1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
/*
* (C) Copyright Nick Thompson 2018.
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <iostream>
#include <iomanip>
#include <vector>
#include <array>
#include <forward_list>
#include <algorithm>
#include <random>
#include <boost/core/lightweight_test.hpp>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/statistics/univariate_statistics.hpp>
#include <boost/math/statistics/bivariate_statistics.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/multiprecision/cpp_complex.hpp>
using boost::multiprecision::cpp_bin_float_50;
using boost::multiprecision::cpp_complex_50;
/*
* Test checklist:
* 1) Does it work with multiprecision?
* 2) Does it work with .cbegin()/.cend() if the data is not altered?
* 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.)
* 4) Does it work with std::forward_list if a forward iterator is all that is required?
* 5) Does it work with complex data if complex data is sensible?
*/
using boost::math::statistics::means_and_covariance;
using boost::math::statistics::covariance;
template<class Real>
void test_covariance()
{
std::cout << std::setprecision(std::numeric_limits<Real>::digits10+1);
Real tol = std::numeric_limits<Real>::epsilon();
using std::abs;
// Covariance of a single thing is zero:
std::array<Real, 1> u1{8};
std::array<Real, 1> v1{17};
auto [mu_u1, mu_v1, cov1] = means_and_covariance(u1, v1);
BOOST_TEST(abs(cov1) < tol);
BOOST_TEST(abs(mu_u1 - 8) < tol);
BOOST_TEST(abs(mu_v1 - 17) < tol);
std::array<Real, 2> u2{8, 4};
std::array<Real, 2> v2{3, 7};
auto [mu_u2, mu_v2, cov2] = means_and_covariance(u2, v2);
BOOST_TEST(abs(cov2+4) < tol);
BOOST_TEST(abs(mu_u2 - 6) < tol);
BOOST_TEST(abs(mu_v2 - 5) < tol);
std::vector<Real> u3{1,2,3};
std::vector<Real> v3{1,1,1};
auto [mu_u3, mu_v3, cov3] = means_and_covariance(u3, v3);
// Since v is constant, covariance(u,v) = 0 against everything any u:
BOOST_TEST(abs(cov3) < tol);
BOOST_TEST(abs(mu_u3 - 2) < tol);
BOOST_TEST(abs(mu_v3 - 1) < tol);
// Make sure we pull the correct symbol out of means_and_covariance:
cov3 = covariance(u3, v3);
BOOST_TEST(abs(cov3) < tol);
cov3 = covariance(v3, u3);
// Covariance is symmetric: cov(u,v) = cov(v,u)
BOOST_TEST(abs(cov3) < tol);
// cov(u,u) = sigma(u)^2:
cov3 = covariance(u3, u3);
Real expected = Real(2)/Real(3);
BOOST_TEST(abs(cov3 - expected) < tol);
std::mt19937 gen(15);
// Can't template standard library on multiprecision, so use double and cast back:
std::uniform_real_distribution<double> dis(-1.0, 1.0);
std::vector<Real> u(500);
std::vector<Real> v(500);
for(size_t i = 0; i < u.size(); ++i)
{
u[i] = (Real) dis(gen);
v[i] = (Real) dis(gen);
}
Real mu_u = boost::math::statistics::mean(u);
Real mu_v = boost::math::statistics::mean(v);
Real sigma_u_sq = boost::math::statistics::variance(u);
Real sigma_v_sq = boost::math::statistics::variance(v);
auto [mu_u_, mu_v_, cov_uv] = means_and_covariance(u, v);
BOOST_TEST(abs(mu_u - mu_u_) < tol);
BOOST_TEST(abs(mu_v - mu_v_) < tol);
// Cauchy-Schwartz inequality:
BOOST_TEST(cov_uv*cov_uv <= sigma_u_sq*sigma_v_sq);
// cov(X, X) = sigma(X)^2:
Real cov_uu = covariance(u, u);
BOOST_TEST(abs(cov_uu - sigma_u_sq) < tol);
Real cov_vv = covariance(v, v);
BOOST_TEST(abs(cov_vv - sigma_v_sq) < tol);
}
template<class Real>
void test_correlation_coefficient()
{
using boost::math::statistics::correlation_coefficient;
Real tol = std::numeric_limits<Real>::epsilon();
std::vector<Real> u{1};
std::vector<Real> v{1};
Real rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv - 1) < tol);
u = {1,1};
v = {1,1};
rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv - 1) < tol);
u = {1, 2, 3};
v = {1, 2, 3};
rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv - 1) < tol);
u = {1, 2, 3};
v = {-1, -2, -3};
rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv + 1) < tol);
rho_uv = correlation_coefficient(v, u);
BOOST_TEST(abs(rho_uv + 1) < tol);
u = {1, 2, 3};
v = {0, 0, 0};
rho_uv = correlation_coefficient(v, u);
BOOST_TEST(abs(rho_uv) < tol);
u = {1, 2, 3};
v = {0, 0, 3};
rho_uv = correlation_coefficient(v, u);
// mu_u = 2, sigma_u^2 = 2/3, mu_v = 1, sigma_v^2 = 2, cov(u,v) = 1.
BOOST_TEST(abs(rho_uv - sqrt(Real(3))/Real(2)) < tol);
}
int main()
{
test_covariance<float>();
test_covariance<double>();
test_covariance<long double>();
test_covariance<cpp_bin_float_50>();
test_correlation_coefficient<float>();
test_correlation_coefficient<double>();
test_correlation_coefficient<long double>();
test_correlation_coefficient<cpp_bin_float_50>();
return boost::report_errors();
}
|