1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
/*
* Copyright Nick Thompson, 2017
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#define BOOST_TEST_MODULE chebyshev_test
#include <boost/type_index.hpp>
#include <boost/test/included/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/chebyshev.hpp>
#include <boost/math/special_functions/sinc.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/array.hpp>
using boost::multiprecision::cpp_bin_float_quad;
using boost::multiprecision::cpp_bin_float_50;
using boost::multiprecision::cpp_bin_float_100;
using boost::math::chebyshev_t;
using boost::math::chebyshev_t_prime;
using boost::math::chebyshev_u;
template<class Real>
void test_polynomials()
{
std::cout << "Testing explicit polynomial representations of the Chebyshev polynomials on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real x = -2;
Real tol = 400*std::numeric_limits<Real>::epsilon();
if (tol > std::numeric_limits<float>::epsilon())
tol *= 10; // float results have much larger error rates.
while (x < 2)
{
BOOST_CHECK_CLOSE_FRACTION(chebyshev_t(0, x), Real(1), tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_t(1, x), x, tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_t(2, x), 2*x*x - 1, tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_t(3, x), x*(4*x*x-3), tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_t(4, x), 8*x*x*(x*x - 1) + 1, tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_t(5, x), x*(16*x*x*x*x - 20*x*x + 5), tol);
x += 1/static_cast<Real>(1<<7);
}
x = -2;
tol = 10*tol;
while (x < 2)
{
BOOST_CHECK_CLOSE_FRACTION(chebyshev_u(0, x), Real(1), tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_u(1, x), 2*x, tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_u(2, x), 4*x*x - 1, tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_u(3, x), 4*x*(2*x*x - 1), tol);
x += 1/static_cast<Real>(1<<7);
}
}
template<class Real>
void test_derivatives()
{
std::cout << "Testing explicit polynomial representations of the Chebyshev polynomial derivatives on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real x = -2;
Real tol = 1000*std::numeric_limits<Real>::epsilon();
while (x < 2)
{
BOOST_CHECK_CLOSE_FRACTION(chebyshev_t_prime(0, x), Real(0), tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_t_prime(1, x), Real(1), tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_t_prime(2, x), 4*x, tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_t_prime(3, x), 3*(4*x*x - 1), tol);
BOOST_CHECK_CLOSE_FRACTION(chebyshev_t_prime(4, x), 16*x*(2*x*x - 1), tol);
// This one makes the tolerance have to grow too large; the Chebyshev recurrence is more stable than naive polynomial evaluation anyway.
//BOOST_CHECK_CLOSE_FRACTION(chebyshev_t_prime(5, x), 5*(4*x*x*(4*x*x - 3) + 1), tol);
x += 1/static_cast<Real>(1<<7);
}
}
template<class Real>
void test_clenshaw_recurrence()
{
using boost::math::chebyshev_clenshaw_recurrence;
boost::array<Real, 5> c0 = { {2, 0, 0, 0, 0} };
// Check the size = 1 case:
boost::array<Real, 1> c01 = { {2} };
// Check the size = 2 case:
boost::array<Real, 2> c02 = { {2, 0} };
boost::array<Real, 4> c1 = { {0, 1, 0, 0} };
boost::array<Real, 4> c2 = { {0, 0, 1, 0} };
boost::array<Real, 5> c3 = { {0, 0, 0, 1, 0} };
boost::array<Real, 5> c4 = { {0, 0, 0, 0, 1} };
boost::array<Real, 6> c5 = { {0, 0, 0, 0, 0, 1} };
boost::array<Real, 7> c6 = { {0, 0, 0, 0, 0, 0, 1} };
Real x = -1;
Real tol = 10*std::numeric_limits<Real>::epsilon();
if (tol > std::numeric_limits<float>::epsilon())
tol *= 100; // float results have much larger error rates.
while (x <= 1)
{
Real y = chebyshev_clenshaw_recurrence(c0.data(), c0.size(), x);
BOOST_CHECK_CLOSE_FRACTION(y, chebyshev_t(0, x), tol);
y = chebyshev_clenshaw_recurrence(c01.data(), c01.size(), x);
BOOST_CHECK_CLOSE_FRACTION(y, chebyshev_t(0, x), tol);
y = chebyshev_clenshaw_recurrence(c02.data(), c02.size(), x);
BOOST_CHECK_CLOSE_FRACTION(y, chebyshev_t(0, x), tol);
y = chebyshev_clenshaw_recurrence(c1.data(), c1.size(), x);
BOOST_CHECK_CLOSE_FRACTION(y, chebyshev_t(1, x), tol);
y = chebyshev_clenshaw_recurrence(c2.data(), c2.size(), x);
BOOST_CHECK_CLOSE_FRACTION(y, chebyshev_t(2, x), tol);
y = chebyshev_clenshaw_recurrence(c3.data(), c3.size(), x);
BOOST_CHECK_CLOSE_FRACTION(y, chebyshev_t(3, x), tol);
y = chebyshev_clenshaw_recurrence(c4.data(), c4.size(), x);
BOOST_CHECK_CLOSE_FRACTION(y, chebyshev_t(4, x), tol);
y = chebyshev_clenshaw_recurrence(c5.data(), c5.size(), x);
BOOST_CHECK_CLOSE_FRACTION(y, chebyshev_t(5, x), tol);
y = chebyshev_clenshaw_recurrence(c6.data(), c6.size(), x);
BOOST_CHECK_CLOSE_FRACTION(y, chebyshev_t(6, x), tol);
x += static_cast<Real>(1)/static_cast<Real>(1 << 7);
}
}
BOOST_AUTO_TEST_CASE(chebyshev_test)
{
test_clenshaw_recurrence<float>();
test_clenshaw_recurrence<double>();
test_clenshaw_recurrence<long double>();
test_polynomials<float>();
test_polynomials<double>();
test_polynomials<long double>();
test_polynomials<cpp_bin_float_quad>();
test_derivatives<float>();
test_derivatives<double>();
test_derivatives<long double>();
test_derivatives<cpp_bin_float_quad>();
}
|