1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
// Copyright Paul A. Bristow 2016
// Copyright John Z. Maddock 2016
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or
// copy at http ://www.boost.org/LICENSE_1_0.txt).
/*! brief Example of using Lambert W function to compute current through a diode connected transistor with preset series resistance.
\details T. C. Banwell and A. Jayakumar,
Exact analytical solution of current flow through diode with series resistance,
Electron Letters, 36(4):291-2 (2000)
DOI: doi.org/10.1049/el:20000301
The current through a diode connected NPN bipolar junction transistor (BJT)
type 2N2222 (See https://en.wikipedia.org/wiki/2N2222 and
https://www.fairchildsemi.com/datasheets/PN/PN2222.pdf Datasheet)
was measured, for a voltage between 0.3 to 1 volt, see Fig 2 for a log plot,
showing a knee visible at about 0.6 V.
The transistor parameter isat was estimated to be 25 fA and the ideality factor = 1.0.
The intrinsic emitter resistance re was estimated from the rsat = 0 data to be 0.3 ohm.
The solid curves in Figure 2 are calculated using equation 5 with rsat included with re.
http://www3.imperial.ac.uk/pls/portallive/docs/1/7292572.PDF
*/
#include <boost/math/special_functions/lambert_w.hpp>
using boost::math::lambert_w0;
#include <iostream>
// using std::cout;
// using std::endl;
#include <exception>
#include <stdexcept>
#include <string>
#include <array>
#include <vector>
/*!
Compute thermal voltage as a function of temperature,
about 25 mV at room temperature.
https://en.wikipedia.org/wiki/Boltzmann_constant#Role_in_semiconductor_physics:_the_thermal_voltage
\param temperature Temperature (degrees centigrade).
*/
const double v_thermal(double temperature)
{
constexpr const double boltzmann_k = 1.38e-23; // joules/kelvin.
const double charge_q = 1.6021766208e-19; // Charge of an electron (columb).
double temp =+ 273; // Degrees C to K.
return boltzmann_k * temp / charge_q;
} // v_thermal
/*!
Banwell & Jayakumar, equation 2
*/
double i(double isat, double vd, double vt, double nu)
{
double i = isat * (exp(vd / (nu * vt)) - 1);
return i;
} //
/*!
Banwell & Jayakumar, Equation 4.
i current flow = isat
v voltage source.
isat reverse saturation current in equation 4.
(might implement equation 4 instead of simpler equation 5?).
vd voltage drop = v - i* rs (equation 1).
vt thermal voltage, 0.0257025 = 25 mV.
nu junction ideality factor (default = unity), also known as the emission coefficient.
re intrinsic emitter resistance, estimated to be 0.3 ohm from low current.
rsat reverse saturation current
\param v Voltage V to compute current I(V).
\param vt Thermal voltage, for example 0.0257025 = 25 mV, computed from boltzmann_k * temp / charge_q;
\param rsat Resistance in series with the diode.
\param re Instrinsic emitter resistance (estimated to be 0.3 ohm from the Rs = 0 data)
\param isat Reverse saturation current (See equation 2).
\param nu Ideality factor (default = unity).
\returns I amp as function of V volt.
*/
double iv(double v, double vt, double rsat, double re, double isat, double nu = 1.)
{
// V thermal 0.0257025 = 25 mV
// was double i = (nu * vt/r) * lambert_w((i0 * r) / (nu * vt)); equ 5.
rsat = rsat + re;
double i = nu * vt / rsat;
std::cout << "nu * vt / rsat = " << i << std::endl; // 0.000103223
double x = isat * rsat / (nu * vt);
std::cout << "isat * rsat / (nu * vt) = " << x << std::endl;
double eterm = (v + isat * rsat) / (nu * vt);
std::cout << "(v + isat * rsat) / (nu * vt) = " << eterm << std::endl;
double e = exp(eterm);
std::cout << "exp(eterm) = " << e << std::endl;
double w0 = lambert_w0(x * e);
std::cout << "w0 = " << w0 << std::endl;
return i * w0 - isat;
} // double iv
std::array<double, 5> rss = {0., 2.18, 10., 51., 249}; // series resistance (ohm).
std::array<double, 8> vds = { 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 }; // Diode voltage.
int main()
{
try
{
std::cout << "Lambert W diode current example." << std::endl;
//[lambert_w_diode_example_1
double x = 0.01;
//std::cout << "Lambert W (" << x << ") = " << lambert_w(x) << std::endl; // 0.00990147
double nu = 1.0; // Assumed ideal.
double vt = v_thermal(25); // v thermal, Shockley equation, expect about 25 mV at room temperature.
double boltzmann_k = 1.38e-23; // joules/kelvin
double temp = 273 + 25;
double charge_q = 1.6e-19; // column
vt = boltzmann_k * temp / charge_q;
std::cout << "V thermal "
<< vt << std::endl; // V thermal 0.0257025 = 25 mV
double rsat = 0.;
double isat = 25.e-15; // 25 fA;
std::cout << "Isat = " << isat << std::endl;
double re = 0.3; // Estimated from slope of straight section of graph (equation 6).
double v = 0.9;
double icalc = iv(v, vt, 249., re, isat);
std::cout << "voltage = " << v << ", current = " << icalc << ", " << log(icalc) << std::endl; // voltage = 0.9, current = 0.00108485, -6.82631
//] [/lambert_w_diode_example_1]
}
catch (std::exception& ex)
{
std::cout << ex.what() << std::endl;
}
} // int main()
/*
Output:
//[lambert_w_output_1
Lambert W diode current example.
V thermal 0.0257025
Isat = 2.5e-14
nu * vt / rsat = 0.000103099
isat * rsat / (nu * vt) = 2.42486e-10
(v + isat * rsat) / (nu * vt) = 35.016
exp(eterm) = 1.61167e+15
w0 = 10.5225
voltage = 0.9, current = 0.00108485, -6.82631
//] [/lambert_w_output_1]
*/
|