon) = 1.49011611938477e-008
// (epsilon is always > 0, so no need to take abs value).
std::cout.precision(precision_1); // Restore.
//[brent_minimise_double_1a
using boost::math::fpc::close_at_tolerance;
using boost::math::fpc::is_small;
std::cout << "x = " << r.first << ", f(x) = " << r.second << std::endl;
std::cout << std::boolalpha << "x == 1 (compared to uncertainty "
<< uncertainty << ") is " << is_close(1., r.first, uncertainty) << std::endl; // true
std::cout << std::boolalpha << "f(x) == 0 (compared to uncertainty "
<< uncertainty << ") is " << is_close(0., r.second, uncertainty) << std::endl; // true
//] [/brent_minimise_double_1a]
}
std::cout << "\nType double with limited iterations." << std::endl;
{
const int bits = std::numeric_limits<double>::digits;
// Specific type double - limit maxit to 20 iterations.
std::cout << "Precision bits = " << bits << std::endl;
//[brent_minimise_double_2
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
std::pair<double, double> r = brent_find_minima(funcdouble(), -4., 4. / 3, bits, it);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
<< " after " << it << " iterations. " << std::endl;
//] [/brent_minimise_double_2]
// x at minimum = 1.00000000112345, f(1.00000000112345) = 5.04852568272458e-018
//[brent_minimise_double_3
std::streamsize prec = static_cast<int>(2 + sqrt((double)bits)); // Number of significant decimal digits.
std::streamsize precision_3 = std::cout.precision(prec); // Save and set new precision.
std::cout << "Showing " << bits << " bits "
"precision with " << prec
<< " decimal digits from tolerance " << sqrt(std::numeric_limits<double>::epsilon())
<< std::endl;
std::cout << "x at minimum = " << r.first
<< ", f(" << r.first << ") = " << r.second
<< " after " << it << " iterations. " << std::endl;
std::cout.precision(precision_3); // Restore.
//] [/brent_minimise_double_3]
// Showing 53 bits precision with 9 decimal digits from tolerance 1.49011611938477e-008
// x at minimum = 1, f(1) = 5.04852568e-018
}
std::cout << "\nType double with limited iterations and half double bits." << std::endl;
{
//[brent_minimise_double_4
const int bits_div_2 = std::numeric_limits<double>::digits / 2; // Half digits precision (effective maximum).
double epsilon_2 = boost::math::pow<-(std::numeric_limits<double>::digits/2 - 1), double>(2);
std::streamsize prec = static_cast<int>(2 + sqrt((double)bits_div_2)); // Number of significant decimal digits.
std::cout << "Showing " << bits_div_2 << " bits precision with " << prec
<< " decimal digits from tolerance " << sqrt(epsilon_2)
<< std::endl;
std::streamsize precision_4 = std::cout.precision(prec); // Save.
const boost::uintmax_t maxit = 20;
boost::uintmax_t it_4 = maxit;
std::pair<double, double> r = brent_find_minima(funcdouble(), -4., 4. / 3, bits_div_2, it_4);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
std::cout << it_4 << " iterations. " << std::endl;
std::cout.precision(precision_4); // Restore.
//] [/brent_minimise_double_4]
}
// x at minimum = 1, f(1) = 5.04852568e-018
{
std::cout << "\nType double with limited iterations and quarter double bits." << std::endl;
//[brent_minimise_double_5
const int bits_div_4 = std::numeric_limits<double>::digits / 4; // Quarter precision.
double epsilon_4 = boost::math::pow<-(std::numeric_limits<double>::digits / 4 - 1), double>(2);
std::streamsize prec = static_cast<int>(2 + sqrt((double)bits_div_4)); // Number of significant decimal digits.
std::cout << "Showing " << bits_div_4 << " bits precision with " << prec
<< " decimal digits from tolerance " << sqrt(epsilon_4)
<< std::endl;
std::streamsize precision_5 = std::cout.precision(prec); // Save & set.
const boost::uintmax_t maxit = 20;
boost::uintmax_t it_5 = maxit;
std::pair<double, double> r = brent_find_minima(funcdouble(), -4., 4. / 3, bits_div_4, it_5);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
<< ", after " << it_5 << " iterations. " << std::endl;
std::cout.precision(precision_5); // Restore.
//] [/brent_minimise_double_5]
}
// Showing 13 bits precision with 9 decimal digits from tolerance 0.015625
// x at minimum = 0.9999776, f(0.9999776) = 2.0069572e-009
// 7 iterations.
{
std::cout << "\nType long double with limited iterations and all long double bits." << std::endl;
//[brent_minimise_template_1
std::streamsize precision_t1 = std::cout.precision(std::numeric_limits<long double>::digits10); // Save & set.
long double bracket_min = -4.;
long double bracket_max = 4. / 3;
const int bits = std::numeric_limits<long double>::digits;
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
std::pair<long double, long double> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
<< ", after " << it << " iterations. " << std::endl;
std::cout.precision(precision_t1); // Restore.
//] [/brent_minimise_template_1]
}
// Show use of built-in type Template versions.
// (Will not work if construct bracket min and max from string).
//[brent_minimise_template_fd
show_minima<float>();
show_minima<double>();
show_minima<long double>();
//] [/brent_minimise_template_fd]
//[brent_minimise_mp_include_1
#ifdef BOOST_HAVE_QUADMATH // Defined only if GCC or Intel and have quadmath.lib or .dll library available.
using boost::multiprecision::float128;
#endif
//] [/brent_minimise_mp_include_1]
//[brent_minimise_template_quad
#ifdef BOOST_HAVE_QUADMATH // Defined only if GCC or Intel and have quadmath.lib or .dll library available.
show_minima<float128>(); // Needs quadmath_snprintf, sqrtQ, fabsq that are in in quadmath library.
#endif
//] [/brent_minimise_template_quad
// User-defined floating-point template.
//[brent_minimise_mp_typedefs
using boost::multiprecision::cpp_bin_float_50; // binary multiprecision typedef.
using boost::multiprecision::cpp_dec_float_50; // decimal multiprecision typedef.
// One might also need typedefs like these to switch expression templates off and on (default is on).
typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<50>,
boost::multiprecision::et_on>
cpp_bin_float_50_et_on; // et_on is default so is same as cpp_bin_float_50.
typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<50>,
boost::multiprecision::et_off>
cpp_bin_float_50_et_off;
typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<50>,
boost::multiprecision::et_on> // et_on is default so is same as cpp_dec_float_50.
cpp_dec_float_50_et_on;
typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<50>,
boost::multiprecision::et_off>
cpp_dec_float_50_et_off;
//] [/brent_minimise_mp_typedefs]
{ // binary ET on by default.
//[brent_minimise_mp_1
std::cout.precision(std::numeric_limits<cpp_bin_float_50>::digits10);
int bits = std::numeric_limits<cpp_bin_float_50>::digits / 2 - 2;
cpp_bin_float_50 bracket_min = static_cast<cpp_bin_float_50>("-4");
cpp_bin_float_50 bracket_max = static_cast<cpp_bin_float_50>("1.3333333333333333333333333333333333333333333333333");
std::cout << "Bracketing " << bracket_min << " to " << bracket_max << std::endl;
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit; // Will be updated with actual iteration count.
std::pair<cpp_bin_float_50, cpp_bin_float_50> r
= brent_find_minima(func(), bracket_min, bracket_max, bits, it);
std::cout << "x at minimum = " << r.first << ",\n f(" << r.first << ") = " << r.second
// x at minimum = 1, f(1) = 5.04853e-018
<< ", after " << it << " iterations. " << std::endl;
is_close_to(static_cast<cpp_bin_float_50>("1"), r.first, sqrt(std::numeric_limits<cpp_bin_float_50>::epsilon()));
is_close_to(static_cast<cpp_bin_float_50>("0"), r.second, sqrt(std::numeric_limits<cpp_bin_float_50>::epsilon()));
//] [/brent_minimise_mp_1]
/*
//[brent_minimise_mp_output_1
For type class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50,10,void,int,0,0>,1>,
epsilon = 5.3455294202e-51,
the maximum theoretical precision from Brent minimization is 7.311312755e-26
Displaying to std::numeric_limits<T>::digits10 11 significant decimal digits.
x at minimum = 1, f(1) = 5.6273022713e-58,
met 84 bits precision, after 14 iterations.
x == 1 (compared to uncertainty 7.311312755e-26) is true
f(x) == (0 compared to uncertainty 7.311312755e-26) is true
-4 1.3333333333333333333333333333333333333333333333333
x at minimum = 0.99999999999999999999999999998813903221565569205253,
f(0.99999999999999999999999999998813903221565569205253) =
5.6273022712501408640665300316078046703496236636624e-58
14 iterations
//] [/brent_minimise_mp_output_1]
*/
//[brent_minimise_mp_2
show_minima<cpp_bin_float_50_et_on>(); //
//] [/brent_minimise_mp_2]
/*
//[brent_minimise_mp_output_2
For type class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50, 10, void, int, 0, 0>, 1>,
//] [/brent_minimise_mp_output_1]
*/
}
{ // binary ET on explicit
std::cout.precision(std::numeric_limits<cpp_bin_float_50_et_on>::digits10);
int bits = std::numeric_limits<cpp_bin_float_50_et_on>::digits / 2 - 2;
cpp_bin_float_50_et_on bracket_min = static_cast<cpp_bin_float_50_et_on>("-4");
cpp_bin_float_50_et_on bracket_max = static_cast<cpp_bin_float_50_et_on>("1.3333333333333333333333333333333333333333333333333");
std::cout << bracket_min << " " << bracket_max << std::endl;
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
std::pair<cpp_bin_float_50_et_on, cpp_bin_float_50_et_on> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
// x at minimum = 1, f(1) = 5.04853e-018
std::cout << it << " iterations. " << std::endl;
show_minima<cpp_bin_float_50_et_on>(); //
}
return 0;
// Some examples of switching expression templates on and off follow.
{ // binary ET off
std::cout.precision(std::numeric_limits<cpp_bin_float_50_et_off>::digits10);
int bits = std::numeric_limits<cpp_bin_float_50_et_off>::digits / 2 - 2;
cpp_bin_float_50_et_off bracket_min = static_cast<cpp_bin_float_50_et_off>("-4");
cpp_bin_float_50_et_off bracket_max = static_cast<cpp_bin_float_50_et_off>("1.3333333333333333333333333333333333333333333333333");
std::cout << bracket_min << " " << bracket_max << std::endl;
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
std::pair<cpp_bin_float_50_et_off, cpp_bin_float_50_et_off> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
// x at minimum = 1, f(1) = 5.04853e-018
std::cout << it << " iterations. " << std::endl;
show_minima<cpp_bin_float_50_et_off>(); //
}
{ // decimal ET on by default
std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);
int bits = std::numeric_limits<cpp_dec_float_50>::digits / 2 - 2;
cpp_dec_float_50 bracket_min = static_cast<cpp_dec_float_50>("-4");
cpp_dec_float_50 bracket_max = static_cast<cpp_dec_float_50>("1.3333333333333333333333333333333333333333333333333");
std::cout << bracket_min << " " << bracket_max << std::endl;
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
std::pair<cpp_dec_float_50, cpp_dec_float_50> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
// x at minimum = 1, f(1) = 5.04853e-018
std::cout << it << " iterations. " << std::endl;
show_minima<cpp_dec_float_50>();
}
{ // decimal ET on
std::cout.precision(std::numeric_limits<cpp_dec_float_50_et_on>::digits10);
int bits = std::numeric_limits<cpp_dec_float_50_et_on>::digits / 2 - 2;
cpp_dec_float_50_et_on bracket_min = static_cast<cpp_dec_float_50_et_on>("-4");
cpp_dec_float_50_et_on bracket_max = static_cast<cpp_dec_float_50_et_on>("1.3333333333333333333333333333333333333333333333333");
std::cout << bracket_min << " " << bracket_max << std::endl;
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
std::pair<cpp_dec_float_50_et_on, cpp_dec_float_50_et_on> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
// x at minimum = 1, f(1) = 5.04853e-018
std::cout << it << " iterations. " << std::endl;
show_minima<cpp_dec_float_50_et_on>();
}
{ // decimal ET off
std::cout.precision(std::numeric_limits<cpp_dec_float_50_et_off>::digits10);
int bits = std::numeric_limits<cpp_dec_float_50_et_off>::digits / 2 - 2;
cpp_dec_float_50_et_off bracket_min = static_cast<cpp_dec_float_50_et_off>("-4");
cpp_dec_float_50_et_off bracket_max = static_cast<cpp_dec_float_50_et_off>("1.3333333333333333333333333333333333333333333333333");
std::cout << bracket_min << " " << bracket_max << std::endl;
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
std::pair<cpp_dec_float_50_et_off, cpp_dec_float_50_et_off> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
// x at minimum = 1, f(1) = 5.04853e-018
std::cout << it << " iterations. " << std::endl;
show_minima<cpp_dec_float_50_et_off>();
}
return 0;
} // int main()
/*
Typical output MSVC 15.7.3
brent_minimise_example.cpp
Generating code
7 of 2746 functions ( 0.3%) were compiled, the rest were copied from previous compilation.
0 functions were new in current compilation
1 functions had inline decision re-evaluated but remain unchanged
Finished generating code
brent_minimise_example.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Release\brent_minimise_example.exe
Autorun "J:\Cpp\MathToolkit\test\Math_test\Release\brent_minimise_example.exe"
Brent's minimisation examples.
Type double - unlimited iterations (unwise?)
x at minimum = 1.00000000112345, f(1.00000000112345) = 5.04852568272458e-18
x at minimum = 1.12344622367552e-09
Uncertainty sqrt(epsilon) = 1.49011611938477e-08
x = 1.00000, f(x) = 5.04853e-18
x == 1 (compared to uncertainty 1.49012e-08) is true
f(x) == 0 (compared to uncertainty 1.49012e-08) is true
Type double with limited iterations.
Precision bits = 53
x at minimum = 1.00000, f(1.00000) = 5.04853e-18 after 10 iterations.
Showing 53 bits precision with 9 decimal digits from tolerance 1.49011612e-08
x at minimum = 1.00000000, f(1.00000000) = 5.04852568e-18 after 10 iterations.
Type double with limited iterations and half double bits.
Showing 26 bits precision with 7 decimal digits from tolerance 0.000172633
x at minimum = 1.000000, f(1.000000) = 5.048526e-18
10 iterations.
Type double with limited iterations and quarter double bits.
Showing 13 bits precision with 5 decimal digits from tolerance 0.0156250
x at minimum = 0.99998, f(0.99998) = 2.0070e-09, after 7 iterations.
Type long double with limited iterations and all long double bits.
x at minimum = 1.00000000112345, f(1.00000000112345) = 5.04852568272458e-18, after 10 iterations.
For type: float,
epsilon = 1.1921e-07,
the maximum theoretical precision from Brent's minimization is 0.00034527
Displaying to std::numeric_limits<T>::digits10 5, significant decimal digits.
x at minimum = 1.0002, f(1.0002) = 1.9017e-07,
met 12 bits precision, after 7 iterations.
x == 1 (compared to uncertainty 0.00034527) is true
f(x) == (0 compared to uncertainty 0.00034527) is true
For type: double,
epsilon = 2.220446e-16,
the maximum theoretical precision from Brent's minimization is 1.490116e-08
Displaying to std::numeric_limits<T>::digits10 7, significant decimal digits.
x at minimum = 1.000000, f(1.000000) = 5.048526e-18,
met 26 bits precision, after 10 iterations.
x == 1 (compared to uncertainty 1.490116e-08) is true
f(x) == (0 compared to uncertainty 1.490116e-08) is true
For type: long double,
epsilon = 2.220446e-16,
the maximum theoretical precision from Brent's minimization is 1.490116e-08
Displaying to std::numeric_limits<T>::digits10 7, significant decimal digits.
x at minimum = 1.000000, f(1.000000) = 5.048526e-18,
met 26 bits precision, after 10 iterations.
x == 1 (compared to uncertainty 1.490116e-08) is true
f(x) == (0 compared to uncertainty 1.490116e-08) is true
Bracketing -4.0000000000000000000000000000000000000000000000000 to 1.3333333333333333333333333333333333333333333333333
x at minimum = 0.99999999999999999999999999998813903221565569205253,
f(0.99999999999999999999999999998813903221565569205253) = 5.6273022712501408640665300316078046703496236636624e-58, after 14 iterations.
For type: class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50,10,void,int,0,0>,1>,
epsilon = 5.3455294202e-51,
the maximum theoretical precision from Brent's minimization is 7.3113127550e-26
Displaying to std::numeric_limits<T>::digits10 11, significant decimal digits.
x at minimum = 1.0000000000, f(1.0000000000) = 5.6273022713e-58,
met 84 bits precision, after 14 iterations.
x == 1 (compared to uncertainty 7.3113127550e-26) is true
f(x) == (0 compared to uncertainty 7.3113127550e-26) is true
-4.0000000000000000000000000000000000000000000000000 1.3333333333333333333333333333333333333333333333333
x at minimum = 0.99999999999999999999999999998813903221565569205253, f(0.99999999999999999999999999998813903221565569205253) = 5.6273022712501408640665300316078046703496236636624e-58
14 iterations.
For type: class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50,10,void,int,0,0>,1>,
epsilon = 5.3455294202e-51,
the maximum theoretical precision from Brent's minimization is 7.3113127550e-26
Displaying to std::numeric_limits<T>::digits10 11, significant decimal digits.
x at minimum = 1.0000000000, f(1.0000000000) = 5.6273022713e-58,
met 84 bits precision, after 14 iterations.
x == 1 (compared to uncertainty 7.3113127550e-26) is true
f(x) == (0 compared to uncertainty 7.3113127550e-26) is true
============================================================================================================
// GCC 7.2.0 with quadmath
Brent's minimisation examples.
Type double - unlimited iterations (unwise?)
x at minimum = 1.00000000112345, f(1.00000000112345) = 5.04852568272458e-018
x at minimum = 1.12344622367552e-009
Uncertainty sqrt(epsilon) = 1.49011611938477e-008
x = 1.00000, f(x) = 5.04853e-018
x == 1 (compared to uncertainty 1.49012e-008) is true
f(x) == 0 (compared to uncertainty 1.49012e-008) is true
Type double with limited iterations.
Precision bits = 53
x at minimum = 1.00000, f(1.00000) = 5.04853e-018 after 10 iterations.
Showing 53 bits precision with 9 decimal digits from tolerance 1.49011612e-008
x at minimum = 1.00000000, f(1.00000000) = 5.04852568e-018 after 10 iterations.
Type double with limited iterations and half double bits.
Showing 26 bits precision with 7 decimal digits from tolerance 0.000172633
x at minimum = 1.000000, f(1.000000) = 5.048526e-018
10 iterations.
Type double with limited iterations and quarter double bits.
Showing 13 bits precision with 5 decimal digits from tolerance 0.0156250
x at minimum = 0.99998, f(0.99998) = 2.0070e-009, after 7 iterations.
Type long double with limited iterations and all long double bits.
x at minimum = 1.00000000000137302, f(1.00000000000137302) = 7.54079013697311930e-024, after 10 iterations.
For type: f,
epsilon = 1.1921e-007,
the maximum theoretical precision from Brent's minimization is 0.00034527
Displaying to std::numeric_limits<T>::digits10 5, significant decimal digits.
x at minimum = 1.0002, f(1.0002) = 1.9017e-007,
met 12 bits precision, after 7 iterations.
x == 1 (compared to uncertainty 0.00034527) is true
f(x) == (0 compared to uncertainty 0.00034527) is true
For type: d,
epsilon = 2.220446e-016,
the maximum theoretical precision from Brent's minimization is 1.490116e-008
Displaying to std::numeric_limits<T>::digits10 7, significant decimal digits.
x at minimum = 1.000000, f(1.000000) = 5.048526e-018,
met 26 bits precision, after 10 iterations.
x == 1 (compared to uncertainty 1.490116e-008) is true
f(x) == (0 compared to uncertainty 1.490116e-008) is true
For type: e,
epsilon = 1.084202e-019,
the maximum theoretical precision from Brent's minimization is 3.292723e-010
Displaying to std::numeric_limits<T>::digits10 7, significant decimal digits.
x at minimum = 1.000000, f(1.000000) = 7.540790e-024,
met 32 bits precision, after 10 iterations.
x == 1 (compared to uncertainty 3.292723e-010) is true
f(x) == (0 compared to uncertainty 3.292723e-010) is true
For type: N5boost14multiprecision6numberINS0_8backends16float128_backendELNS0_26expression_template_optionE0EEE,
epsilon = 1.92592994e-34,
the maximum theoretical precision from Brent's minimization is 1.38777878e-17
Displaying to std::numeric_limits<T>::digits10 9, significant decimal digits.
x at minimum = 1.00000000, f(1.00000000) = 1.48695468e-43,
met 56 bits precision, after 12 iterations.
x == 1 (compared to uncertainty 1.38777878e-17) is true
f(x) == (0 compared to uncertainty 1.38777878e-17) is true
Bracketing -4.0000000000000000000000000000000000000000000000000 to 1.3333333333333333333333333333333333333333333333333
x at minimum = 0.99999999999999999999999999998813903221565569205253,
f(0.99999999999999999999999999998813903221565569205253) = 5.6273022712501408640665300316078046703496236636624e-58, after 14 iterations.
For type: N5boost14multiprecision6numberINS0_8backends13cpp_bin_floatILj50ELNS2_15digit_base_typeE10EviLi0ELi0EEELNS0_26expression_template_optionE1EEE,
epsilon = 5.3455294202e-51,
the maximum theoretical precision from Brent's minimization is 7.3113127550e-26
Displaying to std::numeric_limits<T>::digits10 11, significant decimal digits.
x at minimum = 1.0000000000, f(1.0000000000) = 5.6273022713e-58,
met 84 bits precision, after 14 iterations.
x == 1 (compared to uncertainty 7.3113127550e-26) is true
f(x) == (0 compared to uncertainty 7.3113127550e-26) is true
-4.0000000000000000000000000000000000000000000000000 1.3333333333333333333333333333333333333333333333333
x at minimum = 0.99999999999999999999999999998813903221565569205253, f(0.99999999999999999999999999998813903221565569205253) = 5.6273022712501408640665300316078046703496236636624e-58
14 iterations.
For type: N5boost14multiprecision6numberINS0_8backends13cpp_bin_floatILj50ELNS2_15digit_base_typeE10EviLi0ELi0EEELNS0_26expression_template_optionE1EEE,
epsilon = 5.3455294202e-51,
the maximum theoretical precision from Brent's minimization is 7.3113127550e-26
Displaying to std::numeric_limits<T>::digits10 11, significant decimal digits.
x at minimum = 1.0000000000, f(1.0000000000) = 5.6273022713e-58,
met 84 bits precision, after 14 iterations.
x == 1 (compared to uncertainty 7.3113127550e-26) is true
f(x) == (0 compared to uncertainty 7.3113127550e-26) is true
*/
|