summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/test_fisher_f.cpp
blob: 19db28056e79381dbeb8a761d38370142d118b93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
// test_fisher_squared.cpp

// Copyright Paul A. Bristow 2006.
// Copyright John Maddock 2007.

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

#include <boost/math/tools/test.hpp>
#include <boost/math/concepts/real_concept.hpp> // for real_concept
using ::boost::math::concepts::real_concept;

#include <boost/math/distributions/fisher_f.hpp> // for fisher_f_distribution
using boost::math::fisher_f_distribution;

#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // for test_main
#include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
#include "test_out_of_range.hpp"

#include <iostream>
using std::cout;
using std::endl;
#include <limits>
using std::numeric_limits;

template <class RealType>
RealType naive_pdf(RealType df1, RealType df2, RealType x)
{
   //
   // Calculate the PDF naively using direct evaluation
   // of equation 2 from http://mathworld.wolfram.com/F-Distribution.html
   //
   // Our actual PDF implementation uses a completely different method,
   // so this is a good sanity check that our math is correct.
   //
   using namespace std; // For ADL of std functions.
   RealType e = boost::math::lgamma((df1 + df2) / 2);
   e += log(df1) * df1 / 2;
   e += log(df2) * df2 / 2;
   e += log(x) * ((df1 / 2) - 1);
   e -= boost::math::lgamma(df1 / 2);
   e -= boost::math::lgamma(df2 / 2);
   e -= log(df2 + x * df1) * (df1 + df2) / 2;
   return exp(e);
}

template <class RealType>
void test_spot(
     RealType df1,    // Degrees of freedom 1
     RealType df2,    // Degrees of freedom 2
     RealType cs,    // Chi Square statistic
     RealType P,     // CDF
     RealType Q,     // Complement of CDF
     RealType tol)   // Test tolerance
{
   boost::math::fisher_f_distribution<RealType> dist(df1, df2);
   BOOST_CHECK_CLOSE(
      cdf(dist, cs), P, tol);
   BOOST_CHECK_CLOSE(
      pdf(dist, cs), naive_pdf(dist.degrees_of_freedom1(), dist.degrees_of_freedom2(), cs), tol);
   if((P < 0.999) && (Q < 0.999))
   {
      //
      // We can only check this if P is not too close to 1,
      // so that we can guarantee Q is free of error:
      //
      BOOST_CHECK_CLOSE(
         cdf(complement(dist, cs)), Q, tol);
      BOOST_CHECK_CLOSE(
            quantile(dist, P), cs, tol);
      BOOST_CHECK_CLOSE(
            quantile(complement(dist, Q)), cs, tol);
   }
}

//
// This test data is taken from the tables of upper
// critical values of the F distribution available
// at http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm
//
double q[] = { 0.10, 0.05, 0.025, 0.01, 0.001 };
double upper_critical_values[][10] = {
   { 161.448,199.500,215.707,224.583,230.162,233.986,236.768,238.882,240.543,241.882 },
   { 18.513, 19.000, 19.164, 19.247, 19.296, 19.330, 19.353, 19.371, 19.385, 19.396 },
   { 10.128,  9.552,  9.277,  9.117,  9.013,  8.941,  8.887,  8.845,  8.812,  8.786 },
   { 7.709,  6.944,  6.591,  6.388,  6.256,  6.163,  6.094,  6.041,  5.999,  5.964 },
   { 6.608,  5.786,  5.409,  5.192,  5.050,  4.950,  4.876,  4.818,  4.772,  4.735 },
   { 5.987,  5.143,  4.757,  4.534,  4.387,  4.284,  4.207,  4.147,  4.099,  4.060 },
   { 5.591,  4.737,  4.347,  4.120,  3.972,  3.866,  3.787,  3.726,  3.677,  3.637 },
   { 5.318,  4.459,  4.066,  3.838,  3.687,  3.581,  3.500,  3.438,  3.388,  3.347 },
   { 5.117,  4.256,  3.863,  3.633,  3.482,  3.374,  3.293,  3.230,  3.179,  3.137 },
   { 4.965,  4.103,  3.708,  3.478,  3.326,  3.217,  3.135,  3.072,  3.020,  2.978 },
   { 4.844,  3.982,  3.587,  3.357,  3.204,  3.095,  3.012,  2.948,  2.896,  2.854 },
   { 4.747,  3.885,  3.490,  3.259,  3.106,  2.996,  2.913,  2.849,  2.796,  2.753 },
   { 4.667,  3.806,  3.411,  3.179,  3.025,  2.915,  2.832,  2.767,  2.714,  2.671 },
   { 4.600,  3.739,  3.344,  3.112,  2.958,  2.848,  2.764,  2.699,  2.646,  2.602 },
   { 4.543,  3.682,  3.287,  3.056,  2.901,  2.790,  2.707,  2.641,  2.588,  2.544 },
   { 4.494,  3.634,  3.239,  3.007,  2.852,  2.741,  2.657,  2.591,  2.538,  2.494 },
   { 4.451,  3.592,  3.197,  2.965,  2.810,  2.699,  2.614,  2.548,  2.494,  2.450 },
   { 4.414,  3.555,  3.160,  2.928,  2.773,  2.661,  2.577,  2.510,  2.456,  2.412 },
   { 4.381,  3.522,  3.127,  2.895,  2.740,  2.628,  2.544,  2.477,  2.423,  2.378 },
   { 4.351,  3.493,  3.098,  2.866,  2.711,  2.599,  2.514,  2.447,  2.393,  2.348 },
   { 4.325,  3.467,  3.072,  2.840,  2.685,  2.573,  2.488,  2.420,  2.366,  2.321 },
   { 4.301,  3.443,  3.049,  2.817,  2.661,  2.549,  2.464,  2.397,  2.342,  2.297 },
   { 4.279,  3.422,  3.028,  2.796,  2.640,  2.528,  2.442,  2.375,  2.320,  2.275 },
   { 4.260,  3.403,  3.009,  2.776,  2.621,  2.508,  2.423,  2.355,  2.300,  2.255 },
   { 4.242,  3.385,  2.991,  2.759,  2.603,  2.490,  2.405,  2.337,  2.282,  2.236 },
   { 4.225,  3.369,  2.975,  2.743,  2.587,  2.474,  2.388,  2.321,  2.265,  2.220 },
   { 4.210,  3.354,  2.960,  2.728,  2.572,  2.459,  2.373,  2.305,  2.250,  2.204 },
   { 4.196,  3.340,  2.947,  2.714,  2.558,  2.445,  2.359,  2.291,  2.236,  2.190 },
   { 4.183,  3.328,  2.934,  2.701,  2.545,  2.432,  2.346,  2.278,  2.223,  2.177 },
   { 4.171,  3.316,  2.922,  2.690,  2.534,  2.421,  2.334,  2.266,  2.211,  2.165 },
   { 4.160,  3.305,  2.911,  2.679,  2.523,  2.409,  2.323,  2.255,  2.199,  2.153 },
   { 4.149,  3.295,  2.901,  2.668,  2.512,  2.399,  2.313,  2.244,  2.189,  2.142 },
   { 4.139,  3.285,  2.892,  2.659,  2.503,  2.389,  2.303,  2.235,  2.179,  2.133 },
   { 4.130,  3.276,  2.883,  2.650,  2.494,  2.380,  2.294,  2.225,  2.170,  2.123 },
   { 4.121,  3.267,  2.874,  2.641,  2.485,  2.372,  2.285,  2.217,  2.161,  2.114 },
   { 4.113,  3.259,  2.866,  2.634,  2.477,  2.364,  2.277,  2.209,  2.153,  2.106 },
   { 4.105,  3.252,  2.859,  2.626,  2.470,  2.356,  2.270,  2.201,  2.145,  2.098 },
   { 4.098,  3.245,  2.852,  2.619,  2.463,  2.349,  2.262,  2.194,  2.138,  2.091 },
   { 4.091,  3.238,  2.845,  2.612,  2.456,  2.342,  2.255,  2.187,  2.131,  2.084 },
   { 4.085,  3.232,  2.839,  2.606,  2.449,  2.336,  2.249,  2.180,  2.124,  2.077 },
   { 4.079,  3.226,  2.833,  2.600,  2.443,  2.330,  2.243,  2.174,  2.118,  2.071 },
   { 4.073,  3.220,  2.827,  2.594,  2.438,  2.324,  2.237,  2.168,  2.112,  2.065 },
   { 4.067,  3.214,  2.822,  2.589,  2.432,  2.318,  2.232,  2.163,  2.106,  2.059 },
   { 4.062,  3.209,  2.816,  2.584,  2.427,  2.313,  2.226,  2.157,  2.101,  2.054 },
   { 4.057,  3.204,  2.812,  2.579,  2.422,  2.308,  2.221,  2.152,  2.096,  2.049 },
   { 4.052,  3.200,  2.807,  2.574,  2.417,  2.304,  2.216,  2.147,  2.091,  2.044 },
   { 4.047,  3.195,  2.802,  2.570,  2.413,  2.299,  2.212,  2.143,  2.086,  2.039 },
   { 4.043,  3.191,  2.798,  2.565,  2.409,  2.295,  2.207,  2.138,  2.082,  2.035 },
   { 4.038,  3.187,  2.794,  2.561,  2.404,  2.290,  2.203,  2.134,  2.077,  2.030 },
   { 4.034,  3.183,  2.790,  2.557,  2.400,  2.286,  2.199,  2.130,  2.073,  2.026 },
   { 4.030,  3.179,  2.786,  2.553,  2.397,  2.283,  2.195,  2.126,  2.069,  2.022 },
   { 4.027,  3.175,  2.783,  2.550,  2.393,  2.279,  2.192,  2.122,  2.066,  2.018 },
   { 4.023,  3.172,  2.779,  2.546,  2.389,  2.275,  2.188,  2.119,  2.062,  2.015 },
   { 4.020,  3.168,  2.776,  2.543,  2.386,  2.272,  2.185,  2.115,  2.059,  2.011 },
   { 4.016,  3.165,  2.773,  2.540,  2.383,  2.269,  2.181,  2.112,  2.055,  2.008 },
   { 4.013,  3.162,  2.769,  2.537,  2.380,  2.266,  2.178,  2.109,  2.052,  2.005 },
   { 4.010,  3.159,  2.766,  2.534,  2.377,  2.263,  2.175,  2.106,  2.049,  2.001 },
   { 4.007,  3.156,  2.764,  2.531,  2.374,  2.260,  2.172,  2.103,  2.046,  1.998 },
   { 4.004,  3.153,  2.761,  2.528,  2.371,  2.257,  2.169,  2.100,  2.043,  1.995 },
   { 4.001,  3.150,  2.758,  2.525,  2.368,  2.254,  2.167,  2.097,  2.040,  1.993 },
   { 3.998,  3.148,  2.755,  2.523,  2.366,  2.251,  2.164,  2.094,  2.037,  1.990 },
   { 3.996,  3.145,  2.753,  2.520,  2.363,  2.249,  2.161,  2.092,  2.035,  1.987 },
   { 3.993,  3.143,  2.751,  2.518,  2.361,  2.246,  2.159,  2.089,  2.032,  1.985 },
   { 3.991,  3.140,  2.748,  2.515,  2.358,  2.244,  2.156,  2.087,  2.030,  1.982 },
   { 3.989,  3.138,  2.746,  2.513,  2.356,  2.242,  2.154,  2.084,  2.027,  1.980 },
   { 3.986,  3.136,  2.744,  2.511,  2.354,  2.239,  2.152,  2.082,  2.025,  1.977 },
   { 3.984,  3.134,  2.742,  2.509,  2.352,  2.237,  2.150,  2.080,  2.023,  1.975 },
   { 3.982,  3.132,  2.740,  2.507,  2.350,  2.235,  2.148,  2.078,  2.021,  1.973 },
   { 3.980,  3.130,  2.737,  2.505,  2.348,  2.233,  2.145,  2.076,  2.019,  1.971 },
   { 3.978,  3.128,  2.736,  2.503,  2.346,  2.231,  2.143,  2.074,  2.017,  1.969 },
   { 3.976,  3.126,  2.734,  2.501,  2.344,  2.229,  2.142,  2.072,  2.015,  1.967 },
   { 3.974,  3.124,  2.732,  2.499,  2.342,  2.227,  2.140,  2.070,  2.013,  1.965 },
   { 3.972,  3.122,  2.730,  2.497,  2.340,  2.226,  2.138,  2.068,  2.011,  1.963 },
   { 3.970,  3.120,  2.728,  2.495,  2.338,  2.224,  2.136,  2.066,  2.009,  1.961 },
   { 3.968,  3.119,  2.727,  2.494,  2.337,  2.222,  2.134,  2.064,  2.007,  1.959 },
   { 3.967,  3.117,  2.725,  2.492,  2.335,  2.220,  2.133,  2.063,  2.006,  1.958 },
   { 3.965,  3.115,  2.723,  2.490,  2.333,  2.219,  2.131,  2.061,  2.004,  1.956 },
   { 3.963,  3.114,  2.722,  2.489,  2.332,  2.217,  2.129,  2.059,  2.002,  1.954 },
   { 3.962,  3.112,  2.720,  2.487,  2.330,  2.216,  2.128,  2.058,  2.001,  1.953 },
   { 3.960,  3.111,  2.719,  2.486,  2.329,  2.214,  2.126,  2.056,  1.999,  1.951 },
   { 3.959,  3.109,  2.717,  2.484,  2.327,  2.213,  2.125,  2.055,  1.998,  1.950 },
   { 3.957,  3.108,  2.716,  2.483,  2.326,  2.211,  2.123,  2.053,  1.996,  1.948 },
   { 3.956,  3.107,  2.715,  2.482,  2.324,  2.210,  2.122,  2.052,  1.995,  1.947 },
   { 3.955,  3.105,  2.713,  2.480,  2.323,  2.209,  2.121,  2.051,  1.993,  1.945 },
   { 3.953,  3.104,  2.712,  2.479,  2.322,  2.207,  2.119,  2.049,  1.992,  1.944 },
   { 3.952,  3.103,  2.711,  2.478,  2.321,  2.206,  2.118,  2.048,  1.991,  1.943 },
   { 3.951,  3.101,  2.709,  2.476,  2.319,  2.205,  2.117,  2.047,  1.989,  1.941 },
   { 3.949,  3.100,  2.708,  2.475,  2.318,  2.203,  2.115,  2.045,  1.988,  1.940 },
   { 3.948,  3.099,  2.707,  2.474,  2.317,  2.202,  2.114,  2.044,  1.987,  1.939 },
   { 3.947,  3.098,  2.706,  2.473,  2.316,  2.201,  2.113,  2.043,  1.986,  1.938 },
   { 3.946,  3.097,  2.705,  2.472,  2.315,  2.200,  2.112,  2.042,  1.984,  1.936 },
   { 3.945,  3.095,  2.704,  2.471,  2.313,  2.199,  2.111,  2.041,  1.983,  1.935 },
   { 3.943,  3.094,  2.703,  2.470,  2.312,  2.198,  2.110,  2.040,  1.982,  1.934 },
   { 3.942,  3.093,  2.701,  2.469,  2.311,  2.197,  2.109,  2.038,  1.981,  1.933 },
   { 3.941,  3.092,  2.700,  2.467,  2.310,  2.196,  2.108,  2.037,  1.980,  1.932 },
   { 3.940,  3.091,  2.699,  2.466,  2.309,  2.195,  2.106,  2.036,  1.979,  1.931 },
   { 3.939,  3.090,  2.698,  2.465,  2.308,  2.194,  2.105,  2.035,  1.978,  1.930 },
   { 3.938,  3.089,  2.697,  2.465,  2.307,  2.193,  2.104,  2.034,  1.977,  1.929 },
   { 3.937,  3.088,  2.696,  2.464,  2.306,  2.192,  2.103,  2.033,  1.976,  1.928 },
   { 3.936,  3.087,  2.696,  2.463,  2.305,  2.191,  2.103,  2.032,  1.975,  1.927 }
};


template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
  // Basic sanity checks, test data is to three decimal places only
  // so set tolerance to 0.002 expressed as a persentage.  Note that
  // we can't even get full 3 digit accuracy since the data we're
  // using as input has *already been rounded*, leading to even
  // greater differences in output.  As an accuracy test this is
  // pretty useless, but it is an excellent sanity check.

  RealType tolerance = 0.002f * 100;
  cout << "Tolerance = " << tolerance << "%." << endl;

  using boost::math::fisher_f_distribution;
  using  ::boost::math::fisher_f;
  using  ::boost::math::cdf;
  using  ::boost::math::pdf;

  for(unsigned i = 0; i < sizeof(upper_critical_values) / sizeof(upper_critical_values[0]); ++i)
  {
     for(unsigned j = 0; j < sizeof(upper_critical_values[0])/sizeof(upper_critical_values[0][0]); ++j)
     {
        test_spot(
           static_cast<RealType>(j+1),   // degrees of freedom 1
           static_cast<RealType>(i+1),   // degrees of freedom 2
           static_cast<RealType>(upper_critical_values[i][j]), // test statistic F
           static_cast<RealType>(0.95),       // Probability of result (CDF), P
           static_cast<RealType>(0.05),       // Q = 1 - P
           tolerance);
     }
  }

   // http://www.vias.org/simulations/simusoft_distcalc.html
   // Distcalc version 1.2 Copyright 2002 H Lohninger, TU Wein
   // H.Lohninger: Teach/Me Data Analysis, Springer-Verlag, Berlin-New York-Tokyo, 1999. ISBN 3-540-14743-8
   // The Windows calculator is available zipped distcalc.exe for download at:
   // http://www.vias.org/simulations/simu_stat.html

   // This interactive Windows program was used to find some combination for which the
   // result appears to be exact.  No doubt this can be done analytically too,
   // by mathematicians!

   // Some combinations for which the result is 'exact', or at least is to 40 decimal digits.
   // 40 decimal digits includes 128-bit significand User Defined Floating-Point types.
   // These all pass tests at near epsilon accuracy for the floating-point type.
   tolerance = boost::math::tools::epsilon<RealType>() * 5 * 100;
   cout << "Tolerance = " << tolerance << "%." << endl;
   BOOST_CHECK_CLOSE(
      cdf(fisher_f_distribution<RealType>(
         static_cast<RealType>(1.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(2.)/static_cast<RealType>(3.) ),  // F
      static_cast<RealType>(0.5), // probability.
      tolerance);

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(1.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(1.6L))),  // F
      static_cast<RealType>(0.333333333333333333333333333333333333L), // probability.
      tolerance * 100); // needs higher tolerance at 128-bit precision - value not exact?

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(1.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(6.5333333333333333333333333333333333L))),  // F
      static_cast<RealType>(0.125L), // probability.
      tolerance);

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(2.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(1.))),  // F
      static_cast<RealType>(0.5L), // probability.
      tolerance);

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(2.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(3.))),  // F
      static_cast<RealType>(0.25L), // probability.
      tolerance);

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(2.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(3.))),  // F
      static_cast<RealType>(0.25L), // probability.
      tolerance);

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(2.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(7.))),  // F
      static_cast<RealType>(0.125L), // probability.
      tolerance);

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(2.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(9.))),  // F
      static_cast<RealType>(0.1L), // probability.
      tolerance);

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(2.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(19.))),  // F
      static_cast<RealType>(0.05L), // probability.
      tolerance);

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(2.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(29.))),  // F
      static_cast<RealType>(0.03333333333333333333333333333333333333333L), // probability.
      tolerance);

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(2.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(99.))),  // F
      static_cast<RealType>(0.01L), // probability. 
      tolerance);

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(4.),  // df1
         static_cast<RealType>(4.)),  // df2
         static_cast<RealType>(9.))),  // F
      static_cast<RealType>(0.028L), // probability. 
      tolerance*10);   // not quite exact???

   BOOST_CHECK_CLOSE(
      cdf(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(8.),  // df1
         static_cast<RealType>(8.)),  // df2
         static_cast<RealType>(1.))),  // F
      static_cast<RealType>(0.5L), // probability. 
      tolerance);

// Inverse tests

      BOOST_CHECK_CLOSE(
      quantile(complement(fisher_f_distribution<RealType>(
         static_cast<RealType>(2.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(0.03333333333333333333333333333333333333333L))),  // probability
      static_cast<RealType>(29.), // F expected.
      tolerance*10);

      BOOST_CHECK_CLOSE(
      quantile(fisher_f_distribution<RealType>(
         static_cast<RealType>(2.),  // df1
         static_cast<RealType>(2.)),  // df2
         static_cast<RealType>(1.0L - 0.03333333333333333333333333333333333333333L)),  // probability
      static_cast<RealType>(29.), // F expected.
      tolerance*10);


// Also note limit cases for F(1, infinity) == normal distribution
// F(1, n2) == Student's t distribution
// F(n1, infinity) == Chisq distribution

// These might allow some further cross checks?

    RealType tol2 = boost::math::tools::epsilon<RealType>() * 5 * 100;  // 5 eps as a percent
    cout << "Tolerance = " << tol2 << "%." << endl;
    fisher_f_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(6));
    RealType x = 7;
    using namespace std; // ADL of std names.
    // mean:
    BOOST_CHECK_CLOSE(
       mean(dist)
       , static_cast<RealType>(6)/static_cast<RealType>(4), tol2);
    // variance:
    BOOST_CHECK_CLOSE(
       variance(dist)
       , static_cast<RealType>(2 * 6 * 6 * (8 + 6 - 2)) / static_cast<RealType>(8 * 16 * 2), tol2);
    // std deviation:
    BOOST_CHECK_CLOSE(
       standard_deviation(dist)
       , sqrt(static_cast<RealType>(2 * 6 * 6 * (8 + 6 - 2)) / static_cast<RealType>(8 * 16 * 2)), tol2);
    // hazard:
    BOOST_CHECK_CLOSE(
       hazard(dist, x)
       , pdf(dist, x) / cdf(complement(dist, x)), tol2);
    // cumulative hazard:
    BOOST_CHECK_CLOSE(
       chf(dist, x)
       , -log(cdf(complement(dist, x))), tol2);
    // coefficient_of_variation:
    BOOST_CHECK_CLOSE(
       coefficient_of_variation(dist)
       , standard_deviation(dist) / mean(dist), tol2);
    BOOST_CHECK_CLOSE(
       mode(dist)
       , static_cast<RealType>(6*6)/static_cast<RealType>(8*8), tol2);

    fisher_f_distribution<RealType> dist2(static_cast<RealType>(8), static_cast<RealType>(12));
    BOOST_CHECK_CLOSE(
       skewness(dist2)
       , static_cast<RealType>(26 * sqrt(64.0L)) / (12*6), tol2);
    BOOST_CHECK_CLOSE(
       kurtosis_excess(dist2)
       , static_cast<RealType>(6272) * 12 / 3456, tol2);
    BOOST_CHECK_CLOSE(
       kurtosis(dist2)
       , static_cast<RealType>(6272) * 12 / 3456 + 3, tol2);
    // special cases:
    BOOST_MATH_CHECK_THROW(
       pdf(
          fisher_f_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
          static_cast<RealType>(0)), std::overflow_error
       );
    BOOST_CHECK_EQUAL(
       pdf(fisher_f_distribution<RealType>(2, 2), static_cast<RealType>(0))
       , static_cast<RealType>(1.0f));
    BOOST_CHECK_EQUAL(
       pdf(fisher_f_distribution<RealType>(3, 3), static_cast<RealType>(0))
       , static_cast<RealType>(0.0f));
    BOOST_CHECK_EQUAL(
       cdf(fisher_f_distribution<RealType>(1, 1), static_cast<RealType>(0))
       , static_cast<RealType>(0.0f));
    BOOST_CHECK_EQUAL(
       cdf(fisher_f_distribution<RealType>(2, 2), static_cast<RealType>(0))
       , static_cast<RealType>(0.0f));
    BOOST_CHECK_EQUAL(
       cdf(fisher_f_distribution<RealType>(3, 3), static_cast<RealType>(0))
       , static_cast<RealType>(0.0f));
    BOOST_CHECK_EQUAL(
       cdf(complement(fisher_f_distribution<RealType>(1, 1), static_cast<RealType>(0)))
       , static_cast<RealType>(1));
    BOOST_CHECK_EQUAL(
       cdf(complement(fisher_f_distribution<RealType>(2, 2), static_cast<RealType>(0)))
       , static_cast<RealType>(1));
    BOOST_CHECK_EQUAL(
       cdf(complement(fisher_f_distribution<RealType>(3, 3), static_cast<RealType>(0)))
       , static_cast<RealType>(1));

    BOOST_MATH_CHECK_THROW(
       pdf(
          fisher_f_distribution<RealType>(-1, 2),
          static_cast<RealType>(1)), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       pdf(
          fisher_f_distribution<RealType>(1, -1),
          static_cast<RealType>(1)), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       pdf(
          fisher_f_distribution<RealType>(8, 2),
          static_cast<RealType>(-1)), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       cdf(
          fisher_f_distribution<RealType>(-1, 1),
          static_cast<RealType>(1)), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       cdf(
          fisher_f_distribution<RealType>(8, 4),
          static_cast<RealType>(-1)), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       cdf(complement(
          fisher_f_distribution<RealType>(-1, 2),
          static_cast<RealType>(1))), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       cdf(complement(
          fisher_f_distribution<RealType>(8, 4),
          static_cast<RealType>(-1))), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       quantile(
          fisher_f_distribution<RealType>(-1, 2),
          static_cast<RealType>(0.5)), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       quantile(
          fisher_f_distribution<RealType>(8, 8),
          static_cast<RealType>(-1)), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       quantile(
          fisher_f_distribution<RealType>(8, 8),
          static_cast<RealType>(1.1)), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       quantile(complement(
          fisher_f_distribution<RealType>(2, -1),
          static_cast<RealType>(0.5))), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       quantile(complement(
          fisher_f_distribution<RealType>(8, 8),
          static_cast<RealType>(-1))), std::domain_error
       );
    BOOST_MATH_CHECK_THROW(
       quantile(complement(
          fisher_f_distribution<RealType>(8, 8),
          static_cast<RealType>(1.1))), std::domain_error
       );
   check_out_of_range<fisher_f_distribution<RealType> >(2, 3);
} // template <class RealType>void test_spots(RealType)

BOOST_AUTO_TEST_CASE( test_main )
{

  // Check that can generate fisher distribution using the two convenience methods:
   boost::math::fisher_f myf1(1., 2); // Using typedef
   fisher_f_distribution<> myf2(1., 2); // Using default RealType double.


  // Basic sanity-check spot values.

  // (Parameter value, arbitrarily zero, only communicates the floating point type).
  test_spots(0.0F); // Test float.
  test_spots(0.0); // Test double.
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
  test_spots(0.0L); // Test long double.
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
  test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#endif
  
} // BOOST_AUTO_TEST_CASE( test_main )

/*

Output is:

Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_fisher.exe"
Running 1 test case...
Tolerance = 0.2%.
Tolerance = 5.96046e-005%.
Tolerance = 5.96046e-005%.
Tolerance = 0.2%.
Tolerance = 1.11022e-013%.
Tolerance = 1.11022e-013%.
Tolerance = 0.2%.
Tolerance = 1.11022e-013%.
Tolerance = 1.11022e-013%.
Tolerance = 0.2%.
Tolerance = 1.11022e-013%.
Tolerance = 1.11022e-013%.
*** No errors detected

*/