1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
// Copyright Nick Thompson 2017.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/math/special_functions/legendre.hpp>
#include <boost/math/special_functions/legendre_stieltjes.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
using boost::math::legendre_stieltjes;
using boost::math::legendre_p;
using boost::multiprecision::cpp_bin_float_quad;
template<class Real>
void test_legendre_stieltjes()
{
std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
using std::sqrt;
using std::abs;
using boost::math::constants::third;
using boost::math::constants::half;
Real tol = std::numeric_limits<Real>::epsilon();
legendre_stieltjes<Real> ls1(1);
legendre_stieltjes<Real> ls2(2);
legendre_stieltjes<Real> ls3(3);
legendre_stieltjes<Real> ls4(4);
legendre_stieltjes<Real> ls5(5);
legendre_stieltjes<Real> ls8(8);
Real x = -1;
while(x <= 1)
{
BOOST_CHECK_CLOSE_FRACTION(ls1(x), x, tol);
BOOST_CHECK_CLOSE_FRACTION(ls1.prime(x), 1, tol);
Real p2 = legendre_p(2, x);
BOOST_CHECK_CLOSE_FRACTION(ls2(x), p2 - 2/static_cast<Real>(5), tol);
BOOST_CHECK_CLOSE_FRACTION(ls2.prime(x), 3*x, tol);
Real p3 = legendre_p(3, x);
BOOST_CHECK_CLOSE_FRACTION(ls3(x), p3 - 9*x/static_cast<Real>(14), 600*tol);
BOOST_CHECK_CLOSE_FRACTION(ls3.prime(x), 15*x*x*half<Real>() -3*half<Real>()-9/static_cast<Real>(14), 100*tol);
Real p4 = legendre_p(4, x);
//-20P_2(x)/27 + 14P_0(x)/891
Real E4 = p4 - 20*p2/static_cast<Real>(27) + 14/static_cast<Real>(891);
BOOST_CHECK_CLOSE_FRACTION(ls4(x), E4, 250*tol);
BOOST_CHECK_CLOSE_FRACTION(ls4.prime(x), 35*x*(9*x*x -5)/static_cast<Real>(18), 250*tol);
Real p5 = legendre_p(5, x);
Real E5 = p5 - 35*p3/static_cast<Real>(44) + 135*x/static_cast<Real>(12584);
BOOST_CHECK_CLOSE_FRACTION(ls5(x), E5, 29000*tol);
Real E5prime = (315*(123 + 143*x*x*(11*x*x-9)))/static_cast<Real>(12584);
BOOST_CHECK_CLOSE_FRACTION(ls5.prime(x), E5prime, 29000*tol);
x += 1/static_cast<Real>(1 << 9);
}
// Test norm:
// E_1 = x
Real expected_norm_sq = 2*third<Real>();
BOOST_CHECK_CLOSE_FRACTION(expected_norm_sq, ls1.norm_sq(), tol);
// E_2 = P[sub 2](x) - 2P[sup 0](x)/5
expected_norm_sq = 2/static_cast<Real>(5) + 8/static_cast<Real>(25);
BOOST_CHECK_CLOSE_FRACTION(expected_norm_sq, ls2.norm_sq(), tol);
// E_3 = P[sub 3](x) - 9P[sub 1]/14
expected_norm_sq = 2/static_cast<Real>(7) + 9*9*2*third<Real>()/static_cast<Real>(14*14);
BOOST_CHECK_CLOSE_FRACTION(expected_norm_sq, ls3.norm_sq(), tol);
// E_4 = P[sub 4](x) -20P[sub 2](x)/27 + 14P[sub 0](x)/891
expected_norm_sq = static_cast<Real>(2)/static_cast<Real>(9) + static_cast<Real>(20*20*2)/static_cast<Real>(27*27*5) + 14*14*2/static_cast<Real>(891*891);
BOOST_CHECK_CLOSE_FRACTION(expected_norm_sq, ls4.norm_sq(), tol);
// E_5 = P[sub 5](x) - 35P[sub 3](x)/44 + 135P[sub 1](x)/12584
expected_norm_sq = 2/static_cast<Real>(11) + (35*35/static_cast<Real>(44*44))*(2/static_cast<Real>(7)) + (135*135/static_cast<Real>(12584*12584))*2*third<Real>();
BOOST_CHECK_CLOSE_FRACTION(expected_norm_sq, ls5.norm_sq(), tol);
// Only zero of E1 is 0:
std::vector<Real> zeros = ls1.zeros();
BOOST_CHECK(zeros.size() == 1);
BOOST_CHECK_SMALL(zeros[0], tol);
BOOST_CHECK_SMALL(ls1(zeros[0]), tol);
zeros = ls2.zeros();
BOOST_CHECK(zeros.size() == 1);
BOOST_CHECK_CLOSE_FRACTION(zeros[0], sqrt(3/static_cast<Real>(5)), tol);
BOOST_CHECK_SMALL(ls2(zeros[0]), tol);
zeros = ls3.zeros();
BOOST_CHECK(zeros.size() == 2);
BOOST_CHECK_SMALL(zeros[0], tol);
BOOST_CHECK_CLOSE_FRACTION(zeros[1], sqrt(6/static_cast<Real>(7)), tol);
zeros = ls4.zeros();
BOOST_CHECK(zeros.size() == 2);
Real expected = sqrt( (55 - 2*sqrt(static_cast<Real>(330)))/static_cast<Real>(11) )/static_cast<Real>(3);
BOOST_CHECK_CLOSE_FRACTION(zeros[0], expected, tol);
expected = sqrt( (55 + 2*sqrt(static_cast<Real>(330)))/static_cast<Real>(11) )/static_cast<Real>(3);
BOOST_CHECK_CLOSE_FRACTION(zeros[1], expected, 10*tol);
zeros = ls5.zeros();
BOOST_CHECK(zeros.size() == 3);
BOOST_CHECK_SMALL(zeros[0], tol);
expected = sqrt( ( 195 - sqrt(static_cast<Real>(6045)) )/static_cast<Real>(286));
BOOST_CHECK_CLOSE_FRACTION(zeros[1], expected, tol);
expected = sqrt( ( 195 + sqrt(static_cast<Real>(6045)) )/static_cast<Real>(286));
BOOST_CHECK_CLOSE_FRACTION(zeros[2], expected, tol);
for (size_t i = 6; i < 50; ++i)
{
legendre_stieltjes<Real> En(i);
zeros = En.zeros();
for(auto const & zero : zeros)
{
BOOST_CHECK_SMALL(En(zero), 50*tol);
}
}
}
BOOST_AUTO_TEST_CASE(LegendreStieltjesZeros)
{
test_legendre_stieltjes<double>();
test_legendre_stieltjes<long double>();
test_legendre_stieltjes<cpp_bin_float_quad>();
//test_legendre_stieltjes<boost::multiprecision::cpp_bin_float_100>();
}
|