1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
|
// Copyright Paul A. Bristow 2016, 2017, 2018.
// Copyright John Maddock 2016.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// test_lambert_w.cpp
//! \brief Basic sanity tests for Lambert W function using algorithms
// informed by Thomas Luu, Darko Veberic and Tosio Fukushima for W0
// and rational polynomials by John Maddock.
// #define BOOST_MATH_TEST_MULTIPRECISION // Add tests for several multiprecision types (not just built-in).
// #define BOOST_MATH_TEST_FLOAT128 // Add test using float128 type (GCC only, needing gnu++17 and quadmath library).
#ifdef BOOST_MATH_TEST_FLOAT128
#include <boost/cstdfloat.hpp> // For float_64_t, float128_t. Must be first include!
#endif // #ifdef #ifdef BOOST_MATH_TEST_FLOAT128
// Needs gnu++17 for BOOST_HAS_FLOAT128
#include <boost/config.hpp> // for BOOST_MSVC definition etc.
#include <boost/version.hpp> // for BOOST_MSVC versions.
// Boost macros
#define BOOST_TEST_MAIN
#define BOOST_LIB_DIAGNOSTIC "on" // Report library file details.
#include <boost/test/included/unit_test.hpp> // Boost.Test
// #include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/array.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/type_traits/is_constructible.hpp>
#ifdef BOOST_MATH_TEST_MULTIPRECISION
#include <boost/multiprecision/cpp_dec_float.hpp> // boost::multiprecision::cpp_dec_float_50
using boost::multiprecision::cpp_dec_float_50;
#include <boost/multiprecision/cpp_bin_float.hpp>
using boost::multiprecision::cpp_bin_float_quad;
#include <boost/math/concepts/real_concept.hpp>
#ifdef BOOST_MATH_TEST_FLOAT128
#ifdef BOOST_HAS_FLOAT128
// Including this header below without float128 triggers:
// fatal error C1189: #error: "Sorry compiler is neither GCC, not Intel, don't know how to configure this header."
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif // ifdef BOOST_HAS_FLOAT128
#endif // #ifdef #ifdef BOOST_MATH_TEST_FLOAT128
#endif // #ifdef BOOST_MATH_TEST_MULTIPRECISION
//#include <boost/fixed_point/fixed_point.hpp> // If available.
#include <boost/math/concepts/real_concept.hpp> // for real_concept tests.
#include <boost/math/special_functions/fpclassify.hpp> // isnan, ifinite.
#include <boost/math/special_functions/next.hpp> // float_next, float_prior
using boost::math::float_next;
using boost::math::float_prior;
#include <boost/math/special_functions/ulp.hpp> // ulp
#include <boost/math/tools/test_value.hpp> // for create_test_value and macro BOOST_MATH_TEST_VALUE.
#include <boost/math/policies/policy.hpp>
using boost::math::policies::digits2;
using boost::math::policies::digits10;
#include <boost/math/special_functions/lambert_w.hpp> // For Lambert W lambert_w function.
using boost::math::lambert_wm1;
using boost::math::lambert_w0;
#include "table_type.hpp"
#ifndef SC_
# define SC_(x) boost::lexical_cast<typename table_type<T>::type>(BOOST_STRINGIZE(x))
#endif
#include <limits>
#include <cmath>
#include <typeinfo>
#include <iostream>
#include <exception>
std::string show_versions(void);
//! Build a message of information about build, architecture, address model, platform, ...
std::string show_versions(void)
{
// Some of this information can also be obtained from running with a Custom Post-build step
// adding the option --build_info=yes
// "$(TargetDir)$(TargetName).exe" --build_info=yes
std::ostringstream message;
message << "Program: " << __FILE__ << "\n";
#ifdef __TIMESTAMP__
message << __TIMESTAMP__;
#endif
message << "\nBuildInfo:\n" " Platform " << BOOST_PLATFORM;
// http://stackoverflow.com/questions/1505582/determining-32-vs-64-bit-in-c
#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
message << ", 64-bit.";
#else
message << ", 32-bit.";
#endif
message << "\n Compiler " BOOST_COMPILER;
#ifdef BOOST_MSC_VER
#ifdef _MSC_FULL_VER
message << "\n MSVC version " << BOOST_STRINGIZE(_MSC_FULL_VER) << ".";
#endif
#ifdef __WIN64
mess age << "\n WIN64" << std::endl;
#endif // __WIN64
#ifdef _WIN32
message << "\n WIN32" << std::endl;
#endif // __WIN32
#endif
#ifdef __GNUC__
//PRINT_MACRO(__GNUC__);
//PRINT_MACRO(__GNUC_MINOR__);
//PRINT_MACRO(__GNUC_PATCH__);
std::cout << "GCC " << __VERSION__ << std::endl;
//PRINT_MACRO(LONG_MAX);
#endif // __GNUC__
#ifdef __MINGW64__
std::cout << "MINGW64 " << __MINGW32_MAJOR_VERSION << __MINGW32_MINOR_VERSION << std::endl;
//
// << __MINGW64_MAJOR_VERSION << __MINGW64_MINOR_VERSION << std::endl; not declared in this scope???
#endif // __MINGW64__
#ifdef __MINGW32__
std::cout << "MINGW64 " << __MINGW32_MAJOR_VERSION << __MINGW32_MINOR_VERSION << std::endl;
#endif // __MINGW32__
message << "\n STL " << BOOST_STDLIB;
message << "\n Boost version " << BOOST_VERSION / 100000 << "." << BOOST_VERSION / 100 % 1000 << "." << BOOST_VERSION % 100;
#ifdef BOOST_MATH_TEST_MULTIPRECISION
message << "\nBOOST_MATH_TEST_MULTIPRECISION defined for multiprecision tests. " << std::endl;
#else
message << "\nBOOST_MATH_TEST_MULTIPRECISION not defined so NO multiprecision tests. " << std::endl;
#endif // BOOST_MATH_TEST_MULTIPRECISION
#ifdef BOOST_HAS_FLOAT128
message << "BOOST_HAS_FLOAT128 is defined." << std::endl;
#endif // ifdef BOOST_HAS_FLOAT128
message << std::endl;
return message.str();
} // std::string show_versions()
template <class T>
void wolfram_test_moderate_values()
{
//
// Spots of moderate value http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5B-1%2Fe%2Bi,+50%5D,+N%5BLambertW%5B-1%2Fe%2Bi%5D,+50%5D%5D,+%7Bi,+1%2F8,+6,+1%2F8%7D%5D
//
static const boost::array<boost::array<typename table_type<T>::type, 2>, 96/2> wolfram_test_small_neg =
{{
{{ SC_(-0.24287944117144232159552377016146086744581113103177), SC_(-0.34187241316000572901412382650748493957063539755395) }},{{ SC_(-0.11787944117144232159552377016146086744581113103177), SC_(-0.13490446826612135454875992607636577833255418182633) }},{{ SC_(0.0071205588285576784044762298385391325541888689682322), SC_(0.0070703912528860797819274709355398032954165697080076) }},{{ SC_(0.13212055882855767840447622983853913255418886896823), SC_(0.11747650174894814471295063763686399700941650918302) }},{{ SC_(0.25712055882855767840447622983853913255418886896823), SC_(0.20869089404810562424547046857454995304964242368484) }},{{ SC_(0.38212055882855767840447622983853913255418886896823), SC_(0.28683366713002653952708635029764106993377156175310) }},{{ SC_(0.50712055882855767840447622983853913255418886896823), SC_(0.35542749308004931507852679571061486656821523044053) }},{{ SC_(0.63212055882855767840447622983853913255418886896823), SC_(0.41670399881776590750659327292575356285757792776250) }},{{ SC_(0.75712055882855767840447622983853913255418886896823), SC_(0.47217430075943420437939326812963066971059146681283) }},{{ SC_(0.88212055882855767840447622983853913255418886896823), SC_(0.52291321715862065064992942239384690347359852107504) }},{{ SC_(1.0071205588285576784044762298385391325541888689682), SC_(0.56971477154593975582335630229323210831843899740884) }},{{ SC_(1.1321205588285576784044762298385391325541888689682), SC_(0.61318350578224462394572352964726524514921241969798) }},{{ SC_(1.2571205588285576784044762298385391325541888689682), SC_(0.65379115237566259933564436658873734121781110980034) }},{{ SC_(1.3821205588285576784044762298385391325541888689682), SC_(0.69191341320406026236753559968630177636780741203666) }},{{ SC_(1.5071205588285576784044762298385391325541888689682), SC_(0.72785472286747598788295903283683432537852776142064) }},{{ SC_(1.6321205588285576784044762298385391325541888689682), SC_(0.76186544538805130363636977458614856100481979440639) }},{{ SC_(1.7571205588285576784044762298385391325541888689682), SC_(0.79415413501531119849043049331889268136479923750037) }},{{ SC_(1.8821205588285576784044762298385391325541888689682), SC_(0.82489647878345700122288701550494847447982817483512) }},{{ SC_(2.0071205588285576784044762298385391325541888689682), SC_(0.85424194939386899439722948096520865643710851410970) }},{{ SC_(2.1321205588285576784044762298385391325541888689682), SC_(0.88231884173371311472940735780441644004275449741412) }},{{ SC_(2.2571205588285576784044762298385391325541888689682), SC_(0.90923814516532488963517314558961057510689871415824) }},{{ SC_(2.3821205588285576784044762298385391325541888689682), SC_(0.93509656212104191797135657485515114635876341802516) }},{{ SC_(2.5071205588285576784044762298385391325541888689682), SC_(0.95997889061117906067636869169049106690165665554172) }},{{ SC_(2.6321205588285576784044762298385391325541888689682), SC_(0.98395992590529701946948066548039809917492328184099) }},{{ SC_(2.7571205588285576784044762298385391325541888689682), SC_(1.0071059939771381126732041109492705496242899774655) }},{{ SC_(2.8821205588285576784044762298385391325541888689682), SC_(1.0294761995723706229651673877352399077168142413723) }},{{ SC_(3.0071205588285576784044762298385391325541888689682), SC_(1.0511234507020167125769191146012321442040919222298) }},{{ SC_(3.1321205588285576784044762298385391325541888689682), SC_(1.0720953062286332723365148290552887215464891915069) }},{{ SC_(3.2571205588285576784044762298385391325541888689682), SC_(1.0924346821831089228990349517861599064007594751702) }},{{ SC_(3.3821205588285576784044762298385391325541888689682), SC_(1.1121804443118533629930276674418322662764569673766) }},{{ SC_(3.5071205588285576784044762298385391325541888689682), SC_(1.1313679082795201044696522785560810652358663683706) }},{{ SC_(3.6321205588285576784044762298385391325541888689682), SC_(1.1500292643692387775614691790201052907317404963905) }},{{ SC_(3.7571205588285576784044762298385391325541888689682), SC_(1.1681939400299161555212785901786587344721733034978) }},{{ SC_(3.8821205588285576784044762298385391325541888689682), SC_(1.1858889109341735194685896928615740804115521714257) }},{{ SC_(4.0071205588285576784044762298385391325541888689682), SC_(1.2031389691267953962289622785796365085402661808452) }},{{ SC_(4.1321205588285576784044762298385391325541888689682), SC_(1.2199669552139996161903252772502362264684476580522) }},{{ SC_(4.2571205588285576784044762298385391325541888689682), SC_(1.2363939602597347325278067608637615539794532870296) }},{{ SC_(4.3821205588285576784044762298385391325541888689682), SC_(1.2524395020361026107226019920575290018966524482736) }},{{ SC_(4.5071205588285576784044762298385391325541888689682), SC_(1.2681216794607666389159742215265331040507889789444) }},{{ SC_(4.6321205588285576784044762298385391325541888689682), SC_(1.2834573083995295018572263393035905604511320189369) }},{{ SC_(4.7571205588285576784044762298385391325541888689682), SC_(1.2984620414827281167361144981111712803667945033184) }},{{ SC_(4.8821205588285576784044762298385391325541888689682), SC_(1.3131504741533499076663954559108617687274731330916) }},{{ SC_(5.0071205588285576784044762298385391325541888689682), SC_(1.3275362388125116267199919229657120782894307415376) }},{{ SC_(5.1321205588285576784044762298385391325541888689682), SC_(1.3416320886383928057123774168081846145768561516693) }},{{ SC_(5.2571205588285576784044762298385391325541888689682), SC_(1.3554499724155634924134183248962114419200302481356) }},{{ SC_(5.3821205588285576784044762298385391325541888689682), SC_(1.3690011015132087699425938733927188719869603184010) }},{{ SC_(5.5071205588285576784044762298385391325541888689682), SC_(1.3822960099853765706075495327819109601506356054327) }},{{ SC_(5.6321205588285576784044762298385391325541888689682), SC_(1.3953446086279755263512146907828727538440007615239) }}
}};
T tolerance = boost::math::tools::epsilon<T>() * 3;
if (std::numeric_limits<T>::digits10 > 40)
tolerance *= 4; // arbitrary precision types have lower accuracy on exp(z).
for (unsigned i = 0; i < wolfram_test_small_neg.size(); ++i)
{
BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(T(wolfram_test_small_neg[i][0])), T(wolfram_test_small_neg[i][1]), tolerance);
}
}
template <class T>
void wolfram_test_small_pos()
{
//
// Spots near zero and positive http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5BPi+*+10%5Ei,+50%5D,+N%5BLambertW%5BPi+*+10%5Ei%5D,+50%5D%5D,+%7Bi,+-25,+-1%7D%5D
//
static const boost::array<boost::array<typename table_type<T>::type, 2>, 25> wolfram_test_small_neg =
{{
{{ SC_(3.1415926535897932384626433832795028841971693993751e-25), SC_(3.1415926535897932384626423963190627752613075159265e-25) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-24), SC_(3.1415926535897932384626335136751017948385505649306e-24) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-23), SC_(3.1415926535897932384625446872354919906109810591160e-23) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-22), SC_(3.1415926535897932384616564228393939483352864153693e-22) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-21), SC_(3.1415926535897932384527737788784135255783814177903e-21) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-20), SC_(3.1415926535897932383639473392686092980134754308784e-20) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-19), SC_(3.1415926535897932374756829431705670227788144495920e-19) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-18), SC_(3.1415926535897932285930389821901443118720934199487e-18) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-17), SC_(3.1415926535897931397665993723859213467937614455864e-17) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-16), SC_(3.1415926535897922515022032743441060948982739088029e-16) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-15), SC_(3.1415926535897833688582422939673934647266189937296e-15) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-14), SC_(3.1415926535896945424186324943442560413318839066091e-14) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-13), SC_(3.1415926535888062780225349125117696393347268403158e-13) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-12), SC_(3.1415926535799236340616005340756885831699803736331e-12) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-11), SC_(3.1415926534910971944564007385929431896486546006413e-11) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-10), SC_(3.1415926526028327988188016713407935109104110982749e-10) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-9), SC_(3.1415926437201888838826995251371676507148394412103e-9) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-8), SC_(3.1415925548937538785102994823474670579278874210259e-8) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-7), SC_(3.1415916666298182234172285804275105377159084331529e-7) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-6), SC_(3.1415827840319013043684920305205420694740106954961e-6) }},{{ SC_(0.000031415926535897932384626433832795028841971693993751), SC_(0.000031414939621964641052828244109272729597989570861172) }},{{ SC_(0.00031415926535897932384626433832795028841971693993751), SC_(0.00031406061579842362125003023838529350597159230209458) }},{{ SC_(0.0031415926535897932384626433832795028841971693993751), SC_(0.0031317693004296877733926356188004473035977501714541) }},{{ SC_(0.031415926535897932384626433832795028841971693993751), SC_(0.030473027596269883517196555192955092247613270959259) }},{{ SC_(0.31415926535897932384626433832795028841971693993751), SC_(0.24571751376320572448656753973370462139374436325987) }}
}};
T tolerance = boost::math::tools::epsilon<T>() * 3;
if (std::numeric_limits<T>::digits10 > 40)
tolerance *= 3; // arbitrary precision types have lower accuracy on exp(z).
for (unsigned i = 0; i < wolfram_test_small_neg.size(); ++i)
{
BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(T(wolfram_test_small_neg[i][0])), T(wolfram_test_small_neg[i][1]), tolerance);
}
}
template <class T>
void wolfram_test_small_neg()
{
//
// Spots near zero and negative http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5B-Pi+*+10%5Ei,+50%5D,+N%5BLambertW%5B-Pi+*+10%5Ei%5D,+50%5D%5D,+%7Bi,+-25,+-1%7D%5D
//
static const boost::array<boost::array<typename table_type<T>::type, 2>, 70/2> wolfram_test_small_neg =
{{
{{ SC_(-3.1415926535897932384626433832795028841971693993751e-25), SC_(-3.1415926535897932384626443702399429931330312828247e-25) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-24), SC_(-3.1415926535897932384626532528839039735557882339126e-24) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-23), SC_(-3.1415926535897932384627420793235137777833577489360e-23) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-22), SC_(-3.1415926535897932384636303437196118200590533135692e-22) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-21), SC_(-3.1415926535897932384725129876805922428160503997900e-21) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-20), SC_(-3.1415926535897932385613394272903964703901652508759e-20) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-19), SC_(-3.1415926535897932394496038233884387465457126495672e-19) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-18), SC_(-3.1415926535897932483322477843688615495410754197010e-18) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-17), SC_(-3.1415926535897933371586873941730937234835814431099e-17) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-16), SC_(-3.1415926535897942254230834922158298617964738845526e-16) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-15), SC_(-3.1415926535898031080670444726846311337086192655470e-15) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-14), SC_(-3.1415926535898919345066542815166327311524009447840e-14) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-13), SC_(-3.1415926535907801989027527842355365380542172227242e-13) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-12), SC_(-3.1415926535996628428637792513133580846848848572500e-12) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-11), SC_(-3.1415926536884892824781879109701525247983589696795e-11) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-10), SC_(-3.1415926545767536790366733956272068630669876574730e-10) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-9), SC_(-3.1415926634593976860614172823213018318134944055260e-9) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-8), SC_(-3.1415927522858419002979913741894684038594384671969e-8) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-7), SC_(-3.1415936405506984418084674995072645049396296346958e-7) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-6), SC_(-3.1416025232407040026008819016148803316716797067967e-6) }},{{ SC_(-0.000031415926535897932384626433832795028841971693993751), SC_(-0.000031416913542850054076094590477471913042739704497976) }},{{ SC_(-0.00031415926535897932384626433832795028841971693993751), SC_(-0.00031425800793839694440655801311183879569843264709852) }},{{ SC_(-0.0031415926535897932384626433832795028841971693993751), SC_(-0.0031515090287677856656576839914749012339811781712486) }},{{ SC_(-0.031415926535897932384626433832795028841971693993751), SC_(-0.032452164493239992272463616095775075564894751832128) }},{{ SC_(-0.31415926535897932384626433832795028841971693993751), SC_(-0.53804834513759287053587977755877044660611017981968) }},
{{ SC_(-0.090099009900990099009900990099009900990099009900990), SC_(-0.099527797075226962190621767732039397602197803169897)}},{{ SC_(-0.080198019801980198019801980198019801980198019801980), SC_(-0.087534530933383521242151071722737877728489741787814) }},{{ SC_(-0.070297029702970297029702970297029702970297029702970), SC_(-0.075835379000403488962496062196568904002201151736290) }},{{ SC_(-0.060396039603960396039603960396039603960396039603960), SC_(-0.064414449758822413858363348099340678962612835311800) }},{{ SC_(-0.050495049504950495049504950495049504950495049504950), SC_(-0.053257171600878093079366736202964706966166164696873) }},{{ SC_(-0.040594059405940594059405940594059405940594059405941), SC_(-0.042350146588050412657332988380168720859403591863698) }},{{ SC_(-0.030693069306930693069306930693069306930693069306931), SC_(-0.031681024260949098136757222042165581145138786336298) }},{{ SC_(-0.020792079207920792079207920792079207920792079207921), SC_(-0.021238392251213645736199359110665662967213312773617) }},{{ SC_(-0.010891089108910891089108910891089108910891089108911), SC_(-0.011011681049909946810068329378571761407667575030714) }},{{ SC_(-0.00099009900990099009900990099009900990099009900990099), SC_(-0.00099108076440319890968631186785975507712384928918616) }}
}};
T tolerance = boost::math::tools::epsilon<T>() * 3;
if (std::numeric_limits<T>::digits10 > 40)
tolerance *= 3; // arbitrary precision types have lower accuracy on exp(z).
for (unsigned i = 0; i < wolfram_test_small_neg.size(); ++i)
{
BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(T(wolfram_test_small_neg[i][0])), T(wolfram_test_small_neg[i][1]), tolerance);
}
}
template <class T>
void wolfram_test_large(const boost::mpl::true_&)
{
//
// Spots near the singularity from http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5B-1%2Fe%2B2%5E-i,+50%5D,+N%5BLambertW%5B-1%2Fe+%2B+2%5E-i%5D,+50%5D%5D,+%7Bi,+2,+40%7D%5D
//
static const boost::array<boost::array<typename table_type<T>::type, 2>, 28/2> wolfram_test_large_data =
{ {
{{ SC_(3.1415926535897932384626433832795028841971693993751e350), SC_(800.36444525326526998205084284403447902093784176640) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e400), SC_(915.35945025352715923124904626896745356022974283730) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e450), SC_(1030.3703481552571717312484086444052442055003737018) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e500), SC_(1145.3937726197879355969554296951287620979399652268) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e550), SC_(1260.4273249433458391941776841900870933799293511610) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e600), SC_(1375.4692354682341092954911299903937009237749971748) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e650), SC_(1490.5181612342761763990969379122584268166707632003) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e700), SC_(1605.5730589637597079362569020729894833435943718597) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e750), SC_(1720.6331020467166402802313799793443913873949058922) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e800), SC_(1835.6976244160526737141293452999638879204852786698) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e850), SC_(1950.7660814940759743605616247252782614446819652848) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e900), SC_(2065.8380223354646200773160641407055989098916114637) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e950), SC_(2180.9130693229593212006354812037286740424563145700) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e1000), SC_(2295.9909030845346718801238821248991904602625884450) }}
} };
T tolerance = boost::math::tools::epsilon<T>() * 3;
if (std::numeric_limits<T>::digits10 > 40)
tolerance *= 3; // arbitrary precision types have lower accuracy on exp(z).
for (unsigned i = 0; i < wolfram_test_large_data.size(); ++i)
{
BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(T(wolfram_test_large_data[i][0])), T(wolfram_test_large_data[i][1]), tolerance);
}
}
template <class T>
void wolfram_test_large(const boost::mpl::false_&){}
template <class T>
void wolfram_test_large()
{
wolfram_test_large<T>(boost::mpl::bool_<(std::numeric_limits<T>::max_exponent10 > 1000)>());
}
template <class T>
void wolfram_test_near_singularity()
{
//
// Spots near the singularity from http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5B-1%2Fe%2B2%5E-i,+50%5D,+N%5BLambertW%5B-1%2Fe+%2B+2%5E-i%5D,+50%5D%5D,+%7Bi,+2,+40%7D%5D
//
static const boost::array<boost::array<typename table_type<T>::type, 2>, 39> wolfram_test_near_singularity_data =
{{
{ { SC_(-0.11787944117144233402427744294982403516769409179688), SC_(-0.13490446826612137099065142885543349308605449591189) } },{ { SC_(-0.24287944117144233402427744294982403516769409179688), SC_(-0.34187241316000575559631565516533717918703951393828) } },{ { SC_(-0.30537944117144233402427744294982403516769409179688), SC_(-0.50704532478540670242736394530166187052909039079642) } },{ { SC_(-0.33662944117144233402427744294982403516769409179688), SC_(-0.63562321628494791544895212508757067989859372121549) } },{ { SC_(-0.35225444117144233402427744294982403516769409179688), SC_(-0.73357201771558852140844624841371893543359405991894) } },{ { SC_(-0.36006694117144233402427744294982403516769409179688), SC_(-0.80685912552602238275976720505076149562188136941981) } },{ { SC_(-0.36397319117144233402427744294982403516769409179688), SC_(-0.86091151614390373770305184939107560322835214525382) } },{ { SC_(-0.36592631617144233402427744294982403516769409179688), SC_(-0.90033567669608907987528169545609510444951296636737) } },{ { SC_(-0.36690287867144233402427744294982403516769409179688), SC_(-0.92884889586304130900291705545970353898661233095513) } },{ { SC_(-0.36739115992144233402427744294982403516769409179688), SC_(-0.94934196763921122756108351994184213101752011076782) } },{ { SC_(-0.36763530054644233402427744294982403516769409179688), SC_(-0.96400324129495105632485735566132352543383271582526) } },{ { SC_(-0.36775737085894233402427744294982403516769409179688), SC_(-0.97445736712728703357755243595334553847237474201138) } },{ { SC_(-0.36781840601519233402427744294982403516769409179688), SC_(-0.98189372378619472154195350108189165241865132390473) } },{ { SC_(-0.36784892359331733402427744294982403516769409179688), SC_(-0.98717434434269671591894280580432721487757138768109) } },{ { SC_(-0.36786418238237983402427744294982403516769409179688), SC_(-0.99091955260257317141206161906086819616043312707614) } },{ { SC_(-0.36787181177691108402427744294982403516769409179688), SC_(-0.99357346775773151586057357459040504547191256911173) } },{ { SC_(-0.36787562647417670902427744294982403516769409179688), SC_(-0.99545290640175819861266174073519228782773422561472) } },{ { SC_(-0.36787753382280952152427744294982403516769409179688), SC_(-0.99678329264937600678258333756796350065436689760936) } },{ { SC_(-0.36787848749712592777427744294982403516769409179688), SC_(-0.99772473035978895659981485126201758865515569761514) } },{ { SC_(-0.36787896433428413089927744294982403516769409179688), SC_(-0.99839078411548014765525278348680286544429555739338) } },{ { SC_(-0.36787920275286323246177744294982403516769409179688), SC_(-0.99886193379608135520603487963907992157933985302350) } },{ { SC_(-0.36787932196215278324302744294982403516769409179688), SC_(-0.99919517626703684624524893082905669989578841060892) } },{ { SC_(-0.36787938156679755863365244294982403516769409179688), SC_(-0.99943085896775657378245957087668418410735469441835) } },{ { SC_(-0.36787941136911994632896494294982403516769409179688), SC_(-0.99959753415605033951327478977234592072050509074480) } },{ { SC_(-0.36787942627028114017662119294982403516769409179688), SC_(-0.99971540249082798050505534900918173321899800190957) } },{ { SC_(-0.36787943372086173710044931794982403516769409179688), SC_(-0.99979875358003464529770521637722571161846456343102) } },{ { SC_(-0.36787943744615203556236338044982403516769409179688), SC_(-0.99985769449598686744630754715710430111838645655608) } },{ { SC_(-0.36787943930879718479332041169982403516769409179688), SC_(-0.99989937341527312969776294577792175610005161268265) } },{ { SC_(-0.36787944024011975940879892732482403516769409179688), SC_(-0.99992884556078314715423832743355922518662235135757) } },{ { SC_(-0.36787944070578104671653818513732403516769409179688), SC_(-0.99994968586433278794146581248117772412549843583586) } },{ { SC_(-0.36787944093861169037040781404357403516769409179688), SC_(-0.99996442235919152892644019456912452486892832990114) } },{ { SC_(-0.36787944105502701219734262849669903516769409179688), SC_(-0.99997484272221444495021480907850566954322542216868) } },{ { SC_(-0.36787944111323467311081003572326153516769409179688), SC_(-0.99998221107553951227244139186618591264285119372063) } },{ { SC_(-0.36787944114233850356754373933654278516769409179688), SC_(-0.99998742131038091608107093454795869661238860012568) } },{ { SC_(-0.36787944115689041879591059114318341016769409179688), SC_(-0.99999110551424805741455916942650424910940130482916) } },{ { SC_(-0.36787944116416637641009401704650372266769409179688), SC_(-0.99999371064603396347995131962984747427523504609782) } },{ { SC_(-0.36787944116780435521718572999816387891769409179688), SC_(-0.99999555275622895023796382943893319302015254415029) } },{ { SC_(-0.36787944116962334462073158647399395704269409179688), SC_(-0.99999685532777825691586263781552103878671869687024) } },{ { SC_(-0.36787944117053283932250451471190899610519409179688), SC_(-0.99999777638786151731498560321162974199505119200634) } }
}};
T tolerance = boost::math::tools::epsilon<T>() * 3;
if (boost::math::tools::epsilon<T>() <= boost::math::tools::epsilon<long double>())
tolerance *= 5e5;
T endpoint = -boost::math::constants::exp_minus_one<T>();
for (unsigned i = 0; i < wolfram_test_near_singularity_data.size(); ++i)
{
if (wolfram_test_near_singularity_data[i][0] <= endpoint)
break;
else
BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(T(wolfram_test_near_singularity_data[i][0])), T(wolfram_test_near_singularity_data[i][1]), tolerance);
}
}
template <>
void wolfram_test_near_singularity<float>()
{
//
// Spot values near the singularity with inputs truncated to float precision,
// from http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5BROUND%5B-1%2Fe%2B2%5E-i,+2%5E-23%5D,+50%5D,+N%5BLambertW%5BROUND%5B-1%2Fe+%2B+2%5E-i,+2%5E-23%5D%5D,+50%5D%5D,+%7Bi,+2,+40%7D%5D
//
static const boost::array<boost::array<float, 2>, 39> wolfram_test_near_singularity_data =
{{
{{ -0.11787939071655273437500000000000000000000000000000f, -0.13490440151978599948261696847702203722148729212591f }},{{ -0.24287939071655273437500000000000000000000000000000f, -0.34187230524883404685074938529655332889057132590877f }},{{ -0.30537939071655273437500000000000000000000000000000f, -0.50704515484245965628066570100405225451296978841169f }},{{ -0.33662939071655273437500000000000000000000000000000f, -0.63562295482810970976475066480034941107064440641758f }},{{ -0.35225439071655273437500000000000000000000000000000f, -0.73357162334066102207977288738307124189083069773180f }},{{ -0.36006689071655273437500000000000000000000000000000f, -0.80685854013946199386910756662972252220827924037205f }},{{ -0.36397314071655273437500000000000000000000000000000f, -0.86091065811941702413570870801021404654934249886505f }},{{ -0.36592626571655273437500000000000000000000000000000f, -0.90033443111682454984393817004965279949925483847744f }},{{ -0.36690282821655273437500000000000000000000000000000f, -0.92884710067602836873486989954484681592392882968841f }},{{ -0.36739110946655273437500000000000000000000000000000f, -0.94933939406123900376318336910404763737960907662666f }},{{ -0.36763525009155273437500000000000000000000000000000f, -0.96399956611859464483214118051190513364901860207328f }},{{ -0.36775732040405273437500000000000000000000000000000f, -0.97445213361280651797731195324654593603807971082292f }},{{ -0.36781835556030273437500000000000000000000000000000f, -0.98188628650256330812037232517657284107351472091741f }},{{ -0.36784887313842773437500000000000000000000000000000f, -0.98716379155663346207408852364078406478772014890806f }},{{ -0.36786413192749023437500000000000000000000000000000f, -0.99090459761086986284393759319956676727684106186028f }},{{ -0.36787176132202148437500000000000000000000000000000f, -0.99355229825129408828026714426677096743753950457546f }},{{ -0.36787557601928710937500000000000000000000000000000f, -0.99542297991285328482403963994064328331346049089419f }},{{ -0.36787748336791992187500000000000000000000000000000f, -0.99674107062291256263133271694520294422529881114769f }},{{ -0.36787843704223632812500000000000000000000000000000f, -0.99766536478294767461296564658785293377699068226332f }},{{ -0.36787891387939453125000000000000000000000000000000f, -0.99830783438342654552199009076049244789994050996944f }},{{ -0.36787915229797363281250000000000000000000000000000f, -0.99874733565614076859582844941545958416543067187493f }},{{ -0.36787927150726318359375000000000000000000000000000f, -0.99903989590053869025356285499889881633845057984872f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }}
}};
float tolerance = boost::math::tools::epsilon<float>() * 16;
float endpoint = -boost::math::constants::exp_minus_one<float>();
for (unsigned i = 0; i < wolfram_test_near_singularity_data.size(); ++i)
{
if (wolfram_test_near_singularity_data[i][0] <= endpoint)
break;
else
BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(wolfram_test_near_singularity_data[i][0]), wolfram_test_near_singularity_data[i][1], tolerance);
}
}
template <>
void wolfram_test_near_singularity<double>()
{
//
// Spot values near the singularity with inputs truncated to double precision,
// from http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5BROUND%5B-1%2Fe%2B2%5E-i,+2%5E-23%5D,+50%5D,+N%5BLambertW%5BROUND%5B-1%2Fe+%2B+2%5E-i,+2%5E-23%5D%5D,+50%5D%5D,+%7Bi,+2,+40%7D%5D
//
static const boost::array<boost::array<double, 2>, 39> wolfram_test_near_singularity_data =
{{
{{ -0.11787944117144233402427744294982403516769409179688, -0.13490446826612137099065142885543349308605449591189 }},{{ -0.24287944117144233402427744294982403516769409179688, -0.34187241316000575559631565516533717918703951393828 }},{{ -0.30537944117144233402427744294982403516769409179688, -0.50704532478540670242736394530166187052909039079642 }},{{ -0.33662944117144233402427744294982403516769409179688, -0.63562321628494791544895212508757067989859372121549 }},{{ -0.35225444117144233402427744294982403516769409179688, -0.73357201771558852140844624841371893543359405991894 }},{{ -0.36006694117144233402427744294982403516769409179688, -0.80685912552602238275976720505076149562188136941981 }},{{ -0.36397319117144233402427744294982403516769409179688, -0.86091151614390373770305184939107560322835214525382 }},{{ -0.36592631617144233402427744294982403516769409179688, -0.90033567669608907987528169545609510444951296636737 }},{{ -0.36690287867144233402427744294982403516769409179688, -0.92884889586304130900291705545970353898661233095513 }},{{ -0.36739115992144233402427744294982403516769409179688, -0.94934196763921122756108351994184213101752011076782 }},{{ -0.36763530054644233402427744294982403516769409179688, -0.96400324129495105632485735566132352543383271582526 }},{{ -0.36775737085894233402427744294982403516769409179688, -0.97445736712728703357755243595334553847237474201138 }},{{ -0.36781840601519233402427744294982403516769409179688, -0.98189372378619472154195350108189165241865132390473 }},{{ -0.36784892359331733402427744294982403516769409179688, -0.98717434434269671591894280580432721487757138768109 }},{{ -0.36786418238237983402427744294982403516769409179688, -0.99091955260257317141206161906086819616043312707614 }},{{ -0.36787181177691108402427744294982403516769409179688, -0.99357346775773151586057357459040504547191256911173 }},{{ -0.36787562647417670902427744294982403516769409179688, -0.99545290640175819861266174073519228782773422561472 }},{{ -0.36787753382280952152427744294982403516769409179688, -0.99678329264937600678258333756796350065436689760936 }},{{ -0.36787848749712592777427744294982403516769409179688, -0.99772473035978895659981485126201758865515569761514 }},{{ -0.36787896433428413089927744294982403516769409179688, -0.99839078411548014765525278348680286544429555739338 }},{{ -0.36787920275286323246177744294982403516769409179688, -0.99886193379608135520603487963907992157933985302350 }},{{ -0.36787932196215278324302744294982403516769409179688, -0.99919517626703684624524893082905669989578841060892 }},{{ -0.36787938156679755863365244294982403516769409179688, -0.99943085896775657378245957087668418410735469441835 }},{{ -0.36787941136911994632896494294982403516769409179688, -0.99959753415605033951327478977234592072050509074480 }},{{ -0.36787942627028114017662119294982403516769409179688, -0.99971540249082798050505534900918173321899800190957 }},{{ -0.36787943372086173710044931794982403516769409179688, -0.99979875358003464529770521637722571161846456343102 }},{{ -0.36787943744615203556236338044982403516769409179688, -0.99985769449598686744630754715710430111838645655608 }},{{ -0.36787943930879718479332041169982403516769409179688, -0.99989937341527312969776294577792175610005161268265 }},{{ -0.36787944024011975940879892732482403516769409179688, -0.99992884556078314715423832743355922518662235135757 }},{{ -0.36787944070578104671653818513732403516769409179688, -0.99994968586433278794146581248117772412549843583586 }},{{ -0.36787944093861169037040781404357403516769409179688, -0.99996442235919152892644019456912452486892832990114 }},{{ -0.36787944105502701219734262849669903516769409179688, -0.99997484272221444495021480907850566954322542216868 }},{{ -0.36787944111323467311081003572326153516769409179688, -0.99998221107553951227244139186618591264285119372063 }},{{ -0.36787944114233850356754373933654278516769409179688, -0.99998742131038091608107093454795869661238860012568 }},{{ -0.36787944115689041879591059114318341016769409179688, -0.99999110551424805741455916942650424910940130482916 }},{{ -0.36787944116416637641009401704650372266769409179688, -0.99999371064603396347995131962984747427523504609782 }},{{ -0.36787944116780435521718572999816387891769409179688, -0.99999555275622895023796382943893319302015254415029 }},{{ -0.36787944116962334462073158647399395704269409179688, -0.99999685532777825691586263781552103878671869687024 }},{{ -0.36787944117053283932250451471190899610519409179688, -0.99999777638786151731498560321162974199505119200634 }}
}};
double tolerance = boost::math::tools::epsilon<double>() * 5;
if (std::numeric_limits<double>::digits >= std::numeric_limits<long double>::digits)
tolerance *= 1e5;
else if (std::numeric_limits<double>::digits * 2 >= std::numeric_limits<long double>::digits)
tolerance *= 5e4;
double endpoint = -boost::math::constants::exp_minus_one<double>();
for (unsigned i = 0; i < wolfram_test_near_singularity_data.size(); ++i)
{
if (wolfram_test_near_singularity_data[i][0] <= endpoint)
break;
else
BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(wolfram_test_near_singularity_data[i][0]), wolfram_test_near_singularity_data[i][1], tolerance);
}
}
template <class RealType>
void test_spots(RealType)
{
// (Unused Parameter value, arbitrarily zero, only communicates the floating point type).
// test_spots(0.F); test_spots(0.); test_spots(0.L);
using boost::math::lambert_w0;
using boost::math::lambert_wm1;
using boost::math::constants::exp_minus_one;
using boost::math::constants::e;
using boost::math::policies::policy;
/* Example of an exception-free 'ignore_all' policy (possibly ill-advised?).
*/
typedef policy <
boost::math::policies::domain_error<boost::math::policies::ignore_error>,
boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
boost::math::policies::pole_error<boost::math::policies::ignore_error>,
boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
> ignore_all_policy;
// Test some bad parameters to the function, with default policy and also with ignore_all policy.
#ifndef BOOST_NO_EXCEPTIONS
BOOST_CHECK_THROW(lambert_w0<RealType>(-1.), std::domain_error);
BOOST_CHECK_THROW(lambert_wm1<RealType>(-1.), std::domain_error);
if (std::numeric_limits<RealType>::has_quiet_NaN)
{
BOOST_CHECK_THROW(lambert_w0<RealType>(std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // Would be NaN.
//BOOST_CHECK_EQUAL(lambert_w0<RealType>(std::numeric_limits<RealType>::quiet_NaN(), ignore_all_policy()), std::numeric_limits<RealType>::quiet_NaN()); // Should be NaN.
// Fails as NaN != NaN by definition.
BOOST_CHECK(boost::math::isnan(lambert_w0<RealType>(std::numeric_limits<RealType>::quiet_NaN(), ignore_all_policy())));
//BOOST_MATH_CHECK_EQUAL(boost::math::lambert_w0<RealType>(std::numeric_limits<RealType>::infinity(), ignore_all_policy()), std::numeric_limits<RealType::infinity()); // infinity.
}
// BOOST_CHECK_THROW(lambert_w0<RealType>(std::numeric_limits<RealType>::infinity()), std::domain_error); // Was if infinity should throw, now infinity.
BOOST_CHECK_THROW(lambert_w0<RealType>(-static_cast<RealType>(0.4)), std::domain_error); // Would be complex.
#else // No exceptions, so set policy to ignore and check result is NaN.
BOOST_MATH_CHECK_EQUAL(boost::math::lambert_w0<RealType>(std::numeric_limits<RealType>::quiet_NaN(), ignore_all_policy()), std::numeric_limits<RealType::quiet_NaN()); // NaN.
BOOST_MATH_CHECK_EQUAL(boost::math::lambert_w0<RealType>(std::numeric_limits<RealType>::infinity(), ignore_all_policy()), std::numeric_limits<RealType::infinity()); // infinity.
BOOST_MATH_CHECK_EQUAL(boost::math::lambert_w0<RealType>(std::numeric_limits<RealType>::infinity(), ignore_all_policy()), std::numeric_limits<RealType::infinity()); // infinity.
#endif
std::cout << "\nTesting type " << typeid(RealType).name() << std::endl;
int epsilons = 2;
if (std::numeric_limits<RealType>::digits > 53)
{ // Multiprecision types.
epsilons *= 8; // (Perhaps needed because need slightly longer (55) reference values?).
}
RealType tolerance = boost::math::tools::epsilon<RealType>() * epsilons; // 2 eps as a fraction.
std::cout << "Tolerance " << epsilons << " * epsilon == " << tolerance << std::endl;
#ifndef BOOST_NO_CXX11_NUMERIC_LIMITS
std::cout << "Precision " << std::numeric_limits<RealType>::digits10 << " decimal digits, max_digits10 = " << std::numeric_limits <RealType>::max_digits10<< std::endl;
// std::cout.precision(std::numeric_limits<RealType>::digits10);
std::cout.precision(std::numeric_limits <RealType>::max_digits10);
#endif
std::cout.setf(std::ios_base::showpoint); // show trailing significant zeros.
std::cout << "-exp(-1) = " << -exp_minus_one<RealType>() << std::endl;
wolfram_test_near_singularity<RealType>();
wolfram_test_large<RealType>();
wolfram_test_small_neg<RealType>();
wolfram_test_small_pos<RealType>();
wolfram_test_moderate_values<RealType>();
// Test at singularity.
// RealType test_value = BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144232159552377016146086744581113103176783450783680169746149574489980335714727434591964374662732527);
RealType singular_value = -exp_minus_one<RealType>();
// -exp(-1) = -0.36787944117144232159552377016146086744581113103176783450783680169746149574489980335714727434591964374662732527
// lambert_w0[-0.367879441171442321595523770161460867445811131031767834] == -1
// -0.36787945032119751
RealType minus_one_value = BOOST_MATH_TEST_VALUE(RealType, -1.);
//std::cout << "singular_value " << singular_value << ", expected Lambert W = " << minus_one_value << std::endl;
BOOST_CHECK_CLOSE_FRACTION( // Check -exp(-1) = -0.367879450 = -1max
lambert_w0(singular_value),
minus_one_value,
tolerance); // OK
BOOST_CHECK_CLOSE_FRACTION( // Check -exp(-1) ~= -0.367879450 == -1
lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144232159552377016146086744581113103176783450783680169746149574489980335714727434591964374662732527)),
BOOST_MATH_TEST_VALUE(RealType, -1.),
tolerance);
BOOST_CHECK_CLOSE_FRACTION( // Check -exp(-1) ~= -0.367879450 == -1
lambert_w0<RealType>(-exp_minus_one<RealType>()),
BOOST_MATH_TEST_VALUE(RealType, -1.),
tolerance);
// Tests with some spot values computed using
// https://www.wolframalpha.com/input
// For example: N[lambert_w[1], 50] outputs:
// 0.56714329040978387299996866221035554975381578718651
// At branch junction singularity.
BOOST_CHECK_CLOSE_FRACTION( // Check -exp(-1) ~= -0.367879450 == -1
lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144232159552377016146086744581113103176783450783680169746149574489980335714727434591964374662732527)),
BOOST_MATH_TEST_VALUE(RealType, -1.),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.1)),
BOOST_MATH_TEST_VALUE(RealType, 0.091276527160862264299895721423179568653119224051472),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(0.2)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.2)),
BOOST_MATH_TEST_VALUE(RealType, 0.16891597349910956511647490370581839872844691351073),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(0.2)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.5)),
BOOST_MATH_TEST_VALUE(RealType, 0.351733711249195826024909300929951065171464215517111804046),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(0.5)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.)),
BOOST_MATH_TEST_VALUE(RealType, 0.56714329040978387299996866221035554975381578718651),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(1)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 2.)),
BOOST_MATH_TEST_VALUE(RealType, 0.852605502013725491346472414695317466898453300151403508772),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(2.)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 3.)),
BOOST_MATH_TEST_VALUE(RealType, 1.049908894964039959988697070552897904589466943706341452932),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(3.)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 5.)),
BOOST_MATH_TEST_VALUE(RealType, 1.326724665242200223635099297758079660128793554638047479789),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(0.5)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 6.)),
BOOST_MATH_TEST_VALUE(RealType, 1.432404775898300311234078007212058694786434608804302025655),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(6)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 100.)),
BOOST_MATH_TEST_VALUE(RealType, 3.3856301402900501848882443645297268674916941701578),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(100)
tolerance);
if (std::numeric_limits<RealType>::has_infinity)
{
BOOST_CHECK_THROW(lambert_w0(std::numeric_limits<RealType>::infinity()), std::overflow_error); // If should throw exception for infinity.
//BOOST_CHECK_EQUAL(lambert_w0(std::numeric_limits<RealType>::infinity()), +std::numeric_limits<RealType>::infinity()); // message is:
// Error in "test_types": class boost::exception_detail::clone_impl<struct boost::exception_detail::error_info_injector<class std::overflow_error> > :
// Error in function boost::math::lambert_w0<RealType>(<RealType>) : Argument z is infinite!
//BOOST_CHECK_EQUAL(lambert_w0(std::numeric_limits<RealType>::infinity()), +std::numeric_limits<RealType>::infinity()); // If infinity allowed.
BOOST_CHECK_THROW(lambert_wm1(std::numeric_limits<RealType>::infinity()), std::domain_error); // Infinity NOT allowed at all (not an edge case).
}
if (std::numeric_limits<RealType>::has_quiet_NaN)
{ // Argument Z == NaN is always an throwable error for both branches.
// BOOST_CHECK_EQUAL(lambert_w0(std::numeric_limits<RealType>::quiet_NaN()), +std::numeric_limits<RealType>::infinity()); // message is:
// Error in function boost::math::lambert_w0<RealType>(<RealType>): Argument z is NaN!
BOOST_CHECK_THROW(lambert_w0(std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
BOOST_CHECK_THROW(lambert_wm1(std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
}
// denorm - but might be == min or zero?
if (std::numeric_limits<RealType>::has_denorm == true)
{ // Might also return infinity like z == 0?
BOOST_CHECK_THROW(lambert_wm1(std::numeric_limits<RealType>::denorm_min()), std::overflow_error);
}
// Tests of Lambert W-1 branch.
BOOST_CHECK_CLOSE_FRACTION( // Check -exp(-1) ~= -0.367879450 == -1 at the singularity branch point.
lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144232159552377016146086744581113103176783450783680169746149574489980335714727434591964374662732527)),
BOOST_MATH_TEST_VALUE(RealType, -1.),
tolerance);
// Near singularity and using series approximation.
// N[productlog(-1, -0.36), 50] = -1.2227701339785059531429380734238623131735264411311
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.36)),
BOOST_MATH_TEST_VALUE(RealType, -1.2227701339785059531429380734238623131735264411311),
10 * tolerance); // tolerance OK for quad
// -1.2227701339785059531429380734238623131735264411311
// -1.222770133978505953142938073423862313173526441131033
// Just using series approximation (switch at -0.35).
// N[productlog(-0.351), 50] = -0.72398644140937651483634596143951001600417138085814
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.351)),
BOOST_MATH_TEST_VALUE(RealType, -0.72398644140937651483634596143951001600417138085814),
// 2 * tolerance); // Note 2 * tolerance for PB fukushima
// got -0.723986441409376931150560229265736446 without Halley
// exp -0.72398644140937651483634596143951001
// got -0.72398644140937651483634596143951029 with Halley
10 * tolerance); // expect -0.72398644140937651 float -0.723987103 needs 10 * tolerance
// 2 * tolerance is fine for double and up.
// Float is OK
// Same for W-1 branch
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.351)),
BOOST_MATH_TEST_VALUE(RealType, -1.3385736984773431852492145715526995809854973408320),
10 * tolerance); // 2 tolerance OK for quad
// Near singularity and NOT using series approximation (switch at -0.35)
// N[productlog(-1, -0.34), 50]
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.34)),
BOOST_MATH_TEST_VALUE(RealType, -1.4512014851325470735077533710339268100722032730024),
10 * tolerance); // tolerance OK for quad
//
// Decreasing z until near zero (small z) .
//N[productlog(-1, -0.3), 50] = -1.7813370234216276119741702815127452608215583564545
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.3)),
BOOST_MATH_TEST_VALUE(RealType, -1.7813370234216276119741702815127452608215583564545),
2 * tolerance);
// -1.78133702342162761197417028151274526082155835645446
//N[productlog(-1, -0.2), 50] = -2.5426413577735264242938061566618482901614749075294
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.2)),
BOOST_MATH_TEST_VALUE(RealType, -2.5426413577735264242938061566618482901614749075294),
2 * tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.1)),
BOOST_MATH_TEST_VALUE(RealType, -3.577152063957297218409391963511994880401796257793),
tolerance);
//N[productlog(-1, -0.01), 50] = -6.4727751243940046947410578927244880371043455902257
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.01)),
BOOST_MATH_TEST_VALUE(RealType, -6.4727751243940046947410578927244880371043455902257),
tolerance);
// N[productlog(-1, -0.001), 50] = -9.1180064704027401212583371820468142742704349737639
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.001)),
BOOST_MATH_TEST_VALUE(RealType, -9.1180064704027401212583371820468142742704349737639),
tolerance);
// N[productlog(-1, -0.000001), 50] = -16.626508901372473387706432163984684996461726803805
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.000001)),
BOOST_MATH_TEST_VALUE(RealType, -16.626508901372473387706432163984684996461726803805),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-12)),
BOOST_MATH_TEST_VALUE(RealType, -31.067172842017230842039496250208586707880448763222),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-25)),
BOOST_MATH_TEST_VALUE(RealType, -61.686695602074505366866968627049381352503620377944),
tolerance);
// z nearly too small.
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -2e-26)),
BOOST_MATH_TEST_VALUE(RealType, -63.322302839923597803393585145387854867226970485197),
tolerance* 2);
// z very nearly too small. G(k=64) g[63] = -1.0264389699511303e-26 to using 1.027e-26
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1.027e-26)),
BOOST_MATH_TEST_VALUE(RealType, -63.999444896732265186957073549916026532499356695343),
tolerance);
// So -64 is the most negative value that can be determined using lookup.
// N[productlog(-1, -1.0264389699511303 * 10^-26 ), 50] -63.999999999999997947255011093606206983577811736472 == -64
// G[k=64] = g[63] = -1.0264389699511303e-26
// z too small for G(k=64) g[63] = -1.0264389699511303e-26 to using 1.027e-26
// N[productlog(-1, -10 ^ -26), 50] = -31.067172842017230842039496250208586707880448763222
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-26)),
BOOST_MATH_TEST_VALUE(RealType, -64.026509628385889681156090340691637712441162092868),
tolerance); // -64.0265121
if (std::numeric_limits<RealType>::has_infinity)
{
BOOST_CHECK_EQUAL(lambert_wm1(0), -std::numeric_limits<RealType>::infinity());
}
if (std::numeric_limits<RealType>::has_quiet_NaN)
{
// BOOST_CHECK_EQUAL(lambert_w0(std::numeric_limits<RealType>::quiet_NaN()), +std::numeric_limits<RealType>::infinity()); // message is:
// Error in function boost::math::lambert_w0<RealType>(<RealType>): Argument z is NaN!
BOOST_CHECK_THROW(lambert_wm1(std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
}
// W0 Tests for too big and too small to use lookup table.
// Exactly W = 64, not enough to be OK for lookup.
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 3.9904954117194348050619127737142206366920907815909119e+29)),
BOOST_MATH_TEST_VALUE(RealType, 64.0),
tolerance);
// Just below z for F[64]
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 3.99045411719434e+29)),
BOOST_MATH_TEST_VALUE(RealType, 63.999989810930513468726486827408823607175844852495), tolerance);
// Fails for quad_float -1.22277013397850595265
// -1.22277013397850595319
// Just too big, so using log approx and Halley refinement.
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 4e+29)),
BOOST_MATH_TEST_VALUE(RealType, 64.002342375637950350970694519073803643686041499677),
tolerance);
// Check at reduced precision.
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 4e+29), policy<digits2<11> >()),
BOOST_MATH_TEST_VALUE(RealType, 64.002342375637950350970694519073803643686041499677),
0.00002); // 0.00001 fails.
// Tests to ensure that all JM rational polynomials are being checked.
// 1st polynomal if (z < 0.5) // 0.05 < z < 0.5
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.49)),
BOOST_MATH_TEST_VALUE(RealType, 0.3465058086974944293540338951489158955895910665452626949),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.051)),
BOOST_MATH_TEST_VALUE(RealType, 0.04858156174600359264950777241723801201748517590507517888),
tolerance);
// 2st polynomal if 0.5 < z < 2
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.51)),
BOOST_MATH_TEST_VALUE(RealType, 0.3569144916935871518694242462560450385494399307379277704),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.9)),
BOOST_MATH_TEST_VALUE(RealType, 0.8291763302658400337004358009672187071638421282477162293),
tolerance);
// 3rd polynomials 2 < z < 6
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 2.1)),
BOOST_MATH_TEST_VALUE(RealType, 0.8752187586805470099843211502166029752154384079916131962),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 5.9)),
BOOST_MATH_TEST_VALUE(RealType, 1.422521411785098213935338853943459424120416844150520831),
tolerance);
// 4th polynomials 6 < z < 18
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 6.1)),
BOOST_MATH_TEST_VALUE(RealType, 1.442152194116056579987235881273412088690824214100254315),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 17.9)),
BOOST_MATH_TEST_VALUE(RealType, 2.129100923757568114366514708174691237123820852409339147),
tolerance);
// 5th polynomials if (z < 9897.12905874) // 2.8 < log(z) < 9.2
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 18.1)),
BOOST_MATH_TEST_VALUE(RealType, 2.136665501382339778305178680563584563343639180897328666),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 9897.)),
BOOST_MATH_TEST_VALUE(RealType, 7.222751047988674263127929506116648714752441161828893633),
tolerance);
// 6th polynomials if (z < 7.896296e+13) // 9.2 < log(z) <= 32
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 9999.)),
BOOST_MATH_TEST_VALUE(RealType, 7.231758181708737258902175236106030961433080976032516996),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 7.7e+13)),
BOOST_MATH_TEST_VALUE(RealType, 28.62069643025822480911439831021393125282095606713326376),
tolerance);
// 7th polynomial // 32 < log(z) < 100
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 8.0e+18)),
BOOST_MATH_TEST_VALUE(RealType, 39.84107480517853176296156400093560722439428484537515586),
tolerance);
// Largest 32-bit float. (Larger values for other types tested using max())
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.e38)),
BOOST_MATH_TEST_VALUE(RealType, 83.07844821316409592720410446942538465411465113447713574),
tolerance);
// Using z small series function if z < 0.05 if (z < -0.051) -0.27 < z < -0.051
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.28)),
BOOST_MATH_TEST_VALUE(RealType, -0.4307588745271127579165306568413721388196459822705155385),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.25)),
BOOST_MATH_TEST_VALUE(RealType, -0.3574029561813889030688111040559047533165905550760120436),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, +0.25)),
BOOST_MATH_TEST_VALUE(RealType, 0.2038883547022401644431818313271398701493524772101596350),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.051)), // just above 0.05 cutoff.
BOOST_MATH_TEST_VALUE(RealType, -0.05382002772543396036830469500362485089791914689728115249),
tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.05)), // at cutoff.
BOOST_MATH_TEST_VALUE(RealType, -0.05270598355154634795995650617915721289427674396592395160),
tolerance * 8);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.049)), // Just below cutoff.
BOOST_MATH_TEST_VALUE(RealType, 0.04676143671340832342497289393737051868103596756298863555),
tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.01)),
BOOST_MATH_TEST_VALUE(RealType, 0.009901473843595011885336326816570107953627746494917415483),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.01)),
BOOST_MATH_TEST_VALUE(RealType, -0.01010152719853875327292018767138623973670903993475235877),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.049)),
BOOST_MATH_TEST_VALUE(RealType, -0.05159448479219405354564920228913331280713177046648170658),
tolerance * 8);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1e-6)),
BOOST_MATH_TEST_VALUE(RealType, 9.999990000014999973333385416558666900096702096424344715e-7),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -1e-6)),
BOOST_MATH_TEST_VALUE(RealType, -1.000001000001500002666671875010800023343107568372593753e-6),
tolerance);
// Near Smallest float.
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1e-38)),
BOOST_MATH_TEST_VALUE(RealType, 9.99999999999999999999999999999999999990000000000000000e-39),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -1e-38)),
BOOST_MATH_TEST_VALUE(RealType, -1.000000000000000000000000000000000000010000000000000000e-38),
tolerance);
// Similar 'too near zero' tests for W-1 branch.
// lambert_wm1(-1.0264389699511283e-26) = -64.000000000000000
// Exactly z for W=-64
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1.026438969951128225904695701851094643838952857740385870e-26)),
BOOST_MATH_TEST_VALUE(RealType, -64.000000000000000000000000000000000000),
2 * tolerance);
// Just more negative than G[64 max] = wm1zs[63] so can't use lookup table.
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1.5e-27)),
BOOST_MATH_TEST_VALUE(RealType, -65.953279000145077719128800110134854577850889171784),
tolerance); // -65.9532776
// Just less negative than G[64 max] = wm1zs[63] so can use lookup table.
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1.1e-26)),
BOOST_MATH_TEST_VALUE(RealType, -63.929686062157630858625440758283127600360210072859),
tolerance);
// N[productlog(-1, -10 ^ -26), 50] = -31.067172842017230842039496250208586707880448763222
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-26)),
BOOST_MATH_TEST_VALUE(RealType, -64.026509628385889681156090340691637712441162092868),
tolerance);
// 1e-28 is too small
// N[productlog(-1, -10 ^ -28), 50] = -31.067172842017230842039496250208586707880448763222
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-28)),
BOOST_MATH_TEST_VALUE(RealType, -68.702163291525429160769761667024460023336801014578),
tolerance);
// Check for overflow when using a double (including when using for approximate value for refinement for higher precision).
// N[productlog(-1, -10 ^ -30), 50] = -73.373110313822976797067478758120874529181611813766
//BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e30)),
// BOOST_MATH_TEST_VALUE(RealType, -73.373110313822976797067478758120874529181611813766),
// tolerance);
//unknown location : fatal error : in "test_types" :
//class boost::exception_detail::clone_impl<struct boost::exception_detail::error_info_injector<class std::domain_error> >
// : Error in function boost::math::lambert_wm1<RealType>(<RealType>) :
// Argument z = -1.00000002e+30 out of range(z < -exp(-1) = -3.6787944) for Lambert W - 1 branch!
BOOST_CHECK_THROW(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e30)), std::domain_error);
// Too negative
BOOST_CHECK_THROW(lambert_wm1(RealType(-0.5)), std::domain_error);
// This fails for fixed_point type used for other tests because out of range?
//BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.0e6)),
//BOOST_MATH_TEST_VALUE(RealType, 11.383358086140052622000156781585004289033774706019),
//// Output from https://www.wolframalpha.com/input/?i=lambert_w0(1e6)
//// tolerance * 1000); // fails for fixed_point type exceeds 0.00015258789063
// // 15.258789063
// // 11.383346558
// tolerance * 100000);
// So need to use some spot tests for specific types, or use a bigger fixed_point type.
// Check zero.
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.0)),
BOOST_MATH_TEST_VALUE(RealType, 0.0),
tolerance);
// these fail for cpp_dec_float_50
// 'boost::multiprecision::detail::expression<boost::multiprecision::detail::negate,boost::multiprecision::number<boost::multiprecision::backends::cpp_dec_float<50,int32_t,void>,boost::multiprecision::et_on>,void,void,void>'
// : no appropriate default constructor available
// TODO ???????????
} // template <class RealType>void test_spots(RealType)
BOOST_AUTO_TEST_CASE( test_types )
{
BOOST_MATH_CONTROL_FP;
// BOOST_TEST_MESSAGE output only appears if command line has --log_level="message"
// or call set_threshold_level function:
boost::unit_test_framework::unit_test_log.set_threshold_level(boost::unit_test_framework::log_messages);
BOOST_TEST_MESSAGE("\nTest Lambert W function for several types.");
BOOST_TEST_MESSAGE(show_versions()); // Full version of Boost, STL and compiler info.
#ifndef BOOST_MATH_TEST_MULTIPRECISION
// Fundamental built-in types:
test_spots(0.0F); // float
test_spots(0.0); // double
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if (sizeof(long double) > sizeof(double))
{ // Avoid pointless re-testing if double and long double are identical (for example, MSVC).
test_spots(0.0L); // long double
}
test_spots(boost::math::concepts::real_concept(0));
#endif
#else // BOOST_MATH_TEST_MULTIPRECISION
// Multiprecision types:
#if BOOST_MATH_TEST_MULTIPRECISION == 1
test_spots(static_cast<boost::multiprecision::cpp_bin_float_double_extended>(0));
#endif
#if BOOST_MATH_TEST_MULTIPRECISION == 2
test_spots(static_cast<boost::multiprecision::cpp_bin_float_quad>(0));
#endif
#if BOOST_MATH_TEST_MULTIPRECISION == 3
test_spots(static_cast<boost::multiprecision::cpp_bin_float_50>(0));
#endif
#endif // ifdef BOOST_MATH_TEST_MULTIPRECISION
#ifdef BOOST_MATH_TEST_FLOAT128
std::cout << "\nBOOST_MATH_TEST_FLOAT128 defined for float128 tests." << std::endl;
#ifdef BOOST_HAS_FLOAT128
// GCC and Intel only.
// Requires link to libquadmath library, see
// http://www.boost.org/doc/libs/release/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/float128.html
// for example:
// C:\Program Files\mingw-w64\x86_64-7.2.0-win32-seh-rt_v5-rev1\mingw64\lib\gcc\x86_64-w64-mingw32\7.2.0\libquadmath.a
using boost::multiprecision::float128;
std::cout << "BOOST_HAS_FLOAT128" << std::endl;
std::cout.precision(std::numeric_limits<float128>::max_digits10);
test_spots(static_cast<float128>(0));
#endif // BOOST_HAS_FLOAT128
#else
std::cout << "\nBOOST_MATH_TEST_FLOAT128 NOT defined so NO float128 tests." << std::endl;
#endif // #ifdef BOOST_MATH_TEST_FLOAT128
} // BOOST_AUTO_TEST_CASE( test_types )
BOOST_AUTO_TEST_CASE( test_range_of_double_values )
{
using boost::math::constants::exp_minus_one;
using boost::math::lambert_w0;
BOOST_TEST_MESSAGE("\nTest Lambert W function type double for range of values.");
// Want to test almost largest value.
// test_value = (std::numeric_limits<RealType>::max)() / 4;
// std::cout << std::setprecision(std::numeric_limits<RealType>::max_digits10) << "Max value = " << test_value << std::endl;
// Can't use a test like this for all types because max_value depends on RealType
// and thus the expected result of lambert_w0 does too.
//BOOST_CHECK_CLOSE_FRACTION(lambert_w0<RealType>(test_value),
// BOOST_MATH_TEST_VALUE(RealType, ???),
// tolerance);
// So this section just tests a single type, say IEEE 64-bit double, for a range of spot values.
typedef double RealType; // Some tests assume type is double.
int epsilons = 1;
RealType tolerance = boost::math::tools::epsilon<RealType>() * epsilons; // 2 eps as a fraction.
std::cout << "Tolerance " << epsilons << " * epsilon == " << tolerance << std::endl;
#ifndef BOOST_MATH_TEST_MULTIPRECISION
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.0e-6)),
BOOST_MATH_TEST_VALUE(RealType, 9.9999900000149999733333854165586669000967020964243e-7),
// Output from https://www.wolframalpha.com/input/ N[lambert_w[1e-6],50])
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.0001)),
BOOST_MATH_TEST_VALUE(RealType, 0.000099990001499733385405869000452213835767629477903460),
// Output from https://www.wolframalpha.com/input/ N[lambert_w[0.001],50])
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.001)),
BOOST_MATH_TEST_VALUE(RealType, 0.00099900149733853088995782787410778559957065467928884),
// Output from https://www.wolframalpha.com/input/ N[lambert_w[0.001],50])
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.01)),
BOOST_MATH_TEST_VALUE(RealType, 0.0099014738435950118853363268165701079536277464949174),
// Output from https://www.wolframalpha.com/input/ N[lambert_w[0.01],50])
tolerance * 25); // <<< Needs a much bigger tolerance???
// 0.0099014738435951096 this test max_digits10
// 0.00990147384359511 digits10
// 0.0099014738435950118 wolfram
// 0.00990147384359501 wolfram digits10
// 0.0099014738435950119 N[lambert_w[0.01],17]
// 0.00990147384359501 N[lambert_w[0.01],15] which really is more different than expected.
// 0.00990728209160670 approx
// 0.00990147384359511 previous
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.05)),
BOOST_MATH_TEST_VALUE(RealType, 0.047672308600129374726388900514160870747062965933891),
// Output from https://www.wolframalpha.com/input/ N[lambert_w[0.01],50])
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.1)),
BOOST_MATH_TEST_VALUE(RealType, 0.091276527160862264299895721423179568653119224051472),
// Output from https://www.wolframalpha.com/input/ N[lambert_w[1],50])
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.)),
BOOST_MATH_TEST_VALUE(RealType, 0.56714329040978387299996866221035554975381578718651),
// Output from https://www.wolframalpha.com/input/ N[lambert_w[1],50])
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 2.)),
BOOST_MATH_TEST_VALUE(RealType, 0.852605502013725491346472414695317466898453300151403508772),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(2.)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 3.)),
BOOST_MATH_TEST_VALUE(RealType, 1.049908894964039959988697070552897904589466943706341452932),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(3.)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 5.)),
BOOST_MATH_TEST_VALUE(RealType, 1.326724665242200223635099297758079660128793554638047479789),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(0.5)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 6.)),
BOOST_MATH_TEST_VALUE(RealType, 1.432404775898300311234078007212058694786434608804302025655),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(6)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 10.)),
BOOST_MATH_TEST_VALUE(RealType, 1.7455280027406993830743012648753899115352881290809),
// Output from https://www.wolframalpha.com/input/ N[lambert_w[10],50])
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 100.)),
BOOST_MATH_TEST_VALUE(RealType, 3.3856301402900501848882443645297268674916941701578),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(100)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1000.)),
BOOST_MATH_TEST_VALUE(RealType, 5.2496028524015962271260563196973062825214723860596),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(1000)
tolerance);
// This fails for fixed_point type used for other tests because out of range of the type?
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.0e6)),
BOOST_MATH_TEST_VALUE(RealType, 11.383358086140052622000156781585004289033774706019),
// Output from https://www.wolframalpha.com/input/?i=lambert_w0(1e6)
tolerance); //
// Tests for double only near the max and the singularity where Lambert_w estimates are less precise.
if (std::numeric_limits<RealType>::is_specialized)
{ // is_specialized means that can use numeric_limits for tests.
// Check near std::numeric_limits<>::max() for type.
//std::cout << std::setprecision(std::numeric_limits<RealType>::max_digits10)
// << (std::numeric_limits<double>::max)() // == 1.7976931348623157e+308
// << " " << (std::numeric_limits<double>::max)()/4 // == 4.4942328371557893e+307
// << std::endl;
// All these result in faulty error message
// unknown location : fatal error : in "test_range_of_values": class boost::exception_detail::clone_impl<struct boost::exception_detail::error_info_injector<class std::domain_error> >: Error in function boost::math::lambert_w0<RealType>(<RealType>): Argument z = %1 too large.
// I:\modular - boost\libs\math\test\test_lambert_w.cpp(456) : last checkpoint
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(1.7976931348623157e+308 ), // max_value for IEEE 64-bit double.
static_cast<double>(703.2270331047701868711791887193075929608934699575820028L),
// N[productlog[0, 1.7976931348623157*10^308 /2],50] == 702.53487067487671916110655783739076368512998658347
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(1.7976931348623157e+308 / 2), // max_value/2 for IEEE 64-bit double.
static_cast<double>(702.53487067487671916110655783739076368512998658347L),
// N[productlog[0, 1.7976931348623157*10^308 /2],50] == 702.53487067487671916110655783739076368512998658347
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(1.7976931348623157e+308 /4), // near max_value/4 for IEEE 64-bit double.
static_cast<double>(701.8427092142920014223182853764045476L),
// N[productlog(0, 1.7976931348623157* 10^308 /4 ), 37] =701.8427092142920014223182853764045476
// N[productlog(0, 0.25 * 1.7976931348623157*10^307), 37]
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(4.4942328371557893e+307), // max_value/4 for IEEE 64-bit double.
static_cast<double>(701.84270921429200143342782556643059L),
// N[lambert_w[4.4942328371557893e+307], 35] == 701.8427092142920014334278255664305887
// as a double == 701.83341468208209
// Lambert computed 702.02379914670587
0.000003); // OK Much less precise at the max edge???
BOOST_CHECK_CLOSE_FRACTION(lambert_w0((std::numeric_limits<double>::max)()), // max_value for IEEE 64-bit double.
static_cast<double>(703.2270331047701868711791887193075930),
// N[productlog(0, 1.7976931348623157* 10^308), 37] = 703.2270331047701868711791887193075930
// 703.22700325995515 lambert W
// 703.22703310477016 Wolfram
tolerance * 2e8); // OK but much less accurate near max.
// Compare precisions very close to the singularity.
// This test value is one epsilon close to the singularity at -exp(-1) * z
// (below which the result has a non-zero imaginary part).
RealType test_value = -exp_minus_one<RealType>();
test_value += (std::numeric_limits<RealType>::epsilon() * 1);
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(test_value),
BOOST_MATH_TEST_VALUE(RealType, -0.99999996349975895),
tolerance * 1000000000);
// -0.99999996788201051
// -0.99999996349975895
// Would not expect to get a result closer than sqrt(epsilon)?
} // if (std::numeric_limits<RealType>::is_specialized)
// Can only compare float_next for specific type T = double.
// Comparison with Wolfram N[productlog(0,-0.36787944117144228 ), 17]
// Note big loss of precision and big tolerance needed to pass.
BOOST_CHECK_CLOSE_FRACTION( // Check float_next(-exp(-1) )
lambert_w0(BOOST_MATH_TEST_VALUE(double, -0.36787944117144228)),
BOOST_MATH_TEST_VALUE(RealType, -0.99999998496215738),
1e8 * tolerance); // diff 6.03558e-09 v 2.2204460492503131e-16
BOOST_CHECK_CLOSE_FRACTION( // Check float_next(float_next(-exp(-1) ))
lambert_w0(BOOST_MATH_TEST_VALUE(double, -0.36787944117144222)),
BOOST_MATH_TEST_VALUE(RealType, -0.99999997649828679),
5e7 * tolerance);// diff 2.30785e-09 v 2.2204460492503131e-16
// Compare with previous PB/FK computations at double precision.
BOOST_CHECK_CLOSE_FRACTION( // Check float_next(-exp(-1) )
lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144228)),
BOOST_MATH_TEST_VALUE(RealType, -0.99999997892657588),
tolerance); // diff 6.03558e-09 v 2.2204460492503131e-16
BOOST_CHECK_CLOSE_FRACTION( // Check float_next(float_next(-exp(-1) ))
lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144222)),
BOOST_MATH_TEST_VALUE(RealType, -0.99999997419043196),
tolerance);// diff 2.30785e-09 v 2.2204460492503131e-16
// z increasingly close to singularity.
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.36)),
BOOST_MATH_TEST_VALUE(RealType, -0.8060843159708177782855213616209920019974599683466713016),
2 * tolerance); // -0.806084335
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.365)),
BOOST_MATH_TEST_VALUE(RealType, -0.8798200914159538111724840007674053239388642469453350954),
5 * tolerance); // Note 5 * tolerance
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.3678)),
BOOST_MATH_TEST_VALUE(RealType, -0.9793607149578284774761844434886481686055949229547379368),
15 * tolerance); // Note 15 * tolerance when this close to singularity.
// Just using series approximation (Fukushima switch at -0.35, but JM at 0.01 of singularity < -0.3679).
// N[productlog(-0.351), 50] = -0.72398644140937651483634596143951001600417138085814
// N[productlog(-0.351), 55] = -0.7239864414093765148363459614395100160041713808581379727
BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.351)),
BOOST_MATH_TEST_VALUE(RealType, -0.72398644140937651483634596143951001600417138085814),
10 * tolerance); // Note was 2 * tolerance
// Check value just not using near_singularity series approximation (and using rational polynomial instead).
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.3)),
BOOST_MATH_TEST_VALUE(RealType, -1.7813370234216276119741702815127452608215583564545),
// Output from https://www.wolframalpha.com/input/
//N[productlog(-1, -0.3), 50] = -1.7813370234216276119741702815127452608215583564545
tolerance);
// Using table lookup and schroeder with decreasing z to zero.
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.2)),
BOOST_MATH_TEST_VALUE(RealType, -2.5426413577735264242938061566618482901614749075294),
// N[productlog[-1, -0.2],50] -2.5426413577735264242938061566618482901614749075294
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.1)),
BOOST_MATH_TEST_VALUE(RealType, -3.5771520639572972184093919635119948804017962577931),
//N[productlog(-1, -0.1), 50] = -3.5771520639572972184093919635119948804017962577931
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.001)),
BOOST_MATH_TEST_VALUE(RealType, -9.1180064704027401212583371820468142742704349737639),
// N[productlog(-1, -0.001), 50] = -9.1180064704027401212583371820468142742704349737639
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.000001)),
BOOST_MATH_TEST_VALUE(RealType, -16.626508901372473387706432163984684996461726803805),
// N[productlog(-1, -0.000001), 50] = -16.626508901372473387706432163984684996461726803805
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-6)),
BOOST_MATH_TEST_VALUE(RealType, -16.626508901372473387706432163984684996461726803805),
// N[productlog(-1, -10 ^ -6), 50] = -16.626508901372473387706432163984684996461726803805
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1.0e-26)),
BOOST_MATH_TEST_VALUE(RealType, -64.026509628385889681156090340691637712441162092868),
// Output from https://www.wolframalpha.com/input/
// N[productlog(-1, -1 * 10^-26 ), 50] = -64.026509628385889681156090340691637712441162092868
tolerance);
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -2e-26)),
BOOST_MATH_TEST_VALUE(RealType, -63.322302839923597803393585145387854867226970485197),
// N[productlog[-1, -2*10^-26],50] = -63.322302839923597803393585145387854867226970485197
tolerance * 2);
// Smaller than lookup table, so must use approx and Halley refinements.
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-30)),
BOOST_MATH_TEST_VALUE(RealType, -73.373110313822976797067478758120874529181611813766),
// N[productlog(-1, -10 ^ -30), 50] = -73.373110313822976797067478758120874529181611813766
tolerance);
// std::numeric_limits<RealType>::min
#ifndef BOOST_NO_CXX11_NUMERIC_LIMITS
std::cout.precision(std::numeric_limits<RealType>::max_digits10);
#endif
std::cout << "(std::numeric_limits<RealType>::min)() " << (std::numeric_limits<RealType>::min)() << std::endl;
BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -2.2250738585072014e-308)),
BOOST_MATH_TEST_VALUE(RealType, -714.96865723796647086868547560654825435542227693935),
// N[productlog[-1, -2.2250738585072014e-308],50] = -714.96865723796647086868547560654825435542227693935
tolerance);
// For z = 0, W = -infinity
if (std::numeric_limits<RealType>::has_infinity)
{
BOOST_CHECK_EQUAL(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, 0.)),
-std::numeric_limits<RealType>::infinity());
}
#elif BOOST_MATH_TEST_MULTIPRECISION == 2
// Comparison with Wolfram N[productlog(0,-0.36787944117144228 ), 17]
// Using conversion from double to higher precision cpp_bin_float_quad
using boost::multiprecision::cpp_bin_float_quad;
BOOST_CHECK_CLOSE_FRACTION( // Check float_next(-exp(-1) )
lambert_w0(BOOST_MATH_TEST_VALUE(cpp_bin_float_quad, -0.36787944117144228)),
BOOST_MATH_TEST_VALUE(cpp_bin_float_quad, -0.99999998496215738),
tolerance); // OK
BOOST_CHECK_CLOSE_FRACTION( // Check float_next(float_next(-exp(-1) ))
lambert_w0(BOOST_MATH_TEST_VALUE(cpp_bin_float_quad, -0.36787944117144222)),
BOOST_MATH_TEST_VALUE(cpp_bin_float_quad, -0.99999997649828679),
tolerance);// OK
#endif
} // BOOST_AUTO_TEST_CASE(test_range_of_double_values)
|