1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
// (C) Copyright John Maddock 2018.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/tools/series.hpp>
#include <boost/assert.hpp>
#include <iostream>
#include <complex>
#include <cassert>
//[series_log1p
template <class T>
struct log1p_series
{
// we must define a result_type typedef:
typedef T result_type;
log1p_series(T x)
: k(0), m_mult(-x), m_prod(-1) {}
T operator()()
{
// This is the function operator invoked by the summation
// algorithm, the first call to this operator should return
// the first term of the series, the second call the second
// term and so on.
m_prod *= m_mult;
return m_prod / ++k;
}
private:
int k;
const T m_mult;
T m_prod;
};
//]
//[series_log1p_func
template <class T>
T log1p(T x)
{
// We really should add some error checking on x here!
BOOST_ASSERT(std::fabs(x) < 1);
// Construct the series functor:
log1p_series<T> s(x);
// Set a limit on how many iterations we permit:
boost::uintmax_t max_iter = 1000;
// Add it up, with enough precision for full machine precision:
return boost::math::tools::sum_series(s, std::numeric_limits<T>::epsilon(), max_iter);
}
//]
//[series_clog1p_func
template <class T>
struct log1p_series<std::complex<T> >
{
// we must define a result_type typedef:
typedef std::complex<T> result_type;
log1p_series(std::complex<T> x)
: k(0), m_mult(-x), m_prod(-1) {}
std::complex<T> operator()()
{
// This is the function operator invoked by the summation
// algorithm, the first call to this operator should return
// the first term of the series, the second call the second
// term and so on.
m_prod *= m_mult;
return m_prod / T(++k);
}
private:
int k;
const std::complex<T> m_mult;
std::complex<T> m_prod;
};
template <class T>
std::complex<T> log1p(std::complex<T> x)
{
// We really should add some error checking on x here!
BOOST_ASSERT(abs(x) < 1);
// Construct the series functor:
log1p_series<std::complex<T> > s(x);
// Set a limit on how many iterations we permit:
boost::uintmax_t max_iter = 1000;
// Add it up, with enough precision for full machine precision:
return boost::math::tools::sum_series(s, std::complex<T>(std::numeric_limits<T>::epsilon()), max_iter);
}
//]
int main()
{
using namespace boost::math::tools;
std::cout << log1p(0.25) << std::endl;
std::cout << log1p(std::complex<double>(0.25, 0.25)) << std::endl;
return 0;
}
|